BDEC2 Platform White Paper

Motivation

Ubiquitous data and compute are no longer the sole province of high-end HPC, and plans for
future exascale platforms must account for the emergence of big data and edge computing in
addition to traditional scientific simulation. Huge datasets are now routinely processed in the
cloud, and edge devices—sensors, phones, watches, scientific instruments, etc.—generate data
more rapidly than we can process it. Widespread use of machine learning has ramifications
across the board, both in its traditional role in knowledge extraction, and also in, but also now as
an accelerator. Surrogate models enable edge devices to make decisions rapidly based on
current data, instead of waiting for expensive calculations, and the same types of models can be
used to drastically speed up HPC simulations.

A Converged Platform

Scientists are growing to depend on simulation, measurement, and analytics in large-scale data
pipelines. There is a need for a converged programming paradigm so that applications can easily
take advantage of the entire gamut from HPC facility to cloud to edge, and back again. The
challenge is that the computing models in these environments could not be more different. One
the HPC side, tightly coupled, high-powered nodes talk to one another in large-scale batch jobs
over low-latency networks. In the cloud, persistent services respond on-demand to requests from
users and devices, punctuated by bursty machine learning workloads. On the edge, mostly
embedded applications collect data and execute in memory- and power-restricted environments
over high-latency, low-bandwidth connections. A programming model for all three of these must
span orders-of-magnitude differences in scales and computational requirements. Code must be
quickly deployable anywhere, regardless of machine architecture, and data needs to be delivered
quickly to and from all parts of the pipeline. Machine learning must be applicable at every stage,
both as an accelerator and as a way to let the system adapt quickly.

What has to Change

Building a data pipeline that spans form HPC to cloud to edge will require major architecture
changes both in hardware and in software. However, we are careful to propose a “converged”
platform rather than a unified one. We cannot succeed at our goals by reinventing work that has
already been done in the cloud and HPC worlds. We must leverage existing solutions and open
standards (cloud APIs like lambdas, Kubernetes, OpenStack), and we must adapt existing cloud
and HPC solutions to end-to-end use cases.



Reproducibility and deployment

Users should be able to reliably deploy code anywhere in the pipeline, and there should be no
hard software stack requirements at any point in the system. Solutions like containers and
serverless computing (“lambdas”) provide partial solutions to this problem, but changes are
needed to ensure performance. On the HPC and cloud side, containers are insulated from
hardware to provide isolation, and they provide a convenient way to bundle dependencies with
an application. However, hardware (or lightweight VM) support for isolation at the network,
accelerator, and storage level is needed to enable containers to run fast and securely. Moreover,
much of today’s container infrastructure is targeted at a homogeneous, generic x86_64-Linux
platform. We will need better ways to rapidly deploy architecture-optimized containers if
applications are to run fast on the converged platform.

Data Architecture

One of the largest challenges facing an end-to-end data analysis platform is data movement. On
the HPC and cloud side, the compute power and bandwidth exist to handle massive data sets,
but users are responsible for finding them and moving them into place within the HPC center. On
the edge, devices frequently need to fetch data, but there is no standard, fast, power-efficient
delivery mechanism for these devices. Even in the cloud, databases are typically not deployed
in a containerized way, as it is difficult to manage stateful services with today’s container
frameworks. Rather, cloud services and lambdas rely on object stores like S3 and fetch their data
at runtime. If we begin fetching the data only when it is to be used, it is already too late.

The current pull model, where client code must know where and how to fetch each data set, is
not sustainable or viable for a converged platform. The system needs full control over scheduling
both code and data. Workflows’ data requirements should be expressed in advance, similar to
how we express code requirements with container names in registries today. To achieve this, we
need a data naming framework — a registry of data sets that allows them to be referenced in whole
or in part by unique names. Users should be able to specify their inputs and run the same job at
an HPC center or in the cloud without having to orchestrate data transfers manually. Similarly,
code that runs on edge devices should be scheduled with its associated data, and the system
should ensure that named data are on the edge with the code at runtime.

Workflows and Security

If there is to be a convergence, the platform must allow scheduling across HPC centers, clouds,
and edge devices. Currently, on the HPC side, there are security hurdles that prevent many types
of workflows from being scheduled without a human in the loop. At the edge of HPC centers,
there is typically 2-factor authentication, so automating anything inside the center from outside is
very difficult. Moreover, HPC schedulers are typically controlled with commands that need to be
run on login nodes — they do not expose APIs that would allow job scheduling to be automated
from cloud applications or orchestrators. Security in a converged platform must be end-to-end,
with token-based authentication and well-defined, automatable APIs at every level. HPC centers
must engineer solutions that enable automation without compromising security, and a standard



for identity federation and trust needs to be developed to allow centers to interoperate with a world
increasingly driven by web services and JSON APIs. Without this, HPC sites will continue to be
siloed as they are today.

Ubiquitous Machine Learning

In a converged data-intensive computing environment, machine learning will be present at every
level of the platform, and will likely be used to drive decisions for the platform itself. Today, to
apply ML to a domain, users must construct their own training sets, build their own models, and
retrain them when input data deviates significantly from the training set. For ML to truly be
ubiquitous, the barriers to apply it must be minimal. We will need to develop generic simulation
harnesses that allow us to generate surrogate models for the kernels in a simulation, and to
transfer them quickly to edge devices for decision making. Likewise, for the system to make
runtime optimization decisions based on models (e.g., choosing architecture-specific variants of
a kernel, or making resource-aware scheduling decisions), the system will need to be profiled and
monitored, and system data will be available through the same naming and content delivery
mechanisms described above. ldeally, scientists can easily choose when to use raw simulations
and when to use surrogates, depending on the situation. Likewise, system engineers can easily
learn from past monitoring data and choose when to use heuristics or expert decisions, and when
to rely on ML-derived models to make a choice.



