
Randomized Numerical Linear Algebra
A Perspective on the Field with an Eye to Software

— Early Release —

December 1, 2022

Preface

Randomized numerical linear algebra – RandNLA, for short – concerns the use of
randomization as a resource to develop improved algorithms for large-scale linear
algebra computations. The origins of contemporary RandNLA lay in theoretical
computer science, where it blossomed from a simple idea: randomization provides
an avenue for computing approximate solutions to linear algebra problems more
efficiently than deterministic algorithms. This idea proved fruitful in and was largely
driven by the development of scalable algorithms for machine learning and statistical
data analysis applications. However, the true potential of RandNLA only came into
focus once it began to integrate with the fields of numerical analysis and “classical”
numerical linear algebra. Through the efforts of many individuals, randomized
algorithms have been developed that provide full control over the accuracy of their
solutions and that are every bit as reliable as algorithms that might be found in
libraries such as LAPACK.

The spectrum of possibilities offered by RandNLA has created a virtuous cycle
of contributions by numerical analysts, statisticians, theoretical computer scientists,
and the machine learning community. Recent years have even seen the incorporation
of certain RandNLA methods into MATLAB, the NAG Library, and NVIDIA’s
cuSOLVER. In view of these developments, we believe the time is ripe to accelerate
the adoption of RandNLA in the scientific community. In particular, we believe the
community stands to benefit significantly from a suitably defined “RandBLAS” and
“RandLAPACK,” to serve as standard libraries for RandNLA, in much the same way
that BLAS and LAPACK serve as standards for deterministic linear algebra.

This monograph surveys the field of RandNLA as a step toward building mean-
ingful RandBLAS and RandLAPACK libraries. Section 1 primes the reader for a
dive into the field and summarizes this monograph’s content at multiple levels of
detail. Section 2 focuses on RandBLAS, which is to be responsible for sketching.
Details of functionality suitable for RandLAPACK are covered in the five sections
that follow. Specifically, Sections 3 to 5 cover least squares and optimization, low-
rank approximation, and other select problems that are well-understood in how
they benefit from randomized algorithms. The remaining sections – on statistical
leverage scores (Section 6) and tensor computations (Section 7) – read more like
traditional surveys. The different flavor of these latter sections reflects how, in our
assessment, the literature on these topics is still maturing.

We provide a substantial amount of pseudo-code and supplementary material
over the course of five appendices. Much of the pseudo-code has been tested via
publicly available Matlab and Python implementations.

Early Release

Authors
Riley Murray, ICSI and University of California, Berkeley
rjmurray@berkeley.edu

James Demmel, University of California, Berkeley
demmel@berkeley.edu

Michael W. Mahoney, ICSI, LBNL, and University of California, Berkeley
mmahoney@stat.berkeley.edu

N. Benjamin Erichson, University of Pittsburgh
erichson@pitt.edu

Maksim Melnichenko, University of Tennessee, Knoxville
mmelnic1@vols.utk.edu

Osman Asif Malik, Lawrence Berkeley National Laboratory
oamalik@lbl.gov

Laura Grigori, INRIA Paris and J.L. Lions Laboratory, Sorbonne University
laura.grigori@inria.fr

Piotr Luszczek, University of Tennessee, Knoxville
luszczek@icl.utk.edu

Michał Dereziński, University of Michigan
derezin@umich.edu

Miles E. Lopes, University of California, Davis
melopes@ucdavis.edu

Tianyu Liang, University of California, Berkeley
tianyul@berkeley.edu

Hengrui Luo, Lawrence Berkeley National Laboratory
hrluo@lbl.gov

Jack Dongarra, University of Tennessee, Knoxville
dongarra@icl.utk.edu

i

Early Release

Acknowledgements
We thank many individuals from the community who provided detailed feedback
on an earlier version of this monograph. These individuals include Mark Tygert,
Cameron Musco, Joel Tropp, Per-Gunnar Martinsson, Alex Townsend, Daniel Kress-
ner, Alice Cortinovis, Ilse Ipsen, Sergey Voronin, Vivak Patel, Daniel Maldonado,
Tammy Kolda, Florian Schaefer, Ramki Kannan, and Piyush Sao.

In addition, we thank the following people for providing input on the earliest
stages of this project: Vivek Bharadwaj, Younghyun Cho, Jelani Nelson, Mark
Gates, Weslley da Silva Pereira, Julie Langou, and Julien Langou.

This work was partially funded by an NSF Collaborative Research Framework:
Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary Collab-
oration (BALLISTIC), a project of the International Computer Science Institute,
the University of Tennessee’s ICL, the University of California at Berkeley, and
the University of Colorado at Denver (NSF Grant Nos. 2004235, 2004541, 2004763,
2004850, respectively) [DDL+20]. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. MWM would also
like to thank the Office of Naval Research, which provided partial funding via a
Basic Research Challenge on Randomized Numerical Linear Algebra.

ii

Contents

1 Introduction 1
1.1 Our world . 1
1.2 This monograph, from an astronaut’s-eye view 7
1.3 This monograph, from a bird’s-eye view 8
1.4 Recommended reading . 13
1.5 Notation and terminology . 16

2 Basic Sketching 19
2.1 A high-level plan . 20
2.2 Helpful things to know about sketching 22
2.3 Dense sketching operators . 28
2.4 Sparse sketching operators . 30
2.5 Subsampled fast trigonometric transforms 33
2.6 Multi-sketch and quadratic-sketch routines 34

3 Least Squares and Optimization 37
3.1 Problem classes . 38
3.2 Drivers . 41
3.3 Computational routines . 49
3.4 Other optimization functionality . 56
3.5 Existing libraries . 57

4 Low-rank Approximation 59
4.1 Problem classes . 60
4.2 Drivers . 68
4.3 Computational routines . 74
4.4 Other low-rank approximations . 81
4.5 Existing libraries . 83

5 Further Possibilities for Drivers 85
5.1 Multi-purpose factorizations . 86
5.2 Factorizations for solving square linear systems 90
5.3 Trace estimation . 92
5.4 Iterative methods for unstructured linear systems 94

iii

Early Release

6 Advanced Sketching: Leverage Score Sampling 97
6.1 Definitions and background . 98
6.2 Approximation schemes . 103
6.3 Special topics and further reading . 106

7 Advanced Sketching: Tensor Product Structures 109
7.1 The Kronecker and Khatri–Rao products 110
7.2 Sketching operators . 111
7.3 Partial updates to Kronecker product sketches 116

A Details on Basic Sketching 121
A.1 Subspace embeddings and effective distortion 121
A.2 Short-axis-sparse sketching operators 123
A.3 Theory for sketching by row selection 126

B Details on Least Squares and Optimization 129
B.1 Quality of preconditioners . 129
B.2 Basic error analysis for least squares problems 132
B.3 Ill-posed saddle point problems . 137
B.4 Minimizing regularized quadratics 138

C Low-rank Approximation Computational Routines 143
C.1 Power iteration for data-aware sketching 144
C.2 RangeFinders and QB decompositions 145
C.3 ID and subset selection . 149

D Correctness of Preconditioned Cholesky QRCP 153

E Bootstrap Methods for Error Estimation 155
E.1 Bootstrap methods in a nutshell . 156
E.2 Sketch-and-solve least squares . 157
E.3 Sketch-and-solve one-sided SVD . 158

Bibliography 159

iv

Section 1

Introduction

Contents
1.1 Our world . 1

1.1.1 Four value propositions of randomization 4
1.1.2 What is, and isn’t, subject to randomness 6

1.2 This monograph, from an astronaut’s-eye view 7
1.3 This monograph, from a bird’s-eye view 8
1.4 Recommended reading . 13

1.4.1 Tutorials, light on prerequisites 13
1.4.2 Broad and proof-heavy resources 13
1.4.3 Perspectives on theory, light on proofs 14
1.4.4 Deep investigations of specific topics 14
1.4.5 Randomized numerical linear algebra: Foundations and

Algorithms, by Martisson and Tropp 15
1.5 Notation and terminology 16

This introductory section has three principal goals: to motivate our subject and
clarify common misconceptions that surround it (§1.1); to explain this monograph’s
scope and overarching structure (§1.2); and to help direct the reader’s attention
through section-by-section summaries (§1.3). Many readers may benefit from our
“survey of surveys” (§1.4), and all should at least briefly consult the section on
notation and definitions (§1.5).

1.1 Our world
Numerical linear algebra (NLA) concerns algorithms for computations on matrices
with numerical entries. Originally driven by applications in the physical sciences, it
now provides the foundation for vast swaths of applied and computational mathe-
matics. The cultural norms in this field developed many years ago, in large part from
recurring themes in problem formulations and algorithmically-useful structures in
matrices. However, more recently, NLA has also been motivated by developments
in machine learning and data science. Applications in these fields also have their
own themes of problem formulations and structures in data, often of a very different
nature than those in more classical applications.

1

Early Release

A dire situation. While communities that rely on NLA now vary widely, they share
one essential property: a ravenous appetite for solving larger and larger problems.
For decades, this hunger was satiated by complementary innovations in hardware
and software. However, this progress should not be taken for granted. In particular,
there are two factors that increasingly present obstacles to scaling linear algebra
computations to the next level.

• Space and power constraints in hardware. Chips today have billions of tran-
sistors, and these transistors are packed into a very small amount of space.
It takes power to run these transistors at gigahertz frequencies, and power
generates heat. It is hard for one hot thing to dissipate heat when surrounded
by millions of other hot things. Too much heat can fry a chip.
The end result of all this? A situation where “more powerful processors” are
just scaled-out versions of “less powerful processors,” at least for commod-
ity hardware. Any algorithm that does not parallelize well is fundamentally
limited in its ability to leverage these advances. If one’s pockets are deep
enough, then one can try to get around this with purpose-built accelerators.
But even then, there remains the matter of programming those accelerators,
and high-performance implementations of classical NLA algorithms are any-
thing but simple.

• NLA’s maturity as a field. Software can only improve so much without algo-
rithmic innovations. At the same time, linear algebra is a very well-studied
topic, and most algorithmic breakthroughs in recent years have required care-
fully exploiting structures present in specific problems. Identifying new and
useful problem structures has been increasingly difficult, often requiring deep
knowledge of NLA alongside substantial domain expertise.

If we are to continue scaling our capabilities in matrix computations, then it is
essential that we leverage all technologies that are on the table.

An underutilized technology. This monograph concerns randomized numerical lin-
ear algebra, or RandNLA, for short. Algorithms in this realm offer compelling
advantages in a wide variety of settings. Some provide an unrivaled combination of
efficiency and reliability in computing approximate solutions for massive problems.
Others provide fine-grained control when balancing accuracy and computational
cost, as is essential for practitioners who are operating at the limits of what their
machines can handle. In many cases, the practicality of these algorithms can be seen
even with elementary MATLAB or Python implementations, which increases their
suitability for adapting to new hardware by leveraging similarly powerful abstrac-
tion layers. Finally, although truly high-performance implementations are more
complicated, they remain relatively easy to implement when given the right build-
ing blocks.

But we are getting ahead of ourselves. What do we mean by “randomized al-
gorithms,” as the term is used within RandNLA? First and foremost, these are
algorithms that are probabilistic in nature. They use randomness as part of their
internal logic to make decisions or compute estimates, which they can go on to use
in any number of ways. These algorithms do not presume a distribution over pos-
sible inputs, nor do they assume the inputs somehow possess intrinsic uncertainty.
Rather, they use randomness as a tool, to find and exploit structures in problem
data that would seem “hidden” from the perspective of classical NLA.

Page 2

Early Release

What’s this about “finding hidden structures?” Consider the problem of highly
overdetermined least squares, i.e., the problem of solving

min
x∈Rn

‖Ax− b‖2
2, (1.1)

where A has m� n rows. It is well-known that if the columns of A are orthonormal
then (1.1) can be solved by O(mn) time by setting x = A∗b, where A∗ is the
transpose of A. The trouble, of course, is that the columns of A will never be
orthogonal in any interesting application, and the standard algorithms for solving
this problem take O(mn2) time.

However, what if, by some miracle, we could easily find a column-orthonormal
matrix Q and an n×n matrix C for which A = QC? In this case, we could compute
the exact solution x = C−1Q∗b in time

O
(
mn + n3)

by suitably factoring C. Now, randomized algorithms do not work miracles, but at
times they can approach the miraculous. In the particular case of (1.1), randomiza-
tion can be used to quickly identify a basis in which A is nearly orthogonal. Such
a basis can then be incorporated with a standard iterative method from classical
NLA. Using such an approach, one can reliably solve (1.1) to ϵ-error in time

O
(
mn log

(1
ϵ

)
+ n3)

(where we ask forgiveness for being vague about the meaning of “ϵ”).

Back to the big picture. The approach to least squares described above has been
known for well over ten years now, and an entire suite of compelling results on
RandNLA has since been established. What’s more, the literature also documents
the existence of high-performance proof-of-concept implementations that testify to
the practicality of these methods. Indeed, as we explain below, randomized algo-
rithms have been developed to address all of the same basic challenges as classical
NLA algorithms; and randomized algorithms are also very well-suited to address
many upcoming challenges with which classical NLA algorithms struggle. RandNLA
as a field is slowly achieving a certain level of maturity.

Despite this, substantial interdisciplinary gaps have impeded technology transfer
from those doing research in RandNLA to those who might benefit from it. This
stems partly from the absence of work that organizes the RandNLA literature in a
way that supports the development of high-quality software.

This monograph is our attempt at addressing that absence. With it, we aim
to provide a principled and practical foundation for developing high-quality soft-
ware to address future needs of large-scale linear algebra computations, for scien-
tific computing, large-scale data analysis and machine learning, and other related
applications. Our particular approach is informed by plans to develop such high-
quality libraries – a “RandBLAS” and “RandLAPACK,” if you will. Towards this end,
we have implemented and tested many of the algorithms described herein in both
MATLAB1 and Python.2 We provide more context on our approach and scope in
Section 1.2. But first, we elaborate on the value propositions of RandNLA and the
role of randomness in these algorithms.

1https://github.com/BallisticLA/MARLA
2https://github.com/BallisticLA/PARLA

Page 3

https://github.com/BallisticLA/MARLA
https://github.com/BallisticLA/PARLA

Early Release

1.1.1 Four value propositions of randomization
Our goal here is to introduce (and only introduce!) some value propositions for
RandNLA. We do this for as broad an audience as possible and we have attempted
to keep our introductions short. While these descriptions are unlikely to convince
a skeptic, they should at least set the agenda for a debate.

Background: time complexity and FLOP counts. In the RAM model of computing,
an algorithm’s time complexity is its worst-case total number of reads, writes, and
elementary arithmetic operations, as a function of input size. Precise expressions
for time complexity can be hard to come by and difficult to parse. Therefore it is
standard to describe complexity asymptotically, with big-O notation. In NLA, we
also care about how the size of an algorithm’s input affects the number of arithmetic
operations that it requires. Arithmetic operations are presumed to be floating point
operations (“flops”) by default, and it is common to refer to an algorithm’s flop count
as a function of input size. Flop counts almost always agree asymptotically with
time complexity. But, in contrast with time complexity, flop counts are often given
with explicit constant factors.

Fighting the scourge of superlinear complexity. The dimensions of matrices arising in
applications typically have semantic meanings. They might represent the number
of points in a dataset, or they might be affected by the “fidelity” of a linear model
for some nonlinear phenomenon. A scientist who relies on matrix computations will
inevitably want to increase the size of their dataset or the fidelity of their model.
This is often difficult because the complexity of classical algorithms for high-level
linear algebra problems rarely scale linearly with the semantic notion of problem
size. This brings us to the first value proposition of RandNLA.

