
For Peer Review

 

 
 

 

 
 

PLASMA: Parallel Linear Algebra Software for Multicore 
Using OpenMP 

 
 

Journal: Transactions on Mathematical Software 

Manuscript ID TOMS-2017-0061.R1 

Manuscript Type: 5 Regular Paper for RCR Initiative 

Date Submitted by the Author: n/a 

Complete List of Authors: Dongarra, Jack; University of Tennessee, Department of Electrical 
Engineering & Computer Science 
Gates, Mark; University of Tennessee, Department of Electrical Engineering 
& Computer Science 
Haidar, Azzam; University of Tennessee, Department of Electrical 
Engineering & Computer Science 
Kurzak, Jakub; University of Tennessee, Department of Electrical 
Engineering & Computer Science 
Luszczek, Piotr; University of Tennessee, Department of Electrical 
Engineering & Computer Science 
Wu, Panruo; University of Tennessee, Department of Electrical Engineering 
& Computer Science 

Yamazaki, Ichitaro; University of Tennessee, Department of Electrical 
Engineering & Computer Science 
YarKhan, Asim; University of Tennessee, Department of Electrical 
Engineering & Computer Science 
Abalenkovs, Maksims; The University of Manchester, School of 
Mathematics 
Bagherpour, Negin; The University of Manchester, School of Mathematics 
Hammarling, Sven; The University of Manchester, School of Mathematics 
Sistek, Jakub; The University of Manchester, School of Mathematics 

Computing Classification 
Systems: 

Mathematics of computing~Mathematical software performance, 
Mathematics of computing~Solvers, Computing methodologies~Shared 
memory algorithms 

  

 

 

 

Transactions on Mathematical Software



For Peer Review

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

PLASMA: Parallel Linear Algebra Software for Multicore Using
OpenMP

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

JACKDONGARRA,MARKGATES, AZZAMHAIDAR, JAKUBKURZAK, PIOTR LUSZCZEK, PAN-

RUO WU, ICHITARO YAMAZAKI, and ASIM YARKHAN, University of Tennessee, USA

MAKSIMSABALENKOVS,NEGINBAGHERPOUR, SVENHAMMARLING, JAKUBŠÍSTEK,DAVID

STEVENS, and MAWUSSI ZOUNON, The University of Manchester, UK

SAMUEL D. RELTON, The University of Leeds, UK

The recent version of the PLASMA (Parallel Linear Algebra Software for Multicore Architectures) library is based on tasks with
dependencies from the OpenMP standard. The main functionality of the library is presented. Extensive benchmarks are targeted on
three recent multicore and manycore architectures, namely an Intel Xeon, Intel Xeon Phi, and IBM POWER 8 processors.
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1 INTRODUCTION

The PLASMA numerical library (Parallel Linear Algebra Software for Multicore Architectures) is a dense linear algebra
package at the forefront of multicore computing. PLASMA has been a response to the advent of multicore processors,
proclaimed in the prominent 2005 article by Herb Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software” in Dr. Dobb’s Journal [Sutter 2005]. At that time, it became apparent that both LAPACK1 [Anderson
1http://www.netlib.org/lapack
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2 Dongarra, J. et al

et al. 1999] and ScaLAPACK2 [Blackford et al. 1997] were ill suited for efficient multicore execution. Initial work focused
on efficient multithreading of standard dense linear algebra algorithms (LU with partial pivoting, Cholesky, QR) using
the canonical, column-major, data layout of LAPACK [Kurzak and Dongarra 2006]. The debut of the STI Cell processor
in 2006 pushed the developments in new directions.

The most influential aspect of the STI Cell was the memory architecture based on software controlled caches. This
motivated tiling of the input matrices for efficient communication between the main memory and the caches. The
memory architecture, and its high internal bandwidth, promoted systolic algorithms with high degrees of pipelining.
At the same time, the 14× performance advantage of single precision over double precision, in the original Cell design,
stimulated the development of mixed precision algorithms. Notable papers from that era highlighted tiling, scheduling,
and mixed precision iterative refinement [Buttari et al. 2007; Gustavson et al. 2012; Kurzak et al. 2008; Kurzak and
Dongarra 2007, 2009; Langou et al. 2006]. All these artifacts influenced the design of the PLASMA library in one form
or another.

Seminal to PLASMA developments was also the idea of superscalar scheduling, which also gained initial traction as
a solution for the Cell processor [Bellens et al. 2006]. The CellSs system from the Barcelona Supercomputer Center
served as the initial inspiration for the development of the QUARK scheduler and its subsequent adoption in PLASMA
alongside Pthreads-based routines [Kurzak et al. 2013].

Before PLASMA managed to get significant traction with the user community, GPUs entered the mainstream of
HPC, and the MAGMA library [Agullo et al. 2009] became the focal point of dense linear algebra developments at UTK.
Due to the differences between GPUs and multicore processors, the design of MAGMA differs significantly from that
of PLASMA. Nevertheless, throughout its existence, PLASMA has served as a tremendous research vehicle for the
development of new algorithms and scheduling techniques.

Eventually, adoption of superscalar scheduling in the OpenMP standard motivated the retirement of QUARK in
favor of OpenMP, as well as retirement of the Pthreads routines. This transition was decided after our successful first
experiments with selected functions using the OpenMP tasks summarized in [YarKhan et al. 2016].

This article describes the final design of the OpenMP version of PLASMA, and assesses performance on a variety of
current multicore hardware configurations for a large set of routines. The most recent version, PLASMA 173, offers an
extensive collection of optimized routines for solving linear systems of equations and least squares problems.

PLASMA is designed to deliver high performance from a system with multiple sockets of multicore processors, an
objective achieved by combining state of the art solutions in parallel algorithms, scheduling, and software engineering.
In particular, PLASMA is built around the following three concepts.

Tile Matrix Layout. PLASMA utilizes a tile-based storage approach. The matrix is subdivided into square blocks,
called tiles, of relatively small size, with each tile occupying a continuous memory region. Tiles are loaded to the cache
memory efficiently with little risk of eviction while being processed. The use of the tile layout minimizes conflict
cache misses, translation lookaside buffer (TLB) misses, and false sharing, and maximizes potential for prefetching.
PLASMA contains parallel and cache efficient routines for converting between the conventional column-major and
the tile layouts. PLASMA currently stores both versions of the matrices, so it has larger memory requirements than
LAPACK.

2http://www.netlib.org/scalapack
3https://bitbucket.org/icl/plasma
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PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 3

User Application

plasma_dgemm

plasma_omp_dgemm

plasma_pdgemm

core_omp_dgemm

core_dgemm

dgemm

#pragma omp parallel
#pragma omp master
{
   plasma_omp_dgemm
}

#pragma omp task depend...
{
   core_dgemm
}

{

{

PLASMA

COREBLAS

BLAS, LAPACK

Fig. 1. Overview of PLASMA structure with key parts of the OpenMP implementation. User-level routines are in the box.

Tile Algorithms. PLASMA is based on algorithms redesigned to work on tiles, which maximize data reuse in the
cache levels of multicore systems. Tiles are loaded to the cache and processed completely before being transferred back
to the main memory. Operations on small tiles create fine grained parallelism providing enough work to keep a large
number of cores occupied. Initial work on tile algorithms was published in [Agullo et al. 2009; Buttari et al. 2009], and a
recent overview for the development of tile algorithms can be found in [Abdelfattah et al. 2016].

Dynamic Scheduling. PLASMA relies on concurrent runtime scheduling of sequential tasks. Runtime scheduling
is based on the idea of assigning work to cores based on the availability of data for processing at any given point in
time, and thus is also sometimes called data-driven scheduling. The concept is related closely to the idea of expressing
computation through a task graph, often referred to as the DAG (Directed Acyclic Graph), and the flexibility of exploring
the DAG at runtime. This is in direct opposition to the fork-and-join scheduling, where artificial synchronization
points expose serial sections of the code and multiple cores are idle while sequential processing takes place. Currently,
PLASMA relies on OpenMP for dynamic, task-based, scheduling. Comparison of the two runtimes for PLASMA was
presented in [YarKhan et al. 2016] showing that the more general-purpose tasks of OpenMP are able to provide the
same performance as the more specialized QUARK. PLASMA makes use of tasks with dependencies and priorities,
therefore a compiler supporting these features of the OpenMP 4.5 standard is required.

The asynchronous execution of the sequential tasks generally makes very efficient use of the hardware, leading to
compact traces throughout the majority of the runtime. Traces typically become sparse only at the very beginning or
end of the algorithm, where algorithms do not expose enough parallelism and communication costs may dominate.

2 ALGORITHMS IN PLASMA

2.1 Structure of PLASMA

PLASMA closely follows the structuring of functionality found in the LAPACK and BLAS libraries [Dongarra et al.
1990a,b, 1988a,b; Lawson et al. 1979]. Let us take the example of matrix-matrix multiply in double real precision; the
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4 Dongarra, J. et al

real complex
64 bit (double) dgemm zgemm
32 bit (single) sgemm cgemm

Table 1. An example of the naming conventions for matrix matrix multiply (□gemm).

well known dgemm routine. Four different versions are provided for most subroutines, related to different data precisions
and distinguished by the leading letter; see Table 1. We use □ as a generic symbol for any of these precisions.

