
Using Additive Modifications in LU Factorization
Instead of Pivoting

Neil Lindquist
Innovative Computing Laboratory

University of Tennessee
Knoxville, TN, USA
nlindqu1@icl.utk.edu

Piotr Luszczek
Innovative Computing Laboratory

University of Tennessee
Knoxville, TN, USA
luszczek@icl.utk.edu

Jack Dongarra
Innovative Computing Laboratory

University of Tennessee
Knoxville, TN, USA
dongarra@icl.utk.edu

ABSTRACT
Direct solvers for dense systems of linear equations commonly
use partial pivoting to ensure numerical stability. However, piv-
oting can introduce significant performance overheads, such as
synchronization and data movement, particularly on distributed
systems. To improve the performance of these solvers, we present
an alternative to pivoting in which numerical stability is obtained
through additive updates. We implemented this approach using
SLATE, a GPU-accelerated numerical linear algebra library, and
evaluated it on the Summit supercomputer. Our approach provides
better performance (up to 5-fold speedup) than Gaussian elimina-
tion with partial pivoting for comparable accuracy on most of the
tested matrices. It also provides better accuracy (up to 15 more
digits) than Gaussian elimination with no pivoting for comparable
performance.

CCS CONCEPTS
•Mathematics of computing→Mathematical software per-
formance; Computations on matrices; • Computing method-
ologies→ Distributed algorithms.

KEYWORDS
LU factorization, linear algebra, communication avoidance

ACM Reference Format:
Neil Lindquist, Piotr Luszczek, and Jack Dongarra. 2023. Using Additive
Modifications in LU Factorization Instead of Pivoting. In 2023 International
Conference on Supercomputing (ICS ’23), June 21–23, 2023, Orlando, FL, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3577193.3593731

1 INTRODUCTION
Solving large, dense, non-symmetric systems of linear equations is a
key step inmany applications [5, 20]. Gaussian eliminationwith par-
tial pivoting (GEPP) is commonly used to solve these systems and
provides robust numerical accuracy for almost all classes of matri-
ces. However, partial pivoting can introduce significant overheads,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0056-9/23/06. . . $15.00
https://doi.org/10.1145/3577193.3593731

including synchronizations, latency-bound pivot searches, and ex-
changing rows in memory. The row exchanges also must be inter-
leaved with the Schur-complement updates, reducing the available
parallelism. Finally, these overheads are made worse by the grow-
ing performance gap between arithmetic and data movement [18].
Gaussian elimination with no pivoting (GENP) can achieve signifi-
cantly higher performance by avoiding these overheads but cannot
accurately solve many types of systems [28]. We consider an al-
ternative to pivoting based on low rank, additive modifications of
the diagonal submatrices: we call it block elimination with additive
modifications (BEAM). The goal of this approach is to incur lower
overheads than GEPP while providing better numerical stability
than GENP. Related modifications have been previously considered
for sparse matrices [21, 26]. But, we consider dense matrices, and
our proposed algorithm modifies entire blocks of the matrix instead
of targeting just individual elements.

To motivate the additive strategy, consider GENP. Factoring the
𝑘th diagonal, 𝐴[𝑘, 𝑘], updates each 𝐴[𝑖, 𝑗] in the trailing matrix by

𝐴[𝑖, 𝑗] ← 𝐴[𝑖, 𝑗] −𝐴[𝑖, 𝑘]𝐴[𝑘, 𝑘]−1𝐴[𝑘, 𝑗] (𝑘 < 𝑖, 𝑗 ≤ 𝑛) .

Thus, small𝐴[𝑘, 𝑘] entries can result in significant element growth,
which in turn can lead to a large backward error [17]. Diagonal
blocks with small singular values behave analogously. To prevent
this growth, we propose monitoring the singular values of the
diagonal blocks and modifying those having values below a prede-
fined tolerance. These modifications give rise to a perturbed system
with better numerical properties than the original one. The per-
turbation can then be corrected collectively with the Woodbury
formula1 [16, 29] or iterative refinement. Consequently, our work
makes the following contributions:
• We propose a general scheme for additive modifications in
the LU factorization of dense systems.
• We propose choosing additive modifications in batches based
on diagonal blocks of the matrix instead of individual entries.
• We prove practical bounds on key condition numbers that
determine the overall numerical stability of our method.
• We test the accuracy and performance for essential matrix
types at scale on the Summit supercomputer with multiple
GPU accelerators per node.

2 RELATEDWORK
Using element-wise modifications instead of pivoting was first sug-
gested by Stewart for sparse matrices [26]. However, preserving the

1This formula has a variety of names, including the Bartlett-Sherman-Morrison-
Woodbury formula and the Sherman-Morrison-Woodbury formula. Hagar’s expository
paper provides a history of the formula and its repeated discovery [16].

https://orcid.org/0000-0001-9404-3121
https://orcid.org/0000-0002-0089-6965
https://orcid.org/0000-0003-3247-1782
https://doi.org/10.1145/3577193.3593731
https://doi.org/10.1145/3577193.3593731

ICS ’23, June 21–23, 2023, Orlando, FL, USA Neil Lindquist, Piotr Luszczek, and Jack Dongarra

sparsity limited the modifications to only a single diagonal element
at a time. Additionally, the adjustments were combined into the
factorization in a recursive manner that limits the available paral-
lelism. Unfortunately, this approach has seen limited use outside the
optimization community [31]. There are a few areas where BEAM
differs from past efforts. First, our new algorithm enhances dense
LU factorization which is significantly more compute-intensive
than the sparse equivalent. Furthermore, dense problems are un-
constrained by sparsity issues. Next, the modifications are chosen
based on entire diagonal blocks instead of individual diagonal el-
ements, giving us a greater opportunity for exploiting non-local
numerical properties. Finally, all modifications are corrected si-
multaneously at the end of the factorization. This increases the
arithmetic intensity when applying the Woodbury formula, which
improves the performance on modern hardware.

An interesting variant of the additive approach is to correct the
perturbations by adding extra rows and columns to the matrix [3].
That is, the system 𝐴𝑥 = 𝑏 is replaced with[

𝐴 + 𝐹1𝐹2 𝐹1
𝐹2 𝐼

] [
𝑥
𝑦

]
=

[
𝑏
0

]
where 𝐹1𝐹2 modifies the appropriate diagonal elements. This vari-
ant is closely related to the derivation of the Woodbury formula
via the Schur complement [16]. Unfortunately, this idea has not
been explored beyond avoiding fill-in for sparse, symmetric positive
definite matrices with a few dense rows. We used the Woodbury
formula to apply the correction instead of this approach to simplify
matrix allocation.

A final approach is to apply modifications without directly cor-
recting them, relying instead on iterative refinement [21]. While
iterative refinement based on stationary schemes can recover minor
errors, large errors can slow or even prevent convergence, espe-
cially for ill-conditioned matrices. Thus, there is a trade-off in the
factorization’s backward error between the direct perturbations
to the matrix and the error induced by element growth. Using
the Woodbury formula directly addresses the perturbations, which
helps alleviate this conflict. Therefore, we tested the additive ap-
proach both with and without the Woodbury formula. As before,
the prior work is related to ours, but our approach chooses modifi-
cations based on diagonal blocks and is applied to dense matrices
unencumbered by sparsity considerations.

Beside additive modifications, there have been various other ap-
proaches to remove or reduce the cost of pivoting. One such strategy
is to replace pivoting with randomized preprocessing, which allows
using an optimized GENP code for the factorization at the cost of
preprocessing the matrix [24, 25]. Recent work has demonstrated
significant speedups for many types of matrices; unfortunately,
these approaches can fail in some cases [23]. Thus, it is valuable to
investigate algorithms that may be successful for linear systems
where randomization is insufficient. Furthermore, using BEAM in
combination with randomized preprocessing is likely to be more
robust than either of the methods separately.

Another pivoting-replacement strategy is a hybrid of the LU
and QR factorizations [9]. This algorithm attempts to factor each
block column with GENP. It then tests the stability and, if unstable,
re-factors the block column with the unequivocally stable QR fac-
torization. Thus, in the best case, the factorization progresses as per

GENP but provides more robust behavior when GENP struggles.
Unfortunately, for task-parallel implementations testing each block
column for stability and the occasional QR factorization results in
similar parallel dependencies to GEPP, which reduces the available
parallelism. This hybrid method and our algorithm are similar in
their optimism about GENP, but they differ in the mechanism by
which they recover stability in problematic cases.

Finally, there have also been efforts to reduce the cost of piv-
oting without completely removing it. The most well-known ap-
proach is tournament pivoting, which computes pivots block-wise
to avoid synchronizing for each column [14]. Another strategy
is to relabel the rows without exchanging them in memory, al-
though swapping rows may still be needed for load balancing [11].
The recent CO𝑛𝑓 LUX algorithm goes further by combining these
strategies [19]. Finally, a recent proposal, threshold pivoting, tries to
reduce data movement by allowing the selection of pivots smaller
than the column’s maximum [22]. Unfortunately, these approaches
still incur significant pivoting overheads and reduce the available
parallelism since the exchanged rows are unknown until runtime.

3 ADDITIVE MODIFICATIONS ALGORITHM
The core idea of our approach is to apply additive modifications
during the factorization when small entries occur on the diagonal
instead of exchanging rows. A straightforward way to do this is to
perform the classic non-pivoted LU factorization and modify diago-
nal entries whenever they dip below a preset tolerance. However,
this results in a myopic view of the matrix; the issues with one diag-
onal element can often be fixed using just the next row, for example
in a matrix where the leading 2-by-2 diagonal submatrix is

[0 1
1 0

]
.

