
Memory Traffic and Complete

Application Profiling with PAPI Multi-

Component Measurements

Daniel Barry, Heike Jagode,

Anthony Danalis, Jack Dongarra

May 15, 2023

Motivation

• Accurately monitor mem. traffic Core 0 Core 1

CPU L1$

L2$

CPU L1$

L2$

Nest

PCI Host Bridge (PHB)

Memory Buffer Async (MBA)

Socket Cross Link (XLink)

Motivation

• Accurately monitor mem. traffic

• Mem. traffic counters are in the nest

Core 0 Core 1

CPU L1$

L2$

CPU L1$

L2$

Nest

PCI Host Bridge (PHB)

Memory Buffer Async (MBA)

Socket Cross Link (XLink)

Motivation

• Accurately monitor mem. traffic

• Mem. traffic counters are in the nest

• Require elevated privileges to access

Software Stack

Performance API (PAPI)

Perf Uncore Comp. PCP Comp.

PCP Daemon

Nest Hardware Counters

Motivation

• Accurately monitor mem. traffic

• Mem. traffic counters are in the nest

• Require elevated privileges to access

• IBM chose Performance Co-Pilot (PCP)
• Third-party performance monitoring infrastructure

Software Stack

Performance API (PAPI)

Perf Uncore Comp. PCP Comp.

PCP Daemon

Nest Hardware Counters

Computing Environments

• Summit (ORNL)
• Nest access via PCP daemon.

• Tellico (UTK)
• Direct access to nest counters (elevated privileges).

• Baseline measurement to gauge overhead of PCP.

Software Stack

Performance API (PAPI)

PCP Comp.

PCP Daemon

Nest Hardware Counters

Computing Environments

• Summit (ORNL)
• Nest access via PCP daemon.

• Tellico (UTK)
• Direct access to nest counters (elevated privileges).

• Baseline measurement to gauge overhead of PCP.

Software Stack

Performance API (PAPI)

Perf Uncore Comp.

Nest Hardware Counters

Validation Experiments

1. Common BLAS Kernels

2. 3D-FFT Case Study

3. Profiling Full Applications with Multiple Components of PAPI

Validation Experiments

1. Common BLAS Kernels

2. 3D-FFT Case Study

3. Profiling Full Applications with Multiple Components of PAPI

How Reliably Do Memory Events Correspond

to BLAS Kernels?

for (i = 0; i < M; i++) {

 sum = 0.0;

 for (k = 0; k < N; k++)

 sum += A[i][k]*x[k];

 y[i] = sum;

}

GEMV

for (i = 0; i < N; i++)

 for (j = 0; j < N; j++) {

 sum = 0.0;

 for (k = 0; k < N; k++)

 sum += A[i][k]*B[k][j];

 C[i][j] = sum;

 }

GEMM

C = A * B y = A * x

Does Infrastructure Make a Difference?

Does Infrastructure Make a Difference?

Does Infrastructure Make a Difference?

Does Infrastructure Make a Difference?

The More GEMMs the Merrier

Using a Batched GEMM

#pragma omp parallel for schedule(static)

for (idx = 0; idx < numThreads; idx++)

 for (i = 0; i < N; i++)

 for (j = 0; j < N; j++) {

 sum = 0.0;

 for (k = 0; k < N; k++)

 sum += A[idx][i][k] * B[idx][k][j];

 C[idx][i][j] = sum;

 }

Batched GEMM

for (i = 0; i < N; i++)

 for (j = 0; j < N; j++) {

 sum = 0.0;

 for (k = 0; k < N; k++)

 sum += A[i][k]*B[k][j];

 C[i][j] = sum;

 }

GEMM

• “Batched” = Each core executes a 1-thread GEMM (using OpenMP).

IBM POWER9 Core Topology

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

= 1 Core

IBM POWER9 Core Topology

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

= 1 Thread= 1 Core

Core Reserved

for Sys.

Service Tasks

Batched GEMM

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

= 1 Thread= 1 Core= 1 GEMM

Shared-Work GEMM

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

L3

Slice

= 1 Thread= 1 Core= 1 GEMM

Results from Batched GEMM

Caveats of the GEMV

• GEMM experiments have shown need for lots of work.

• GEMV does even less work than GEMM:

• For an MxN matrix A, GEMV’s reading is MN+M+N.

• But writing is only M.