The PLASMA routine stack is depicted in Fig. 1. Two different levels of functions are exposed to the user. The top
level function, plasma_dgemm, is a parallel analog of the dgemm from BLAS; see the listing in Fig. 2. Note that this is
rather different from the implementation in the well known PBLAS library4 for distributed memory architectures.
During the execution of this function, a parallel section of OpenMP is opened by #pragma omp parallel. This is where
a number of OpenMP threads are spawned, as specified by the OMP_NUM_THREADS environment variable. All of the code
within this block is executed by the master thread only; note the #pragma omp master directive in Fig. 2. Tasks are
generated by the master thread, inside the function calls within the parallel region, and are executed by all the available
threads in an asynchronous manner. The master thread proceeds to the end of the parallel region, where it joins the
working threads in executing the tasks it has produced. The end of the parallel block acts as a synchronization point,
and the execution proceeds beyond this point only after all the tasks have been completed and OpenMP threads closed.

The second level functions in this example are plasma_omp_zge2desc, plasma_omp_dgemm, and plasma_omp_zdesc2ge.
The plasma_omp_zge2desc and plasma_omp_zdesc2ge functions serve for translation of the data layout between
LAPACK column-major and tile storage; see Section 2.8. The main function here is plasma_omp_dgemm, which is also
exposed to the user, and its simplified body is shown in Fig. 3. For our chosen dgemm example this function contains just
one call to an internal routine with a tile algorithm; i.e. plasma_pdgemm, however multiple algorithms may be combined
on this level. Combining multiple algorithms in this way allows their execution to overlap in an asynchronous manner.
This overlap of algorithms can significantly reduce the overall execution time for these combined functions, and it is one
of the main strengths of PLASMA. This is also the primary reason for exposing the second level of PLASMA functions,
which an advanced user can fuse in a custom order inside a user-defined OpenMP parallel region. This interface also
allows an advanced user to have fine control over the number of OpenMP threads and their placement. For example,
one can run a PLASMA algorithm on a prescribed number of threads specified at the #pragma omp parallel clause
by the num_threads() keyword.

The heart of PLASMA, a tile-based algorithm, is implemented inside the plasma_pdgemm function; see Fig. 4. Inside
this function, which is still executed only by the master thread, loops over matrix tiles appear and functions that process
tiles are called. These functions, also called computational kernels, are part of the COREBLAS library, which forms a
self-standing part of PLASMA.

In the dgemm example, the only computational kernel involved is the core_omp_dgemm function, see Fig 5. An OpenMP
task with data dependencies is generated inside this function by the master thread and enqueued into the OpenMP
runtime. From the body of the task, a call to the core_dgemm function (Fig. 6) is made. In this example the task consists
of calling a sequential version of the dgemm routine from the CBLAS library (i.e. a C wrapper of BLAS), involving three
tiles. In general, the sequential kernels in PLASMA map to simple calls to BLAS routines, calls to LAPACK routines, or
custom implementations derived specifically for tile algorithms (e.g. in the case of the QR factorization). The reason for

4http://www.netlib.org/scalapack/pblas_qref.html
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PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 5

int plasma_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

double alpha , double *pA, int lda ,

double *pB, int ldb ,

double beta , double *pC, int ldc)

{

...

// asynchronous block

#pragma omp parallel

#pragma omp master

{

// Translate matrices from LAPACK to tile layout

plasma_omp_zge2desc(pA, lda , A);

plasma_omp_zge2desc(pB, ldb , B);

plasma_omp_zge2desc(pC, ldc , C);

// Call the asynchronous function

plasma_omp_dgemm(transA , transB ,

alpha , A,

B,

beta , C);

// Translate result back to LAPACK layout

plasma_omp_zdesc2ge(C, pC, ldc);

}

// implicit synchronization

...

}

Fig. 2. An example of the plasma_dgemm top-level function. Only the master thread executes the code in the parallel block, then
creates and enqueues sequential tasks. The plasma_omp_zge2desc and plasma_omp_zdesc2ge serve for translating a matrix from
LAPACK to tile layout of the PLASMA matrix descriptor and vice versa.

void plasma_omp_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

double alpha , plasma_desc_t A,

plasma_desc_t B,

double beta , plasma_desc_t C)

{

// Call the parallel function

plasma_pdgemm(transA , transB ,

alpha , A,

B,

beta , C);

}

Fig. 3. An example of the second-level function plasma_omp_dgemm. The code is executed only by the master thread.

separating the core_omp_dgemm function, which creates the task, from the core_dgemm, which implements the kernel
is allowing the same kernel to be used from different runtime systems, and even from outside of PLASMA (e.g. by the
DPLASMA library [Bosilca et al. 2011, 2010a,b, 2012]5).

5http://icl.cs.utk.edu/dplasma
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6 Dongarra, J. et al

#define A(m, n) (double *) plasma_tile_addr(A, m, n)

#define B(m, n) (double *) plasma_tile_addr(B, m, n)

#define C(m, n) (double *) plasma_tile_addr(C, m, n)

void plasma_pdgemm(plasma_enum_t transA , plasma_enum_t transB ,

double alpha , plasma_desc_t A, plasma_desc_t B,

double beta , plasma_desc_t C)

{

for (int m = 0; m < C.mt; m++) {

int mvcm = plasma_tile_mview(C, m);

int ldcm = plasma_tile_mmain(C, m);

for (int n = 0; n < C.nt; n++) {

int nvcn = plasma_tile_nview(C, n);

if (transA == PlasmaNoTrans && transB == PlasmaNoTrans) {

for (int k = 0; k < A.nt; k++) {

int nvak = plasma_tile_nview(A, k);

int ldbk = plasma_tile_mmain(B, k);

double zbeta = k == 0 ? beta : 1.0;

// Call the kernel

core_omp_dgemm(transA , transB ,

mvcm , nvcn , nvak ,

alpha , A(m, k), ldam ,

B(k, n), ldbk ,

zbeta , C(m, n), ldcm);

}

}

else {

// These options were omitted from the listing.

}

}

}

}

Fig. 4. Skeleton of the tile matrix matrix multiply plasma_pdgemm. The mt and nt are numbers of rows and columns of tiles of
a matrix stored in the tile layout. The macros A(m, n), B(m, n), and C(m, n) at the top expand to the plasma_tile_addr
function, which returns the address of the first entry of the tile on the m-th tile-row and in the n-th tile-column of the corresponding
matrix. The plasma_tile_mview and plasma_tile_nview functions return the number of rows and columns in a local tile. The
plasma_tile_mmain function returns the leading dimension of the tile, which can be different from m if the matrix descriptor is a
submatrix (called ‘view’) of another matrix descriptor without a deep data copy.

2.2 Parallel BLAS

PLASMA contains a full set of routines from the Level 3 BLAS; see Table 2. BLAS routines in PLASMA are parallelized
by tiling. Their implementations are mostly straightforward loop nests, and individual tasks are essentially calls to
sequential BLAS. The listing in Fig. 4 has already shown the simplified tile matrix matrix multiplication (plasma_pdgemm
routine).

Parallel BLAS routines in PLASMA are algorithmically equivalent to their reference Netlib implementations6.

2.3 Parallel Norms

PLASMA contains a set of routines for computing matrix norms, specifically the max, one, infinity, and Frobenius

norms. PLASMA employs tiling for increased parallelism within the norm computations. While being mostly memory
bound, PLASMA norm routines still benefit from multithreading, as usually a single core cannot saturate the memory
6http://www.netlib.org/blas
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PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 7

void core_omp_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

int m, int n, int k,

double alpha , const double *A, int lda ,

const double *B, int ldb ,

double beta , double *C, int ldc)

{

int ak = (transA == PlasmaNoTrans) ? k : m;

int bk = (transB == PlasmaNoTrans) ? n : k;

#pragma omp task depend(in:A[0:lda*ak]) \

depend(in:B[0: ldb*bk]) \

depend(inout:C[0: ldc*n])

{

core_dgemm(transA , transB ,

m, n, k,

alpha , A, lda ,

B, ldb ,

beta , C, ldc);

}

}

Fig. 5. An example of the definition of the sequential core_omp_dgemm task. The OpenMP task consists of a call to sequential
core_dgemm routine. Some parameters have been omitted for brevity.

void core_dgemm(plasma_enum_t transA , plasma_enum_t transB ,

int m, int n, int k,

double alpha , const double *A, int lda ,

const double *B, int ldb ,

double beta , double *C, int ldc)

{

cblas_dgemm(CblasColMajor ,

transA , transB ,

m, n, k,

alpha , A, lda ,

B, ldb ,

beta , C, ldc);

}

Fig. 6. An example of the definition of the sequential core_dgemm kernel. In this example, the function just calls a sequential BLAS
dgemm routine. Some parameters have been omitted for brevity.

Table 2. Level 3 BLAS routines.