Thus, we use a block LU factorization where the diagonal blocks
are factored with the singular value decomposition (SVD). Then,
we modify the singular values that are too small. However, the SVD
requires significantly more computation than an LU decomposition:
21𝑛3 operations instead of 2/3𝑛3—a 30× difference [12]. This limits
the block size, 𝑛𝑏 , that can be used without introducing significant
overhead. Other rank-revealing factorizations, such as QR with
column pivoting, are cheaper; however, the SVD is a more robust
factorization, which helps us focus on the effects of the overall
block-wise factorization and the additive modifications. Note that
by using the SVD in this way, the final decomposition is not a regu-
lar LU factorization (unless 𝑛𝑏 = 1) but a decomposition into lower
and upper block-triangular matrices.

Additive modifications commute naturally with the preceding
Schur complement updates of the block LU factorization via the
commutativity of matrix addition. Hence, the modified LU factors
are equivalent to the factors produced by applying all modifications
before beginning the factorization (if we ignore the effects of nu-
merical round-off). This is analogous to representing row pivoting
as pre-multiplication by a permutation matrix 𝑃 :𝐴 ≡ 𝑃𝐴. Thus, our
proposed method factorizes 𝐴 into

𝐿̃𝑅 = 𝐴 ≡ 𝐴 +𝑀𝑈𝑀Σ𝑀
𝑇
𝑉 (1)

where 𝐿̃ and 𝑅 are lower and upper block-triangular matrices, re-
spectively, while 𝑀Σ is a diagonal matrix containing the modi-
fications. Note that we denote the upper block-triangular factor
as 𝑅 (“right”) instead of the usual 𝑈 (“upper”) to avoid confusion

Using Additive Modifications in LU Factorization Instead of Pivoting ICS ’23, June 21–23, 2023, Orlando, FL, USA

MVMTL MΣMUA +≡× R

Figure 1: 3 × 3 block structure of BEAM factorization.

with the𝑈 factor of the SVD. The columns of𝑀
𝑈
and𝑀

𝑉
are the

left and right singular vectors corresponding to the modifications
in 𝑀Σ and padded with zeros to match the size of 𝐴. Thus, 𝑀

𝑈
and𝑀

𝑉
are tall-and-narrow matrices whose columns are a subset

of a block-diagonal matrix. Figure 1 visualizes these sub-matrix
structures.

Because of the perturbations, the factored matrix𝐴−1 often only
provides the solution to a nearby system, so a correction is needed
to obtain the solution to the original system. We considered two
approaches for this correction: iterative refinement and the Wood-
bury formula. While the former has a well established formulation,
the latter can take various forms. The most general form of the
Woodbury formula is

(𝐴 − 𝐵𝐶𝐷)−1 = 𝐴−1 +𝐴−1𝐵(𝐶−1 − 𝐷𝐴−1𝐵)−1𝐷𝐴−1, (2)

although a simplified form is often used where 𝐶 ≡ 𝐼 [16]. The
term 𝐶−1 −𝐷𝐴−1𝐵 is called a capacitance matrix, and its inverse is
the centerpiece of the Woodbury formula. Here, we formulate the
correction as

(𝐴−𝑀𝑈𝑀Σ𝑀
𝑇
𝑉)
−1 =𝐴−1+𝐴−1𝑀𝑈 (𝐼−𝑀Σ𝑀

𝑇
𝑉𝐴
−1𝑀𝑈)

−1𝑀Σ𝑀
𝑇
𝑉𝐴
−1

instead of the more obvious

(𝐴−𝑀𝑈𝑀Σ𝑀
𝑇
𝑉)
−1 = 𝐴−1 +𝐴−1𝑀𝑈 (𝑀

−1
Σ −𝑀

𝑇
𝑉𝐴
−1𝑀𝑈)

−1𝑀𝑇
𝑉𝐴
−1

to avoid the need to invert the possibly ill-conditioned 𝑀Σ and
to improve the conditioning of the entire capacitance matrix. We
discuss these numerical properties further in Section 4.

We outline our approach, abbreviated BEAM, in Algorithm 1.
While we describe the algorithm with a fixed block size, 𝑛𝑏 , it can
easily be extended to a variable block size. In lines 6–17, we de-
compose the diagonal block and apply any necessary modifications.
Then, lines 18–21 proceed as per a regular blocked, non-pivoted
LU factorization. Finally, we compute and factor the capacitance
matrix if the Woodbury formula is needed. While computing the
capacitance matrix, we form and save the C𝑅 and C𝐿 matrices; this
reduces memory accesses at the cost of a slight increase in storage
unless there are numerous modifications. In spite of the factored
capacitance matrix being denoted C−1, the inverse should not be
formed explicitly; instead, the factored form is preferable for nu-
merical accuracy. We factor this second matrix with GEPP, but
other methods could also work. The solve step simply applies the
block-triangular factors and possibly the Woodbury formula.

A key advantage of Algorithm 1 comes from the fact that it has
the high-level structure of a non-pivoted, block LU. Such structure
provides more parallelism than partial pivoting because the panel of
𝐿 and panel of𝑅 can be updated simultaneously [8, 23]. Furthermore,
it allows the trailing matrix update from one iteration to overlap
with the panel updates from a subsequent iteration.

To outperform GEPP, the overhead introduced by this method
must be lower than that of pivoting. To that end, we count the

Algorithm 1 BEAM algorithm’s factor and solve steps. Subscripts
for 𝐴, 𝐿̃, 𝑅 denote submatrices in terms of matrix blocks, and 𝑛𝑏
denotes the block size.
1: procedure FactorBEAM(𝐴, 𝜏)
2: 𝑛𝑡 ← 𝑛/𝑛𝑏 ⊲ number of blocks in 𝐴
3: 𝑚 ← 0 ⊲ number of modifications applied
4: 𝐴(0) ← 𝐴
5: for 𝑘 = 1 : 𝑛𝑡 do
6: 𝑈𝑘 , Σ𝑘 ,𝑉

𝑇
𝑘 ← SVD(𝐴(𝑘−1)

𝑘,𝑘
)

7: for 𝑖 = 1 : 𝑛𝑏 do
8: if Σ𝑘 [𝑖] ≤ 𝜏 then ⊲ is 𝜎𝑖 below tolerance 𝜏
9: 𝑚 ←𝑚 + 1 ⊲ Record modification
10: 𝑀Σ [𝑚,𝑚] ← 𝜏 − Σ𝑘 [𝑖]
11: 𝑀

𝑈
[:,𝑚] ← [0,𝑈𝑘 [:, 𝑖]𝑇 , 0]𝑇

12: 𝑀
𝑉
[:,𝑚] ← [0,𝑉𝑘 [:, 𝑖]𝑇 , 0]𝑇

13: Σ𝑘 [𝑖] ← 𝜏 ⊲ Apply modification
14: end if
15: end for
16: 𝐿̃𝑘,𝑘 ← 𝑈𝑘

17: 𝑅𝑘,𝑘 ← Σ𝑘𝑉
𝑇
𝑘

18: I ← {𝑘 + 1, 𝑘 + 2, . . . , 𝑛𝑡 } ⊲ trailing matrix indices
19: 𝐿̃I,𝑘 ← 𝐴I,𝑘 𝑅

−1
𝑘,𝑘

20: 𝑅𝑘,I ← 𝐿̃−1𝑘,𝑘 𝐴𝑘,I
21: 𝐴

(𝑘)
I,I ← 𝐴

(𝑘−1)
I,I − 𝐿̃I,𝑘 𝑅𝑘,I

22: end for
23: if 𝑚 > 0 and using Woodbury formula then
24: C𝑅 ← 𝑀Σ𝑀

𝑇
𝑉
𝑅−1

25: C𝐿 ← 𝐿̃−1𝑀
𝑈

26: C ← 𝐼 − C𝑅C𝐿
27: C−1 ← FACTOR(C) ⊲ Using, e.g., GEPP
28: end if
29: end procedure
30: procedure SolveBEAM(𝑏)
31: 𝑥 ← 𝐿̃−1𝑏
32: if 𝑚 > 0 and using Woodbury formula then
33: 𝑥 ← (𝐼 + C𝐿C−1C𝑅)𝑥
34: end if
35: 𝑥 ← 𝑅−1𝑥
36: end procedure

number of arithmetic operations used in the modifications and
Woodbury formula. Let 𝑛 be the size of the system,𝑚 be the rank of
the Woodbury correction, 𝑛𝑏 be the size of the diagonal blocks, and
ℓ𝑟ℎ𝑠 be the number of right-hand sides. (If the Woodbury formula
is not applied,𝑚 = 0.) Because the factors’ diagonal blocks are full
instead of triangular, computing the Schur complement takes an
extra 𝑛2𝑛𝑏 + O(𝑛𝑛2𝑏) FLOP. Thus, BEAM without the Woodbury
correction takes

2
3𝑛

3 + 2𝑛2ℓ𝑟ℎ𝑠 + 𝑛2𝑛𝑏 + O(𝑛𝑛2𝑏 + 𝑛𝑛𝑏ℓ𝑟ℎ𝑠) FLOP.

Next, building and factoring the capacitance matrix (via GEPP)
takes 2𝑛2𝑚 + 2𝑛𝑚2 + 2

3𝑚
3 + O(𝑛𝑚) FLOP. Finally, the Woodbury

formula requires two triangular solves and two matrix multiplies.

ICS ’23, June 21–23, 2023, Orlando, FL, USA Neil Lindquist, Piotr Luszczek, and Jack Dongarra

So, the Woodbury formula adds an extra

2𝑛2𝑚 + 2𝑛𝑚2 + 2
3𝑚

3 + 4𝑛𝑚ℓ𝑟ℎ𝑠 + 2𝑚2ℓ𝑟ℎ𝑠 + O(𝑛2 + 𝑛ℓ𝑟ℎ𝑠) FLOP.

Hence, if 𝑛𝑏 ,𝑚 ≪ 𝑛, the arithmetic overhead compared to GENP
should be negligible. While this does not measure the cost of data
movement, most of the added computations have high data locality,
especially compared to pivoting.