For many important linear algebra problems, randomization offers en-
tirely new avenues of computing approximate solutions with linear or
nearly-linear complexity.

To get a sense of why this matters, suppose that one needs to compute a Cholesky
decomposition of a dense matrix of order n. The standard algorithm for this takes
n3/3 flops. At time of writing, a higher-end laptop can do this calculation for
n = 10,000 in about one second. However, if n is the semantic notion of problem
size, and if one wants to solve a problem ten times as large, then the calculation
with n = 100,000 takes over 15 minutes.

There are two lessons to take from that simple example. The first is that su-
perlinear complexity can be crippling when it comes to solving larger linear algebra
problems. The second is that an informed user does well to think of their problem
size in a more realistic way. In the case of this example, one should go into the
problem thinking in terms of the number of free parameters in an n × n positive
definite matrix: around 50 million when n = 10,000 and around 5 billion when
n = 100,000.
Remark 1.1.1. One of RandNLA’s success stories is a fast algorithm for computing
sparse approximate Cholesky decompositions of so-called graph Laplacians. In order
to keep the length of this monograph under control, we have opted not to include
algorithms that only apply to sparse matrices. However, we do provide algorithms
for computing approximate eigendecompositions of regularized positive semidefinite

Page 4

Early Release

matrices, and these algorithms can be used to solve linear systems faster than
Cholesky in certain applications.

Resisting the siren call of galactic algorithms. The problem of multiplying two n×n
matrices is one of the most fundamental in all of NLA. If we only consider asymp-
totics, then the fastest algorithms for this task run in less than O(n2.38) time.
However, the fastest method that is practical (Strassen’s algorithm), runs in time
O(nlog2 7).

The trouble with these “fast” algorithms is that they have massive constants
hidden in their big-O complexity. Such algorithms are called galactic, owing to
common comparisons between the size of their hidden constants and the number
of stars or atoms in the galaxy. And with this, we arrive at the second value
proposition of RandNLA.

For a handful of important linear algebra problems, the asymptotically
fastest (non-galactic) algorithms for computing accurate solutions are,
in fact, randomized.

Highly overdetermined least squares (see page 3) is one such problem.

Striking the Achilles’ heel of the RAM model. The RAM model of computing, al-
though useful, is not high-fidelity. Indeed, even in the setting of a shared-memory
multi-core machine, it fails to account for the fact that moving data from main
memory, through different levels of cache, and onward to processor registers is
much more expensive than elementary arithmetic on the same data. This fact has
been appreciated even in the earliest days of LAPACK’s development, over 30 years
ago. Its principal consequence is that even if the time complexities of two algorithms
match up to and including constant factors, their performance by wallclock time
can differ by orders of magnitude. This is the third value proposition of RandNLA.

Randomization creates a wealth of opportunities to reduce and redi-
rect data movement. Randomized algorithms based on this principle
are significantly faster than the best-available deterministic methods by
wallclock time.

Randomized algorithms for computing full QR decompositions with column pivoting
fit this description.

Finite-precision arithmetic: once a curse, now a blessing. Finite-precision arithmetic
and exact arithmetic are different beasts, and this has real consequences for NLA.
For one thing, this limitation introduces many technicalities in understanding ac-
curacy guarantees, even for seemingly straightforward problems like LU decompo-
sition. It is tempting to view it as a curse. However, if we accept it as given, then it
can be used to our advantage. Certain computations can be performed with lower
precision without compromising the accuracy of a final result.

This perspective brings us to our final value proposition, stated in terms of the
concept of sketching, defined momentarily.

In RandNLA, it is natural to perform computations on sketches of ma-
trices in lower-precision arithmetic. Depending on how the sketch is
constructed, one can be (nearly) certain of avoiding degenerate situa-
tions that are known to cause common deterministic algorithms to fail.

Page 5

Early Release

1.1.2 What is, and isn’t, subject to randomness
Sampling sketching operators from sketching distributions. We are concerned with
algorithms that use random linear dimension reduction maps called sketching oper-
ators. The sketching operators used in RandNLA come in a wide variety of forms.
They can be as simple as operators for selecting rows or columns from a matrix,
and they can be even more complicated than algorithms for computing Fast Fourier
Transforms. We refer to a distribution over sketching operators as a sketching dis-
tribution. Given this terminology, we can highlight the following essential fact.

For the vast majority of RandNLA algorithms, randomization is only
used when sampling from the sketching distribution.

From an implementation standpoint, one should know that while sketching dis-
tributions can be quite complicated, the sampling process always builds on some
kind of basic random number generator. Upon specifying a seed for the random
number generator involved in sampling, RandNLA algorithms become every bit as
deterministic as classical algorithms.

Forming and processing sketches. When a sketching operator is applied to a large
data matrix, it produces a smaller matrix called a sketch. A wealth of different
outcomes can be achieved through different methods for processing a sketch and
using the processed representation downstream.

Some processing schemes inevitably yield rough approximations to the
solution of a given problem. Other processing schemes can lead to high-
accuracy approximations, if not exact solutions, under mild assumptions.

Across these regimes, one of the most popular trends in algorithm analysis is to
employ a two-part approach. In the first part, the task is to characterize algorithm
output in terms of some simple property of the sketch. In the second part, one can
employ results from random matrix theory to bound the probability that the sketch
will possess the desired property.

Confidently managing uncertainty. The performance of a numerical algorithm is
characterized by the accuracy of its solutions and the cost it incurs to produce
those solutions. Naturally, one can expect some variation in algorithm performance
when using randomized methods. Luckily, we have the following.

Most randomized algorithms “gamble” with only one of the two perfor-
mance metrics, accuracy or cost. Through optional algorithm parame-
ters, users retain fine-grained control over one of these two metrics.

Furthermore, when cost is controllable, the algorithm parameters can be adjusted to
influence accuracy; when accuracy is controllable, they can be adjusted to influence
cost. The effects of these influences can sometimes be masked by variability in run-
to-run performance. However, there is a general trend in RandNLA algorithms of
becoming more predictable as they are applied to larger problems. At large enough
scales, many randomized algorithms are nearly as predictable as deterministic ones.

Page 6

Early Release

1.2 This monograph, from an astronaut’s-eye view
This monograph started as a development plan for two C++ libraries for RandNLA,
primarily working within a shared-memory dense-matrix data model. We prepared
a preliminary plan for these libraries in short order by leveraging existing surveys.
However, after pausing our writing for some number of months to receive feedback
from community members, we found ourselves with many unanswered questions
that would affect the implementation of these libraries. Before long we found our-
selves in a cycle of diving ever-deeper into the RandNLA literature with an eye to
implementation, each time coming up with more answers and more questions.

This monograph does not answer every question we came across in the forego-
ing months. Rather, it represents what we know at a time when the best way to
answer our remaining questions is to focus on developing the libraries themselves.
Therefore we provide the reader with this — a monograph that aggregates mate-
rial from over 300 references on classical and randomized NLA — which functions
partly as a survey and partly as original research. In it, we present new (unifying)
taxonomies, candidate application areas, and even a handful of novel theoretical
results and algorithms.

Although its scope has greatly increased, the original purpose of this monograph
informs its structure. It also contains a number of clear statements about plans for
our C++ libraries. Therefore, while we do not want to give the impression that this
monograph is fundamentally about software, we do provide the following remarks
up-front.

The first library, RandBLAS, concerns basic sketching and is the subject
of Section 2. Our hope is that RandBLAS will grow to become a commu-
nity standard for RandNLA, in the sense that its API would see wider
adoption than any single implementation thereof. In order to achieve
this goal we think it is important to keep its scope narrowly focused.
The second library, RandLAPACK, concerns algorithms for solving tra-
ditional linear algebra problems (Sections 3 to 5, on least-squares and
optimization, low-rank approximation, and additional possibilities, re-
spectively) and advanced sketching functionality (Sections 6 and 7). The
design spaces of algorithms for these tasks are large, and we believe that
powerful abstractions are needed for a library to leverage this fact. Con-
sistent with this, we are developing RandLAPACK in an object-oriented
programming style wherein algorithms are objects. Such a style is nat-
urally instantiated with functors when working in C++.

We have written this monograph to be modular and accessible, without sac-
rificing depth. The modularity manifests in how there are almost no technical
dependencies across Sections 3 to 7. For the sake of accessibility, each section pro-
vides background on its core subject. We use two strategies to provide accessibility
without sacrificing depth. First, we make liberal use of appendices. In them, the
reader can find proofs, background on special topics, low-level algorithm implemen-
tation notes, and high-level algorithm pseudocode. Second, our citations regularly
indicate precisely where a given concept can be found in a manuscript. Therefore,
if we give too brief a treatment on a topic of interest, the reader will know exactly
where to look to learn more.

Page 7

Early Release

A word on “drivers” and “computational routines”

We designate most algorithms as either drivers or computational routines. These
terms are borrowed from LAPACK’s API. In general, drivers solve higher-level prob-
lems than computational routines, and their implementations tend to use a small
number of computational routines. In our context,

drivers are only for traditional linear algebra problems,

while

computational routines address a mix of traditional linear algebra prob-
lems and specialized problems that are only of interest in RandNLA.

Sections 3 and 4 cover drivers and the computational routines behind them; they are
the most comprehensive sections in this monograph. Section 5 also covers drivers,
but at less depth than the two that precede it. In particular, it does not iden-
tify algorithmic building blocks that would be considered computational routines.
Meanwhile, the advanced sketching functionality in Sections 6 and 7 would only be
considered for computational routines.

One reason why we use the “driver” and “computational routine” taxonomy is
to push much of the RandNLA design space into computational routines. This is
essential to keeping drivers simple and few in number. However, it has a side effect:
since choices made in the computational routines decisively affect the drivers, it is
hard to state theoretical guarantees for the drivers without being prescriptive on
the choice of computational routine. This is compounded by two factors. First, we
prefer to not be prescriptive on choices of computational routines within drivers,
since there is always a possibility that some problems benefit more from some ap-
proaches than others. Second, even if we recommended specific implementations, it
would be very complicated to characterize their performance with consideration to
the full range of possibilities for their tuning parameters.

As a result of all this, we make relatively few statements about performance
guarantees or computational complexity of driver-level algorithms. While this is a
limitation of our approach, we believe it is not severe. One can supplement this
monograph with a variety of resources discussed in Section 1.4.

1.3 This monograph, from a bird’s-eye view
Section-by-section summaries are provided below to help direct the reader’s atten-
tion. While space limitations prevent them from being comprehensive, they are
effective for what they are. They assume familiarity with standard linear algebra
concepts, including least squares models, singular value decomposition, Hermitian
matrices, eigendecomposition, and positive (semi)definiteness. We define all of these
concepts in Section 1.5 for completeness. Finally, as one disclaimer, some problem
formulations below have slight differences from those used in the sections them-
selves.

Essential notation and conventions. The adjoint of a linear operator A is denoted
by A∗. When A is a real matrix, the adjoint is simply the transpose. Vectors have
column orientations by default, so the standard inner product of two vectors u, v
is u∗v.

Page 8

Early Release

We sometimes call a vector of length n an n-vector. If we refer to an m × n
matrix as “tall” then the reader can be certain that m ≥ n and reasonably expect
that m > n. If m is much larger than n and we want to emphasize this fact, then
we write m � n and would call an m × n matrix “very tall.” We use analogous
conventions for “wide” and “very wide” matrices.

Basic Sketching (Section 2)
This section documents our work toward developing a RandBLAS standard. It
begins with remarks on the Basic Linear Algebra Subprograms (BLAS), which are
to classical NLA as we hope the RandBLAS will be to RandNLA.

Section 2.1 addresses high-level design questions for a RandBLAS standard. By
starting with a simple premise, we arrive at the conclusion that it should provide
functionality for data-oblivious sketching (that is, sketching without consideration
to the numerical properties of the data). We then offer our thoughts on how such a
library should be organized and how it should handle random number generation.

Section 2.2 summarizes a variety of concepts in sketching. In it, we answer
questions such as the following.

• What are the geometric interpretations of sketching?

• How does one measure the quality of a sketch?

• What are the “standard” properties for the first and second moments of sketch-
ing operator distributions? When and how are these properties important in
RandNLA algorithms?

Detail-oriented readers should consider Section 2.2 alongside Appendix A.1, which
presents a novel concept called effective distortion that is useful in characterizing
the behavior of randomized algorithms for least squares and related problems.

Sections 2.3 to 2.5 review the three types of sketching operator distributions that
the RandBLAS might support. These types of distributions consist of dense sketch-
ing operators (e.g., Gaussian matrices), sparse sketching operators, and sketch-
ing operators based on subsampled fast trigonometric transforms (such as discrete
Fourier, discrete cosine, and Walsh-Hadamard transforms). As we explain in Sec-
tion 2.4, we consider row-sampling and column-sampling as particular types of
sparse sketching. The interested reader is referred to Appendix A.2 for details
on a class of sparse sketching operators that is distinct from row or column sam-
pling. These details include notes on high-performance implementations that have
not appeared in earlier literature.

Our chapter on basic sketching concludes with Section 2.6, which presents a
handful of elementary sketching operations that are not naturally represented by
a linear transformation that acts only on the columns or only on the rows of a
matrix. These operations arise in the fastest randomized algorithms for low-rank
approximation.

Least Squares and Optimization (Section 3)
This is one of three sections that cover driver-level functionality, and it is one of
two that discuss drivers and computational routines. It is narrower in scope but
greater in depth than the other sections that address drivers.

Page 9

Early Release

Problem classes. In Section 3.1 we consider a variety of least squares problems
within a common framework. The framework describes all problems in terms of an
m×n data matrix A where m ≥ n. Given A, any pair of vectors (b, c) of respective
lengths (m, n) can be considered along with a parameter µ ≥ 0 to define “primal”
and “dual” saddle point problems. The primal problem is always

min
x∈Rn

{
‖Ax− b‖2

2 + µ‖x‖2
2 + 2c∗x

}
. (Pµ)

The dual problem takes one of two forms, depending on the value of µ:

min
y∈Rm

{
‖A∗y − c‖2

2 + µ‖y − b‖2
2
}

if µ > 0

min
y∈Rm

{
‖y − b‖2

2 : A∗y = c
}

if µ = 0

 . (Dµ)

Special cases of these problems include overdetermined and underdetermined least
squares, as well as ridge regression with tall or wide matrices. Appendix B.2 provides
background on accuracy metrics, sensitivity analysis, and error estimation methods
that apply to the most prominent problems under this umbrella.

Section 3.1 considers one type of problem that does not fit nicely into the above
framework. Specifically, for a positive semidefinite linear operator G and a positive
parameter µ, it also considers the regularized quadratic problem

min
w

w∗(G + µI)w − 2h∗w. (Rµ)

We note that (Pµ) and (Dµ) can be cast to this form when µ is positive. However,
to make this reformulation would be to obfuscate the structure in a saddle point
problem, rather than reveal it.

Drivers. We start in Section 3.2.1 by covering a low-accuracy method for overde-
termined least squares known as sketch-and-solve. This method is remarkable for
the simplicity of its description and its analysis. It is also the first place where
our newly-proposed concept of effective distortion provides improved insight into
algorithm behavior.

Sections 3.2.2 and 3.2.3 concern methods for solving problems (Pµ), (Dµ), and
(Rµ) to high accuracy. These methods use randomization to find a preconditioner.
The preconditioner is used to implicitly change the coordinate system that describes
the optimization problem, in such a way that the preconditioned problem can easily
be solved by iterative methods from classical NLA. These methods are intended for
use with certain problem structures (e.g. m� n) that we clearly identify.