Name Description
□gemm matrix matrix multiply
□hemm Hermitian matrix matrix multiply
□her2k Hermitian rank-2k update to a matrix
□herk Hermitian rank-k update to a matrix
□symm symmetric matrix matrix multiply
□syr2k symmetric rank-2k update to a matrix
□syrk symmetric rank-k update to a matrix
□trmm triangular matrix matrix multiply
□trsm triangular solve with multiple right hand sides

Manuscript submitted to ACM

Page 7 of 35 Transactions on Mathematical Software



For Peer Review

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Dongarra, J. et al

Name Description
□lange norm of a (general) matrix
□lanhe norm of a Hermitian matrix
□lansy norm of a symmetric matrix
□lantr norm of a triangular or trapezoidal matrix

Table 3. Matrix norm routines.

Name Description Definition
PlasmaMaxNorm max norm - maximum absolute value | |A| |max = max

1≤i≤m,1≤j≤n
|ai j |

PlasmaOneNorm one norm - maximum column sum | |A| |1 = max
1≤j≤n

m∑
i=1
|ai j |

PlasmaInfNorm infinity norm - maximum row sum | |A| |∞ = max
1≤i≤m

n∑
j=1
|ai j |

PlasmaFrobeniusNorm Frobenius norm - square root of sum of squares | |A| |F =
*.
,

m∑
i=1

n∑
j=1
|ai j |

2+/
-

1/2

Table 4. Matrix norm types.

bandwidth. Table 3 lists all the norm routines implemented in PLASMA, and Table 4 lists all the types of norms
supported.

An example of the tile version of the function computing the one norm of a general matrix is provided in Fig. 7. In
this routine, the vector of column sums is first computed for each tile. Then the partial results are combined in a final
reduction step. In the infinity norm routine, the same approach is applied row-wise. In the Frobenius norm routine,
the sum of squares is computed for each tile, then the partial results are combined, and then the square root is taken.
The Frobenius norm follows the LAPACK approach of scaling the results along the way, to minimize roundoff errors
(See the LAPACK □lassq routine for details). In general, computing partial sums should be beneficial, rather than
detrimental, to the numerical stability of the norm computations. Tiling has no effect on the max norm, as the operation
is order invariant.

In Fig. 7, the core_omp_dlange kernel is just a simple call to the sequential dlange function from LAPACK, which
computes the matrix norm of the tile. The core_omp_dlange_aux kernel is a custom kernel computing the row or
column sums of the tile into a vector without finding their maxima.

In addition, PLASMA contains the [dz|sc|d|s]amax routine, which computes the max norm for each column of a
matrix, and returns the result as a vector. This routine is needed for checking the convergence of the solution in the
iterative refinement process of the mixed precision solvers; see Section 2.5.

2.4 Linear Systems

PLASMA contains a set of routines for solving linear systems of equations, both full and band. Routines for solving
general systems of equations rely on the LU factorization with partial (row) pivoting, routines for solving symmetric
positive definite (SPD) systems rely on the Cholesky factorization, and routines for solving symmetric (not necessarily
positive definite) systems rely on the LDLT factorization by Aasen’s algorithm [Aasen 1971].
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PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 9

void plasma_pdlange(plasma_enum_t norm ,

plasma_desc_t A, double *work , double *value)

{

switch (norm) {

double *workspace;

case PlasmaOneNorm:

for (int m = 0; m < A.mt; m++) {

int mvam = plasma_tile_mview(A, m);

int ldam = plasma_tile_mmain(A, m);

for (int n = 0; n < A.nt; n++) {

int nvan = plasma_tile_nview(A, n);

core_omp_dlange_aux(PlasmaOneNorm ,

mvam , nvan ,

A(m, n), ldam ,

&work[A.n*m+n*A.nb]);

}

}

#pragma omp taskwait

workspace = work + A.mt*A.n;

core_omp_dlange(PlasmaInfNorm ,

A.n, A.mt,

work , A.n,

workspace , value);

break;

case ...

// Other options were omitted from the listing.

}

}

Fig. 7. Example of the routine for norm of a general matrix plasma_pdlange. Only the one-norm branch is kept in the listing. The
#pragma omp taskwait is a necessary synchronization and the master thread waits for completion of all the enqueued tasks before
proceeding to the final accumulation. The work and workspace arrays contain memory preallocated by the user that is used by the
subroutines for intermediate storage. The listing has been simplified for brevity.

Dense. Table 5 lists all the linear systems routines implemented in PLASMA. Like LAPACK, PLASMA provides a
routine for solving a system of linear equations, as well as a routine for only factoring the matrix, and a routine for
solving a system using a previously factored matrix. This allows for a matrix to be factorized once, and reusing the
result for repeatedly solving different right hand sides.

Band. Table 6 lists all the band linear solvers that PLASMA implements. PLASMA’s nonsymmetric band linear solver
is based on a band version of the LU factorization, while for solving an SPD band system of linear equations, it uses a
band version of the Cholesky factorization.

To maintain the numerical stability, our band LU routine performs partial (row) pivoting. When the pivoting is
applied to the previous columns of L, it could completely destroy its band structure. In order to avoid these fills, LAPACK
only applies the pivoting to the remaining columns. On the other hand, PLASMA’s band LU routine relies on the
PLASMA’s LU panel factorization routine that explicitly applies the pivots to the previous columns within the panel.
Hence, though PLASMA returns the LU factors in the LAPACK’s band matrix format, to store these potential fills, its
leading dimension must accommodate the additional nd − 1 entries on the bottom, where nd is the tile size.
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10 Dongarra, J. et al

Name Description
□gesv linear system solve
□getrf triangular factorization
□getrs linear system solve (previously factored)
[z|c] hesv Hermitian linear system solve
[z|c] hetrf Hermitian triangular factorization
[z|c] hetrs Hermitian linear system solve (previously factored)
□posv positive definite linear system solve
□potrf positive definite triangular factorization
□potrs positive definite linear system solve (previously factored)
[d|s] sysv symmetric linear system solve
[d|s] sytrf symmetric triangular factorization
[d|s] sytrs symmetric linear system solve (previously factored)

Table 5. Linear systems routines.

Name Description
□gbsv band linear system solve
□gbtrf band triangular factorization
□gbtrs band linear system solve (previously factored)
□pbsv band positive definite linear system solve
□pbtrf band positive definite triangular factorization
□pbtrs band positive definite linear system solve (previously factored)

Table 6. Band linear systems routines.

Algorithm 1: Cholesky-based solution of AX = B (plasma_omp_dposv)
Data: A, B
Result: X
A = LLT Cholesky factorization of matrix A, plasma_pdpotrf;
LY = B forward solve, plasma_pdtrsm;
LTX = Y backward solve, plasma_pdtrsm;

2.4.1 Cholesky factorization. The Cholesky factorization is a straightforward algorithm to be written in the tile-
oriented fashion [Buttari et al. 2009; Haidar et al. 2011], and Fig. 8 shows the algorithm used in PLASMA. Apart from
using the core_omp_dgemm kernel from Fig. 5, it uses the core_omp_dpotrf kernel for Cholesky factorization of a tile
by calling the LAPACK dpotrf function, the core_omp_dtrsm function for solving a system with a triangular matrix,
and the core_omp_dsyrk for a rank-k update of a symmetric matrix.

The Cholesky factorization is the basis for solving linear systems of equations, where coefficients form a symmetric
positive definite (SPD) matrix. It is part of the plasma_omp_□posv routine (Algorithm 1), in which the individual stages
are overlapped. A call to the plasma_□potrf routine should also precede a call to the plasma_□potrs routine, which
can be called repeatedly for new right hand sides, and uses the Cholesky factors as input. While this version based
on the top-level PLASMA interfaces would not be overlapped, doing the same with the second-level interfaces of
plasma_omp_□potrf and plasma_omp_□potrs allows a user to benefit from the overlapping. Cholesky factorization is
also the basis for computing the inverse of an SPD matrix, see Section 2.6.
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PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 11

void plasma_pdpotrf(plasma_enum_t uplo , plasma_desc_t A)

{

if (uplo == PlasmaUpper) {

for (int k = 0; k < A.nt; k++) {

int nvak = plasma_tile_nview(A, k);

int ldak = plasma_tile_mmain(A, k);

core_omp_dpotrf(PlasmaUpper , nvak ,

A(k, k), ldak);

for (int m = k+1; m < A.nt; m++) {

int nvam = plasma_tile_nview(A, m);

core_omp_dtrsm(PlasmaLeft , PlasmaUpper ,

PlasmaConjTrans , PlasmaNonUnit ,

A.nb, nvam ,

1.0, A(k, k), ldak ,

A(k, m), ldak);

}

for (int m = k+1; m < A.nt; m++) {

core_omp_dsyrk(

PlasmaUpper , PlasmaConjTrans ,

nvam , A.mb,

-1.0, A(k, m), ldak ,

1.0, A(m, m), ldam);

for (int n = k+1; n < m; n++) {

core_omp_dgemm(

PlasmaConjTrans , PlasmaNoTrans ,

A.mb, nvam , A.mb,

-1.0, A(k, n), ldak ,

A(k, m), ldak ,

1.0, A(n, m), ldan);

}

}

}

}

else {

// This option was omitted from the listing.