4 THEORETICAL ANALYSIS
Because BEAM inverts 𝐴 instead of 𝐴, it is crucial to understand
the errors that arise when solving 𝐴𝑥 = 𝑏 in finite-precision. First,
the additive modifications guarantee that 𝐴 and its block principal
leading submatrices are non-singular, a prerequisite for the success
of non-pivoted block-LU factorizations. Thus, this algorithm (with-
out the Woodbury formula) computes a solution, 𝑥 , that satisfies a
nearby system,

(𝐴 + Δ𝐴)𝑥 = (𝑏 + Δ𝑏), (3)
with

∥Δ𝐴∥2 ≤ 𝜂2 (𝑥)∥𝐴∥2 and ∥Δ𝑏∥2 ≤ 𝜂2 (𝑥)∥𝑏∥2; (4)

that is, 𝜂2 (𝑥) is the normwise backward error for the spectral norm.
Then, combining (3) with the definition of 𝐴 from (1) gives

(𝐴 +𝑀𝑈𝑀Σ𝑀
𝑇
𝑉 + Δ𝐴)𝑥 = (𝑏 + Δ𝑏) .

Thus, the backward error of 𝑥 for the original system 𝐴𝑥 = 𝑏 is

𝜂2 (𝑥) ≤ max
(
∥𝑀

𝑈
𝑀Σ𝑀

𝑇
𝑉
+ Δ𝐴∥2

∥𝐴∥2
,
∥Δ𝑏∥2
∥𝑏∥2

)
≤ 𝜏 + 𝜂2 (𝑥) . (5)

Hence, the forward error of 𝑥 can be bounded with only 𝜏 , the back-
ward stability of the block factorization, and the condition number
of 𝐴. Importantly, 𝐴 need not be well conditioned. Furthermore,
the convergence of iterative refinement is also ensured when those
three values are sufficiently small [4]. Note that (5) implies that
𝜏 may directly contribute to the backward error when there are
modifications but the Woodbury formula is not applied.

Unfortunately, an ill-conditioned𝐴 can still be problematic when
using the Woodbury formula because its forward error directly per-
turbs the capacitance matrix and, thus, the correction. To help un-
derstand this condition number, we provide the following theorem,
which states that if the tolerance, 𝜏 , is small relative to the recipro-
cal condition number of 𝐴, the conditioning of 𝐴 will be close to
that of 𝐴. Interestingly, the condition of this theorem (𝜏𝜅2 (𝐴) ≪ 1)
appears related to the requirement implied by (5) for the solution
to have any digits of accuracy (𝜏𝜅2 (𝐴) + 𝜂2𝜅2 (𝐴) ≪ 1).

Theorem 4.1. Let 𝐴 = 𝐴 +𝑀
𝑈
𝑀Σ𝑀

𝑇
𝑉
where 𝑀

𝑈
and 𝑀

𝑉
each

have orthonormal columns, and𝑀Σ is a diagonal matrix with positive
entries of at most 𝜏 = 𝜏 ∥𝐴∥2. If 𝜏𝜅2 (𝐴) < 1, then

𝜅2 (𝐴) ≤
𝜎1 (𝐴) + 𝜏
𝜎𝑛 (𝐴) − 𝜏

= 𝜅2 (𝐴)
1 + 𝜏

1 − 𝜏𝜅2 (𝐴)
where 𝜎1 (𝐴) and 𝜎𝑛 (𝐴) denote the largest and smallest singular
values, respectively, and 𝜅2 (𝐴) = 𝜎1 (𝐴)/𝜎𝑛 (𝐴).

Proof. By the triangle inequality,

𝜎1 (𝐴) ≤ 𝜎1 (𝐴) + 𝜏 and 𝜎𝑛 (𝐴) ≥ 𝜎𝑛 (𝐴) − 𝜏 .

Suppose 𝜏𝜅2 (𝐴) < 1, which implies 𝜎𝑛 (𝐴) − 𝜏 > 0. Hence,

𝜅2 (𝐴) ≤
𝜎1 (𝐴) + 𝜏
𝜎𝑛 (𝐴) − 𝜏

=
𝜎1 (𝐴) + 𝜏𝜎1 (𝐴)
𝜎𝑛 (𝐴) − 𝜏𝜎1 (𝐴)

= 𝜅2 (𝐴)
1 + 𝜏

1 − 𝜏𝜅2 (𝐴)
. □

When applying the Woodbury formula, we must also invert the
capacitance matrix as per (2). Thus, its condition number is also
crucial in the analysis of this method. We start by generalizing a
lemma of Yip [30] to the full version of the Woodbury formula.

Lemma 4.2. Let ∥·∥𝑝 be any sub-multiplicative matrix norm. We
denote the condition number with respect to the Moore-Penrose pseu-
doinverse by 𝜅+𝑝 (𝐴) = ∥𝐴∥𝑝 ∥𝐴+∥𝑝 . Suppose 𝐴 = 𝐴 +𝑈 Σ𝑉𝑇 is non-
singular with𝑈 ,𝑉 having full column rank and Σ being nonsingular.
Then,

𝜅𝑝 (Σ−1 −𝑉𝑇𝐴−1𝑈) ≤ min
(
𝜅+𝑝 (𝑈)2, 𝜅+𝑝 (𝑉𝑇)2

)
𝜅𝑝 (Σ)𝜅𝑝 (𝐴𝐴−1)

≤ min
(
𝜅+𝑝 (𝑈)2, 𝜅+𝑝 (𝑉𝑇)2

)
𝜅𝑝 (Σ)𝜅𝑝 (𝐴)𝜅𝑝 (𝐴) .

Proof. Because we must bound the norm of the capacitance ma-
trix, we start by rewriting its expression. Multiplying𝐴−𝑈 Σ𝑉𝑇 = 𝐴
on the left by Σ−1𝑈 + and on the right by 𝐴−1𝑈 gives

(Σ−1 −𝑉𝑇𝐴−1𝑈) = Σ−1𝑈 +𝐴𝐴−1𝑈 . (6)

We next seek a similar expression for its inverse. Note that,

𝐴𝐴−1𝑈 = (𝐴 −𝑈 Σ𝑉𝑇)𝐴−1𝑈 = 𝑈 −𝑈 Σ𝑉𝑇𝐴−1𝑈 .

So, the columns of 𝐴𝐴−1𝑈 are within the column space of𝑈 . Since
𝑈𝑈 + is an orthogonal projector onto that space [13], we have
(𝑈𝑈 +)𝐴𝐴−1𝑈 = 𝐴𝐴−1𝑈 . Using this, we can verify that

(𝑈 +𝐴𝐴−1𝑈 Σ) (Σ−1𝑈 +𝐴𝐴−1𝑈) = 𝐼 .

Combining this with (6) gives the desired inverse:

(Σ−1 −𝑉𝑇𝐴−1𝑈)−1 = 𝑈 +𝐴𝐴−1𝑈 Σ.

Hence, the condition number can be bounded as

𝜅𝑝 (Σ−1 −𝑉𝑇𝐴−1𝑈) = ∥Σ−1𝑈 +𝐴𝐴−1𝑈 ∥𝑝 ∥𝑈 +𝐴𝐴−1𝑈 Σ∥𝑝
≤ 𝜅+𝑝 (𝑈)2𝜅𝑝 (Σ)∥𝐴𝐴−1∥𝑝 ∥𝐴𝐴−1∥𝑝 .

A similar argument shows that

𝜅𝑝 (Σ −𝑈𝐴−1𝑉𝑇) ≤ 𝜅+𝑝 (𝑉𝑇)2𝜅𝑝 (Σ)∥𝐴𝐴−1∥𝑝 ∥𝐴𝐴−1∥𝑝 . □

Using this lemma, the condition number for the capacitance
matrix in the obvious form of the Woodbury formula is bounded by

𝜅2 (𝑀−1Σ −𝑀
𝑇
𝑉𝐴
−1𝑀𝑈) ≤ 𝜅2 (𝑀Σ)𝜅2 (𝐴𝐴

−1) .

As mentioned in Section 3, we instead formulate the Woodbury
correction to get a tighter bound on the condition number:

𝜅2 (𝐼 −𝑀Σ𝑀
𝑇
𝑉𝐴
−1𝑀𝑈) ≤ 𝜅2 (𝐴𝐴−1) .

The conditioning of this latter matrix can be further improved,
particularly for the 2-norm. The following theorem shows that as
long as neither 𝐴 nor 𝐴 are ill-conditioned, the capacitance matrix
will have an excellent condition number.

Using Additive Modifications in LU Factorization Instead of Pivoting ICS ’23, June 21–23, 2023, Orlando, FL, USA

Theorem 4.3. Suppose 𝐴 = 𝐴 + 𝑀
𝑈
𝑀Σ𝑀

𝑇
𝑉
where 𝑀

𝑈
and 𝑀

𝑉
each have orthonormal columns, and ∥𝑀Σ∥2 = 𝜏 . Additionally, let
C = 𝐼 −𝑀Σ𝑀

𝑇
𝑉
𝐴−1𝑀

𝑈
. Then,

𝜅2 (C) ≤ (1 + 𝜏 ∥𝐴−1∥2) (1 + 𝜏 ∥𝐴−1∥2) .
If 𝜏 = 𝜏 ∥𝐴∥2 with 𝜏 < 1, then we can simplify the bound to

𝜅2 (C) ≤ (1 + 𝜏
1−𝜏 𝜅2 (𝐴)) (1 + 𝜏𝜅2 (𝐴)) .