• We run out of memory before M is large enough for
meaningful measurements.

y = A * x

Capping the Size of GEMV

Capping the Size of GEMV

Capping the Size of GEMV

Memory

Saved per A

Matrix

Actual

Memory

Usage for A

Batch of Capped GEMVs

Validation Experiments

1. Common BLAS Kernels

2. 3D-FFT Case Study

3. Profiling Full Applications with Multiple Components of PAPI

Case Study: 3D-FFT

• 3D-FFT is a workhorse kernel:
• Computationally heavy 1D-FFT phases

• Memory re-sorting phases

• All2All MPI communication phases

• Used in applications: HACC, GESTS, QMCPACK, etc.

• Memory re-sorting phases:
• “S1CF” — store_1st_colwise_forward

• “S2CF” — store_2nd_colwise_forward

• “S1PF” — store_1st_planewise_forward

• “S2PF” — store_2nd_planewise_forward

Case Study: 3D-FFT

• 3D-FFT is a workhorse kernel:
• Computationally heavy 1D-FFT phases

• Memory re-sorting phases

• All2All MPI communication phases

• Used in applications: HACC, GESTS, QMCPACK, etc.

• Memory re-sorting phases:
• “S1CF” — store_1st_colwise_forward

• “S2CF” — store_2nd_colwise_forward

• “S1PF” — store_1st_planewise_forward

• “S2PF” — store_2nd_planewise_forward

Domain Decomp. & Re-sorting Visualized

Domain Decomposition

S1CF: Loop Nest 1

#pragma omp parallel for schedule(static)

for (plane = 0; plane < PLANES; plane++) {

 for (row = 0; row < ROWS; row++) {

 for (col = 0; col < COLS; col++) {

 tmp[plane][row][col]

 = in[plane*ROWS*COLS + row*COLS + col];

 }

 }

}

S1CF: Loop Nest 2

#pragma omp parallel for schedule(static)

for (col = 0; col < COLS; col++) {

 for (plane = 0; plane < PLANES; plane++) {

 for (row = 0; row < ROWS; row++) {

 out[col*PLANES*ROWS + plane*ROWS + row]

 = tmp[plane][row][col];

 }

 }

}

S1CF: Loop Nest 2

#pragma omp parallel for schedule(static)

for (col = 0; col < COLS; col++) {

 for (plane = 0; plane < PLANES; plane++) {

 for (row = 0; row < ROWS; row++) {

 out[col*PLANES*ROWS + plane*ROWS + row]

 = tmp[plane][row][col];

 }

 }

}

S1CF: Loop Nest 2

#pragma omp parallel for schedule(static)

for (col = 0; col < COLS; col++) {

 for (plane = 0; plane < PLANES; plane++) {

 for (row = 0; row < ROWS; row++) {

 out[col*PLANES*ROWS + plane*ROWS + row]

 = tmp[plane][row][col];

 }

 }

}

S2CF

X = COLS/r; Y = r;

#pragma omp parallel for schedule(static)

for (plane = 0; plane < PLANES; plane++) {

 for (x = 0; x < X; x++) {

 for (y = 0; y < Y; y++) {

 for (row = 0; row < ROWS; row++) {

 idx_out = plane*X*Y*ROWS + x*Y*ROWS \

 + y*ROWS + row;

 idx_in = y*PLANES*X*ROWS + plane*X*ROWS \

 + x*ROWS + row;

 out[idx_out] = in[idx_in];

 }

 }

}

}

Assembly & Avoiding Cache on PowerPC

GCC: https://gcc.gnu.org/projects/prefetch.html

Assembly & Avoiding Cache on PowerPC

GCC: https://gcc.gnu.org/projects/prefetch.html

Assembly & Avoiding Cache on PowerPC

GCC: https://gcc.gnu.org/projects/prefetch.html

-fprefetch-loop-arrays

A Closer Look at S1CF: Loop Nest 1

A Closer Look at S1CF: Loop Nest 1

404: 2c 4a 00 7c dcbt 0,r9
408: ec 41 00 7c dcbtst 0,r8

-fprefetch-loop-arrays

A Closer Look at S1CF: Loop Nest 2

A Closer Look at S1CF: Loop Nest 2

-fprefetch-loop-arrays

S1CF: Fused Loop Nests

#pragma omp parallel for schedule(static)

for (plane = 0; plane < PLANES; plane++) {

 for (row = 0; row < ROWS; row++) {

 for (col = 0; col < COLS; col++) {

 out[col*PLANES*ROWS + plane*ROWS + row]