}

}

Fig. 8. Algorithm for the Cholesky factorization plasma_pdpotrf. Only the branch for storing the upper triangle of the matrix is
shown. The listing has been simplified for brevity.

2.4.2 LU factorization. The critical component of the LU factorization is the step of factoring a panel, which in
PLASMA is a column of tiles. This operation is on the critical path of the algorithm and has to be optimized to the
fullest. At the same time, a naive implementation, such as the □getf2 routine in LAPACK, is memory bound.

The current implementation of the LU panel factorization in PLASMA is a result of convergence of multiple different
research efforts, specifically the work on Parallel Cache Assignment (PCA) by Castaldo et al. [Castaldo and Whaley
2010], and the work on parallel recursive panel factorization by Dongarra et al. [Dongarra et al. 2014]. Also, the survey
by Donfack et al. [Donfack et al. 2015] provides a good overview of different implementations of the LU factorization.

The panel factorization is shown in Fig. 9. It relies on internal blocking and persistent assignment of tiles to threads.
Unlike past implementations, it is not recursive, as plain recursion proved inferior to blocking. Memory residency
provides cache reuse for the factorization of sub-panels, while blocking provides some level of compute intensity for
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12 Dongarra, J. et al

Algorithm 2: LU-based solution of AX = B (plasma_omp_dgesv)
Data: A, B
Result: X
PA = LU LU factorization of matrix A, plasma_pdgetrf;
B̃ = PB row permutation of B, plasma_pdgeswp;
LY = B̃ forward solve, plasma_pdtrsm;
UX = Y backward solve, plasma_pdtrsm;

the sub-tile update operations. The result is an implementation that is not memory bound and scales well with the
number of cores.

Priorities on tasks serve as hint for the OpenMP runtime to schedule the tasks on the critical path, namely the panel
factorization, the update of the subsequent block column, and their nested tasks, as soon as their dependencies are
satisfied.

The complete LU factorization, including the panel factorization, and the updates to the trailing submatrix, is
multithreaded differently than other operations in PLASMA. Due to some operations affecting entire columns of tiles,
data-dependent tasks are created for column operations, not tile operations, i.e., dependency tracking is resolved
at the granularity of columns, not individual tiles. To allow transition between the tile-oriented algorithms and the
column-oriented LU, dummy tasks have been introduced. These tasks do not perform any useful work, and their only
purpose is inserting data dependencies of the column on all its tiles and vice versa. This translation of data dependency
seems needed due to the lack of multi-dependencies in OpenMP, which would allow a loop over addresses in the depend
clause. An example of dummy tasks inserted in front of the panel factorization is shown in Fig. 10.

Nested tasks are created within each panel factorization, and internally synchronized using thread barriers. Similarly,
nested tasks are created within each column of □gemm updates, and synchronized with the #pragma omp taskwait

clause, before exiting the parent task. Waiting for completion of the nested tasks is necessary for correct dependency-
tracking at the column granularity.

The LU factorization is the basis for routines for solving systems of linear equations. It is part of the plasma_omp_□gesv
routine (Algorithm 2), in which the individual stages are overlapped. A call to the plasma_dgetrf routine should also
precede a call to the plasma_dgetrs routine, which can be called repeatedly for new right hand sides, and uses the LU
factors as input.

2.4.3 LDLT factorization. To solve a symmetric indefinite linear system, PLASMA first reduces the symmetric matrix
into a band form by the tiled Aasen’s algorithm [Aasen 1971; Ballard et al. 2014], see also [Higham 2002] for its analysis.
This is different from the blocked Aasen’s algorithm [Rozložník et al. 2011] implemented in LAPACK, and the bound on
the backward error depends linearly on the tile size. At each step, the algorithm first updates the panel in a left-looking
fashion. To exploit the limited parallelism for updating each tile of the panel, PLASMA applies a parallel reduction and
accumulates a set of independent updates into a user-supplied workspace. How much parallelism the algorithm can
exploit depends on the number of tiles in the panel and the amount of the workspace provided by the user. Once the
update is completed, the panel is factorized using the LU panel factorization routine. Hence, the algorithm follows the
task dependencies by columns in the nested fashion, as described in the previous section.

Then, in the second stage of the algorithm, the band matrix is factored using the PLASMA band LU factorization
routine. Since there is no explicit global synchronization, a task to factor the band matrix can be started as soon as all
Manuscript submitted to ACM
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PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP 13

double *a00 , *a20;

a00 = A(k, k);

a20 = A(A.mt -1, k);

int ma00k = (A.mt-k-1)*A.mb;

int na00k = plasma_tile_nmain(A, k);

int lda20 = plasma_tile_mmain(A, A.mt -1);

int nvak = plasma_tile_nview(A, k);

int mvak = plasma_tile_mview(A, k);

int ldak = plasma_tile_mmain(A, k);

int num_panel_threads = imin(plasma ->max_panel_threads ,

minmtnt -k);

#pragma omp task depend(inout:a00 [0: ma00k*na00k]) \

depend(inout:a20 [0: lda20*nvak]) \

depend(out:ipiv[k*A.mb:mvak]) \

priority(1)

{

volatile int *max_idx = (int*) malloc(num_panel_threads*sizeof(int));

volatile double *max_val = (double *) malloc(num_panel_threads*sizeof(double ));

volatile int info = 0;

plasma_barrier_t barrier;

plasma_barrier_init (& barrier );

#pragma omp taskloop untied shared(barrier) \

num_tasks(num_panel_threads) \

priority(2)

for (int rank = 0; rank < num_panel_threads; rank ++) {

{

plasma_desc_t view =

plasma_desc_view(A,

k*A.mb, k*A.nb,

A.m-k*A.mb, nvak);

core_dgetrf(view , &ipiv[k*A.mb], ib,

rank , num_panel_threads ,

max_idx , max_val , &info ,

&barrier );

}

}

#pragma omp taskwait

free((void*) max_idx );

free((void*) max_val );

for (int i = k*A.mb+1; i <= imin(A.m, k*A.mb+nvak); i++)

ipiv[i-1] += k*A.mb;

}

Fig. 9. Implementation of the LU panel factorization based on nested tasks with priorities. The plasma_desc_view function creates a
descriptor for a submatrix, using the original memory of the parent matrix. The ipiv array stores the indices of rows for permutation
due to pivoting.

the data dependencies are satisfied. This allows the execution of these two algorithms to be merged, improving the
parallel performance, especially since both algorithms have limited amount of parallelism that can be exploited. A more
detailed description and performance analysis of the algorithm can be found in [Yamazaki et al. 2018].
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double *a00 = A(k, k);

for (int m = k+1; m < A.mt -1; m++) {

double *amk = A(m, k);

#pragma omp task depend (in:amk [0]) \

depend (inout:a00 [0])

{ // Some useless work is done here.

int l = 1;

l++;

}

}

Fig. 10. An example of dummy tasks introduced for creating dependency of a panel starting at address A(k, k) on all its tiles A(m, k).

Name Description

[zc|ds]gesv linear system solve
[zc|ds]posv positive definite linear system solve

Table 7. Mixed precision routines

2.5 Mixed Precision

PLASMA implements mixed precision routines for the solution of general linear systems of equations and SPD systems
of equations. PLASMA mixed precision routines are algorithmically equivalent to their LAPACK counterparts. Table 7
lists all the mixed precision routines implemented in PLASMA.

The algorithms are based on factorizing the matrix in reduced precision (32 bits) and recovering the full precision
accuracy (64 bits) in the process of iterative refinement. The approach is motivated by the performance advantage
of single precision arithmetic over double precision arithmetic, which is typically twofold. If the input matrix is well
conditioned, and the full precision can be recovered in a few steps of refinements, double precision solution can be
delivered almost at the speed of computing the single precision solution [Baboulin et al. 2009; Buttari et al. 2007; Langou
et al. 2006].

Algorithm 3 summarizes the iterative refinement method in mixed precision for SPD matrices implemented in
PLASMA. Dotted quantities Ȧ, L̇, ẋ , ẏ, ḃ, ḋ, ṙ denote values in single precision. Adding and removing a dot to a vector
corresponds to conversion from double to single precision and vice versa. In order for the algorithm to calculate
a residual, a copy of the matrix in full precision needs to be preserved. This incurs additional memory requirements.

In case the refinement procedure does not converge (i.e. backward error stopping criterion is not met) after 30 itera-
tions, the routine falls back to solving the system with a standard algorithm in full precision.

2.6 Matrix Inversion

PLASMA contains a set of routines for computing the inverse of a matrix. Routines for inverting general matrices rely
on the LU factorization with partial (row) pivoting, whilst routines for inverting SPD matrices rely on the Cholesky
factorization, see Algorithms 4 and 5. The inversion routines are split into three phases: the factorization of the matrix
into triangular factors, the inversion of a triangular factor, and the reconstruction of the inverse from its factor.