Proof. With𝑈 = 𝑀
𝑈
, Σ = 𝐼 , and𝑉𝑇 = 𝑀Σ𝑀

𝑇
𝑉
, Lemma 4.2 gives

the bound 𝜅2 (C) ≤ ∥𝐴𝐴−1∥2∥𝐴𝐴−1∥2 . Since 𝐴 = 𝐴 −𝑀
𝑈
𝑀Σ𝑀

𝑇
𝑉

and ∥𝑀
𝑈
𝑀Σ𝑀

𝑇
𝑉
∥2 = 𝜏 , a little algebra shows that

𝜅2 (C) ≤ (1 + 𝜏 ∥𝐴−1∥2) (1 + 𝜏 ∥𝐴−1∥2) .
Suppose 𝜏 = 𝜏 ∥𝐴∥2 and 𝜏 < 1. Then,

∥𝐴∥2 = ∥𝐴 −𝑀𝑈𝑀Σ𝑀
𝑇
𝑉 ∥2 ≤ ∥𝐴∥2 + 𝜏 ∥𝐴∥2,

and so ∥𝐴∥2 ≤ (1 − 𝜏)−1∥𝐴∥2. Therefore,
𝜅2 (C) ≤ (1 + 𝜏 ∥𝐴∥2∥𝐴−1∥2) (1 + 𝜏 ∥𝐴∥2∥𝐴−1∥2)

≤ (1 + 𝜏
1−𝜏 𝜅2 (𝐴)) (1 + 𝜏𝜅2 (𝐴)) . □

After the backward error bound in (5) and the theorems on key
condition numbers, one major concern remains: how backward
stable is the factorization of 𝐴? To our knowledge, no analysis
exists for block LU that would apply to Algorithm 1. The closest
is by Demmel, Higham, and Schreiber [7], but the block LU they
analyzed differs from our factorization in two primary ways. First,
the diagonal blocks are factored with GEPP instead of the SVD.
Second, the diagonal blocks of the lower block-triangular factor
are identity matrices instead of singular vectors. Under reasonable
assumptions, they proved that it computes a solution, 𝑥 , to 𝐴𝑥 = 𝑏
such that
(𝐴 + Δ𝐴)𝑥 = 𝑏, ∥𝑥 ∥max ≤ 𝑐 (𝑛)𝑢 (∥𝐴∥max + ∥𝐿̃∥max∥𝑈 ∥max)

where 𝐿̃ and 𝑈 are the computed block-triangular factors and 𝑐 (𝑛)
is a constant dependent on 𝑛. Thus, we expect the method to be
backward stable when ∥𝐿̃∥max∥𝑈 ∥max/∥𝐴∥max is small. For the
general case, Demmel et al. proved that this ratio is at most

∥𝐿̃∥max∥𝑈 ∥max
∥𝐴∥max

≤ 𝑛𝜌3NP𝜅max (𝐴) (7)

where 𝜌NP is the growth factor of 𝐴 for GENP (i.e., the magnitude
of the largest element that occurs in any Schur complement). While
the previous analysis cannot guarantee the backward stability of
BEAM’s factorization, the similarity between the factorizations
suggests such stability is likely. Furthermore, we expect a stronger
version of (7) can be proven for BEAM since the norms of the
inverses of the diagonal blocks are bounded.

5 EXPERIMENTAL RESULTS
To investigate the feasibility of this approach in terms of numerical
stability, scalability, and performance, we implemented it in the
Software for Linear Algebra Targeting Exascale (SLATE) library and
evaluated it on the Summit supercomputer. SLATE is a dense linear
algebra library that targets distributed-memory, GPU-accelerated
systems [10]. Our code and results are available at https://doi.org/
10.6084/m9.figshare.21982472.

Our implementation follows Algorithm 1 and uses a high-level
structure based on SLATE’s GENP routine [23]. However, we sepa-
rated BEAM’s algorithmic block size from the distribution tile size
(the former being smaller than the latter). For simplicity, our code
does not support an algorithmic block to be split across multiple
tiles of SLATE and will truncate the last block in a tile to fit. But
all our experiments align the block and tile sizes so that truncation
only happens in the last tile. After the factorization is complete, the
capacitance matrix is built and factored. While our theory defines
𝜏 in terms of ∥𝐴∥2, this is expensive to compute in practice. So, our
experiments instead used the Frobenius norm, 𝜏 = 𝜏 ∥𝐴∥𝐹 , which is
closely related.

For performance purposes, we implemented a GPU routine for
batched, block-triangular solves, using a recursive formulation sim-
ilar to the MAGMA [1] and KBLAS [6] libraries. Because the diago-
nal blocks come from the SVD, these inverses can be realized by
a matrix multiplication and sometimes a diagonal scaling. While
cuBLAS’s batched GEMM routine was effective for the trailing-
matrix updates, its performance was lacking for small block sizes
due to the subsequent copy or scale operation. For such cases, we
implemented a custom routine that combined the multiplication
and the copy to improve cache reuse and avoid extra kernel launch
overheads. To reduce the effort in performance tuning, we used
part of MAGMA’s matrix-multiplication routine in our kernel.

5.1 Experimental Setup
We ran our experiments on eight nodes of the Summit supercom-
puter at Oak Ridge National Laboratory. This machine is based on
IBM Power System AC922 nodes, each containing two 22-core IBM
POWER9 CPUs and six NVIDIA Volta V100 GPUs. One core of each
socket is reserved for the OS (Red Hat Enterprise Linux version
8.2). Most of the computational power comes from the GPUs, each
providing 7.8 TFLOP/s, 16 GiB HBM2, and 900GB/s memory band-
width. Each CPU provides 540GFLOP/s, 256GiB DDR4 memory,
and 170GB/s memory bandwidth. NVIDIA NVLink provides a bidi-
rectional 50GB/s between components in a socket. A dual-rail EDR
InfiniBand network with a non-blocking fat-tree topology connects
the nodes.

We used amodified version of SLATE’s test harness for our exper-
iments. The tester was compiled with GCC 9.1.0, CUDA 11.0.3, IBM
Spectrum MPI 10.4.0.3, IBM ESSL 6.1.0, Netlib LAPACK 3.8.0, and
Netlib ScaLAPACK 2.1.0. We set the smt1 flag and started MPI with
jsrun -n 16 -a 1 -c 21 -g 3 -b packed:21 -d packedwhich
allocates 16 processes, each bound to a single socket and its GPUs.
For all experiments, we configured the tester with --origin h
--target d --ref n --grid 4x4 --panel-threads 20 --seed 1
--seedB 2 --matrixB randn --nrhs 1. We also set the --matrix,
--dim, and --check flags as appropriate for the experiment. For
GEPP, we also set --nb 768 --ib 64 --lookahead 1. For GENP
and BEAM, we set --nb 512 --lookahead 2 --ib 64, except
for the experiment described in Section 5.3 which changed the last
argument as appropriate for BEAM. This configuration gives a 2d
block-cyclic distribution with a 4× 4 process grid and blocks of size
512 or 768, as indicated by --nb. Note that SLATE’s ib parameter
corresponds to the 𝑛𝑏 value discussed in this paper; SLATE’s nb
corresponds to the larger blocks used to distribute the matrix.

https://doi.org/10.6084/m9.figshare.21982472
https://doi.org/10.6084/m9.figshare.21982472

ICS ’23, June 21–23, 2023, Orlando, FL, USA Neil Lindquist, Piotr Luszczek, and Jack Dongarra

Table 1: Tested Matrices

Name Description
rand Random elements uniform on [0, 1]
rands Random elements uniform on [−1, 1]
randn Random elements normally distributed
randb Random elements of 0 or 1
randr Random elements of -1 or 1
rand_dominant rand plus 𝑛𝐼
svd_geo Randommatrix with singular values geomet-

rically spaced from 10−8 to 1
chebspec From MATLAB’s gallery function
circul From MATLAB’s gallery function
fiedler From MATLAB’s gallery function
kms From MATLAB’s gallery function
orthog From MATLAB’s gallery function
riemann From MATLAB’s gallery function
ris From MATLAB’s gallery function
zielkeNS Zielke’s nonsymmetric matrix (𝑎 = 1) [32]

All tests were preceded by extra tests of size 𝑛 = 5000 (with
the otherwise identical configuration) to ensure that our results
were not influenced by initialization costs. To measure the effects
of system noise, we ran each performance test three times and com-
puted the mean and 95% confidence interval. Except for svd_geo,
the error and number of modifications were the same between
the different runs. Due to minor non-determinism in SLATE’s QR
factorization, there is slight variability between runs in the entries
of svd_geo. However, this variability is small and does not affect
our conclusions or analysis, so we just present the error values and
number of modifications from the first run.

To understand how our BEAM algorithm behaves across various
linear systems, we used seven random and eight structured matrices
in our tests. Table 1 describes these matrices. We choose a right-
hand side with each element randomly taken from the normal
distribution. The matrix generator was always seeded with 1 for
the matrices and with 2 for the right-hand sides so that the test
problems can be reproduced.

Accuracy was measured with the infinity-norm backward error:

𝜂∞ (𝑥) =
∥𝑏 −𝐴𝑥 ∥∞

∥𝐴∥∞∥𝑥 ∥∞ + ∥𝑏∥∞
. (8)

Correspondingly, in experiments with iterative refinement, the
refinement was terminated when this error was less than or equal
to
√
𝑛 times the unit roundoff (∼3.5 × 10−14 when 𝑛 = 105) or after

30 iterations. We selected this criterion based on the accuracy of
GEPP (see Table 2).