The broader idea of sketch-and-solve algorithms has been successfully used for
kernel ridge regression (KRR – see Appendix B.4.1 for a primer). In Section 3.2.4,
we reinterpret two algorithms for approximate KRR as sketch-and-solve algorithms
for (Rµ). We further identify how the sketched problems amount to saddle point
problems with m � n. Appendix B.4.2 details how the saddle point framework is
useful in the more complicated of these two settings.

Computational routines. The computational routines that we cover in Section 3.3
only pertain to drivers based on random preconditioning. We kick off our discussion
in Section 3.3.1 with background on saddle point problems. Then, Section 3.3.2
addresses preconditioner generation for saddle point problems when m � n. It

Page 10

Early Release

opens with a theoretical result (Proposition 3.3.1) characterizing the spectrum of
the preconditioned data matrix A (see also Appendix B.1) before providing a com-
prehensive overview of implementation considerations. Special attention is paid to
how one can generate the preconditioner when µ > 0 at no added cost compared
to when µ = 0. In Section 3.3.3, we extend recently proposed methods from the
literature to define novel low-memory preconditioners for regularized saddle point
problems. Finally, Section 3.3.4 reviews a suite of deterministic iterative algorithms
from classical NLA that are needed for randomized preconditioning algorithms.

Low-rank Approximation (Section 4)
Low-rank approximation problems take the following form.

Given as input an m× n target matrix A, compute suitably structured
factor matrices E, F, and G where

Â := E F G
m× n m× k k × k k × n

approximates A. The accuracy of the approximation Â ≈ A may vary
from one application to another, but we require that k � min{m, n}.

This section summarizes the massive design spaces of randomized algorithms for
such problems, as documented in the existing literature. One of its core contribu-
tions is to clarify what parts of this design space are relevant in what situations.

Problem classes. Section 4.1 starts by explaining the significance of the SVD and
eigendecomposition in relation to principal component analysis. From there, it
introduces the reader to a handful of submatrix-oriented decompositions – CUR,
one-sided interpolative decompositions (one-sided ID), and two-sided interpolative
decompositions (two-sided ID) – along with their applications. Section 4.1 concludes
with guidance on how one should and should-not quantify approximation error in
low-rank approximation problems. We note that this background is much more
detailed than that Section 3.1 provided on least squares and optimization problems.
This extra background will be important for many readers.

Drivers. Section 4.2 gives concise yet comprehensive overviews for RandNLA al-
gorithms for SVD and Hermitian eigendecomposition (§4.2.1 and 4.2.2) as well as
CUR and two-sided interpolative decomposition (§4.2.3). In the process, we take
care to prevent misunderstandings in what we mean by a Nyström approximation
of a positive semidefinite matrix. Pseudocode is provided for at least one algorithm
for each of these problems.

Computational routines. As is typical for surveys on this topic, we identify QB de-
composition (§4.3.2) and column subset selection (CSS) / one-sided ID (§4.3.4) as
the basic building blocks for most drivers. Our coverage of CSS and one-sided ID
highlights their limited role as core subroutines for SVD and eigendecomposition;
it also explains how QB algorithms are used in randomized algorithms for comput-
ing low-rank one-sided IDs to prescribed accuracy. As we make the latter point,
we provide a clear reason why it is useful for interpolative coefficient matrices to

Page 11

Early Release

have entries that are bounded in modulus by a small constant M . We also isolate
power iteration (§4.3.1) and partial column-pivoted matrix decompositions (§4.3.3)
as subproblems with nontrivial design spaces that are important to low-rank ap-
proximation. Appendix C contains pseudocode for seven computational routines
and an explanation of their dependency structure.

Further Possibilities for Drivers (Section 5)
This section covers a handful of independent topics.

The first and most substantive topic, which is described in Sections 5.1 and 5.2,
is full-rank matrix decompositions. Section 5.1.1 describes a sophisticated algo-
rithm from the literature for Householder QRCP of matrices with any aspect ratio.
Section 5.1.2 explains a simple algorithm for computing a QR decomposition of a
tall-and-thin matrix of full column rank; the algorithm uses randomization to pre-
condition Cholesky QR for numerical stability. In Section 5.1.3, we present a novel
extension of preconditioned Cholesky QR that allows for rank-deficient matrices.
We state two results for this new algorithm before commenting on how it might be
used for matrices with any aspect ratio. Section 5.2 covers decompositions that are
only of interest in solving linear systems with square nonsingular matrices.

The remaining topics, which are described in Sections 5.3 and 5.4, are trace
estimation and the solution of unstructured linear systems. Although these topics
are important, our treatment of them is brief, since most of the associated algorithms
fall far outside our primary data model.

Advanced Sketching: Leverage Score Sampling (Section 6)
Leverage scores constitute measures of importance for the rows or columns of a
matrix. They can be used to define data-aware sketching operators that implement
row or column sampling.

Section 6.1 introduces three types of leverage scores: standard leverage scores,
subspace leverage scores, and ridge leverage scores. We explain how each type
is suitable for sketching with different downstream tasks in mind. For example,
Section 6.1.1 includes a formal statement on the probability of a row-sampling
operator S satisfying a subspace embedding property for the range of a matrix A;
the statement shows that if S samples rows according to a distribution q, then the
probability that the subspace embedding property holds increases as q approaches
A’s standard leverage score distribution.

Section 6.2 covers randomized algorithms for approximating leverage scores.
Such approximation methods are important since leverage scores are expensive to
compute except when working with highly structured problem data. The structure
of these algorithms bears similarities to those seen in earlier sections. For example,
Section 6.2.2 explains how a longstanding algorithm for approximating subspace
leverage scores can be extended with QB approaches from Section 4.3.2.

Advanced Sketching: Tensor Product Structures (Section 7)
Tensor computations are the domain of multilinear algebra. As such, it is reasonable
to exclude them from the scope of a standard library from RandNLA. However,
at the same time, it is reasonable for a RandNLA library to support the core

Page 12

Early Release

subproblems in tensor computations that are linear algebraic in nature. Sketching
implicit matrices with tensor product structure fits this description.

This section reviews efficient methods for sketching matrices with Kronecker
product or Khatri–Rao product structures (see §7.1 for definitions). The material
in 7.2.1–7.2.4 concerns data-oblivious sketching distributions that are similar to
those from Section 2 but modified for the tensor product setting. Section 7.2.5, by
contrast, concerns data-aware sketching methods based on leverage score sampling.
Notably, there are methods to efficiently sample from the exact leverage score distri-
butions of tall matrices with Kronecker and Khatri–Rao product structures without
explicitly forming those matrices.

For completeness, Section 7.3 discusses motivating applications (specifically, ten-
sor decomposition algorithms) that entail sketching matrices with these structures.

1.4 Recommended reading
This monograph is heavily influenced by a recent and sweeping survey by Martinsson
and Tropp [MT20]. We draw detailed comparisons to that work in Section 1.4.5.
But first, we give remarks on other resources of note for learning about RandNLA.

1.4.1 Tutorials, light on prerequisites
RandNLA: randomized numerical linear algebra, by Drineas and Mahoney [DM16].
Depending on one’s background (and schedule!) this article can be read in one sit-
ting. It requires no knowledge of NLA or probability. In fact, it does not even
presume that the reader already cares about matrix computations. It starts with
basic ideas of matrix approximation by subsampling, explains the effect of sampling
in different data-aware ways, and frames general data-oblivious sketching as “pre-
processing followed by uniform subsampling.” It summarizes, at a very high level,
significant results of RandNLA in least squares, low-rank approximation, and the
solution of structured linear systems known as Laplacian systems.

Lectures on randomized numerical linear algebra, by Drineas and Mahoney [DM18].
This book chapter is useful for those who want to see representative banner re-
sults in RandNLA with proofs. It covers algorithms for least squares and low-rank
approximation. Its proofs emphasize decoupling deterministic and probabilistic as-
pects of analysis. Among resources that engage with the theory of RandNLA, it
is notable for its brevity and its self-contained introductions to linear algebra and
probability.

1.4.2 Broad and proof-heavy resources
Sketching as a tool for numerical linear algebra, by Woodruff [Woo14].
This monograph proceeds one problem at a time, starting with ℓ2 regression, then
on to ℓ1 regression, then low-rank approximation, and finally graph sparsification.
It develops the technical machinery needed for each of these settings, at various
levels of detail. Among resources that address RandNLA theory, it is notable for
its treatment of lower bounds (i.e., limitations of randomized algorithms).

Page 13

Early Release

An introduction to matrix concentration inequalities, by Tropp [Tro15].
This monograph provides an introduction to the theory of matrix concentration and
its applications. It is not about RandNLA per se, but several of its applications do
focus on RandNLA. The course notes [Tro19] build on this monograph, exploring
theory and applications of matrix concentration developed after [Tro15] was written.

Lecture notes on randomized linear algebra, by Mahoney [Mah16].
These notes are fairly comprehensive in their coverage of results in RandNLA up
to 2013. They address matrix concentration, approximate matrix multiplication,
subspace embedding properties of sketching distributions, as well as various algo-
rithms for least squares and low-rank approximation. These notes are distinct from
[Woo14] in that they address theory and practice. (Of course, being course notes,
they are not suitable as a formal reference.)

1.4.3 Perspectives on theory, light on proofs
Randomized algorithms for matrices and data, by Mahoney [Mah11].
This monograph heavily emphasizes concepts, interpretations, and qualitative proof
strategies. It is a good resource for those who want to know what RandNLA can offer
in terms of theory for the least squares and low-rank approximation. It is notable
for the effort it expends to connect RandNLA theory to theoretical developments
in other disciplines.

Determinantal point processes in randomized numerical linear algebra, by Dereziński
and Mahoney [DM21a].
This article provides an overview of RandNLA theory from the perspective of deter-
minantal point processes and statistical data analysis. Among the many resources
for learning about RandNLA, it is notable for offering a distinctly prospective (rather
than retrospective) viewpoint.

1.4.4 Deep investigations of specific topics
Finding structure with randomness: probabilistic algorithms for constructing approxi-
mate matrix decompositions, by Halko, Martinsson, and Tropp [HMT11].
As of late 2022, this article is the single most influential resource on RandNLA. Its
introduction includes a history of how randomized algorithms have been used in
numerical computing, as well as a brief summary of (then) active areas of research
in RandNLA. Following the introduction, it focuses exclusively on low-rank approx-
imation. It is extremely thorough in its treatment of both theory and practice.

This article is now somewhat out of date and is partially subsumed by [MT20].
However, it is still of distinct value for the fact that it proves all of its main results
(and in certain cases, by novel methods). It also includes some algorithms that are
not found in [MT20].

Randomized algorithms in numerical linear algebra, by Kannan and Vempala [KV17a].
This survey provides a detailed theory of row and column sampling methods. It
also includes methods for tensor computations.

Page 14

Early Release

Randomized methods for matrix computations, by Martinsson [Mar18].
This book chapter focuses on practical aspects of randomized algorithms for low-
rank approximation. In this regard, it is important to note that while [HMT11]
provided thorough coverage of this topic at the time, the more recent [Mar18] reviews
important practical advances developed after 2011. Among resources that provide
an in-depth investigation into low-rank approximation, is notable for how it also
includes algorithms for full-rank matrix decomposition.

1.4.5 Randomized numerical linear algebra:
Foundations and Algorithms

Martinsson and Tropp’s recent Acta Numerica survey, [MT20], covers a wide range
of topics, each with substantial technical and historical depth. We have benefited
from it tremendously in developing our plans for RandBLAS and RandLAPACK.
Because we have found this resource so useful – and, at the same time, because we
have gone through the trouble of writing a distinct monograph that is nearly as
long – we think there is value in highlighting how it differs from our work.

Basic sketching. By comparison to [MT20], we focus more on implementation than
on theory. The outcome of this is the broadest-yet review of the literature relevant
to the implementation of sketching methods. In the appendices, we provide novel
technical contributions to sketching theory and practice.

See Section 2 and Appendix A, [MT20, §7 – §9].

Least squares and optimization. Our coverage of these concepts is comprehensive,
insofar as optimization can be reduced to linear algebra. It also includes a number
of novel technical contributions and a review of relevant software. By comparison,
[MT20] provides very limited coverage of this area, as acknowledged in [MT20, §1.6].

See Section 3 and Appendix B, [MT20, §10].

Low-rank approximation. Our approach here is very different than that of [MT20].
It provides effective scaffolding for a reader to get their bearings in the vast lit-
erature on low-rank approximation. However, it comes at the price of creating
fewer opportunities for mathematical explanations. Separately, our coverage here
is distinguished by providing an overview of software that implements randomized
algorithms for low-rank approximation.

See Section 4 and Appendix C, [MT20, §11 – §15].

Full-rank matrix decompositions. By comparison to [MT20], we emphasize a broader
range of matrix decompositions and more algorithms for computing them. One of
the algorithms we cover is novel and is accompanied by proofs that characterize its
behavior. For the algorithms covered here and in [MT20], the latter provides more
mathematical detail.

See Sections 5.1 and 5.2, Appendix D, [MT20, §16].

Page 15

Early Release

Kernel methods. Randomized methods have proven very effective in processing
machine learning models based on positive definite kernels. They are also effective
in approximating matrices from scientific computing induced by indefinite kernels.
Both of these topics are addressed in [MT20]. We only address the former topic,
and we do so in a way that emphasizes the resulting linear algebra problems.

See Sections 3.2.2, 3.2.4, and 6.1.3, Appendix B.4.1, [MT20, §19, §20].

Linear system solvers. We cover slightly more material for solving unstructured
linear systems than [MT20]. However, we do not cover methods that are specific to
sparse problems. As a result, we do not cover a prominent method for approximate
Cholesky decompositions of sparse graph Laplacians.

See Sections 3.2.3, 5.2, and 5.4, [MT20, §17, §18].

Trace estimation. Our treatment of this topic is very brief and does not do it
justice. However, we have had the luxury of being able to provide more up-to-date
references on important algorithms and software, compared to [MT20].

See Section 5.3, [MT20, §4, §6].

Advanced sketching. Both this monograph and [MT20] cover leverage score sam-
pling and sketching operators with tensor product structures. However, we cover
these topics in substantially more detail, spending a full ten pages on each of them.
We do this partly because these topics complement one another: implicit matrices
with tensor product structures are among the best candidates for practical leverage
score sampling, nearly on par with kernel matrices from machine learning.

See Sections 6 and 7, [MT20, §7.4, §9.4, §9.6, §19.2.3].

1.5 Notation and terminology
Our notation is summarized in Table 1.1; we also define some of this notation below
as we explain basic concepts.

Matrices and vectors

Let A be an m×n matrix or linear operator. We use A∗ to denote its adjoint (trans-
pose, in the real case) and A† to denote its pseudo-inverse. It is called Hermitian
if A∗ = A and positive semidefinite if it is Hermitian and all of its eigenvalues are
nonnegative. We often abbreviate “positive semidefinite” with “psd.”

We sometimes find it convenient to write A ∈ Rm×n. However, it should be
understood that the methods in this monograph generally apply to both real and
complex matrices. We therefore tend to define a matrix by phrases like “A is m-by-
n” or “an m-by-n matrix A.” We often call a vector of length n an n-vector; vectors
are oriented as columns by default.