In general, matrix inversion should not be used for solving linear systems of equations for stability reasons. Instead,
matrix factorizations such as LU, LLT or LDLT should be used, followed by forward and backward substitution. Yet,
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Algorithm 3: Iterative refinement procedure for solution of linear system Ax = b with an SPD matrix A in mixed
precision (plasma_dsposv)
Data: A,b
Result: x
Ȧ = L̇ L̇T Factorize Ȧ using Cholesky algorithm, plasma_pspotrf;
L̇ ẏ = ḃ Solve linear system, plasma_pstrsm;
L̇T ẋ = ẏ Solve linear system, plasma_pstrsm;
r = b −Ax Compute residual, plasma_pdsymm;
if | |r | |max ≥ ||x | |max | |A| |∞ ε

√
n then

x1 = x Save computed solution;
repeat

L̇ ẏ = ṙi Solve linear system for vector ẏ, plasma_pstrsm;
L̇T ḋi = ẏ Solve linear system for vector ḋ , plasma_pstrsm;
xi+1 = xi + di Update computed solution, plasma_pdgeadd;
ri+1 = b −Axi+1 Compute residual, plasma_pdsymm;

until | |ri+1 | |max < | |xi+1 | |max | |A| |∞ ε
√
n;

end

Name Description
□getri matrix inversion (LU factorization as input)
□potri positive definite matrix inversion (Cholesky factorization as input)
□geinv matrix inversion (includes the LU factorization)
□poinv positive definite matrix inversion (includes the Cholesky factorization)

Table 8. Matrix inversion routines.

Algorithm 4: Cholesky-based computation of A−1 (plasma_omp_dpoinv)
Data: A
Result: A−1

A = LLT Cholesky factorization of matrix A, plasma_pdpotrf;
L−1 inverse of L, plasma_pdtrtri;
A−1 = (LT )−1L−1 multiplication of the triangular parts, plasma_pdlauum;

finding the explicit inverse of a matrix is still required in some applications, such as inverting the covariance matrix in
statistics.

Table 8 lists all the matrix inversion routines implemented in PLASMA. The poinv function uses the Cholesky
factorization (potrf) for finding the inverse of a positive definite matrix (Algorithm 4). This function was introduced to
PLASMA to allow overlapping between the three phases of the inversion using the asynchronous tasks. By contrast,
the potri function does not include the Cholesky factorization, and it expects a Cholesky factor as input. Similarly,
the new geinv function for computing the inverse of a general matrix computes the LU factorization (Algorithm 5),
whereas the traditional getri function expects LU factors as input.

Merging the individual stages is known to lead to high performance implementations [Agullo et al. 2010; Bouwmeester
and Langou 2010], and it provides very compact traces.
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Algorithm 5: LU-based computation of A−1 (plasma_omp_dgeinv)
Data: A
Result: A−1

PA = LU LU factorization of matrix A, plasma_pdgetrf;
U −1 inverse of U , plasma_pdtrtri;
Ã−1L = U −1 find A−1 as the solution to a linear system of equations, plasma_pdgetri_aux;
A−1 = Ã−1P column permutation of Ã−1, plasma_pdgeswp;

2.7 Least Squares

PLASMA contains routines for solving overdetermined and underdetermined systems of linear equations. It uses QR
and LQ factorizations, based on block Householder transformations. PLASMA implementations are rather different from
LAPACK. While LAPACK reduces the input matrices by columns, PLASMA does so by tiles. This approach produces
algorithms with higher levels of parallelism and excellent scheduling properties [Buttari et al. 2008, 2009]. Generally,
PLASMA QR and LQ algorithms show exceptional strong scaling, while being somewhat handicapped in asymptotic

performance, due to reliance on more complex serial kernels than simple calls to BLAS.
Table 9 lists all the PLASMA routines related to solving overdetermined and under-determined systems of linear

equations. This includes routines for QR and LQ factorizations, generation of the Q matrices, as well as application of
the orthogonal transformations without explicit generation of the Q matrices.

PLASMA routines have the same numerical stability as LAPACK, but are not algorithmically equivalent to LAPACK.
This is because PLASMA reduces the input matrices by tiles, not by full columns, and generates sets of tile reflectors in
the process. This makes no difference to the user, as long as PLASMA functions are used for operations involving the
reflectors, such as generation of the Q matrix or application of the transformations to another matrix.

PLASMA includes support for QR factorization of tall and skinny matrices, for which the number of rowsm is much
larger than the number of columns n. In this scenario, algorithmic parallelism is increased by concurrent elimination of
blocks within a panel, and proceeds according to a reduction tree until all tiles below the diagonal are eliminated. The
approach was described in [Demmel et al. 2008], and extended e.g. in [Dongarra et al. 2013]. Tree-based Householder
reductions were recently used for singular value decomposition (SVD) in [Faverge et al. 2016].

Since different trees may be beneficial in different circumstances, PLASMA 17 has introduced several trees and a
new flexible implementation of this functionality. A tree is first traversed and the elimination kernels are registered
into a 1D array. After this, tasks are created following the order given by this array. This approach permits a quick
reuse of a certain tree across all QR and LQ routines as well as the possibility to apply Householder reflectors to form
an action of Q or its transpose.

The QR and LQ algorithms are the basis for solving systems with rectangular matrices — the least squares problems
form ≥ n, and the underdetermined systems form < n. The structure of the plasma_omp_dgels routine is in Algo-
rithm 6. In addition, the QR and LQ factorizations are performed either by the standard algorithms in plasma_pdgeqrf

(see Fig. 11) and plasma_pdgelqf, or by their versions based on the reduction tree plasma_pdgeqrf_tree and
plasma_pdgelqf_tree. QR algorithm requires custom kernels core_omp_dtsqrt and core_omp_dtsmqt for QR factor-
ization and QT application of a matrix composed from two tiles. Although the tile QR factorization (core_omp_dgeqrt)
and QT application (core_omp_dormqr) correspond to their LAPACK counterparts, inner blocking with block size ib is
performed inside these kernels and nonblocked implementations from LAPACK are called.
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Name Description
□gelqf LQ factorization
□gelqs minimum norm solve using LQ factorization
□gels overdetermined or underdetermined linear systems solve
□geqrf QR factorization
□geqrs least squares solve using QR factorization
□[un|or]glq generate the Q matrix from LQ factorization
□[un|or]gqr generate the Q matrix from QR factorization
□[un|or]mlq apply the Q matrix from LQ factorization
□[un|or]mqr apply the Q matrix from QR factorization

Table 9. Least squares routines.

Algorithm 6: Solving overdetermined and underdetermined systems of equations AX = B (plasma_omp_dgels)
Data: A,B
Result: X
if m ≥ n then

A = QR QR factorization of A, plasma_pdgeqrf;
Y = QT B application of QT to B, plasma_pdormqr;
RX = Y finding the least-squares solution X , plasma_pdtrsm;

else
A = LQ LQ factorization of A, plasma_pdgelqf;
LY = B solve the linear system for Y , plasma_pdtrsm;
X = QTY find the minimum norm solution to the underdetermined system, plasma_pdormlq;

end

2.8 Other implementation details.

PLASMA is written in C, with interfaces for Fortran provided via automatic code generation during compilation of the
library. In particular, PLASMA is shipped with a Python script which parses the C header files, and generates a Fortran
module with the interface. The bindings are based on features provided by the Fortran 2003 standard, most importantly
the iso_c_binding intrinsic module. PLASMA includes several Fortran examples of using the top-level as well as the
second-level functions.

The four different precisions (Table 1) are generated by another Python script. This takes the prototypes in the
double complex precision and produces the other precisions by textual substitutions in the source codes.

Additional details on functionality implemented in PLASMA can be found in [Abalenkovs et al. 2017a].

3 PERFORMANCE EVALUATION

In this section we present a comprehensive set of benchmarks for the PLASMA routines previously described. Perfor-
mance is reported for each PLASMA routine on three distinct platforms within a shared memory environment. In each
case we utilize the maximum available number of cores and examine performance across a range of matrix sizes. We
use real double precision variables throughout, with the exception of the mixed precision routines, which combine real
double and real single precision variables. A major focus of this study is to asses the performance of state-of-the-art tile
based algorithms, in comparison to block-column based algorithms, such as those present in the LAPACK library.
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void plasma_pdgeqrf(plasma_desc_t A, plasma_desc_t T)

{

for (int k = 0; k < imin(A.mt, A.nt); k++) {

int mvak = plasma_tile_mview(A, k);

int nvak = plasma_tile_nview(A, k);

int ldak = plasma_tile_mmain(A, k);

core_omp_dgeqrt(mvak , nvak , ib,

A(k, k), ldak ,

T(k, k), T.mb);

for (int n = k+1; n < A.nt; n++) {

int nvan = plasma_tile_nview(A, n);

core_omp_dormqr(PlasmaLeft , PlasmaTrans ,

mvak , nvan , imin(mvak , nvak), ib,

A(k, k), ldak ,

T(k, k), T.mb,

A(k, n), ldak);

}

for (int m = k+1; m < A.mt; m++) {

int mvam = plasma_tile_mview(A, m);

int ldam = plasma_tile_mmain(A, m);

core_omp_dtsqrt(mvam , nvak , ib,

A(k, k), ldak ,

A(m, k), ldam ,

T(m, k), T.mb);

for (int n = k+1; n < A.nt; n++) {

int nvan = plasma_tile_nview(A, n);

core_omp_dtsmqr(PlasmaLeft , PlasmaTrans ,

A.mb, nvan , mvam , nvan , nvak , ib,

A(k, n), ldak ,

A(m, n), ldam ,

A(m, k), ldam ,

T(m, k), T.mb);

}

}

}

}

Fig. 11. Skeleton of the standard tile QR factorization. A.mt and A.nt are numbers of rows and columns of tiles in matrix A stored in
the tile layout.