5.2 Baseline Accuracy and Performance
Experiments

First, Table 2 compares the accuracy of BEAM against GEPP and
GENP for varying values of tolerance 𝜏 . The matrices were of size
105, with a blocking factor of 64 for BEAM. The reported error is
the infinity-norm backward error of (8). Most importantly, the error

of BEAM with the Woodbury correction is smaller than or approx-
imately equal to that of GENP for all but one case (orthog with
𝜏 = 10−10). Furthermore, BEAM with Woodbury correction has a
significantly smaller error than GENP for most matrices and only
incurs NaN values for one matrix, zielkeNS. (Those NaN values re-
sulting from growth-induced overflow.) These results demonstrate
the ability of our approach to provide better numerical stability
than GENP. Moreover, the error was smaller than 10−10 for many of
the matrices. This implies that the iterative refinement should often
converge quickly to double-precision accuracy [4]. While 𝜏 = 10−6
leads to modifications for most matrices, only five of the fifteen
matrices required more than ten modifications when 𝜏 ≤ 10−8 (one
of which was accurately solved without any modifications when
𝜏 = 10−10). This indicates that the proposed approach is likely
effective for a large class of matrices. Additionally, many linear
systems saw a significant improvement in accuracy compared to
GENP, even without modification. Thus, even just applying an SVD
factorization to invert the diagonal blocks increases the stability of
a non-pivoted factorization.

The results become more nuanced when considering BEAM
without Woodbury correction. For 𝜏 = 10−10, the uncorrected
solver behaved similarly to the corrected one. For larger tolerances,
however, there is a significant gap between the two, particularly for
𝜏 = 10−6. This indicates that the perturbation of the uncorrected
modification becomes the dominant source of error when 𝜏 ≳ 10−8.
This aligns with both the 𝜏 term in the normwise backward error
bound of (5) and the recommended tolerance when applying scalar
updates without correction [21]. In contrast, when the Woodbury
correctionwas applied, increasing the tolerances always saw similar
or better accuracies. This suggests that the error in the corrected
case comes from the presence of small diagonal singular values and
the resulting growth and not from applying the modifications or
the Woodbury correction process.

Table 3 augments Table 2 by showing the time to solve the linear
systems of equations (again with𝑛 = 105). Up to 30 steps of iterative
refinement were used for BEAM but not for GEPP or GENP. To
clarify where iterative refinement was unsuccessful, we marked
the cases which failed to achieve convergence criterion for iterative
refinement (𝜂∞ (𝑥) ≲ 3.5 × 10−14). Furthermore, we provide the
number of refinement iterations, with 30 being the limit.

First, note that by using iterative refinement, our approach
achieved an error of less than 2−53

√
𝑛 for almost all cases. As

above, zielkeNS’s failure involved excessive growth generating
NaN values. For the remaining failures, BEAM produced a non-
NaN solution, but iterative refinement failed to converge to full
accuracy. These cases included svd_geo, chebspec, fiedler, and
riemann with larger tolerances (and many modifications) but with-
out Woodbury correction. These matrices are all ill-conditioned,
which limits the ability of iterative refinement to converge when
the inner solution is only moderately accurate [4]. For example,
𝜅∞ (fiedler) = 2𝑛(𝑛 − 1) ≈ 2 × 1010 [27, pg. 159], so iterative
refinement can only be expected to converge to full accuracy when
𝜂∞ (𝑥) ≲ 5 × 10−11. Furthermore, this further supports the implica-
tion of both (5) and Theorem 4.1 that 𝜏 should be chosen such that
𝜏𝜅2 (𝐴) ≪ 1. Interestingly, these systems were successfully solved
when using the Woodbury formula, despite the dire implication of
Theorems 4.1 and 4.3 that 𝜏𝜅2 (𝐴) ≲ 1 can lead to a large forward

Using Additive Modifications in LU Factorization Instead of Pivoting ICS ’23, June 21–23, 2023, Orlando, FL, USA

Table 2: Accuracy Comparison of BEAM without Iterative Refinement Versus GEPP and GENP.

𝜏 = 10−6 𝜏 = 10−8 𝜏 = 10−10

GEPP GENP # Corr. Uncorr. # Corr. Uncorr. # Corr. Uncorr.
Matrix Error Error Mods. Error Error Mods. Error Error Mods. Error Error

rand 2×10−14 3×10−9 126 2×10−13 2×10−7 2 2×10−12 4×10−11 0 5×10−12 5×10−12
rands 3×10−14 3×10−10 59 7×10−13 2×10−7 0 3×10−12 3×10−12 0 3×10−12 3×10−12
randn 4×10−14 3×10−10 57 7×10−13 2×10−7 0 2×10−12 2×10−12 0 2×10−12 2×10−12
randb 3×10−14 NaN 89 4×10−13 2×10−7 0 2×10−12 2×10−12 0 2×10−12 2×10−12
randr 3×10−14 NaN 60 5×10−13 1×10−7 0 1×10−12 1×10−12 0 1×10−12 1×10−12

rand_dominant 2×10−14 1×10−14 0 1×10−14 1×10−14 0 1×10−14 1×10−14 0 1×10−14 1×10−14
svd_geo 5×10−15 1×10−10 47 424 8×10−14 5×10−7 9 072 2×10−13 4×10−9 127 2×10−12 2×10−11
chebspec 3×10−16 8×10−10 3 198 3×10−16 5×10−7 0 2×10−16 2×10−16 0 2×10−16 2×10−16

circul 2×10−17 1×10−14 2 9×10−16 5×10−7 0 1×10−15 1×10−15 0 1×10−15 1×10−15
fiedler 2×10−18 NaN 98 440 3×10−15 7×10−7 92 188 4×10−15 5×10−9 0 4×10−15 4×10−15

kms 2×10−16 2×10−16 0 5×10−16 5×10−16 0 5×10−16 5×10−16 0 5×10−16 5×10−16
orthog 3×10−15 5×10−5 47 216 4×10−7 1×10−6 21 420 2×10−5 2×10−5 1 022 6×10−4 3×10−4

riemann 2×10−14 5×10−13 43 6×10−16 8×10−7 0 1×10−14 1×10−14 0 1×10−14 1×10−14
ris 3×10−15 1×10−1 49 980 3×10−9 3×10−5 49 977 3×10−6 2×10−6 49 973 7×10−5 5×10−5

zielkeNS 2×10−19 NaN 1 594 NaN NaN 1 594 NaN NaN 1 594 NaN NaN

Table 3: Performance Comparison of BEAM (using Iterative Refinement) Versus GEPP and GENP with 95% confidence intervals.

𝜏 = 10−6 𝜏 = 10−8 𝜏 = 10−10

Matrix GEPP (s) GENP (s) Iter. Corr. (s) Iter. Uncorr. (s) Iter. Corr. (s) Iter. Uncorr. (s) Iter. Corr. (s) Iter. Uncorr. (s)
rand 49.6±0.8 6.5±0.8* 1 13.7±0.8 3 10.9±0.8 1 10.7±0.8 1 10.2±0.8 1 10.2±0.8 1 10.3±0.8

rands 49.4±1.4 6.6±1.4* 1 12.2±1.4 3 10.7±1.4 1 10.3±1.4 1 10.3±1.4 1 10.2±1.4 1 10.2±1.4
randn 49.6±1.4* 6.5±1.4* 1 12.2±1.4 3 10.7±1.4 1 10.2±1.4 1 10.2±1.4 1 10.2±1.4 1 10.2±1.4
randb 49.6±1.1 6.5±1.1* 1 12.8±1.1 4 11.0±1.1 1 10.2±1.1 1 10.2±1.1 1 10.2±1.1 1 10.2±1.1
randr 50.0±2.4 6.6±2.4* 1 12.1±2.4 5 11.3±2.4 1 10.2±2.4 1 10.3±2.4 1 10.1±2.4 1 10.2±2.4

rand_dominant 24.9±0.2 6.5±0.2 0 10.0±0.2 0 10.0±0.2 0 10.0±0.2 0 10.0±0.2 0 10.1±0.2 0 10.0±0.2
svd_geo 49.1±2.6 6.6±2.6* 1 44.2±2.6 30 17.9±2.6* 1 24.9±2.6 30 17.9±2.6* 1 13.6±2.6 1 10.2±2.6

chebspec 31.3±0.7 6.5±0.7* 0 21.2±0.7 30 17.8±0.7* 0 9.8±0.7 0 9.9±0.7 0 9.9±0.7 0 9.9±0.7
circul 31.4±0.9 6.5±0.9 0 10.3±0.9 3 10.5±0.9 0 9.8±0.9 0 9.8±0.9 0 9.8±0.9 0 9.9±0.9
fiedler 39.1±0.6 6.6±0.6* 0 76.3±0.6 30 17.7±0.6* 0 71.9±0.6 30 17.7±0.6* 0 9.8±0.6 0 9.8±0.6

kms 24.0±0.4 6.6±0.4 0 9.7±0.4 0 9.8±0.4 0 9.7±0.4 0 9.8±0.4 0 9.8±0.4 0 9.8±0.4
orthog 50.5±1.2 6.5±1.2* 2 43.9±1.2 2 10.5±1.2 3 30.6±1.2 2 10.5±1.2 24 25.6±1.2 24 16.1±1.2

riemann 42.2±0.7 6.6±0.7* 0 11.6±0.7 30 17.8±0.7* 0 9.9±0.7 0 10.0±0.7 0 10.0±0.7 0 10.0±0.7
ris 39.0±0.8 6.6±0.8* 1 44.5±0.8 3 10.6±0.8 1 44.6±0.8 2 10.5±0.8 2 45.2±0.8 2 10.5±0.8

zielkeNS 38.5±0.6 6.6±0.6* 0 19.8±0.6* 0 9.8±0.6* 0 19.8±0.6* 0 9.8±0.6* 0 19.7±0.6* 0 9.8±0.6*
*Error larger than 2−53

√
𝑛 ≈ 3.5 × 10−14.

error. The only other cases with a high iteration count were orthog
and 𝜏 = 10−10, with and without Woodbury correction. While this
matrix is orthogonal and perfectly conditioned, the factorization is
of very low quality, almost certainly due to a large growth factor.