For m ≥ n, a QR decomposition of A consists of an m× n column-orthonormal
matrix Q and an upper-triangular matrix R for which A = QR. Those familiar
with the NLA literature will note that this is typically called the economic QR
decomposition. If A has rank k < min(m, n), then we also consider it valid for

Page 16

Early Release

Q to be m × k and for R to be k × n. We also consider QR decomposition with
column pivoting (QRCP). To describe QRCP, we say that if J = (j1, . . . , jn) is a
permutation of JnK, then

A[:, J] = [aj1 , aj2 , . . . , ajn]

where ai is the ith column of A. In this notation, QRCP produces an index vector
J and factors (Q, R) that provide a QR decomposition of A[:, J].

Now let A have rank k. Its singular value decomposition (SVD) takes the form
A = UΣV∗, where the matrices (U, V) have k orthonormal columns and Σ =
diag(σ1, . . . , σk) is a square matrix with sorted entries σ1 ≥ · · · ≥ σk > 0. The SVD
can also be written as a sum of rank-one matrices: A =

∑k
i=1 σiuiv

∗
i , where (ui, vi)

are the ith columns of (U, V) respectively. Those familiar with the NLA literature
will note that this is typically called the compact SVD.

Probability and our usage of the term “random.”

A Rademacher random variable uniformly takes values in {+1,−1}. The initialism
“iid” expands to independent and identically distributed.

We often abuse terminology and say that a matrix “randomly” performs some
operation. In reality, matrices only perform deterministic calculations, and ran-
domness only comes into play when the matrix is first constructed. This convention
extends to “matrices” that are abstract linear operators, in which case randomness
is only involved in constructing the data that defines the operator.

Unqualified use of the term “random” before performing an action with a finite
set of outcomes (such as sampling components from a vector, applying a permuta-
tion, etc...) means the randomness is uniform over the space of possible actions.

Page 17

Early Release

Table 1.1: Notation

Arrays and indexing
Aij or A[i, j] (i, j)th entry of a matrix A
ai or A[:, i] ith column of A
vi or v[i] ith component of a vector vJmK index set of integers from 1 to m
I or J partial permutation vector for indexing into an array
|I| length of an index vector
A[I, :] submatrix consisting of (permuted) rows of A
A[:, J] submatrix consisting of (permuted) columns of A
:k index into the leading k elements of an array,

along an axis of length at least k
k: index into the trailing n− k + 1 elements of an array,

along an axis of length n ≥ k
Reserved symbols
S sketching operator
Ik identity matrix of size k × k
δi ith standard basis vector of implied dimension
0n zero vector of length n
0m×n zero matrix of size m× n
Linear algebra
‖x‖2 or ‖x‖ Euclidean norm of a vector x
‖A‖2 spectral norm of A
‖A‖F Frobenius norm of A
cond(A) Euclidean condition number of A
λi(A) ith largest eigenvalue of A
σi(A) ith largest singular value of A
A∗ adjoint (transpose, in the real case) of A
A† Moore–Penrose pseudoinverse of A
A1/2 Hermitian matrix square root
A � B the matrix B− A is positive semidefinite
Matrix decomposition conventions
A = QR QR decomposition (economic, by default)
(Q, R, J) = qrcp(A) QR with column-pivoting; A[:, J] = QR.
A = UΣV∗ singular value decomposition (compact, by default)
R = chol(G) upper triangular Cholesky factor of G = R∗R
Probability
X ∼ D X is a random variable following a distribution D
E[X] expected value of a random matrix X
var(X) variance of a random variable X
Pr{E} probability of the event E

Page 18

Section 2

Basic Sketching

Contents
2.1 A high-level plan . 20

2.1.1 Random number generation 21
2.1.2 Portability, reproducibility and exception handling . . . 22

2.2 Helpful things to know about sketching 22
2.2.1 Geometric interpretations of sketching 23
2.2.2 Sketch quality . 24
2.2.3 (In)essential properties of sketching distributions 27

2.3 Dense sketching operators 28
2.4 Sparse sketching operators 30

2.4.1 Short-axis-sparse sketching operators 31
2.4.2 Long-axis-sparse sketching operators 32

2.5 Subsampled fast trigonometric transforms 33
2.6 Multi-sketch and quadratic-sketch routines 34

The BLAS (Basic Linear Algebra Subprograms) were originally a collection of
Fortran routines for computations including vector scaling, vector addition, and
applying Givens rotations [LHK+79]. They were later extended to operations
such as matrix-vector multiplication and triangular solves [DDH+88] as well as
matrix-matrix multiplication, block triangular solves, and symmetric rank-k up-
dates [DDH+90]. These routines have subsequently been organized into three levels
called BLAS 1, BLAS 2, and BLAS 3.

Over the years the BLAS have evolved into a community standard, with im-
plementations targeting different machine architectures in many programming lan-
guages. This standardization has been instrumental in the development of linear
algebra libraries – from the early days of LINPACK, through to LAPACK, and on
to modern libraries such as PLASMA and SLATE [DMB+79; DDD+87; ABB+99;
ADD+09; DGH+19; KWG+17; AAB+17]. It has also reduced the coupling be-
tween hardware and software design for NLA. Indeed, the spirit of the BLAS has
been adapted to accommodate dramatic changes in prevailing architectures, such
as those faced by ScaLAPACK and MAGMA [CDO+95; CDD+96; TDB10; NTD10].

19

Early Release

This section summarizes our progress on the design of a “RandBLAS” library,
which is to be to RandNLA as BLAS is to classical NLA. Section 2.1 begins by
speaking to high-level scope and design considerations. From there, Section 2.2
summarizes sketching concepts that remain important throughout this monograph;
we encourage the reader to not dwell too long on this section and instead return
to it as-needed later on. Sections 2.3 through 2.6 present our plans for sketching
dense data matrices. In brief: our near-term plans are for the RandBLAS to sup-
port sketching operators which could naturally be represented by dense arrays or
by sparse matrices with certain structures; we consider row sampling and column
sampling as particular types of sparse sketching.

2.1 A high-level plan
We begin with a simple premise.

The RandBLAS’ defining purpose should be to facilitate implementation
of high-level RandNLA algorithms.

This premise works to reduce the RandBLAS’ scope, as there are “basic” operations
in RandNLA which do not support this purpose.1 Another way that we reduce the
scope of the RandBLAS is to only consider sketching dense data matrices. It may be
reasonable to lift this restriction in the future, and consider methods for producing
dense sketches of sparse data matrices.

Our premise for the RandBLAS suggests that it should be concerned with data-
oblivious sketching – that is, sketching without consideration to the numerical prop-
erties of a dataset. We identify three categories of operations on this topic:

• sampling a random sketching operator from a prescribed distribution,

• applying a sampled sketching operator to a data matrix, and

• sketching that is not naturally expressed as applying a single a linear operator
to a data matrix.

These categories are somewhat analogous to BLAS 1, BLAS 2, and BLAS 3, insofar
as their implementations admit more and more opportunities for machine-specific
performance optimizations. At this time, however, we do not advocate for any
formalization of “RandBLAS levels.”

We note that data-oblivious sketching is not the only kind of sketching of value in
RandNLA. Indeed, data-aware sketching operators such as those derived from power
iteration are extremely important for low-rank approximation (see Section 4.3.1).
Methods for row or column sampling based on leverage scores (or approximations
thereof) are also useful for kernel ridge regression and certain tensor computations;
see Sections 6 and 7. Although important, most of the functionality for producing
or applying these sketching operators should be addressed in higher-level libraries.

In the material under the next two headings, we address the questions of how
to handle random number generation and reproducibility in the RandBLAS.

1For example, the problem of accepting two matrices and using randomization to approximate
their product is certainly basic, and it is of conceptual value [DKM06a]. However, it is rarely used
as an explicit building block in higher-level RandNLA algorithms.

Page 20

Early Release

2.1.1 Random number generation
For reproducibility’s sake it is important that the RandBLAS include a specification
for random number generators (RNGs).

We believe the RandBLAS should use counter-based random number generators
(CBRNGs), which were first proposed in [SMD+11]. A CBRNG returns a random
number upon being called with two integer parameters: the counter and the key.
The time required for the CBRNG to return does not depend on either of these
parameters. A serial application can set the key at the outset of the program and
never change it. Parallel applications (particularly parallel simulations) can use
different keys across different threads. Sequential calls to the CBRNG with a fixed
key should use different values for the counter. For a fixed key, a CBRNG with a
p-bit integer counter defines a stream of random numbers with period length 2p.

In our context, CBRNGs are preferable to traditional state-based RNGs such
as the Mersenne Twister. A key reason for this is that CBRNGs maximize flexi-
bility in the order in which a sketching operator is generated. For example, given
a user-provided counter offset c which acts as a random seed, the (i, j)th entry
of a dense d × m sketching operator can be generated with counter c + (i + dj).
The fact that these computations are embarrassingly parallel will be important for
vendors developing optimized RandBLAS implementations. We note that this flexi-
bility also provides an advantage over widely-used linear congruential RNGs, which
have separate shortcomings of performing very poorly on statistical tests [SMD+11,
§2.2.1].

Particular examples of CBRNGs include Philox, ARS, and Threefish, each of
which was defined in [SMD+11] and implemented in the Random123 library. These
CBRNGs have periods of 2128, can support 264 different keys, and pass standard
statistical tests for random number generators. Random123 provides the core of the
sketching layer of the LibSkylark RandNLA library [KAI+15]. Implementations of
Philox and ARS can also be found in MKL Vector Statistics [Int19, §6.5].

Shift-register RNGs

We have observed that the CBRNGs in Random123 are significantly more expen-
sive than the state-based shift-register RNGs developed by Blackman and Vigna
[BV21]. In fact, Blackman and Vigna’s generators are so fast that we have been
able to implement a method for applying a Gaussian sketching operator to a sparse
matrix that beats Intel MKL’s sparse-times-dense matrix multiplication methods.
However, in the application where we observed that performance, processing the
sketch downstream was more expensive than computing the sketch in the first place.
Therefore, while CBRNGs were substantially more expensive in that application,
their longer runtimes were inconsequential in that case. This longer runtime can be
viewed as a price we pay for prioritizing reproducibility of sketching across compute
environments with different levels of parallelism.

The overall situation is this:

State-based RNGs may be preferable to CBRNGs if sketching is the bot-
tleneck in a RandNLA algorithm and where the cost of random number
generation decisively affects the cost of sketching. At this time we have
no evidence that high-performance implementations of RandNLA algo-
rithms run into such bottlenecks. Such evidence may arise in the future

Page 21

Early Release

and warrant reconsideration to fast state-based RNGs for the Rand-
BLAS, particularly if major advances are made in hardware-accelerated
sketching algorithms.

2.1.2 Portability, reproducibility and exception handling
We believe it is important that the RandBLAS lends itself to portability across
programming languages. Therefore we plan for the RandBLAS to have a proce-
dural API and make use of no special data structures beyond elementary structs.
Higher-level libraries should take responsibility for exposing RandBLAS function-
ality with sophisticated abstractions. In particular, we plan for RandLAPACK to
expose RandBLAS functionality through a suitable object-oriented linear operator
interface. A key goal of this interface will be to make it possible to implement high-
level RandNLA algorithms with minimal assumptions on the sketching operator’s
distribution. Such an interface will also reduce the coupling between determining
RandBLAS’s procedural API and prototyping RandLAPACK.

Debugging high-performance numerical code is notoriously difficult. Care must
be taken in the design of the RandBLAS so as to not contribute to this difficulty. In
particular, it is essential that the RandBLAS be reproducible to the greatest extent
possible. The actual extent of the reproducibility will depend on factors outside
of our control. For example – the RandBLAS cannot offer bitwise reproducibility
guarantees unless the BLAS does the same (see Remark 2.1.1). Therefore the main
challenge for reproducibility for RandBLAS is in random number generation; this
challenge can be resolved comprehensively through the aforementioned CBRNGs.

A key source of exceptions in NLA is the presence of NaNs or Infs in problem
data. Extremely sparse sketching matrices (such as those from Section 2.4.2) might
not even read every entry of a data matrix, and so they might miss a NaN or
Inf. Those routines will be clearly marked as carrying this risk. The majority
of routines in the RandBLAS and RandLAPACK will not carry this risk: they will
propagate NaNs and Infs. (See [DDG+22] for a more detailed discussion of how
the BLAS and LAPACK (should) deal with exceptions.) For any such routine the
exact behavior will depend on how the random sketching operator interacts with the
problem data. For example, if a data matrix containing multiple Infs is sketched
twice using different random seeds, then it is possible that an entry of the first
sketch is an Inf while the corresponding entry of the second sketch is a NaN.
Remark 2.1.1. Making the BLAS bitwise reproducible is challenging because floating-
point addition is not associative, and the order of summation can vary depending on
the use of parallelism, vectorization, and other matters [RDA18]. Summation algo-
rithms that guarantee bitwise reproducibility do exist [ADN20]. These algorithms
may become practical on hardware that implements the latest IEEE 754 floating
point standard, which includes a recommended instruction for bitwise-reproducible
summation [IEE19]. However, we leave these matters to future work.

2.2 Helpful things to know about sketching
The purpose of sketching is to enact dimension-reduction so that computations
of interest can be performed on a smaller matrix called a sketch. While precise
computations performed on the sketch can vary dramatically, the simple statement
of sketching’s purpose lets us deduce the following facts.

Page 22

Early Release

• Sketching operators applied to the left of a data matrix must must be wide
(i.e., they must have more columns than rows).

• Sketching operators applied to the right of a data matrix must be tall (i.e.,
they must have more rows than columns).

This is to say, in left-sketching we require that SA has fewer rows than A, and in
right-sketching we require that AS has fewer columns than A. These facts are true
regardless of the aspect ratio of the data matrix; see Figure 2.1 for an illustration.
The facts are important because sketching operators in the literature are often
defined under the assumption of left-sketching.

Before we proceed further, we reiterate some important advice.

We encourage the reader to not dwell too long on this section (Section 2.2)
and instead return to it as needed later on.

With that, Section 2.2.1 explains geometric interpretations of sketching from the left
and right. It also introduces the concepts of “sketching in the embedding regime”
and “sketching in the sampling regime.” Section 2.2.2 covers concepts of subspace
embedding distortion and the oblivious subspace embedding property – these are
central to RandNLA theory, but they play a modest role in this monograph. Sec-
tion 2.2.3 states properties of sketching distributions that should hold as part of a
‘sanity check’ for whether a proposed distribution is reasonable.

SA S A AS A S(a) (b)

Figure 2.1: The left plot (a) shows that a sketching operator S applied to the left
of a matrix A is wide, whereas the right plot (b) shows that a sketching operator S
applied to the right of a matrix A is tall. These stated properties hold universally;
there are no exceptions for any kind of sketching. Separately, we note that both cases
in the figure illustrate sketching in the sampling regime in the sense of Section 2.2.1.

2.2.1 Geometric interpretations of sketching
Prototypical left-sketching and right-sketching

Sketching A from the left preserves its number of columns. Therefore, it is suitable
for things such as estimating right singular vectors. We often interpret a left-sketch
SA as a compression of the range of A to a space of lower ambient dimension. In
the special case when rank(SA) = rank(A), there is a sense in which the quality of
the compression is completely independent from the spectrum of A.

Sketching A from the right preserves its number of rows, and is suitable for things
such as estimating left singular vectors. Conceptually, the right-sketch AS can be
interpreted as a sample from the range of A using a test matrix S. In the special
case when rank(AS) � rank(A) then it is appropriate to think of this as a “lossy
sample” from a much larger “population,” and it is natural to want this sample to
capture as much information as possible for some sub-population of interest.