3.1 Hardware, Library and Compiler Details

Three recent shared-memory multicore platforms have been selected for this study, namely: a two-socket compute
node based on Intel Xeon processors (Haswell generation, 20 cores), an Intel Xeon Phi 7250 processor (Knights Landing
generation, 68 cores), and a two-socket machine based on an IBM Power 8 processor (20 cores). Details of the individual
platforms are presented in Table 10.

On these three hardware platforms we compare the performance of PLASMA to other numerical libraries. In particular
the Netlib LAPACK library version 3.7.0, linked with a multithreaded optimized BLAS library, provides the baseline
for performance comparisons. In the case of Intel architectures we also compare the performance of PLASMA against
that of the Intel Math Kernel Library (MKL). For the IBM Power 8 based system, the IBM Engineering and Scientific
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Subroutine Library (ESSL) is used for comparison instead. It should be noted that PLASMA is also linked with these
libraries and relies on their sequential implementations of BLAS.

For most tests square matrices of growing size are used; however, non-square matrices are also examined where
appropriate to the algorithm, such as in the case of QR factorization. For each test, three runs were performed at each
matrix size, using randomly generated matrices. The highest performance obtained from these three runs is reported in
the plots.

A crucial parameter within PLASMA is the size of the square tile; i.e., the nb parameter. Lower values will typically
increase the parallelism of the algorithm, while higher values allow more efficient utilization of arithmetic units.
Consequently PLASMA performance is examined for several tile sizes, with the highest performing tile size reported.
The optimal tile size tends to grow slightly as the matrix size is increased. A quick way for users to determine an nb
parameter suitable for their architecture and matrix size is to run the PLASMA tester on a range of tile sizes, and then
set the one that leads to the best performance through a call to the plasma_set function.

On both the Haswell and Phi platforms, PLASMA and MKL are linked using the GNU C compiler, and utilize the
GNU OpenMP (gomp) runtime library. Due to issues with using this combination for LAPACK linked with MKL BLAS,
we present results for this combination using the Intel C compiler, and the Intel OpenMP (iomp) runtime library.

On the Haswell platform tests are performed using the following options:
OMP_NUM_THREADS=20 OMP_PROC_BIND=true OMP_MAX_TASK_PRIORITY=100 numactl --interleave=all

For the Phi platform tests are run using:
OMP_NUM_THREADS=68 OMP_PROC_BIND=true OMP_MAX_TASK_PRIORITY=100 numactl -m=1

where the last flag has led to using the fast MCDRAM memory for storing the matrices. The Phi processor was in the
flat memory mode, allowing the allocation of large matrices in the MCDRAM memory. This had a significant effect on
performance compared to allocating matrices in RAM. The quadrant cluster mode was used, although this did not seem
to have a significant impact on performance. The effect of the different memory modes of Phi on performance for linear
algebra has been studied in more detail in [Haidar et al. 2017].

POWER8 runs use the following:
OMP_NUM_THREADS=20 OMP_PROC_BIND=true OMP_PLACES="{0}:20:8" OMP_MAX_TASK_PRIORITY=100 where the
OMP_PLACES environment variable maps each OpenMP thread to one physical CPU core, rather than simply taking the
first 20 available logical cores.

We present an execution trace for the Cholesky-basedmatrix inversion.Manymore traces can be found in [Abalenkovs
et al. 2017b].

3.2 Parallel BLAS

PLASMA contains a full parallel implementation of the Level 3 BLAS routines. However, this section focuses only on
the performance results of gemm and trsm. This is motivated by the fact that all level 3 BLAS routines, except trsm, can
be viewed as a specialized implementation of gemm [Kågström et al. 1998].

We present the performance of plasma_dgemm and plasma_dtrsm routines on three different architectures, and
compare it with the performance of the vendor-provided optimized implementations. Unlike LAPACK routines we do
not report the performance of the Netlib reference implementation of BLAS, as it is fully sequential.

Figures 12 and 13 show the performance results on Haswell. For the dgemm routine, MKL performs about 15% better
than PLASMA throughout the range of matrix sizes. This result suggests that the current plasma_dgemm routine may
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Label Hardware overview Compilers and libraries

Haswell

• 2× Intel Xeon CPU E5-2650 v3, 2.30GHz
• 2×10 = 20 cores
• 32 GB DRAM
• theoretical peak performance 736 Gflop/s

• GNU Compiler Collection (GCC) 7.1.0
• Intel C Compiler 16.0.3
• MKL 17.2

Phi

• Intel Xeon Phi 7250
• 68 cores
• 16 GB MCDRAM
• theoretical peak performance 3046
Gflop/s
• quadrant cluster mode
• flat memory mode

• GNU Compiler Collection (GCC) 7.0.1
• Intel C Compiler 16.0.3
• MKL 17.2

POWER8

• 2× IBM POWER8, 3.5GHz
• 2× 10 = 20 cores
• 256 GB DRAM
• theoretical peak performance 560 Gflop/s

• GNU Compiler Collection (GCC) 6.3.1
• IBM XL 20161123
• IBM ESSL 5.5.0

Table 10. Platforms selected for the benchmarks.

have potential room for performance improvement. For the plasma_dtrsm routine, PLASMA provides performance
similar to MKL, whilst offering a more smooth and predictable performance scaling.

The results on the Phi architecture (Figs. 14 and 15) demonstrate that MKL is making significantly better use of the
68 available cores. For moderate-sized matrices; i.e. in the 2000 to 10000 range, a performance gap of around 500 Gflop/s
can be observed for dgemm. For dtrsm the performance gap is consistently around 200 Gflop/s. These results suggest a
significant deficit in efficiency for the PLASMA BLAS routines, in comparison to multithreaded MKL, despite the fact
that PLASMA calls sequential MKL BLAS for processing individual tiles.

On the IBM POWER8 platform, PLASMA and the vendor optimized multithreaded library, ESSL, exhibit comparable
results for both dgemm and dtrsm. As shown in Figs. 16 and 17, both routines reach in excess of 450 Gflop/s, representing
around 85% of the theoretical peak performance (560 Gflop/s). This result demonstrates the capability of PLASMA to
efficiently exploit all 20 cores of the POWER8 machine. Again, PLASMA tasks call sequential dgemm from ESSL to
process individual tiles.

The optimal tile size parameter (nb) was either 336 or 560 on Haswell, for matrices larger than 4000. The optimal size
was 560 on Phi, and 384 on POWER8. Smaller matrices require somewhat smaller tiles for optimal performance.

3.3 Parallel Norms

We present benchmarks for computation of the one norm, for general and symmetric matrices; i.e., the dlange and
dlansy routines respectively. These routines are heavily memory bound; hence, their performance is reported in GB/s
rather than Gflop/s.

Results on Haswell are summarized in Figs. 18 and 19. For both general matrices (Fig.18), and symmetric matrices
(Fig. 19), MKL significantly out-performs PLASMA and LAPACK. It should be noted that the high performance of
MKL was obtained only after calling the C interface function without the ‘not a number’ (NaN) checking; namely, the
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Fig. 12. Performance of dgemm on Haswell.
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Fig. 13. Performance of dtrsm on Haswell.
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Fig. 14. Performance of dgemm on Phi.
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Fig. 15. Performance of dtrsm on Phi.
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Fig. 16. Performance of dgemm on POWER8.
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Fig. 17. Performance of dtrsm on POWER8.
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LAPACKE_dlange_work and LAPACKE_dlansy_work. With LAPACKE_dlange and LAPACKE_dlansy, the performance
was significantly worse. In this benchmark, PLASMA is penalized due to the inclusion of translation to the tile layout
into the measured time, since this conversion significantly increases the number of memory accesses required. To
quantify this effect, we have also performed an experiment excluding the layout conversion from the timing. These
results are denoted as ‘PLASMA*’ (with asterisk) in the plots. We can see that if the matrix is already in the tile layout,
the norm computations can be performed even faster than by MKL.

The results on the Phi platform are presented in Figs. 20 and 21. As in the case of Haswell, MKL significantly
outperforms both PLASMA and LAPACK, with the performance differential growing significantly with increasing
matrix size. The increased parallelism of the Phi platform does allow PLASMA to significantly out-perform LAPACK
however. We have repeated the experiment excluding the layout conversion time of PLASMA also on Phi. In this
scenario, MKL still performs better for general matrices, while PLASMA outperforms MKL for symmetric ones.

Results obtained on the POWER8 platform are shown in Figs. 22 and 23. For both general and symmetric matrices,
PLASMA out-performs ESSL by around 50%, and offers roughly twice the performance of LAPACK.