BEAM outperformed GEPP in all cases except fiedler and ris
with many modifications and the Woodbury formula. Furthermore,
most cases show a large speedup, particularly when the Woodbury
formulawas not applied. (Although, for cases that failed to converge,
the speedup is, of course, a moot point.) Unfortunately, BEAM had,
at best, about two-thirds the performance of GENP. The block
factorization seems to be the predominant source of errors, with

iterative refinement only adding a significant overhead when many
iterations are applied (cf. Section 5.3 and Table 4).

Interestingly, in cases for which it converged, BEAM without
Woodbury correction outperformed the corrected version in all
cases. Furthermore, when 𝜏 = 10−10, BEAM without Woodbury
correction converged in all but the zielkeNS case. Combining this
observation with (5) and Table 2 suggests that the Woodbury for-
mula is unnecessary for small tolerances. Furthermore, comparing
the 𝜏 = 10−6 and 𝜏 = 10−10 columns of Table 3 shows that in all
but one case, smaller tolerances give similar or better performance
than larger tolerances. The one exception is orthog without the
Woodbury formula, likely due to the excessive growth.

ICS ’23, June 21–23, 2023, Orlando, FL, USA Neil Lindquist, Piotr Luszczek, and Jack Dongarra

5.3 Effect of tolerance
We next investigated the tradeoff in performance and accuracy for
a larger variety of tolerance values and blocking sizes on select
matrices without iterative refinement. Table 4 shows the results.
Matching Tables 2 and 3, the matrix sizes are all 𝑛 = 105. Fur-
thermore, the number of modifications and error in Table 4 for
𝜏 = 10−6, 10−8, 10−10 correspond to the values in Table 2; however,
the run times differ from Table 3 due to the omission of iterative
refinement. While GEPP and GENP do not have the algorithmic
blocking parameter 𝑛𝑏 of BEAM, they implement cache-blocking
with a similar structure and a block size of 64.

Both rand_dominant and rand matrix types saw BEAM signifi-
cantly outperform GEPP for all configurations. However, as men-
tioned earlier, BEAM performed worse than GENP, even when no
corrections were applied. Moreover, smaller block sizes performed
slightly better, likely due to increased arithmetic for the SVDs and
block-triangular solves. For rand_dominant, all configurations re-
sulted in no modifications and the same accuracy. For rand, on
the other hand, increasing the tolerance above 10−10 increased the
accuracy when the Woodbury correction was applied but decreased
the accuracy when it was not, with the number of modifications
increasing in both cases. Given the number of modifications intro-
duced when 𝜏 ≤ 10−6, a tolerance of 10−8 or 10−10 is a better choice,
particularly when not applying the Woodbury correction. Finally,
increasing the block size reduced the number of modifications and
increased the accuracy in all but one case.

The structured matrices provided more interesting results. As in
the previous tables, BEAM applied numerous modifications to the
orthog matrix for all of the tested configurations. Increasing the
blocking factor helped the accuracy, although it also increased the
number of modifications. The best tradeoff between performance
and accuracy seems to be for tolerances of 10−6 or 10−8 (depending
on the block size) without the Woodbury correction. Unexpectedly,
a smaller block size led to fewer modifications; we suspect this is
due to element growth in the later diagonals. For zielkeNS, only
𝜏 = 10−4 without the Woodbury formula produced a non-NaN
solution. On the other hand, the block size had limited effect on the
performance or the accuracy. For 𝜏 = 10−4, all three block factor
sizes resulted in the modification of about 95% of the diagonal
singular values, whereas for smaller tolerance values, the number
of modifications was just slightly larger than the number of blocks.

5.4 Scaling Results
Finally, we tested the performance of the different solvers as the
size, 𝑛, varies for the rand_dominant, rand, and orthog matrices.
BEAM achieved speedups ranging from 4× to almost 5× for the
three matrices compared to GEPP applied to rand. BEAM was con-
figured with a blocking factor size of 𝑛𝑏 = 64 and a tolerance of
𝜏 = 10−8. BEAM with iterative refinement ran out of GPU memory
for 𝑛 = 250 000 due to the extra copy of the system matrix. Note
that a diagonally dominant matrix, such as the rand_dominant, is
the best-case scenario for the performance of GEPP because the se-
lected pivots already reside on the diagonal and the memory traffic
of exchanging rows is avoided (though we still perform the pivot
search for each column). For the large matrices, BEAM reached
80% of GENP’s performance for rand_dominant and rand, as the

0 50,000 100,000 150,000 200,000 250,000 300,0000

20

40

60

80

100

120

140

160

180

𝑛

N
or
m
al
iz
ed

Pe
rfo

rm
an
ce

GENP–rand dominant GEPP–rand dominant

GEPP–rand
BEAM–rand dominant BEAM w/ IR–rand dominant

BEAM–rand BEAM w/ IR–rand
BEAM–orthog BEAM w/ IR–orthog
Uncorr. BEAM
orthog

Uncorr. BEAM w/ IR
orthog

Figure 2: Performance of BEAM for three matrices compared
with GEPP and GENP. The y-axis is equal to 2

3𝑛
310−12 divided

by the time in seconds; for GEPP andGENP, this is equivalent
to TFLOP/s.

former required no modifications and the latter required just a
few modifications. Without the Woodbury correction, BEAM also
performed similarly on orthog. However, with the correction, the
performance dropped to approximately that of the best case for
GEPP. Adding iterative refinement slightly reduced the overall per-
formance, but BEAM still outperformed the best-case scenario of
GEPP by 84% to 162% on the rand_dominant and rand matrices.
Without the Woodbury formula, BEAM performed almost as well
on orthog as on rand with speedups of 70% to 144%. With the
Woodbury formula, BEAM performed in the range of GEPP, be-
tween 40% and 112% faster than the GEPP’s performance on rand
(which is close to its performance on orthog, as per Table 3). These
speedups for orthog are particularly promising because most ap-
proaches struggle to accurately outperform GEPP on this matrix,
especially for large sizes [8, 22–24].

Using Additive Modifications in LU Factorization Instead of Pivoting ICS ’23, June 21–23, 2023, Orlando, FL, USA

Table 4: Tradeoffs between performance and accuracy on select matrices for tolerance values of {10−4, 10−6, 10−8, 10−10, 10−12}
and block sizes of {32, 64, 128} without iterative refinement.

𝑛𝑏 = 32 𝑛𝑏 = 64 𝑛𝑏 = 128
Corr. # Mods. Time (s) Error # Mods. Time (s) Error # Mods. Time (s) Error

ra
nd

_d
om

in
an
t

GEPP - - - - - 25.1±0.5 2×10−14 - - -
GENP - - - - - 6.7±0.4 1×10−14 - - -

𝜏 = 10−4 Y 0 9.8±0.2 1×10−14 0 9.8±0.1 1×10−14 0 10.9±0.3 1×10−14
N 9.6±0.1 1×10−14 9.6±0.3 1×10−14 10.8±0.4 1×10−14

𝜏 = 10−6 Y 0 9.5±0.4 1×10−14 0 9.7±0.1 1×10−14 0 10.9±0.2 1×10−14
N 9.5±0.2 1×10−14 9.7±0.4 1×10−14 10.8±0.1 1×10−14

𝜏 = 10−8 Y 0 9.5±0.2 1×10−14 0 9.8±0.1 1×10−14 0 10.9±0.2 1×10−14
N 9.5±0.3 1×10−14 9.7±0.1 1×10−14 10.9±0.2 1×10−14

𝜏 = 10−10 Y 0 9.6±0.3 1×10−14 0 9.7±0.4 1×10−14 0 11.0±0.3 1×10−14
N 9.4±0.2 1×10−14 9.6±0.2 1×10−14 10.8±0.1 1×10−14

𝜏 = 10−12 Y 0 9.4±0.4 1×10−14 0 9.7±0.2 1×10−14 0 10.8±0.2 1×10−14
N 9.5±0.2 1×10−14 9.8±0.2 1×10−14 10.8±0.2 1×10−14

ra
nd

GEPP - - - - - 50.0±0.6 2×10−14 - - -
GENP - - - - - 6.7±0.4 3×10−9 - - -

𝜏 = 10−4 Y 8 798 24.5±1.2 4×10−14 8 397 23.7±0.9 2×10−14 8 206 24.7±0.8 9×10−15
N 9.5±0.2 6×10−5 9.7±0.3 5×10−5 10.9±0.2 4×10−5

𝜏 = 10−6 Y 138 13.0±0.3 5×10−13 126 12.9±0.3 2×10−13 122 14.0±0.1 1×10−13
N 9.5±0.2 2×10−7 9.7±0.3 2×10−7 10.7±0.3 2×10−7

𝜏 = 10−8 Y 2 10.1±0.2 3×10−12 2 10.2±0.1 2×10−12 1 11.2±0.2 1×10−12
N 9.5±0.3 1×10−9 9.7±0.5 4×10−11 10.8±0.2 2×10−10

𝜏 = 10−10 Y 0 9.6±0.5 7×10−11 0 9.8±0.2 5×10−12 0 10.7±0.4 1×10−12
N 9.5±0.2 7×10−11 9.8±0.2 5×10−12 10.8±0.2 1×10−12

𝜏 = 10−12 Y 0 9.4±0.3 7×10−11 0 9.7±0.2 5×10−12 0 10.7±0.1 1×10−12
N 9.5±0.3 7×10−11 9.7±0.3 5×10−12 10.7±0.2 1×10−12

or
th
og

GEPP - - - - - 50.2±1.2 3×10−15 - - -
GENP - - - - - 6.6±0.3 5×10−5 - - -

𝜏 = 10−4 Y 48 493 43.6±2.3 6×10−8 49 065 44.0±2.5 5×10−11 49 314 45.3±1.7 2×10−11
N 9.6±0.4 1×10−4 9.8±0.1 1×10−4 10.5±0.3 1×10−4

𝜏 = 10−6 Y 44 980 41.8±2.0 1×10−6 47 216 43.1±1.7 4×10−7 48 470 44.8±2.0 8×10−8
N 9.6±0.2 1×10−6 9.7±0.2 1×10−6 10.7±0.3 1×10−6