Page 23

Early Release

Equivalence of left-sketching and right-sketching

Left-sketching and right-sketching can be reduced to one another by replacing A
and S by their adjoints. For example, a left-sketch SA can be viewed as a sample
from the row space of A, equivalent to the right-sketch A∗S∗. Conversely, a right-
sketch AS can be viewed as a compression of the row space of A, equivalent to the
left-sketch S∗A∗. Therefore it is artificial to strongly distinguish sketching operators
by whether they are first defined for left-sketching or right-sketching.

This leads us to an important point.

If Dd,m is a distribution over wide d×m sketching operators, it is canon-
ically extended to a distribution over tall n × d sketching operators by
sampling T from Dd,n and then returning the adjoint S = T∗.

The notation in the statement above is carefully chosen: since our “data matrices”
are typically m × n, a typical left-sketching operator requires m columns, and a
typical right-sketching operator requires n rows.

The embedding and sampling regimes

While it is artificial to associate a sketching distribution only with left-sketching
or only with right-sketching, there are indeed families of sketching operators that
are suited to qualitatively different situations. The following terms help with our
discussion of such families.

Sketching in the embedding regime is the use of a sketching operator that
is larger than the data to be sketched. Sketching in the sampling regime
is the use of a sketching operator that is far smaller than the data to
be sketched.

In the above definitions one quantifies the size of an operator (or matrix) by the
product of its number of rows and number of columns.

In Section 3, we will see that sketching in the embedding regime is nearly univer-
sal in randomized algorithms for least squares and related problems. In Section 4,
we will see that sketching in the sampling regime is the foundation of randomized
algorithms for low-rank approximation. Over these sections we tend to see sketch-
ing in the embedding regime happen from the left, and sketching in the sampling
regime happen from the right. We stress that these tendencies are consequences of
exposition; they do not always hold when developing or using RandNLA software.

2.2.2 Sketch quality
Let L be a subset of some high-dimensional Euclidean space Rm, S be a sketching
operator defined on Rm, and consider the sketch SL. Intuitively, SL should be
useful if its geometry is somehow “effectively the same” as that of L. Here we
discuss the preferred ways to quantify changes to geometry in RandNLA. We focus
on methods suitable for when L is a linear subspace, but we also consider when L
is a finite point set.

We acknowledge up-front that it only does so much good to measure the quality
of an individual sketch. Indeed, in order to make predictive statements about the
behavior of algorithms, it is necessary to understand how the distribution of a
sketching operator S ∼ D induces a distribution over measures of sketch quality in

Page 24

Early Release

a given application. It is further necessary to analyze families of distributions Dd,m

parameterized by an embedding dimension d, since the size of a sketch is often a
key parameter that a user can control.

Subspace embeddings

Let S be a d×m sketching operator and L be a linear subspace of Rm. We say that
S embeds L into Rd and that it does so with distortion δ ∈ [0, 1) if x ∈ L implies

(1− δ)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + δ)‖x‖2. (2.1)

We often call such an operator an δ-embedding.
Subspace embeddings were first used in RandNLA by [DMM06]; the sketching

operators used in [DMM06] were based on a type of data-aware sketching called
leverage score sampling (discussed in Section 6). We provide more information on
the data-oblivious subspace embeddings considered by [Sar06] momentarily.

The most transparent use of subspace embedding distortion arises when L is the
range of a matrix A. In this context, S is a δ-embedding for L if and only if the
following two-sided linear matrix inequality holds:

(1− δ)2A∗A � (SA)∗(SA) � (1 + δ)2A∗A. (2.2)

In other words, the distortion of S as an embedding for range(A) is a measurement
of how well the Gram matrix of SA approximates that of A.

Note that in order for S to be a subspace embedding for L it is necessary that
d ≥ dim(L). Therefore if L is the range of an m × n matrix of full-column-rank,
the requirement that d ≥ dim(L) means that subspace embeddings can only be
achieved when “sketching in the embedding regime,” in the sense of Section 2.2.1.
Furthermore, substantial dimension reduction can only be achieved in this frame-
work when m� n.

Effective distortion

Subspace embedding distortion is the most common measure of sketch quality, but
it is not without its limitations. Its greatest limitation is that it is not invariant
under scaling of S (i.e., it is not invariant under replacing S← tS for t 6= 0). This is
a significant limitation since many RandNLA algorithms are invariant under scaling
of S; existing theoretical analyses of RandNLA algorithms simply do not take this
into account.

In Appendix A.1 we explore a novel concept of effective distortion that resolves
the scale-sensitivity problem. Formally, the effective distortion of a sketching oper-
ator S for a subspace L is

De(S; L) = inf{ δ : 0 ≤ δ < 1, 0 < t (2.3)
tS is a δ-embedding for L}.

In words, this is the minimum distortion that any sketching operator tS can achieve
for L, optimizing over t > 0. We briefly reference this concept in our discussion of
algorithms for least squares and optimization (§3.2). Appendix B.1 makes deeper
connections between effective distortion and randomized preconditioning methods
for least squares.

Page 25

Early Release

Oblivious subspace embeddings

Data-oblivious subspace embedding (OSEs) were first used in RandNLA in [Sar06]
and were largely popularized by [Woo14]. There is a clean way to describe the
“reliability” of a sketching distribution in this setting.

Consider a distribution D over wide d×m matrices. We say that D has
the OSE property with parameters (δ, n, p) if, for every n-dimensional
subspace L ⊂ Rm, we have

Pr{S ∼ D is a δ-embedding for L} ≥ 1− p.

Theoretical analyses of sketching distributions often concern bounding d as a func-
tion of (δ, n, p) to ensure that D satisfies the OSE property. Naturally, all else
equal, we would like to achieve the OSE property for smaller values of d.

Theoretical results can be used to select d in practice for very well-behaved distri-
butions, particularly the Gaussian distribution. Results for the more sophisticated
distributions (such as those of sparse sketching operators) tend to be pessimistic
compared to what is observed in practice. Some of this pessimism stems from the
existence of esoteric constructions which indeed call for large embedding dimensions.
Setting these constructions aside, we have reason to be optimistic since distortion is
actually not the ideal measure of sketch quality in many settings. Indeed, effective
distortion is far more relevant for least squares and optimization, and it will always
be no larger than the standard notion of distortion.

All in all, there is something of an art to choosing the best sketching distribution
for a particular RandNLA task. Luckily, for most RandNLA algorithms it is far
from necessary to choose the “best” sketching distribution; good results can be
obtained even when setting distribution parameters by simple rules of thumb.

Johnson–Lindenstrauss embeddings

Let S be a d×m sketching operator and L be a finite point set in Rm. We say that
S is a Johnson–Lindenstrauss embedding (or “JL embedding”) for L with distortion
δ if, for all distinct x, y in L, we have

1− δ ≤ ‖S(x− y)‖2
2

‖x− y‖2
2
≤ 1 + δ.

This property is named for a seminal result by William Johnson and Joram Lin-
denstrauss, who used randomization to prove the existence of operators satisfying
this property where d is logarithmic in |L| and linear in 1/δ2 [JL84].

The JL Lemma (as the result is now known) is remarkable for two reasons.
First, the requisite value for d did not depend on the ambient dimension m and
was only logarithmic in |L|. Second, the construction of the transformation S was
data-oblivious – a scaled orthogonal projection. This latter fact led to questions
about how one might define alternative distributions over sketching operators, with
the aim of

1. being simpler to implement than a scaled orthogonal projection, and

2. attaining similar “data-oblivious JL properties.”

Page 26

Early Release

It so happened that many constructions could achieve these goals. For example,
[IM98] and [DG03] relaxed the condition of being a (scaled) orthogonal projector to
S having iid Gaussian entries, which still results in a rotationally-invariant distri-
bution. As another example, [Ach03] relaxed the rotational invariance by choosing
the entries of S to be scaled Rademacher random variables.

2.2.3 (In)essential properties of sketching distributions
Distributions D over wide sketching operators are typically designed so that, for
S ∼ D, the mean and covariance matrices are

E[S] = 0 and E[S∗S] = I.

The property that E[S] = 0 is important – if not ubiquitous – in RandNLA. How-
ever, there is some flexibility in the latter property, as in most situations it suffices
for the covariance matrix to be a scalar multiple of the identity.

To understand why we have flexibility in the scale of the covariance matrix,
consider how E[S∗S] = I is equivalent to S preserving squared Euclidean norms
in expectation. As it happens, the vast majority of algorithms mentioned in this
monograph do not need sketching operators to preserve norms. Rather, they rely
on sketching preserving relative norms, in the sense that ‖Su‖2/‖Sv‖2 should be
close to ‖u‖2/‖v‖2 for all vectors u, v in a set of interest. Such a property is clearly
unaffected if every entry of S scaled by a fixed nonzero constant (i.e., if S is replaced
by tS for some t 6= 0).

This section uses scale-agnosticism to help describe sketching distributions with
reduced emphasis on whether the operator is wide or tall. For example, if the entries
of S are iid mean-zero random variables of finite variance, then both E[S∗S] and
E[SS∗] are scalar multiples of the identity matrix. Speaking loosely, the former
property justifies using S to sketch from the left and the latter property justifies
using S∗ to sketch from the right.

With this observation in mind, this section ignores most matters of scaling that
is applied equally to all entries of a sketching operator. This manifests in how we
regularly describe sketching operators as having entries in [−1, 1] even though it is
more common to have entries in [−v, v] for some positive v (which is set to achieve
an identity covariance matrix). Note that this does not confer freedom to scale
individual rows, columns, or entries of a sketching operator separately from one
another.

The main places where scaling matters are in algorithms for norm estimation
(see Section 4.3.5) and algorithms which only sketch a portion of the data in a larger
problem. The subtleties in this latter situation warrant a detailed explanation.

Scale sensitivity: partial sketching

Let G be an n× n psd matrix and A be a very tall m× n matrix. Suppose that we
approximate

H = A∗A + G
by a partial sketch

Hsk = (SoA)∗(SoA) + G
where So is a d×m sketching operator. How should we understand the statistical
properties of Hsk as an estimator for H?

Page 27

Early Release

At the simplest level we can turn to the idea of subspace embedding distortion.
Using the characterization of distortion in (2.2), we could study the distribution of
the minimum δ ∈ (0, 1) for which

(1− δ)2H � Hsk � (1 + δ)2H.

One can go beyond distortion by lifting to a higher-dimensional space. Letting
√

G
denote the Hermitian square root of G, we define the augmented sketching operator
and augmented data matrix

S =
[
So 0
0 I

]
and AG =

[
A√
G

]
This lets us express H = A∗

GAG and Hsk = (SAG)∗ (SAG). Therefore the statistical
properties of Hsk as an approximation to H can be understood in terms of how S
preserves (or distorts) the range of AG.

Scale sensitivity: row sampling from block matrices

The concept of partial sketching can arise when sketching block matrices, which
are indeed encountered in many applications. For example, it is widely appreciated
that a ridge regression problem with tall m × n data matrix A and regularization
parameter µ can be lifted to an ordinary least squares problem with data matrix
Aµ := [A;√µI].

Suppose we want to sketch Aµ by a row sampling operator S. It is natural
to treat the lower n rows of Aµ differently than its upper m rows. In particular,
it is natural for S to be an operator that produces SA = [SoA;√µI] with some
other d×m row sampling operator So. Here, even if So sampled rows from A uni-
formly at random, the map Aµ 7→ SAµ would not sample uniformly at random from
Aµ. Therefore there is a sense in which partial sketching is a way of incorporating
non-uniform row sampling into other sketching distributions; see [DKM06a] for the
origins of this interpretation. In the context of this specific example, the nonuni-
formity would necessitate that So be scaled to have entries in {0,±1/

√
d}. We

refer the reader to Section 2.4.2 and Section 6.1.1 for more discussion on sketching
operators that implement row sampling.

2.3 Dense sketching operators
The RandBLAS should provide methods for sampling sketching operators with iid
entries drawn from distinguished distributions. Across this broad category, we be-
lieve the following types of operators stand out:

• Rademacher sketching operators: entries are ±1 with equal probability;

• uniform sketching operators: entries are uniform over [−1, 1];

• Gaussian sketching operators: entries follow the standard normal distribution.

We believe the RandBLAS should also support sampling row-orthonormal or column-
orthonormal matrices uniformly at random from the set of all such matrices.

Page 28

Early Release

The theoretical results for Gaussian operators are especially strong. However,
there is little practical difference in the performance of RandNLA algorithms be-
tween any of the three entrywise iid operators given above. This is reflected in
implementations such as [LLS+17] that only use uniform sketching operators. The
practical equivalence between these types of sketching operators also has theoreti-
cal support through universality principles in high-dimensional probability [Ver18],
[OT17], [MT20, §8.8], [DLL+20]. In what follows we speak to implementation
details and the intended use cases for these operators.

Sampling iid-dense sketching operators

Sampling from the Rademacher or uniform distributions is the most basic operation
of random number generators. Methods for sampling from the Gaussian distribution
involve transforming random variables sampled uniformly from [0, 1]. There are two
transformations of interest for the RandBLAS: Box-Muller [BM58]; and the Ziggurat
transform [MT00]. The former should be included in the RandBLAS because it is
easy to implement and parallelizes well. The latter method is far more efficient on
a single thread, and it has been used within RandNLA (see [MSM14]), but it does
not parallelize well [Ngu07, §37.2.3]. We postpone any recommendation for whether
it should be an option in the RandBLAS.

RandNLA algorithms tend to be very robust to the quality of the random num-
ber generator. In particular, it is not necessary for us to sample from the Gaussian
distribution with high statistical accuracy. This is due in part to the aforementioned
universality principles, and it can be seen through the success of sub-Gaussian distri-
butions as an analysis framework in high-dimensional probability [Ver18, §2]. From
an implementation standpoint, there is likely no need to sample from the Gaussian
distribution beyond single precision [Mar22a]. It is worth exploring if even lower
precisions (e.g., half-precision) would suffice for practical purposes.

Applying iid-dense sketching operators

If a dense sketching operator is realized explicitly in memory then it can (and
should) be applied by an appropriate BLAS function, most likely gemm. Many
RandNLA algorithms provide good practical performance even with such simple
implementations, although there is potential for reduced memory or communication
requirements if a sketching operator is applied without ever fully allocating it in-
memory. There is a large design space for such algorithms with iid-dense sketching
operators when using counter-based random number generators (see Section 2.1.1).
Such functionality could appear in an initial version of a RandBLAS standard. The
reference implementations of such functions could start as mere wrappers around
routines to generate a sketching operator and then apply that operator via gemm.

Sampling and applying Haar operators

If we suppose left-sketching, then the Haar distribution is the uniform distribution
over row-orthonormal matrices. If we instead suppose right-sketching, then it is the
uniform distribution over column-orthonormal matrices. We call these operators
“dense” because if one is sampled and then formed explicitly, it will be dense with
probability one.

Page 29

Early Release

There are two qualitative approaches to sampling from this distribution. The
naive approach essentially requires sampling from a Gaussian distribution and per-
forming a QR factorization, at a total cost of O(d2m); see [Li92, §1 - §4] and more
general methods in [Mez07]. A more efficient approach – which costs only O(dm)
time – involves constructing the operator as a composition of suitable Householder
reflectors [Ste80]. This approach has the secondary benefit of not needing to form
the sketching operator explicitly.

Haar operators are of interest not just for sketching in RandNLA algorithms but
also for generating test data for evaluating other sketching operators. As such, we
believe they are natural to include in a first version of a RandBLAS standard.

Intended use-cases

Using terminology from Section 2.2.1, dense sketching operators are commonly used
for “sketching in the sampling regime.” In particular, they are the workhorses of
randomized algorithms for low-rank approximation. They also have applications
in certain randomized algorithms for ridge regression and some full-rank matrix
decomposition problems.