The dominant optimal tile size parameter (nb) was found to be 560 on Haswell, 1024 on Phi, and 384 on POWER8.

3.4 Linear Systems

The PLASMA library provides a range of routines for the factorization of matrices. In this section we examine perfor-
mance for the PLASMA implementations of LU factorization (plasma_dgetrf), Cholesky factorization (plasma_dpotrf),
and LDLT factorization (plasma_dsytrf) with dense matrices. We also consider performance for the band-matrix
versions of LU and Cholesky factorization; i.e, (plasma_dgbtrf) and (plasma_dpbtrf). The performance of QR factor-
ization routines for solving least squares problems are presented in Section 3.7.

We consider first the performance of PLASMA on the Haswell platform. For LU factorization (Fig. 24), MKL shows
a moderate performance gain over PLASMA throughout the range of matrix sizes, at around 15%. PLASMA does
significantly outperform LAPACK however, showing around a 50% improvement. This improvement is partially due to
the parallel panel factorization of PLASMA, in contrast to the standard LU algorithm of LAPACK, which introduces
parallelism only through parallel BLAS used for the trailing matrix update.

Fig. 25 shows the performance of Cholesky factorization. Here PLASMA and MKL offer very similar performance,
with MKL slightly faster for small matrices, and PLASMA slightly ahead for mid-sized matrices. Both MKL and PLASMA
again offer significantly improved performance over LAPACK.

Results for the LDLT factorization are shown in Fig. 26. While LU and Cholesky factorization shows a high perfor-
mance up to 600 Gflop/s, which is around 80% of the theoretical peak performance (see Table 10), none of the dsytrf
implementations achieve even 50% of the theoretical peak. The bottlenecks to providing a scalable implementation
of the symmetric indefinite matrix have been discussed in Section 2.4.3; the main issue being the need for symmetric
pivoting. Nevertheless, PLASMA is able to outperform MKL and LAPACK by significant margin, for moderate to large
matrices.

Results on the Phi platform are shown in Figs. 27–29. Overall trends are very similar to Haswell; in particular for
the LU and Cholesky algorithms. In the case of LDLT factorization, PLASMA outperforms MKL by a more significant
margin than on Haswell, offering more than double the performance on larger matrices.

On the IBM POWER8 architecture, both the ESSL and PLASMA implementations of LU factorization substantially
outperform the LAPACK equivalent, as showed in Fig. 30. For smaller matrices ESSL demonstrates good performance
relative to PLASMA; however it stagnates early whilst PLASMA performance continues to grow with increasing
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Fig. 18. Performance of dlange on Haswell.
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Fig. 19. Performance of dlansy on Haswell.
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Fig. 20. Performance of dlange on Phi.
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Fig. 21. Performance of dlansy on Phi.
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Fig. 22. Performance of dlange on POWER8.
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Fig. 23. Performance of dlansy on POWER8.
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matrix sizes. The POWER8 experiments for Cholesky factorization; Fig. 31, show ESSL and PLASMA achieving similar
performance for smaller matrices, while PLASMA pulls ahead by around 25% for moderately large matrices.

The results for LDLT factorization arise more curiosity. For matrices of size ranging from 1000 to 5000, the three
curves completely overlap, which suggests that either for such small matrices there is no much room for parallelism
exploitable by the LDLT algorithm, or ESSL and PLASMA failed to achieve a better optimization than LAPACK. The
latter is more true for ESSL that did not succeed in showing any performance gain over LAPACK for all the matrix sizes
considered. On the other hand, the performance of PLASMA’s LDLT , increased almost linearly, with the matrix size.

To examine the performance of band routines we consider the dgbtrf and dpbtrf functions, which employ LU and
Cholesky factorization respectively, to solve the band systems. In each case we consider a matrix with a 10 percent
band occupancy; that is, the bandwidth is equal to one tenth of the matrix size.

Figures 33 and 34 show the performance of the band routines on the Haswell platform. For Cholesky factorization
(Fig. 34) we see a very similar performance profile across all three platforms; however, with LU factorization (Fig. 33)
PLASMA pulls ahead of MKL and LAPACK for large matrix sizes, showing up to a 100% increase in performance over
MKL. The improved relative performance of PLASMA in this case appears to be a result of the multi-threaded panel
factorization.

Performance on the Xeon Phi is shown in Figs. 35 and 36. Here performance with LU is similar between PLASMA
and MKL; PLASMA offers better performance on large matrix sizes, with MKL ahead for small matrices. For Cholesky
all three routines provide similar performance with smaller matrices, while PLASMA offers increasingly superior
performance as the matrix size grows.

The results on POWER8, given in Figs. 37 and 38, show significant performance improvements for PLASMA over
LAPACK and ESSL throughout the range of matrix sizes, on both routines. The difference is particularly evident for LU
factorization, where PLASMA performance grows to more than double that of the other routines at large matrix sizes.

It is important to note that, for band routines in general, performance will scale much more strongly with bandwidth
than with matrix size. Increasing the matrix size whilst using a fixed bandwidth of modest size will typically provide a
flat performance profile, as memory bandwidth becomes saturated before the floating point capacity is exhausted.

The dominant optimal tile size parameter (nb) for Cholesky factorization of a dense matrix was 336 on Haswell, 448
on Phi, and 384 on POWER8. For LU factorization, it was 228 on Haswell, 448 on Phi and 336 on POWER8. Performance
of the LU factorization was found to be sensitive to the maximum number of threads for panel factorization (mtpf),
which was set to 8 on Haswell, 20 on Phi, and 4 on POWER8. The inner blocking parameter (ib) was set to 16 on
Haswell, 40 on Phi, and 32 on POWER8. Finally, for the LDLT factorization, the dominant optimal nb was found to be
192 on Haswell, 352 on Phi, and 128 on POWER8.

For band Cholesky factorization, the dominant nb was 224 on Haswell and Phi, and 128 on POWER8. For band LU
factorization, the dominant optimal nb was 168 on Haswell, 224 on Phi and 128 on POWER8. The maximal number of
threads for panel factorization (mtpf) was set to 4 on Haswell and POWER8, and to 8 on Phi.

3.5 Mixed Precision

Performance of the mixed precision iterative refinement based on the LU factorization is presented in Figs. 39, 41,
and 43. At the time of writing, an issue is present with the coupling of PLASMA to the gomp runtime library version
7. This issue is related to the assignment of priorities for nested OpenMP tasks; an approach employed by the LU
factorization in PLASMA. To circumvent this issue task priorities are not enabled for the presented results; i.e. setting
OMP_MAX_TASK_PRIORITY=0. Even with this limitation PLASMA is able to achieve around 25% higher performance than
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Fig. 24. Performance of dgetrf on Haswell.
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Fig. 25. Performance of dpotrf on Haswell.
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Fig. 26. Performance of dsytrf on Haswell.
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Fig. 27. Performance of dgetrf on Phi.
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Fig. 28. Performance of dpotrf on Phi.
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Fig. 29. Performance of dsytrf on Phi.
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Fig. 30. Performance of dgetrf on POWER8.
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Fig. 31. Performance of dpotrf on POWER8.
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Fig. 32. Performance of dsytrf on POWER8.
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Fig. 33. Performance of dgbtrf on Haswell.
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Fig. 34. Performance of dpbtrf on Haswell.
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Fig. 35. Performance of dgbtrf on Phi.
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Fig. 36. Performance of dpbtrf on Phi.
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Fig. 37. Performance of dgbtrf on POWER8.
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Fig. 38. Performance of dpbtrf on POWER8.
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MKL, and more than double the performance of LAPACK on Haswell. On Phi the difference is even more significant;
PLASMA achieves around double the performance of MKL, and around quadruple the performance of LAPACK. On
POWER8 the performance of PLASMA is comparable with that of ESSL. Here PLASMA offers slightly better performance
for smaller matrices, with ESSL slightly ahead for larger matrices. Both libraries provide roughly double the performance
of LAPACK.

Performance results of the mixed precision iterative refinement routine dsposv, based on Cholesky factorization, are
presented in Figs. 40, 42, and 44. The number of right hand side vectors is set to one in all experiments. On the Haswell
platform, PLASMA achieves significantly higher performance than MKL for large matrix sizes. On Phi, the PLASMA
routine provides a dramatic four- to five-fold improvement compared to its MKL counterpart, for moderate to large
matrix sizes.

The dominant optimal tile size for the plasma_dsgesv routine on Haswell was 384, with inner blocking ib = 40,
and 4 threads used for panel factorization. The same setup was used on POWER8. On Phi, tile size was 352, the inner
blocking ib = 64, and 8 threads were assigned to panel factorization. Optimal tile sizes for the plasma_dsposv routine
were more varied, while being dominated by 480 for Haswell, 576 for Phi, and 384 for POWER8.

Figs. 41 and 42 present two additional curves corresponding to conventional linear system solutions in single and
double precisions, denoted by PLASMA(S) and PLASMA(D) respectively. In order to compare performance of all three
variants of the linear system solution; s{ge,po}sv, d{ge,po}sv and ds{ge,po}sv, the performance for all routines
was calculated using the same formula for the number of floating point operations.