𝜏 = 10−8 Y 1 239 18.8±0.3 4×10−4 21 420 29.6±1.1 2×10−5 46 159 43.5±2.2 2×10−7
N 9.5±0.2 4×10−4 9.7±0.3 2×10−5 10.7±0.3 2×10−7

𝜏 = 10−10 Y 987 18.1±0.4 4×10−4 1 022 18.2±0.2 6×10−4 1 121 19.9±0.4 4×10−4
N 9.5±0.1 5×10−4 9.7±0.2 3×10−4 10.6±0.0 5×10−4

𝜏 = 10−12 Y 846 18.0±0.7 5×10−4 873 18.2±0.3 2×10−4 892 19.2±0.5 5×10−4
N 9.5±0.2 1×10−4 9.6±0.6 3×10−4 10.5±0.2 5×10−4

zi
el
ke
N
S

GEPP - - - - - 39.5±0.3 2×10−19 - - -
GENP - - - - - 6.7±0.3 NaN - - -

𝜏 = 10−4 Y 96 875 89.4±3.7 NaN 95 313 89.1±4.2 NaN 95 313 90.3±1.8 NaN
N 9.3±0.5 7×10−5 9.7±0.2 7×10−5 10.8±0.2 7×10−5

𝜏 = 10−6 Y 3 156 21.2±0.9 NaN 1 594 19.4±0.7 NaN 813 19.1±0.3 NaN
N 9.3±0.2 NaN 9.6±0.1 NaN 10.7±0.3 NaN

𝜏 = 10−8 Y 3 156 21.0±0.9 NaN 1 594 19.5±0.7 NaN 813 19.1±0.3 NaN
N 9.3±0.4 NaN 9.5±0.3 NaN 10.7±0.3 NaN

𝜏 = 10−10 Y 3 156 20.9±0.7 NaN 1 594 19.4±0.4 NaN 813 19.2±0.0 NaN
N 9.4±0.5 NaN 9.6±0.1 NaN 10.6±0.2 NaN

𝜏 = 10−12 Y 3 156 20.9±0.5 NaN 1 594 19.5±0.7 NaN 813 19.2±0.3 NaN
N 9.3±0.6 NaN 9.5±0.2 NaN 10.6±0.3 NaN

ICS ’23, June 21–23, 2023, Orlando, FL, USA Neil Lindquist, Piotr Luszczek, and Jack Dongarra

6 CONCLUSIONS
We proposed using additive modifications in Gaussian elimina-
tion for dense matrices to avoid the performance overheads associ-
ated with partial pivoting while retaining the numerical stability
achieved in classic implementations of LU factorization. As a result,
we recorded speedups reaching as high as 5× against the GEPP
implementation on a GPU-accelerated supercomputer. Our method
of additive modifications for dense matrices (unlike single-element
modifications occasionally used for sparse matrices) factors the
diagonal blocks with the SVD to reduce the number of modifica-
tions required. We experimentally established that BEAM provides
better performance for comparable accuracy to GEPP and better
accuracy for comparable performance to GENP for the majority of
our test matrices. Furthermore, by testing this approach both with
and without the Woodbury formula, we find that (when using iter-
ative refinement) omitting the Woodbury correction often provides
a better time-to-solution than when applying the correction.

6.1 Parameter Selection
The success of BEAM depends heavily on both the tolerance and
whether to apply theWoodbury formula. The block size alsomatters
but, based on Table 4, to a lesser extent; we suggest starting with the
size of cache-blocking for non-pivoted LU or slightly larger. Below,
we analyze in detail considerations for choosing the threshold and
whether to use the Woodbury formula. But as a starting point, we
suggest 𝜏 = min(0.5𝜅2 (𝐴), 10−8) and no Woodbury formula. For
most applications, however, various configurations should be tested
on the linear systems produced by representative domain problems.

For theWoodbury formula, recall that in Table 3 and Figure 2, the
corrected solver never outperformed the corresponding uncorrected
one. However, a few ill-conditioned cases failed to converge without
the Woodbury formula, while all cases converged when using the
Woodbury formula (except for zielkeNS, which overflowed for
both). Furthermore, as noted before, Table 3 indicates that using the
Woodbury formula can enable convergence when 𝜏𝜅2 (𝐴) ≥ 1. Thus,
the Woodbury formula appears to be preferable for ill-conditioned
matrices. And, iterative refinement already measures the quality of
the factorization. So, we suggest initially skipping the Woodbury
formula. Then if iterative refinement fails to converge within, e.g.,
five iterations, use the Woodbury formula in subsequent iterations.

For selecting 𝜏 , we first wish to draw attention to the importance
of the inequality 𝜏𝜅2 (𝐴) ≪ 1. For BEAM without a Woodbury cor-
rection, (5) implies that this inequality is a prerequisite to proving
that the solution has at least one digit of accuracy and that iterative
refinement can converge to full backward accuracy. For BEAMwith
a Woodbury correction, this is necessary to show that 𝐴 is well
conditioned using Theorem 4.1. Finally, our experimental results
demonstrated that violating this inequality can lead to a failure of
BEAMwithout the Woodbury formula. Although, our experimental
results also failed to show a similar result when the Woodbury for-
mula was applied. Thus, there may be a subtle interaction between
the perturbations and the resulting Woodbury correction that leads
to better stability than the existing analysis suggests.

Beyond ensuring 𝜏𝜅2 (𝐴) ≪ 1, there are a few relative concerns
in the selection of 𝜏 . First, consider the omission of the Woodbury
correction. Recall that in Table 3, the smallest tolerance (i.e., 10−10)

outperformed the largest tolerance (i.e., 10−6) in all but one case.
Furthermore, the added perturbations become overwhelmed by
the roundoff perturbations when 10−10 ≲ 𝜏 ≲ 10−8 (depending
on the matrix). Thus, a small tolerance, such as the square root
of unit roundoff, is preferable. Next, consider the inclusion of the
Woodbury correction. Here the number of modifications becomes
relevant in addition to their magnitude. Unfortunately, we know
of no way to determine a priori the number of modifications that
will result from a given tolerance. However, Table 3 suggests that,
like in the uncorrected case, smaller tolerances usually result in
better performance. Thus, we recommend starting with a similar
tolerance to the uncorrected case.

6.2 Future Research Directions
Because of the novelty of this approach, there are several areas in
which it can be improved. First, the theoretical analysis could be
significantly extended, particularly for growth factors and numer-
ical errors in both the worst and the average cases. Second, the
experimental accuracy results indicate that matrices with many
modifications are sensitive to a small tolerance. Thus, it would be
beneficial to explore using a more dynamic policy that increases
the tolerance if too many modifications are made. Relatedly, the
overhead of applying correction is only significant when many
modifications are applied. Thus, a scheme where only a subset of
modifications (e.g., the largest twenty) are corrected may better ex-
ploit the tradeoffs between BEAM with and without the Woodbury
correction. Next, the SVD will be expensive for large block sizes.
Replacing it with a cheaper factorization, such as pivoted QR, may
allow for increasing the block size without impacting performance.
Finally, some previous efforts involving element-wise modifications
have included a permutation to help place large elements on the
diagonal before starting the factorization [21]. Such permutations
may improve the reliability of BEAM (and other pivot-avoiding
methods) since many of the troublesome matrices have leading
blocks with small norms.

Another area of potential future work is in applying BEAM
to matrices with exploitable structure since it provides numeri-
cal stability without destroying the block structure. First, solving
symmetric-indefinite matrices requires either an LU factorization
(which cannot exploit symmetry) or symmetric pivoting (which
incurs complicated data-access patterns that are prohibitive on
modern memory hierarchies). So, BEAM could be used to exploit
the matrix’s symmetry while avoiding the complexity of symmetric
pivoting. This would likely take the form of a block LDLT fac-
torization, with a symmetric-eigenvalue decomposition replacing
BEAM’s SVD. Second, while the approach of element-wise modifi-
cations has been previously explored for sparse matrices [21, 26],
our proposal of choosing modifications based on diagonal blocks
has not. This would be particularly useful for block-sparse matrices
or multi-frontal methods where the diagonal blocks are already
dense and no extra fill-in would be incurred. Finally, there are sev-
eral matrix formats designed to exploit low-rank structures within
dense matrices [2, 15]. Unfortunately, pivoting is quite restricted
in such formats, which limits the matrices to which they can be
safely applied. Thus, BEAM may improve the numerical stability
of factorizations using such bespoke formats.

Using Additive Modifications in LU Factorization Instead of Pivoting ICS ’23, June 21–23, 2023, Orlando, FL, USA

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation Office of Advanced Cyberinfrastructure under Grant
No. 2004541. This research was also supported by the Exascale
Computing Project, a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Ad-
ministration. Additionally, this research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2017.

Novel HPC Techniques to Batch Execution of Many Variable Size BLAS Compu-
tations on GPUs. In Proceedings of the International Conference on Supercomputing
(ICS ’17). Association for Computing Machinery, New York, NY, USA, 1–10.
https://doi.org/10.1145/3079079.3079103

[2] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo A. Mary.
2019. Bridging the Gap between Flat and Hierarchical Low-Rank Matrix Formats:
The Multilevel Block Low-Rank Format. SIAM Journal on Scientific Computing
41, 3 (Jan. 2019), A1414–A1442. https://doi.org/10.1137/18M1182760

[3] Knud D. Andersen. 1996. A Modified Schur-complement Method for Handling
Dense Columns in Interior-Point Methods for Linear Programming. ACM Trans.
Math. Software 22, 3 (Sept. 1996), 348–356. https://doi.org/10.1145/232826.232937

[4] Erin Carson and Nicholas J. Higham. 2018. Accelerating the Solution of Linear
Systems by Iterative Refinement in Three Precisions. SIAM Journal on Scientific
Computing 40, 2 (Jan. 2018), A817–A847. https://doi.org/10.1137/17M1140819

[5] Chang Zhai, Yingyu Liu, Shugang Jiang, Zhongchao Lin, and Xunwang Zhao.
2020. Integrated Simulation and Analysis of Super Large Slotted Waveguide
Array. Applied Computational Electromagnetics Society Journal 35, 7 (July 2020),
813–820.