These distributions are much less useful for sketching dense matrices “in the
embedding regime” (again in the sense of Section 2.2.1). This is because they
are more expensive to apply to dense matrices than many other types of sketching
operators. These types of sketching operators might be of interest in the embedding
regime if applied to sparse or otherwise structured data matrices.

2.4 Sparse sketching operators
The RandNLA literature describes many types of sparse sketching operators, almost
always under the convention of sketching from the left. We think it is important to
define sketching distributions in a way that is agnostic to sketching from the left or
right. Indeed, while we often focus on left-sketching for ease of exposition, asserting
that this is “without loss of generality” ignores the plight of the user tasked with
right-sketching.

In order to achieve our desired agnosticism, we use a taxonomy for sparse sketch-
ing operators which has not appeared in prior literature. To describe it, we use the
term short-axis vector in reference to the columns of a wide matrix or rows of a
tall matrix. The term long-axis vector is defined analogously, as the rows of a wide
matrix or columns of a tall matrix. In these terms, we have the following families
of sparse sketching operators.

• Short-axis-sparse sketching operators. The short-axis vectors of these opera-
tors are independent of one another. Each short-axis vector has a fixed (and
very small) number of nonzeros. Typically, the indices of the nonzeros in each
short-axis vector are sampled uniformly without replacement.

• Long-axis-sparse sketching operators. The long-axis vectors of these operators
are independent of one another. For a given long-axis vector, the indices for its
nonzeros are sampled with replacement according to a prescribed probability
distribution (which can be uniform). The value of a given nonzero is affected
by the number of times its index appears in the sample for that vector.

Page 30

Early Release

• Iid-sparse sketching operators. Mathematically, these can be described as
starting with an iid-dense sketching operator and “zeroing-out” entries in an
iid-manner with some high probability. (From an implementation standpoint
this would work the other way around, randomly choosing a few entries to
make nonzero.)

When abbreviations are necessary, we suggest that short-axis-sparse sketching op-
erators be called SASOs and that long-axis-sparse sketching operators be called
LASOs. Most of our use of such abbreviations appears here and in Appendix A.2.
A visualization of these types of sketching operators is given in Figure 2.2.

Before proceeding further we should say that we are not in favor of including iid-
sparse sketching operators in the RandBLAS. Our first reason for this is that their
theoretical guarantees are not as strong as either SASOs (see the discussion at the
end of [Tro20, §7.4] and remarks in [Lib09, §2.4]) or LASOs [DLD+21; DLP+21].
Our second reason is that their lack of predictable structure makes it harder to
implement efficient parallel algorithms for applying these operators. Therefore in
what follows we only provide details on SASOs and LASOs.

A S A S A S(a) (b) (c)

Figure 2.2: Illustration of a SASO (a) with 3 non-zero entries per row, LASO (b)
with 3 non-zero entries per column, and an iid-sparse sketching operator (c) with
iid non-zero entries.

2.4.1 Short-axis-sparse sketching operators
SASOs include sketching operators known as sparse Johnson–Lindenstrauss trans-
forms, the Clarkson–Woodruff transform, CountSketch, and OSNAPs [KN12; CW13;
MM13; NN13]. These constructions are all described assuming we sketch from the
left, and as such, they are all stated for wide sketching operators. They are described
as having a fixed number of nonzeros within each column. The more general notion
(for sketching from the left or right) is to say there is a fixed number of nonzeros
per short-axis vector.

The short-axis vectors of a SASO should be independent of one another. One
can select the locations of nonzero elements in different ways; we are interested in
two methods from [KN12]. For a wide d×m operator, we can

1. sample k indices uniformly from JdK without replacement, once for each col-
umn, or

2. divide JdK into k contiguous subsets of equal size, and then for each column
we select one index from each of the k index sets.

These definitions are extended from wide sketching operators to tall sketching op-
erators in the natural way.

Page 31

Early Release

For either method, the nonzero values in a SASO’s short-axis vector are canon-
ically independent Rademachers. Alternatively, they can be drawn from other sub-
Gaussian distributions. For example, in the wide case, drawing the nonzeros inde-
pendently and uniformly from a union of disjoint intervals, such as [−2,−1]∪ [1, 2],
can protect against the possibility of a given row of S being orthogonal to a column
of a matrix to be sketched [Tyg22].

Details SASOs are provided in Appendix A.2. This includes implementation
notes, a short historical summary of relevant theory, and remarks on setting the
sparsity parameter k. On the topic of theory, we note here that the state-of-the-art
results for SASOs are due to Cohen [Coh16]. More information can be found in
the lecture notes [Mah11; Mah16; DM18], [Tro20, §7.4] and the surveys [Woo14],
[MT20, §9.2].
Remark 2.4.1 (Naming conventions). The concept of what we would call a “wide
SASO” is referred to in the literature as an OSNAP. We have a slight preference
for “SASO” over “OSNAP” for two reasons. First, it pairs naturally with the ab-
breviation LASO for long-axis-sparse sketching operators, which is valuable for tax-
onomizing sparse sketching operators. Second, the literature consistently describes
OSNAPs as having a fixed number of nonzeros per column. While this description
is appropriate for left sketching, it is not appropriate for right sketching.

2.4.2 Long-axis-sparse sketching operators
This category includes row and column sampling, LESS embeddings [DLD+21],
and LESS-uniform operators [DLP+21].

In the wide case, a LASO has independent rows and a fixed upper bound on the
number of nonzeros per row. All rows are sampled with reference to a distribution
p over JmK (which can be uniform) and a positive integer k. Specifically, we begin
by sampling t1, . . . , tk from JmK with replacement according to p. Then we initialize

S[i, :] = 1√
dk

(√
b1

p1
, . . . ,

√
bm

pm

)
, (2.4)

where bj is the number of times the index j appeared in the sample (t1, . . . , tk).
We finish constructing the row by multiplying each nonzero entry by an iid copy
of a mean-zero random variable of unit variance (e.g., a standard Gaussian random
variable). Such a LASO will have at most k nonzeros per row and hence at most
dk nonzeros in total. Note that this is much smaller than mk nonzeros required by
a SASO with the same parameters.

The quality of sketches produced by LASOs when p is uniform depends on the
properties of the matrix to be sketched. Specifically, it will depend on the leverage
scores of the matrix. The leverage score concept, introduced in Section 6.1, is
important for constructing data-aware sketching operators that implement row or
column sampling. If p is the leverage score distribution of some matrix then the
sketching operator is known as a Leverage Score Sparsified (LESS) embedding for
that matrix [DLD+21]. The term LESS-uniform has been used for long-axis-sparse
operators that use the uniform distribution for p [DLP+21].
Remark 2.4.2 (Scale). The scaling factor 1/

√
dk appearing in the initialization (2.4)

is the same for all rows of S (in the wide case, i.e., for each long-axis vector). This
factor is necessary so that once the nonzeros in S are multiplied by mean-zero unit-
variance random variables, we have E[S∗S] = Im. This scaling matters when one

Page 32

Early Release

cares about subspace embedding distortion or when one is only sketching a portion
of the problem data (see Section 2.2.3). This scaling has no effect on effective
distortion if p is uniform.

2.5 Subsampled fast trigonometric transforms
Fast trigonometric transforms (or fast trig transforms) are orthogonal or unitary
operators that take m-vectors to m-vectors in O(m log m) time or better. The most
important examples in this class are the Discrete Fourier Transform (for complex-
valued inputs) and the Discrete Cosine Transform (for real-valued inputs). The
Walsh-Hadamard Transform is also notable; although it only exists when m is a
power of two, it is equivalent to a Kronecker product of log2 m Discrete Fourier
Transforms of size 2 × 2, and the standard algorithm for applying it involves no
multiplications and entails no branching.

Traditionally, trig transforms are valued for their ability to map dense input
vectors with a periodic structure into sparse output vectors. Within RandNLA,
we are interested in them for the opposite reason: the fact that they map inputs
that lack periodic structure to dense outputs. This behavior is useful because if we
preprocess an input to destroy any periodic structure with high probability, the re-
sulting output should be easier to approximate by random coordinate subsampling.
This leads to the idea of a subsampled randomized fast trig transforms or SRFTs.

Traditional SRFTs

Formally, a d×m SRFT takes the form

S =
√

m/d RFD,

where D is a diagonal matrix of independent Rademachers, F is a fast trig transform
that maps m-vectors to m-vectors, and R randomly samples d components from
an m-vector [AC06; AC09]. For added robustness one can define SRFTs slightly
differently, replacing S by SΠ for a permutation matrix Π [MT20].

SRFTs are appealing for their efficiency and theoretical guarantees. Speaking
to the former aspect, a d × m SRFT can be applied to an m × n matrix in as
little as O(mn log d) time by using methods for subsampled fast trig transforms
[WLR+08, §3.3], [Lib09, §3.3]. Theoretical guarantees for SRFTs are usually es-
tablished assuming F is the Walsh-Hadamard transform [DMM+11; Tro11; BG13].
These guarantees are especially appealing since they do not rely on tuning param-
eters such as sparsity parameters required by sketching operators from Section 2.4.

The trouble with SRFTs is that they are notoriously difficult to implement
efficiently. Even their best-case O(mn log d) complexity is higher than the O(mnk)
complexity of a SASO that is wide with k � log d nonzeros per column. However,
SRFTs have an advantage when it comes to memory: if one overwrites A by the
m×n matrix B :=

√
m/d FDA in O(mn log m) time, then SA can be accessed as a

submatrix of rows of B without losing access to A or A∗ as linear operators. Further
investigation is needed to determine the true value of this in-place nondestructive
implementation. For the time being, we do not believe that traditional SRFTs are
essential for a preliminary RandBLAS standard.

Page 33

Early Release

Block SRFTs

Let p be a positive integer, r = m/p be greater than d, and R be a matrix that
randomly samples d components from an r-vector. For each index i ∈ JpK, we
introduce a d× r sketching operator

Si =
√

r/d Dpost
i RFDpre

i ,

where Dpost
i and Dpre

i are diagonal matrices filled with independent Rademachers.
The block SRFT [BBG+22] is defined columnwise as S = [S1 S2 . . . Sp].

Block SRFTs can effectively leverage parallel hardware using serial implementa-
tions of the fast trig transform. For concreteness, suppose A is m×n and distributed
block row-wise among p processors. We apply the block SRFT S by the formula

SA =
∑

i∈JpK SiAi,

where Ai is the block rows of A stored on processor i. The multiplication SiAi,
computed locally on each processor, is followed by a reduction operation among
processors to sum the local contributions.

We are undecided as to whether block SRFTs are appropriate for a preliminary
RandBLAS standard. Their comparative ease of implementation is favorable. How-
ever, they are problematic in that the definition of the distribution changes as we
vary p, which complicates reproducibility across platforms.

Historical remarks and further reading

The development of SRFTs began with fast Johnson–Lindenstrauss transforms
(FJLTs) [AC06], which replace the matrix “R” in the SRFT construction by a par-
ticular type of sparse matrix. FJLTs were first used in RandNLA for least squares
and low-rank approximation by [Sar06]. The jump from FJLTs to SRFTs was made
independently in [DMM+11] and [WLR+08] for usage in least squares and low-rank
approximation, respectively.

For more background on this topic we refer the reader to the book [Mah11],
the lecture notes [Mah16], [DM18], [Tro20, §7.5], and the survey [MT20, §9.3].
We also note that SRFTs are sometimes called randomized orthornomal systems
[PW16; PW17; OPA19] or (with slightly abuse of terminology) FJLTs. Finally, we
point out that a type of “SRFTs without subsampling” has been successfully used
to approximate Gaussian matrices needed in random features approaches to kernel
ridge regression [LSS13].
Remark 2.5.1 (Navigating the literature). The reader should be aware that [AC09] is
the journal version of [AC06]. Additionally, while [LWM+07] also describes SRFTs,
it was actually written after [WLR+08].

2.6 Multi-sketch and quadratic-sketch routines
For many years, the performance bottleneck in NLA algorithms has been data
movement, rather than FLOPs performed on the data. For example, a general
matrix-matrix multiply with n × n matrices would do O(n3) data movement if
implemented naively with three nested loops, but can be up to a factor of

√
M

smaller, where M is the cache size, if appropriately implemented using loop tiling.

Page 34

Early Release

In our context of RandNLA, the fastest randomized algorithms for low-rank
matrix approximation involve computing multiple sketches of a data matrix. Such
multi-sketching presents new challenges and opportunities in the development of
optimized implementations with minimal data movement.

We believe the RandBLAS should include functionality for at least three types
of multi-sketching, listed below. The end of Section 4.2.1 points to algorithms that
use these primitives. In all cases of which we are aware, these primitives are only
used for sketching in the sampling regime.

1. Generate S and compute Y1 = AS and Y2 = A∗AS. We illustrate the use of
this primitive explicitly in Algorithm 12.

2. Generate independent S1, S2, and compute Y1 = AS1 and Y2 = S2A. Algo-
rithms which use this primitive typically need to retain S1 or S2 for later use
[HMT11, pg. 251], [YGL+17, Algorithm 2], [TYU+17b, § 1.4].

3. Generate independent S1, S2, S3, S4, and compute Y1 = AS1, Y2 = S2A, and
Y3 = S3AS4.

Having identified these operations as basic building blocks, we arrive at the following
question.

What combination of sketching distributions should be supported in
multi-sketching of types 2 and 3?

For the former type (i.e., type 2), it is important to support at least the case that
both S1 and S2 are dense sketching operators, and it may be useful to support
when both are fast operators. At this point, we do not see an advantage for one of
(S1, S2) to be a fast operator and for the other to be dense. For the latter type (i.e.,
type 3), [TYU+17b, §7.3.2] suggests that (S1, S2) be Gaussian and that (S3, S4) be
SRFTs. We believe that it would be reasonable to use SASOs in place of SRFTs in
this context.

The RandBLAS should provide methods to compute sketches that are quadratic
in the data matrix. By “quadratic sketch,” we mean a linear sketch of A∗A or
AA∗. This operation is ubiquitous in algorithms for low-rank approximation. As
with multi-sketching, all uses of quadratic sketching (of which we are aware) entail
sketching in the sampling regime. It is not possible to fundamentally accelerate this
kind of sketching by using fast sketching operators.2 Therefore it would be reason-
able for RandBLAS’s quadratic sketching methods to only support dense sketching
operators. (The preceding comments also apply to type 1 multi-sketching.) Note
that in essence this asks for a high-performance implementation of the composition
of the BLAS 3 functions syrk and gemm: (A, S) 7→ AA∗S. There is a substan-
tial amount of structure in quadratic sketching that could be leveraged for reduced
data movement, which suggests that the RandBLAS would benefit significantly from
having optimized routines for this functionality.

2This point was also made in a related setting [MT20, §11.6.1].

Page 35

Early Release

Page 36

Section 3

Least Squares and Optimization

Contents
3.1 Problem classes . 38

3.1.1 Minimizing regularized quadratics 39
3.1.2 Solving least squares and basic saddle point problems . . 39

3.2 Drivers . 41
3.2.1 Sketch-and-solve for overdetermined least squares . . . 41
3.2.2 Sketch-and-precondition for least squares and saddle point

problems . 42
3.2.3 Nyström PCG for minimizing regularized quadratics . . 46
3.2.4 Sketch-and-solve for minimizing regularized quadratics . 48

3.3 Computational routines 49
3.3.1 Technical background: optimality conditions for saddle

point problems . 49
3.3.2 Preconditioning least squares and saddle point problems:

tall data matrices . 50
3.3.3 Preconditioning least squares and saddle point problems:

data matrices with fast spectral decay 54
3.3.4 Deterministic preconditioned iterative solvers 55

3.4 Other optimization functionality 56
3.5 Existing libraries . 57

Numerical linear algebra is the backbone of the most widely-used algorithms
for continuous optimization. Continuous optimization, in turn, is a workhorse for
many scientific computing, machine learning, and data science applications.

