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• IBM chose Performance Co-Pilot (PCP)
• Third-party performance monitoring infrastructure
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Computing Environments

• Summit (ORNL)
• Nest access via PCP daemon.

• Tellico (UTK)
• Direct access to nest counters (elevated privileges).

• Baseline measurement to gauge overhead of PCP.
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How Reliably Do Memory Events Correspond

to BLAS Kernels?

for ( i = 0; i < M; i++ ) {

    sum = 0.0;

    for ( k = 0; k < N; k++ )

            sum += A[i][k]*x[k];

    y[i] = sum;

}

GEMV

for ( i = 0; i < N; i++ )

    for ( j = 0; j < N; j++ ) {

        sum = 0.0;

        for ( k = 0; k < N; k++ )

            sum += A[i][k]*B[k][j];

        C[i][j] = sum;

    }

GEMM

C = A * B y = A * x



Does Infrastructure Make a Difference?
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The More GEMMs the Merrier



Using a Batched GEMM

#pragma omp parallel for schedule(static)

for ( idx = 0; idx < numThreads; idx++ )

    for ( i = 0; i < N; i++ )

        for ( j = 0; j < N; j++ ) {

            sum = 0.0;

            for ( k = 0; k < N; k++ )

                sum += A[idx][i][k] * B[idx][k][j];

            C[idx][i][j] = sum;

        }

Batched GEMM

for ( i = 0; i < N; i++ )

    for ( j = 0; j < N; j++ ) {

        sum = 0.0;

        for ( k = 0; k < N; k++ )

            sum += A[i][k]*B[k][j];

        C[i][j] = sum;

    }

GEMM

• “Batched” = Each core executes a 1-thread GEMM (using OpenMP). 
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Batched GEMM
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Shared-Work GEMM
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Results from Batched GEMM



Caveats of the GEMV

• GEMM experiments have shown need for lots of work.

• GEMV does even less work than GEMM:

• For an MxN matrix A, GEMV’s reading is MN+M+N.

• But writing is only M.

• We run out of memory before M is large enough for 
meaningful measurements.

y = A * x
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Batch of Capped GEMVs
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Case Study: 3D-FFT

• 3D-FFT is a workhorse kernel:
• Computationally heavy 1D-FFT phases

• Memory re-sorting phases

• All2All MPI communication phases

• Used in applications: HACC, GESTS, QMCPACK, etc.

• Memory re-sorting phases:
• “S1CF” — store_1st_colwise_forward

• “S2CF” — store_2nd_colwise_forward

• “S1PF” — store_1st_planewise_forward

• “S2PF” — store_2nd_planewise_forward
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Domain Decomp. & Re-sorting Visualized

Domain Decomposition



S1CF: Loop Nest 1

#pragma omp parallel for schedule(static)

for ( plane = 0; plane < PLANES; plane++ ) {

    for ( row = 0; row < ROWS; row++ ) {

        for ( col = 0; col < COLS; col++ ) {

            tmp[plane][row][col]

            = in[plane*ROWS*COLS + row*COLS + col];

  }

    }

}
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S2CF

X = COLS/r; Y = r;

#pragma omp parallel for schedule(static)

for ( plane = 0; plane < PLANES; plane++ ) {

    for ( x = 0; x < X; x++ ) {

    for ( y = 0; y < Y; y++ ) {

    for ( row = 0; row < ROWS; row++ ) {

   idx_out = plane*X*Y*ROWS + x*Y*ROWS \

                + y*ROWS + row;

   idx_in = y*PLANES*X*ROWS + plane*X*ROWS \

              + x*ROWS + row;

   out[idx_out] = in[idx_in];

    }

  }

}

}



Assembly & Avoiding Cache on PowerPC

GCC: https://gcc.gnu.org/projects/prefetch.html



Assembly & Avoiding Cache on PowerPC

GCC: https://gcc.gnu.org/projects/prefetch.html



Assembly & Avoiding Cache on PowerPC

GCC: https://gcc.gnu.org/projects/prefetch.html

-fprefetch-loop-arrays



A Closer Look at S1CF: Loop Nest 1
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404: 2c 4a 00 7c dcbt    0,r9
408: ec 41 00 7c dcbtst 0,r8

-fprefetch-loop-arrays



A Closer Look at S1CF: Loop Nest 2
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-fprefetch-loop-arrays



S1CF: Fused Loop Nests

#pragma omp parallel for schedule(static)

for ( plane = 0; plane < PLANES; plane++ ) {

    for ( row = 0; row < ROWS; row++ ) {

        for ( col = 0; col < COLS; col++ ) {

            out[col*PLANES*ROWS + plane*ROWS + row] 

            = in[plane*ROWS*COLS + row*COLS + col];

  }

    }

}
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A Closer Look at S2CF

-fprefetch-loop-arrays



Examples of Larger Jobs
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Profiling the 3D-FFT on Summit
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Profiling QMCPACK on Summit
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Conclusions

• Measurements of memory traffic for tiny data are unreliable.

• Memory traffic measurements are sensitive to micro-
architectural details
• e.g. localized L3 slices, cache-avoidant writes

• PAPI allows users to generate complete profiles for the entire 
system:
• GPU Power

• Memory Traffic

• Infiniband Network Traffic

• CPU, GPU, on- and off-chip memory, IO, networks, and more!



Future Work

• Focusing on other BLAS operations.

• Upcoming IBM architectures, such as POWER10.

• Categories of nest hardware other than solely memory traffic.
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