As expected, the mixed precision routine delivers a performance curve that lies between that of the native single and
double precision results. The mixed precision performance curve lies much closer to the single precision results in case
of the □posv routine, whereas in case of □gesv, performance is more comparable to that of the native double precision
routine.

3.6 Matrix Inversion

The routines used to explicitly invert a matrix are described in section 2.6. The performance results on the various
systems are collated in Figs. 46–51. On the Haswell architecture (Figs. 46 and 47) we see that PLASMA is more
performant than MKL and LAPACK for all matrix sizes. PLASMA is particularly effective for Cholesky inversion, where
performance improvements over MKL are mostly around 50-100%. On the Phi platform (Figs. 48 and 49) the performance
of PLASMA is slightly higher than MKL for dgeinv, though PLASMA is once again around twice as fast for dpoinv.
For both algorithms the performance of LAPACK is well below that of the more heavily optimized libraries. On the
POWER8 machine (Figs. 50 and 51) things behave rather differently. For dgeinv the performance of PLASMA is the
best for matrices larger than around 5000. The dpoinv implementation in PLASMA once again provides the fastest
implementation, though by a smaller margin than on the other platforms. Here ESSL is roughly halfway between the
performance of PLASMA and LAPACK.

In summary, for dgeinv PLASMA obtains slightly superior performance to MKL on Intel architectures and it is faster
than ESSL for large matrices on the POWER8 system. However, for dpoinv, PLASMA significantly outperforms the
other implementations on all systems.

The performance benefit of the plasma_dpoinv routine stems from the fact that its tile-based Cholesky factorization
algorithm is well suited for overlapping the factorization with the subsequent stages (see Algorithm 4). The effect is
best shown in an execution trace, see e.g. Fig. 45. It is clear that kernels of the subsequent stages start before the end of
the factorization itself, filling the gaps of the factorization algorithm towards the end of the factorization, where this
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Fig. 39. Performance of dsgesv on Haswell
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Fig. 40. Performance of dsposv on Haswell

G
FL

O
PS

0

300

600

900

1200

1500

1800

SIZE

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

PLASMA (S)

PLASMA

PLASMA (D)

MKL

LAPACK

dsgesv: LU factorization and solve using mixed precision

Intel Xeon Phi, 68 cores, 1.4 GHz

Fig. 41. Performance of dsgesv on Phi
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Fig. 42. Performance of dsposv on Phi
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Fig. 43. Performance of dsgesv on POWER8
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Fig. 44. Performance of dsposv on POWER8
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Fig. 45. Trace of plasma_dpoinv on Phi, matrix size 11 648, tile size 448.

does not generate enough parallelism itself. Unfortunately, partial pivoting prevents such a high degree of overlap in
the LU-based routine plasma_dgeinv.

The optimal tile size parameter (nb) did not tend to change much with the matrix size. For the dgeinv routine, the
dominant optimal nb was 384 for Haswell, 448 for Phi, and 256 for POWER8. For the dpoinv implementation, the
dominant nb was 544 on Haswell, 448 on Phi, and 256 on POWER8.

3.7 Least Squares

Solving overdetermined problems in PLASMA relies on the QR factorization of the matrix (see Algorithm 6). We
perform the benchmarks for the QR factorization routine (plasma_dgeqrf) which allows us to avoid dependence on
the number of right hand sides. We run PLASMA using the standard QR algorithm, in which the plasma_pdgeqrf
function (Figure 11) is called, and also with the tree-based QR algorithm, in which the plasma_pdgeqrf_tree function
is used instead. In the charts to follow, ‘PLASMA’ (no asterisk) refers to the standard algorithm, while ‘PLASMA*’ (with
asterisk) refers to the tree-based one.

Results are summarized in Figs. 52–57. The first experiment is monitoring the performance of the QR factorization
on square matrices of increasing dimension. In this scenario, updating the trailing matrix provides enough parallelism
to keep the cores busy. As a result, for PLASMA, the tree-based algorithm is providing slightly lower performance
than the standard algorithm on all the tested platforms. This is related to the worse data locality due to the need for
visiting some tiles twice when eliminating them by the tt (triangle-on-top-of-triangle) kernels rather than by the ts
(triangle-on-top-of-square) kernels, see e.g. [Bouwmeester and Langou 2010] for related discussion. This experiment
also suits the MKL library, which is faster than PLASMA by about 15% on Haswell and by more than 30% on Phi. It
suits also the ESSL, which is about 10% faster than PLASMA on POWER8. Finally, LAPACK with multithreaded BLAS
provides significantly lower performance, which is around 40% of the one by PLASMA on Haswell and Phi, and around
60% for POWER8.

The situation changes significantly if updating the trailing matrix does not provide enough parallelism, which is the
case for matrices withm >> n, also called ‘tall and skinny’ in literature. Our second experiment aims at performance
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Fig. 46. Performance of dgeinv on Haswell.
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Fig. 47. Performance of dpoinv on Haswell.
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Fig. 48. Performance of dgeinv on Phi.
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Fig. 49. Performance of dpoinv on Phi.
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Fig. 50. Performance of dgeinv on POWER8.
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Fig. 51. Performance of dpoinv on POWER8.
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of QR factorization for such matrices, in particular, on a matrix with 90 000 rows, and variable number of columns.
In this scenario, it is crucial to introduce parallelism also into elimination of the columns of tiles, as it is done for
the tree-based algorithm of PLASMA. Indeed, this algorithm significantly outperforms the standard algorithm in this
regime. Nevertheless, for increasing number of matrix columns, the standard algorithm gets enough parallelism and
reaches the performance of the tree-based elimination. In our experiments, this has happened already for 8 columns
of tiles. LAPACK results follow the trend of the standard PLASMA algorithm, not having parallelism for very skinny
matrices and resembling the results for square matrices for increasing number of columns.

A somewhat surprising performance profile was provided by MKL for this experiment. On Haswell (Fig. 53), the initial
performance for matrix with 300 columns is almost as high as for the tree-based PLASMA algorithm, suggesting that
MKL also introduces some parallelism into the panel elimination. However, the performance does not increase for larger
matrices, and it got even lower than for LAPACK for the case with 9600 columns. On Phi however, the performance of
MKL started as low as for the standard PLASMA algorithm, while keeping higher than it for more columns, consistently
with the square-matrix results. Performance of ESSL on POWER8 starts between the two PLASMA algorithms, while
being lower between 1200 and 4800 columns, and matching them for the case with 9600 columns.

The performance of PLASMA is not particularly sensitive to the tile size parameter (nb) on Haswell, with most of the
results obtained using nb = 288. The dependence was stronger on Phi, with 448 and 560 being the optimal values for
larger matrices. The results on POWER8 were obtained with nb = 336. The ib parameter for inner blocking inside the
kernels for QR factorization has been consistently set to ib = nb/4 on Haswell and Phi, while it has been set to 64 on
POWER8.

4 CONCLUSIONS

During the latest major revision of PLASMA, the library has been ported from an in-house developed runtime system;
QUARK, to OpenMP tasks with dependencies. While QUARK has features specific to the needs of a numerical library,
OpenMP is a more general purpose tool. Consequently, the transition has also led to the redesigning of some algorithms;
most notably the LU factorization code.

A comprehensive set of performance benchmarks has been performed, considering three recent multicore shared
memory architectures, namely Haswell, Xeon Phi, and POWER8. In general, the performance of PLASMA is comparable
to the optimized vendor libraries; Intel MKL in the case of Intel architectures, and IBM ESSL for POWER8. In addition,
the LAPACK library using multithreaded BLAS from the vendor optimized library has been also included for the
comparison.

Testing shows that MKL provides higher performance for BLAS routines; especially on the Xeon Phi platform. A
significant performance difference in favour of MKL has been also observed for matrix norm computations. On the
other hand, PLASMA has proven superior to the other libraries for algorithms suited to tile-oriented implementation.
This includes the LDLT factorization, and QR factorization of tall and skinny matrices, where tiling readily provides
potential for increased parallelism.

PLASMA offers an important advantage for operations composed of several base algorithms, such as solving a
system of linear equations composed of matrix factorization and back-substitution. While executing the corresponding
algorithms in a synchronous way suffers from lack of parallelism at the beginning and towards the end of the execution,
asynchronous execution allows the merging of these parts of the execution. An operation with a potentially large
performance advantage from such merging is computing an inverse of an SPD matrix. Thanks to the asynchronous
execution, the performance of PLASMA is typically as much as two times higher than that of the other libraries.
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Fig. 52. Performance of dgeqrf on Haswell.
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Fig. 53. Performance of dgeqrf on Haswell, tall matrix.
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Fig. 54. Performance of dgeqrf on Phi.
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Fig. 55. Performance of dgeqrf on Phi, tall matrix.
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Fig. 56. Performance of dgeqrf on POWER8.
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PLASMA 17 currently does not contain all the functionality of the previous version. Specifically, extending the
library to eigenvalue problems and singular value decomposition is the current work in progress.
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