The connections between optimization and linear algebra are often introduced
with least squares problems. Such problems have been used as a tool for curve fitting
since the days of Gauss and Legendre over 200 years ago — several decades before
Cayley even defined linear algebraic concepts such as the matrix-inverse! These
problems are also remarkable because algorithms for solving them easily generalize
to more complicated settings. Indeed, one of this section’s key messages is that, by
adopting a suitable perspective, one can use randomization in essentially the same
way to solve a wealth of different quadratic optimization problems.

37

Early Release

Our perspective entails describing all least squares problems in terms of an m×n
data matrix A with at least as many rows as columns. Specifically, we express the
overdetermined problem as

min
x∈Rn

‖Ax− b‖2
2

for a vector b in Rm, while we express the underdetermined problem as

min
y∈Rm

{‖y‖2
2 | A∗y = c}

for a vector c in Rn. Of course, both of these models could be expressed in the
corresponding “argmin” formulation. We generally prefer the “min” formulation
for the optimization problem itself and use “argmin” only for the set of optimal
solutions.

Section 3.1 introduces the problems we consider: minimization of regularized
quadratics and various generalizations of least squares problems. For each problem,
it provides high-level comments on structures and desired outcomes that can make
randomized algorithms preferable to classical ones.

Section 3.2 covers the drivers for these problems based on RandNLA. It de-
tails the problem structures that stand to benefit from a particular driver, and
it highlights other linear algebra problems that largely reduce to solving problems
amenable to these drivers. Section 3.3 details some essential computational routines
that would power the drivers.

The rest of the Section 3 is largely supplemental. Section 3.4 reviews randomized
optimization algorithms that we find notable but out-of-scope, as well as one type of
deterministic computational routine that is potentially useful for (but not required
by) the drivers. We conclude by describing existing RandNLA libraries for least
squares and optimization in Section 3.5.

3.1 Problem classes
This section covers drivers for two related classes of optimization problems: mini-
mizing regularized positive definite quadratics (§3.1.1) and certain generalizations
of overdetermined and underdetermined least squares which we refer to as saddle
point problems (§3.1.2). Problems in both classes can naturally be transformed to
equivalent linear algebra problems.1 Functionality for solving these problems can
easily provide the foundation for managing the core linear algebra kernels of larger
optimization algorithms.

How can we measure the accuracy of an approximate solution?

The problem of quantifying the error of an approximate solution to a least squares
or saddle point problem is very important. While we would like to address this
topic up-front, a proper discussion requires technical background that we only pro-
vide in Section 3.3. Furthermore, even given this background, there are various
subtleties and special cases that would be laborious to describe here. Therefore we
defer the important topic of error metrics for least squares and related problems to
Appendix B.2.

1As we explain later, the saddle point problems are equivalent to so-called saddle point systems,
which are well-studied in the NLA literature; see [BGL05; OA17]

Page 38

Early Release

3.1.1 Minimizing regularized quadratics
Let G be a positive semidefinite (psd) linear operator, and let µ be a positive
regularization parameter. One of the main topics of this section is algorithms for
computing approximate solutions to problems of the form

min
x

x∗ (G + µI) x− 2h∗x. (3.1)

Note that solving (3.1) is equivalent to solving (G + µI) x = h. We refer to such
problems in different contexts throughout this section. In some contexts, we say
that G is n× n, and in others, we say it is m×m.

This section covers algorithms for solving these problems to varying degrees of
accuracy.

• Methods for solving to higher accuracy will access G repeatedly by matrix-
matrix and matrix-vector multiplication.

• Methods for solving to lower accuracy may vary in how they access G: they
may only entail selecting a subset of its columns; or they may perform a single
matrix-matrix multiplication GS with a tall and thin matrix S.

Note that the low accuracy methods may be useful in machine learning contexts
such as kernel ridge regression (KRR), where an inaccurate solution to (3.1) can
still be useful for downstream computational tasks.
Remark 3.1.1. If the linear operator G implements the action of an implicit Gram
matrix A∗A (with A known) then it would be preferable to reformulate (3.1) as
(3.2), below, with b = 0 and c = h.

Amenable problem structures

The suitability of methods we describe for problem (3.1) will depend on how many
eigenvalues of G are larger than µ. Supposing G is n × n, it is desirable that the
number of such eigenvalues is much less than n. The data (G, µ) that arise in
practical KRR problems usually have this property.

In an ideal setting, the user would have an estimate for the number of eigenvalues
of G that are larger than µ. This is not a strong requirement when G is accessible by
repeated matrix-vector multiplication, in which case the accuracy of the estimate
is unimportant. The standard RandNLA algorithm in this situation can easily be
modified to recycle the work in solving (3.1) for one value of µ towards solving (3.1)
for another value of µ.

3.1.2 Solving least squares and basic saddle point problems
We are interested in certain generalizations of overdetermined and underdetermined
least squares problems. The generalizations facilitate natural specification of linear
terms in composite quadratic objectives, which is a common primitive in many
second-order optimization algorithms.

We frame these problems as complementary formulations of a common saddle
point problem. The defining data for such a problem consists of a tall m×n matrix
A, an m-vector b, an n-vector c, and a scalar µ ≥ 0. For simplicity, our descriptions
in this paragraph assume A is full-rank. The primal saddle point problem is

min
x∈Rn

‖Ax− b‖2
2 + µ‖x‖2

2 + 2c∗x. (3.2)

Page 39

Early Release

When µ is positive, the dual saddle point problem is

min
y∈Rm

‖A∗y − c‖2
2 + µ‖y − b‖2

2. (3.3)

In the limit as µ tends to zero, Eq. (3.3) canonically becomes

min
y∈Rm

{‖y − b‖2
2 : A∗y = c}. (3.4)

Note that the primal problem reduces to ridge regression when c is zero, and it
reduces to overdetermined least squares when both c and µ are zero. When b is
zero, and depending on the value of µ, the dual problem amounts to ridge regression
with a wide data matrix or to basic underdetermined least squares.

Pros and cons of this viewpoint

Adopting this more general optimization-based viewpoint on least squares problems
has two major benefits.

• It extends least squares problems to include linear terms in the objective. The
linear term in the primal problem is obvious. The linear terms in (3.3) and
(3.4) are obtained by expanding ‖y− b‖2

2 = ‖y‖2
2 − 2b∗y + ‖b‖2

2 and ignoring
the constant term ‖b‖2

2.

• It renders the primal and dual problems equivalent for most algorithmic pur-
poses. The equivalence is based on formulating the optimality conditions for
these problems in a so-called saddle point system over the variables (x, y).
Section 3.3.1 details this equivalence.

It must be noted that the saddle point problems we consider can be ill-posed when
µ is zero and A is rank-deficient. Specifically, when µ = 0 and c is not orthogonal
to the kernel of A, the primal problem (3.2) has no optimal solution and the dual
problem (3.4) has no feasible solution. In this setting, we assign canonical solutions
by considering the limit as µ tends to zero. Appendix B.3 addresses the existence
and form of these limiting solutions. The outcome of the limiting analysis is that
when µ = 0, we obtain canonical solutions

x = (A∗A)†(A∗b− c) and y = (A∗)†c + (I− AA†)b, (3.5)

which are related through the identity y = b− Ax.

Amenable problem structures

This section focuses on methods for solving these optimization problems to high
accuracy. Indeed, later in this section we make the novel observation that methods
for solving problems (3.2)–(3.4) to high accuracy can be used as the core subroutine
in solving (3.1) to low accuracy at extremely large scales. If m � n, then these
methods are efficient regardless of numerical aspects of the problem data (A, b, c, µ);
problems such as poor numerical conditioning will be relevant insofar as they con-
tribute to floating-point rounding errors in these efficient algorithms. If m is only
slightly larger than n, then the methods we describe will only be effective when
G := A∗A and µ have the properties alluded to in Section 3.1.1. These properties
are detailed later in this section.

Page 40

Early Release

3.2 Drivers
Here we present four families of drivers for the problems described in Section 3.1.
Two of the driver families belong to a paradigm in the RandNLA literature known
as sketch-and-precondition. Algorithms in these families are capable of computing
accurate approximations of a problem’s true solution. The other two driver families
belong to a paradigm known as sketch-and-solve. They are less expensive than
sketch-and-precondition methods (to varying degrees) but they are only suitable
for producing rough approximations of a problem’s true solution. The sketch-and-
solve drivers described in Section 3.2.4 are novel in that they rely on separate
sketch-and-precondition methods for their core subroutines.

3.2.1 Sketch-and-solve for overdetermined least squares
Sketch-and-solve is a broad paradigm within RandNLA, and algorithms based on
it have been central to early developments in the area [Mah11; Woo14; DM16;
DM21a]. Its most notable manifestations have been for overdetermined least squares
[DMM06; Sar06; DMM+11; CW13], overdetermined ℓ1 and general ℓp regression
[DDH+09; YMM16], and ridge regression [ACW17a; WGM18].

We focus here on least squares for concreteness. In this case, one samples a
sketching operator S, and returns

(SA)†(Sb) ∈ arg min
x

‖S(Ax− b)‖2
2 (3.6)

as a proxy for the solution to minx ‖Ax− b‖2
2. The quality of this solution can be

bounded with the concept of subspace embeddings from Section 2.2.2. In particular,
if S is a subspace embedding for V = range([A, b]) with distortion δ, then

‖A(SA)†(Sb)− b‖2 ≤
(

1 + δ

1− δ

)
‖AA†b− b‖2. (3.7)

Note that the invariance of (3.6) under scaling of S implies that (3.7) also holds
when δ is the effective distortion of S for V ; see (2.3) and Appendix A.1.

Implementation considerations and a viable application are given below.

Methods for the sketched subproblem

Direct methods for (3.6) require computing some kind of orthogonal decomposition
of SA, such as a QR decomposition or an SVD. In this context, sketch-and-solve can
be used as a preprocessing step for sketch-and-precondition methods at essentially
no added cost. Indeed, this preprocessing step was used in [RT08]. Therefore if a
direct method is being considered in the sketch-and-solve context it is very likely
that sketch-and-precondition methods are also viable.

One can in principle apply an iterative solver to the problem defined by (SA, Sb).
This strategy avoids the cost of factoring SA, and it reduces the per iteration cost
relative to running the iterative solver on the original problem. This is typically
implemented without preconditioning (but see [YCR+18]), in which case it leaves
the dependence on the condition number of the original problem, and so it can only
be recommended for problems where the condition number is known to be small.

Page 41

Early Release

Error estimation

Because sketch-and-solve algorithms for overdetermined least squares are only suit-
able for computing rough approximations to a problem’s true solution, it is impor-
tant to have methods for estimating this error. It is especially important that these
error methods work in the regime where one would want to use sketch-and-solve in
the first place, as opposed to alternative methods such as sketch-and-precondition.
Appendix E.2 provides one such estimator based on the principle of bootstrapping
from statistics.

Application to tensor decomposition

The benefits of sketch-and-solve for least squares manifest most prominently when
the following conditions are satisfied simultaneously: (1) m is extremely large, so
A is not stored explicitly, and (2) A supports relatively cheap access to individual
rows A[i, :]. Among other places, this situation arises in alternating least squares
approaches to tensor decomposition. We touch upon that topic in Section 7.3.1,
particularly in the remarks after (7.17).

3.2.2 Sketch-and-precondition for least squares and saddle point
problems

The sketch-and-precondition approach to overdetermined least squares was intro-
duced by Rokhlin and Tygert [RT08]. When the m × n matrix A is very tall, the
method is capable of producing accurate solutions with less expense than direct
methods. It starts by computing a d×n sketch Ask = SA in the embedding regime
(i.e., d ≳ n). The sketch is decomposed by QR with column pivoting AskΠ = QR,
which defines a preconditioner M = ΠR−1. If the parameters for the sketching oper-
ator distribution were chosen appropriately, then AM will be nearly-orthogonal with
high probability.2 The near-orthogonality of AM ensures rapid convergence of an
iterative method for the least squares problem’s preconditioned normal equations.
If Tsk denotes the time complexity of computing SA, then the typical asymptotic
FLOP count to solve to ϵ-error is

O(Tsk + dn2 + mn log(1/ϵ))

Importantly, this complexity has no dependence on the condition number of A.
This approach was extended with stronger theoretical guarantees, support for

more general least squares problems, and high-performance implementations through
Blendenpik [AMT10] and LSRN [MSM14]. It has also recently been used to solve
positive definite systems arising in linear programming algorithms [CLA+20]. All
of these methods produce preconditioners M where AM is nearly-orthogonal and
are intended for the regime where A is very tall.

What constitutes “very tall” depends on the algorithm’s implementation and
the hardware that runs it. It is easy to implement these algorithms in Matlab or
Python so that, on a personal laptop, they are competitive with LAPACK’s direct
methods when m ≥ 50n ≥ 105; see also Section 3.5.

2The condition number of AM and the effective distortion of S for range(A) completely char-
acterize one another; see Appendices A.1 and B.1.

Page 42

Early Release

Your attention, please!

If a saddle point problem features regularization (i.e., if µ > 0) and if A has rapid
spectral decay, then randomized methods can be used to find a good preconditioner
in far less than O(n3) time, no matter the specific value of m ≥ n. This is possible
by borrowing ideas from Nyström preconditioning [FTU21], which we introduce in
Section 3.2.3 for the related problem of minimizing regularized quadratics. As a
novel contribution, Section 3.3.3 explains how Nyström preconditioning can natu-
rally be adapted to saddle point problems. Therefore while the material here (in
Section 3.2.2) focuses on the case m� n, one should be aware that this requirement
can be relaxed.

Algorithms

Sketch-and-precondition algorithms can take different approaches to sketching, pre-
conditioner generation, and choice of the eventual iterative solver.

• Blendenpik used SRFT sketching operators, obtained its preconditioner by un-
pivoted QR of Ask, and used LSQR [PS82] as its underlying iterative method.

• LSRN used Gaussian sketching operators, obtained its preconditioner through
an SVD of Ask, and defaulted to the Chebyshev semi-iterative method [GV61]
for its iterative solver.

These two examples hint at the huge range of possibilities for the implementation
of sketch-and-precondition algorithms. Indeed, we discuss preconditioners in detail
over Sections 3.3.2 and 3.3.3, and we review a suite of possible deterministic iterative
methods in Section 3.3.4. For now, we provide Algorithms 1 and 2 (below) as
footholds for understanding the various design considerations.

For simplicity’s sake, both of these algorithms use a black-box function

z = iterative_ls_solver(F, g, ϵ, L, zo)

which computes an approximate solution to minz ‖Fz − g‖2
2. The exact semantics

of this function are unimportant for our present purpose. Its general semantics are
that the solver initializes an iterative procedure at zo and that it runs until either
an implementation-dependent error tolerance ϵ is met or an iteration limit L is
reached. Typical implementations would measure error with a suitably normalized
version of the normal equation residual ‖F∗ (Fz − g) ‖2. If κ denotes the condition
number of F then typical convergence rates are such that error ‖F(z−F†g)‖2 decays
multiplicatively by a factor of (κ− 1)/(κ + 1) with each iteration.