[6] Ali Charara, David Keyes, and Hatem Ltaief. 2019. Batched Triangular Dense
Linear Algebra Kernels for Very Small Matrix Sizes on GPUs. ACM Trans. Math.
Software 45, 2 (May 2019), 15:1–15:28. https://doi.org/10.1145/3267101

[7] James W. Demmel, Nicholas J. Higham, and Robert S. Schreiber. 1995. Stability
of Block LU Factorization. Numerical Linear Algebra with Applications 2, 2 (1995),
173–190. https://doi.org/10.1002/nla.1680020208

[8] Simplice Donfack, Jack Dongarra, Mathieu Faverge, Mark Gates, Jakub Kurzak,
Piotr Luszczek, and Ichitaro Yamazaki. 2015. A Survey of Recent Developments in
Parallel Implementations of Gaussian Elimination. Concurrency and Computation:
Practice and Experience 27, 5 (2015), 1292–1309. https://doi.org/10.1002/cpe.3306

[9] Mathieu Faverge, Julien Herrmann, Julien Langou, Bradley Lowery, Yves Robert,
and Jack Dongarra. 2015. Mixing LU and QR Factorization Algorithms to Design
High-Performance Dense Linear Algebra Solvers. J. Parallel and Distrib. Comput.
85 (2015), 32–46. https://doi.org/10.1016/j.jpdc.2015.06.007

[10] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and Jack Dongarra. 2019.
SLATE: Design of a Modern Distributed and Accelerated Linear Algebra Library.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’19). Association for Computing Machinery,
Denver, CO, USA, 1–18. https://doi.org/10.1145/3295500.3356223

[11] George A. Geist and Charles H. Romine. 1988. LU Factorization Algorithms on
Distributed-Memory Multiprocessor Architectures. SIAM J. Sci. Statist. Comput.
9, 4 (July 1988), 639–649. https://doi.org/10.1137/0909042

[12] Gene H. Golub and Chales F. Van Loan. 2013. Matrix Computations (fourth ed.).
The John Hopkins University Press, Baltimore, MD, USA.

[13] T. N. E. Greville. 1966. Note on the Generalized Inverse of a Matrix Product.
SIAM Rev. 8, 4 (Oct. 1966), 518–521. https://doi.org/10.1137/1008107

[14] Laura Grigori, JamesW. Demmel, and Hua Xiang. 2011. CALU: A Communication
Optimal LU Factorization Algorithm. SIAM J. Matrix Anal. Appl. 32, 4 (Oct. 2011),
1317–1350. https://doi.org/10.1137/100788926

[15] Wolfgang Hackbusch. 2015. Hierarchical Matrices: Algorithms and Analysis.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47324-5_1

[16] William W. Hager. 1989. Updating the Inverse of a Matrix. SIAM Rev. 31, 2 (June
1989), 221–239. https://doi.org/10.1137/1031049

[17] Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (second
ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
https://doi.org/10.1137/1.9780898718027

[18] Awais Khan, Hyogi Sim, Sudharshan S. Vazhkudai, Ali R. Butt, and Youngjae
Kim. 2021. An Analysis of System Balance and Architectural Trends Based on
Top500 Supercomputers. In The International Conference on High Performance
Computing in Asia-Pacific Region (HPC Asia 2021). Association for Computing
Machinery, New York, NY, USA, 11–22. https://doi.org/10.1145/3432261.3432263

[19] Grzegorz Kwasniewski, Marko Kabic, Tal Ben-Nun, Alexandros Nikolaos Zio-
gas, Jens Eirik Saethre, André Gaillard, Timo Schneider, Maciej Besta, Anton
Kozhevnikov, Joost VandeVondele, and Torsten Hoefler. 2021. On the Parallel
I/O Optimality of Linear Algebra Kernels: Near-Optimal Matrix Factorizations.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’21). Association for Computing Machinery,
New York, NY, USA, 1–15. https://doi.org/10.1145/3458817.3476167

[20] Cornwall Lau, E. F. Jaeger, Nicola Bertelli, Lee A. Berry, David L. Green, Masanori
Murakami, Jin M. Park, Robert I. Pinsker, and Ron Prater. 2018. AORSA Full
Wave Calculations of Helicon Waves in DIII-D and ITER. Nuclear Fusion 58, 6,
Article 066004 (April 2018), 13 pages. https://doi.org/10.1088/1741-4326/aab96d

[21] Xiaoye S. Li and J.W. Demmel. 1998. Making Sparse Gaussian Elimination Scalable
by Static Pivoting. In SC ’98: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing. IEEE Computer Society, San Jose, CA, USA, 34–34. https:
//doi.org/10.1109/SC.1998.10030

[22] Neil Lindquist, Mark Gates, Piotr Luszczek, and Jack Dongarra. 2022. Threshold
Pivoting for Dense LU Factorization. In 2022 IEEE/ACM Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Heterogeneous Systems (ScalAH).
IEEE Computer Society, Dallas, Texas, USA, 34–42. https://doi.org/10.1109/
ScalAH56622.2022.00010

[23] Neil Lindquist, Piotr Luszczek, and Jack Dongarra. 2020. Replacing Pivoting in Dis-
tributed Gaussian Elimination with Randomized Techniques. In 2020 IEEE/ACM
11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems
(ScalA). IEEE Press, Atlanta, GA, USA, 35–43. https://doi.org/10.1109/ScalA51936.
2020.00010

[24] Victor Y. Pan and Liang Zhao. 2017. Numerically Safe Gaussian Elimination with
No Pivoting. Linear Algebra Appl. 527 (Aug. 2017), 349–383. https://doi.org/10.
1016/j.laa.2017.04.007

[25] D. Stott Parker. 1995. Random Butterfly Transformations with Applications in
Computational Linear Algebra. Technical Report CSD-950023. Computer Science
Department, UCLA, Los Angeles, CA, USA. 20 pages.

[26] Gilbert W Stewart. 1974. Modifying Pivot Elements in Gaussian Elimination.
Math. Comp. 28, 126 (1974), 537–542. https://doi.org/10.1090/S0025-5718-1974-
0343559-8

[27] John Todd. 1977. Basic Numerical Mathematics. Birkhäuser, Basel. https:
//doi.org/10.1007/978-3-0348-7286-7

[28] Lloyd N. Trefethen and Robert S. Schreiber. 1990. Average-Case Stability of
Gaussian Elimination. SIAM J. Matrix Anal. Appl. 11, 3 (July 1990), 335–360.
https://doi.org/10.1137/0611023

[29] Max A. Woodbury. 1950. Inverting Modified Matrices. Memorandum Report,
Vol. 42. Statistical Research Group, Princeton, NJ.

[30] E. L. Yip. 1986. A Note on the Stability of Solving a Rank-p Modification of a
Linear System by the Sherman-Morrison-Woodbury Formula. SIAM J. Sci. Statist.
Comput. 7, 2 (April 1986), 507–513. https://doi.org/10.1137/0907034

[31] Hong Zheng and Jianlin Li. 2007. A Practical Solution for KKT Systems. Numerical
Algorithms 46, 2 (Oct. 2007), 105–119. https://doi.org/10.1007/s11075-007-9129-8

[32] G. Zielke. 1974. Testmatrizen mit maximaler Konditionszahl. Computing 13, 1
(March 1974), 33–54. https://doi.org/10.1007/BF02268390

https://doi.org/10.1145/3079079.3079103
https://doi.org/10.1137/18M1182760
https://doi.org/10.1145/232826.232937
https://doi.org/10.1137/17M1140819
https://doi.org/10.1145/3267101
https://doi.org/10.1002/nla.1680020208
https://doi.org/10.1002/cpe.3306
https://doi.org/10.1016/j.jpdc.2015.06.007
https://doi.org/10.1145/3295500.3356223
https://doi.org/10.1137/0909042
https://doi.org/10.1137/1008107
https://doi.org/10.1137/100788926
https://doi.org/10.1007/978-3-662-47324-5_1
https://doi.org/10.1137/1031049
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1145/3432261.3432263
https://doi.org/10.1145/3458817.3476167
https://doi.org/10.1088/1741-4326/aab96d
https://doi.org/10.1109/SC.1998.10030
https://doi.org/10.1109/SC.1998.10030
https://doi.org/10.1109/ScalAH56622.2022.00010
https://doi.org/10.1109/ScalAH56622.2022.00010
https://doi.org/10.1109/ScalA51936.2020.00010
https://doi.org/10.1109/ScalA51936.2020.00010
https://doi.org/10.1016/j.laa.2017.04.007
https://doi.org/10.1016/j.laa.2017.04.007
https://doi.org/10.1090/S0025-5718-1974-0343559-8
https://doi.org/10.1090/S0025-5718-1974-0343559-8
https://doi.org/10.1007/978-3-0348-7286-7
https://doi.org/10.1007/978-3-0348-7286-7
https://doi.org/10.1137/0611023
https://doi.org/10.1137/0907034
https://doi.org/10.1007/s11075-007-9129-8
https://doi.org/10.1007/BF02268390

	Abstract
	1 Introduction
	2 Related Work
	3 Additive Modifications Algorithm
	4 Theoretical Analysis
	5 Experimental Results
	5.1 Experimental Setup
	5.2 Baseline Accuracy and Performance Experiments
	5.3 Effect of tolerance
	5.4 Scaling Results

	6 Conclusions
	6.1 Parameter Selection
	6.2 Future Research Directions

	Acknowledgments
	References