 = in[plane*ROWS*COLS + row*COLS + col];

 }

 }

}

A Closer Look at S2CF

A Closer Look at S2CF

-fprefetch-loop-arrays

Examples of Larger Jobs

Validation Experiments

1. Common BLAS Kernels

2. 3D-FFT Case Study

3. Profiling Full Applications with Multiple Components of PAPI

Profiling the 3D-FFT on Summit

Profiling QMCPACK on Summit

Profiling QMCPACK on Summit

Profiling QMCPACK on Summit

Conclusions

• Measurements of memory traffic for tiny data are unreliable.

Conclusions

• Measurements of memory traffic for tiny data are unreliable.

• Memory traffic measurements are sensitive to micro-

architectural details
• e.g. localized L3 slices, cache-avoidant writes

Conclusions

• Measurements of memory traffic for tiny data are unreliable.

• Memory traffic measurements are sensitive to micro-
architectural details
• e.g. localized L3 slices, cache-avoidant writes

• PAPI allows users to generate complete profiles for the entire
system:
• GPU Power

• Memory Traffic

• Infiniband Network Traffic

• CPU, GPU, on- and off-chip memory, IO, networks, and more!

Future Work

• Focusing on other BLAS operations.

• Upcoming IBM architectures, such as POWER10.

• Categories of nest hardware other than solely memory traffic.

Acknowledgements

This research was supported in part by the Exascale

Computing Project (17-SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of

Science and the National Nuclear Security

Administration; and by the National Science

Foundation under award No. 1900888 “ANACIN-X.”

	Slide 1: Memory Traffic and Complete Application Profiling with PAPI Multi-Component Measurements
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Computing Environments
	Slide 7: Computing Environments
	Slide 8: Validation Experiments
	Slide 9: Validation Experiments
	Slide 10: How Reliably Do Memory Events Correspond to BLAS Kernels?
	Slide 11: Does Infrastructure Make a Difference?
	Slide 12: Does Infrastructure Make a Difference?
	Slide 13: Does Infrastructure Make a Difference?
	Slide 14: Does Infrastructure Make a Difference?
	Slide 15: The More GEMMs the Merrier
	Slide 16: Using a Batched GEMM
	Slide 17: IBM POWER9 Core Topology
	Slide 18: IBM POWER9 Core Topology
	Slide 19: Batched GEMM
	Slide 20: Shared-Work GEMM
	Slide 21: Results from Batched GEMM
	Slide 22: Caveats of the GEMV
	Slide 23: Capping the Size of GEMV
	Slide 24: Capping the Size of GEMV
	Slide 25: Capping the Size of GEMV
	Slide 26: Batch of Capped GEMVs
	Slide 27: Validation Experiments
	Slide 28: Case Study: 3D-FFT
	Slide 29: Case Study: 3D-FFT
	Slide 30: Domain Decomp. & Re-sorting Visualized
	Slide 31: S1CF: Loop Nest 1
	Slide 32: S1CF: Loop Nest 2
	Slide 33: S1CF: Loop Nest 2
	Slide 34: S1CF: Loop Nest 2
	Slide 35: S2CF
	Slide 36: Assembly & Avoiding Cache on PowerPC
	Slide 37: Assembly & Avoiding Cache on PowerPC
	Slide 38: Assembly & Avoiding Cache on PowerPC
	Slide 39: A Closer Look at S1CF: Loop Nest 1
	Slide 40: A Closer Look at S1CF: Loop Nest 1
	Slide 41: A Closer Look at S1CF: Loop Nest 2
	Slide 42: A Closer Look at S1CF: Loop Nest 2
	Slide 43: S1CF: Fused Loop Nests
	Slide 44: A Closer Look at S2CF
	Slide 45: A Closer Look at S2CF
	Slide 46: Examples of Larger Jobs
	Slide 47: Validation Experiments
	Slide 48: Profiling the 3D-FFT on Summit
	Slide 49: Profiling QMCPACK on Summit
	Slide 50: Profiling QMCPACK on Summit
	Slide 51: Profiling QMCPACK on Summit
	Slide 52: Conclusions
	Slide 53: Conclusions
	Slide 54: Conclusions
	Slide 55: Future Work
	Slide 56: Acknowledgements