Page 43

Early Release

Besides the use of a common iterative solver, both algorithms below initialize
the iterative solver at the solution from a sketch-and-solve approach in the vein of
Section 3.2.1. The time needed to perform this presolve step is negligible, but it
should save several iterations when solving to a prescribed accuracy. It also plays an
important role in handling overdetermined least squares problems when b is in the
range of A. In such contexts, the sketch-and-solve result actually solves the least
squares problem exactly provided that rank(SA) = rank(A); this stands in contrast
to using a preconditioned iterative method initialized at the origin, which would not
be able to achieve relative error guarantees for ‖Ax− b‖ against ‖(I−AA†)b‖ = 0.

Algorithm 1 SPO1: a Blendenpik-like approach to overdetermined least squares
1: function SPO1(A, b, ϵ, L)

Inputs:
A is m × n and b is an m-vector. We require m ≥ n and expect
m � n. The iterative solver’s termination criteria are governed by ϵ
and L: it stops if the solution reaches error ϵ ≥ 0 according to the
solver’s error metric, or if the solver completes L ≥ 1 iterations.

Output:
An approximate solution to (3.2), with c = 0 and µ = 0.

Abstract subroutines and tuning parameters:
SketchOpGen generates an oblivious sketching operator.
sampling_factor ≥ 1 is the size of the embedding dimension relative to n.

2: d = min{dn · sampling_factore, m}
3: S = SketchOpGen(d, m)
4: [Ask, bsk] = S[A, b]
5: Q, R = qr_econ(Ask)
6: zo = Q∗bsk # R−1zo solves minx{‖S(Ax− b)‖2

2}
7: Aprecond = AR−1 # as a linear operator
8: z = iterative_ls_solver(Aprecond, b, ϵ, L, zo)
9: return R−1z

While Algorithm 1 is standard, Algorithm 2 is somewhat novel. Using the same
data that might be computed during a standard sketch-and-precondition algorithm
for simple overdetermined least squares, it transforms any saddle point problem —
primal or dual — into an equivalent primal saddle point problem with c = 0. To
our knowledge, no such conversion routines have been described in the literature.
The conversion is advantageous because it opens the possibility of using iterative
solvers with excellent numerical properties that are specific to least squares prob-
lems. The validity of the algorithm’s transformation is explained towards the end
of Section 3.3.1.

Page 44

Early Release

Algorithm 2 SPS2 : sketch, transform a saddle point problem to least squares,
and precondition. A more efficient version of this algorithm can be obtained using
our observations on SVD-based preconditioning in Section 3.3.2.

1: function SPS2(A, b, c, µ, ϵ, L)
Inputs:

A is m×n, b is an m-vector, c is an n-vector, and µ is a nonnegative
regularization parameter. We require m ≥ n and expect m � n.
The iterative solver’s termination criteria are governed by ϵ and L: it
stops if the solution reaches error ϵ ≥ 0 according to its internal error
metric, or if it completes L ≥ 1 iterations.

Output:
Approximate solutions to (3.2) and its dual problem.

Abstract subroutines and tuning parameters:
SketchOpGen generates an oblivious sketching operator.
sampling_factor ≥ 1 is the size of the embedding dimension relative to n.

2: d = min{dn · sampling_factore, m}
3: S = SketchOpGen(d, m)
4: if µ > 0 then
5:

S =
[
S 0
0 In

]
, A =

[
A
√

µIn

]
, b =

[
b

0

]
6: Ask = SA
7: U, Σ, V∗ = svd(Ask)
8: M = VΣ†

9: bmod = b

10: if c 6= 0 then
11: v̂ = UΣ†V∗c # v̂ solves minv{‖v‖2

2 : A∗S∗v = c}
12: bshift = S∗v̂ # A∗bshift = c

13: bmod = bmod − bshift

14: zo = U∗Sbmod # Mzo solves min{‖S (Ax− bmod) ‖2
2}

15: Aprecond = AM # define implicitly, as a linear operator
16: z = iterative_ls_solver(Aprecond, bmod, ϵ, L, zo)
17: x = Mz

18: y = b[: m]− A[: m, :]x
19: return x, y

Page 45

Early Release

We wrap up our discussion of sketch-and-precondition algorithms by speaking
to their tradeoffs with sketch-and-solve. It is easy to see that if m � n2 and
we perform sketch-and-solve using a direct method for Eq. (3.6), then performing
an additional constant number of steps of sketch-and-precondition’s iterative phase
does not increase the FLOP count by even so much as a constant factor. However, if
we are in the regime where m ≥ n2, then even a single step of an iterative method in
sketch-and-precondition can cost as much as an entire sketch-and-solve algorithm.
Therefore when an accurate solution is not required and when in the regime m ≥ n2

it may be preferable to use sketch-and-solve rather than sketch-and-precondition.

Applications

One application of these sketch-and-precondition algorithms is to provide the core
subroutine in iterative methods for solving linear systems by block projection. We
explain the nature of this connection later on, in Section 5.4.1.

To explain the next application, we need some context. Classical linear algebra
techniques to solve a KRR problem with m datapoints require O(m2) storage and
O(m3) time. Rahimi and Recht’s random feature maps provide a framework for
replacing such a KRR problem with a more tractable ridge regression problem
[RR07]. A data matrix in a random features ridge regression problem is m × n
(for a tuning parameter n < m) and is characterized by the KRR datapoints and
functions f1, . . . , fn drawn from a suitable random distribution. The ith row in this
matrix is obtained by evaluating f1, . . . , fn on the ith KRR datapoint.

The randomness in random features ridge regression is not “sketching” in the
sense meant by this monograph. Still, this approach is notable in our context be-
cause it provides a source of models that are amenable to the methodology described
above. The Nyström preconditioning methodology (see Sections 3.2.3 and 3.3.3) has
been reported to be especially effective for such problems when n ≲ m [FTU21].

History: when did randomized algorithms become faster than QR?

The sketch-and-precondition algorithm in [RT08] was not known to have complexity
less than O(mn2) at time of publication. This was because the theoretical analysis
in [RT08] required the embedding dimension d for the d × m SRFT to be quite
large: O(n2). It is now known that taking d ∈ O(n log n) suffices to ensure a good
sketch with high probability, and this reduction is decisive in bringing sketch-and-
precondition’s runtime below O(mn2).

The first paper to contain a theoretical statement along the lines of “sketch
and precondition is faster than QR” was [AMT10] (which was also the first paper
to make a direct in-practice comparison of a RandNLA method with LAPACK).
However, its authors downplay this fact, and explain that the “missing” technical
result needed by [RT08] was easily obtained by combining a result from [DMM+11]
(or rather, a 2007 preprint of the same) with ideas from [NDT09].

3.2.3 Nyström PCG for minimizing regularized quadratics
Nyström preconditioned conjugate gradient (Nyström PCG) is a recently-proposed
method for solving problems of the form (3.1) to fairly high accuracy [FTU21].
We describe it as a method to compute approximate solutions to linear systems
(G + µI)x = h where G is n× n and psd.

Page 46

Early Release

The randomness in Nyström PCG is encapsulated in an initial phase where it
computes a low-rank approximation of G by a so-called “Nyström approximation.”
We defer discussion on such approximations (including the potentially-confusing
naming convention) to Section 4.2.2. For our purposes, what matters is that a
rank-ℓ Nyström approximation leads to a preconditioner P which can be stored in
O(ℓn) space and applied in O(ℓn) time.

Now let κ denote the condition number of Gp := P−1/2(G + µI)P−1/2. It is
well-known that each iteration of PCG requires one matrix-vector multiply with
G, one matrix-vector multiply with P−1, and reduces the error of the candidate
solution to (3.1) by a multiplicative factor (

√
κ−1)/(

√
κ+1). As we discuss below,

one can expect that κ will be O(1) if the ℓth-largest eigenvalue of G is smaller than
µ. Indeed, Nyström PCG is most effective for problems when this threshold is
crossed at some ℓ � n. As a practical matter, users will not need to select the
approximation rank parameter ℓ manually in order to use Nyström PCG; [FTU21,
Algorithm E.2] is a specialized adaptive method for Nyström approximation that
can determine an appropriate value for ℓ given (G, µ).

Details on the preconditioner

We presume access to a low-rank approximation

Ĝ = V diag(λ)V∗ (3.8)

where V is a column-orthonormal n × ℓ matrix that approximates the dominant ℓ
eigenvectors of G and λ1 ≥ · · · ≥ λℓ > 0 are the approximated eigenvalues. The
data (V, λ, µ) is then used to define a preconditioner

P−1 = V diag(λ + µ)−1V∗ + (µ + λℓ)−1(In − VV∗). (3.9)

Alternatively, following [FTU21] to the letter, P−1 can be the result of multiplying
the expression above by (µ + λℓ). Under this latter convention, P−1 acts as the
identity on range(V)⊥.

While the form of this preconditioner may appear mysterious, its appropriateness
can be seen by considering a simple idealized setting. To make a precise statement
on this topic we adopt notation where λi(G) is the ith-largest eigenvalue of G.
Assuming that (V, λ) are very good estimates for the top ℓ eigenpairs of G and that
λℓ(G) ≈ λℓ+1(G), the condition number of Gp should be near

κℓ(G, µ) := (λℓ(G) + µ)/(λn(G) + µ).

Taking this for granted, the preconditioner (3.9) can only be effective if ℓ � n
is large enough so that κℓ(G, µ) is bounded by a small constant. Using the fact
that κℓ(G, u) ≤ 1 + λℓ(G)/µ, we can simplify the criteria and say that a good
preconditioner is possible when λℓ(G)/µ is O(1).

Remark 3.2.1. The argument above can be made more rigorous by assuming that V
is an n× (ℓ− 1) matrix that contains the exact leading ℓ− 1 eigenvectors of G, and
that λ1, . . . , λℓ are the exact leading ℓ eigenvalues of G. In this case, the condition
number of Gp will be equal to κℓ(G, µ), which will be at most 1 + λℓ/µ.

Page 47

Early Release

3.2.4 Sketch-and-solve for minimizing regularized quadratics
Randomization provides several avenues for solving problems of the form (3.1) to
modest accuracy. We describe two possible methods here through novel interpre-
tations of existing work on KRR. Our descriptions of the methods keep the focus
on linear algebra, and we refer the reader to Appendix B.4.1 for information on
the KRR formalism. We note that our formulations of these methods are novel
in how they apply sketch-and-precondition as the core subroutine in what is oth-
erwise a sketch-and-solve style driver. Such “nested randomization” is a relatively
under-explored and potentially powerful algorithm design paradigm.

For notation, we shall say that G is m ×m, that µ = mλ for some λ > 0, and
that the optimization variable in (3.1) is denoted by “α” rather than “x.”

A one-shot fallback on Nyström approximations

Rather than solving (3.1) directly, it has been suggested that one solve

(AA∗ + mλI) α̂ = h,

where AA∗ is a Nyström approximation of G [AM15]. The computation of A only
requires access to G by a single sketch GS for a tall m×n sketching operator S. In the
KRR context, it is especially popular for S to be a column sampling operator [WS00;
KMT09b; GM16]. Section 6.1.3 discusses how such column-selection sketches GS
can be computed adaptively using the concept of ridge leverage scores. Regardless
of how the approximation is obtained, there is an equivalence between computing
α̂ and solving a dual saddle point problem with matrix A and other data (b, c, µ) =
(h, 0, mλ). That dual saddle point problem can naturally be approached by sketch-
and-precondition methods from Section 3.2.2. The preconditioner generation steps
in this context are subtle and addressed in Appendix B.4.2.

Applying a random subspace constraint

By taking the gradient of the objective function in (3.1) and multiplying the gradient
by the positive definite matrix G, we can recast (3.1) as minimizing

Q(α) = α∗(G2 + mλG)α− 2h∗Gα.

In [YPW17], a sketch-and-solve approach to the problem of minimizing this loss
function is proposed. Specifically, one minimizes Q(α) subject to a constraint that
α is in the range of a very tall m × n sketching operator S. The constrained
minimization problem is equivalent to minimizing z 7→ Q(Sz) over n-vectors z.
This in turn is equivalent to solving a highly overdetermined least squares problem,
with an (m + n) × n data matrix A = [GS;

√
mλR] where R is any matrix for

which R∗R = S∗GS. This problem can clearly be handled by our methods from
Section 3.2.2.
Remark 3.2.2. We note that [YPW17] presumes access to the sketches h∗GS, S∗GS,
and S∗G2S, and it advocates for solving the resulting n-dimensional minimization
problem by a direct method in O(n3) time. However, it does not provide recom-
mended methods for computing the sketch S∗G2S. From what we can tell, the
most efficient way of doing this would be to form the Gram matrix at cost O(mn2)
assuming access to the sketch GS. (Our usage of (m, n) is swapped relative to
[YPW17].)

Page 48

Early Release

3.3 Computational routines
To contextualize the computational routines that follow, we begin in Section 3.3.1
with a brief discussion of optimality conditions for saddle point problems. From
there, we present in Sections 3.3.2 and 3.3.3 two families of methods for generating
preconditioners needed by saddle point drivers; our presentation of both families
includes novel observations that lead to improved efficiency and numerical stability.
Then in Section 3.3.4 we discuss deterministic preconditioned iterative methods
for positive definite systems and saddle point problems. Such iterative methods are
applicable to all drivers from the previous section (although less so for Section 3.2.1).

Routines not detailed here

In addition to the routines listed here, the driver from Section 3.2.3 requires meth-
ods to compute Nyström approximations, which are described in Section 4. The
drivers from Section 3.2.4 stand to benefit from specialized data-aware methods
for sketching kernel matrices. While such methods could reasonably be considered
computational routines we defer our discussion of data-aware sketching to Section 6.
We also note that this section does not describe computational routines for sketch-
and-solve type drivers. This is because those drivers are extraordinarily simple
to implement and there is no need to isolate their building blocks into separate
computational routines.

3.3.1 Technical background: optimality conditions for saddle point
problems

Here, we provide a handful of characterizations of optimal solutions for saddle point
problems. Let us begin by calling an n-vector x primal-optimal if it solves (3.2).
Analogously, an m-vector y shall be called dual-optimal if it solves (3.3) when µ is
positive or (3.4) when µ is zero.

Primal-dual optimal solutions can be characterized with saddle point systems.
These are a class of 2× 2 block linear systems that arise broadly in computational
mathematics and especially in optimization. General introductions to these systems
can be found in the survey [BGL05] and the book [OA17]. We are interested in
saddle point systems of the form[

I A
A∗ −µI

] [
y
x

]
=

[
b
c

]
. (3.10)

A solution to such a system always exists when µ is positive or when the tall matrix
A is full-rank. Given that assumption, it can be shown that a point x̃ is primal-
optimal if and only if there is a ỹ for which (x̃, ỹ) solve (3.10). Similarly, a point ỹ
is dual-optimal if and only if there is an x̃ for which (x̃, ỹ) solve (3.10).

Saddle point systems are often reformulated into equivalent positive semidefinite
systems. Specifically, one can take system’s upper block to define y = b−Ax, and
then substitute that expression into the system’s lower block. This gives us the
normal equations

(A∗A + µI)x = A∗b− c. (3.11)
Therefore one can solve (3.10) by first solving (3.11) and then setting y = b− Ax.
Such an approach to underdetermined least squares is suggested by Björck in his
books [Bjö96; Bjö15].

Page 49

Early Release

Thinking in terms of the normal equations helps with the design of precon-
ditioners. When accurate solutions are desired, however, it is preferable to em-
ploy reformulations that reduce the need for matrix-vector products with the linear
operator A∗A. Such reformulations start by defining an augmented data matrix
Aµ = [A;√µIn]. For dual saddle point problems, one solves

min{ ‖∆y‖2
2 : ∆y ∈ Rm+n, (Aµ)∗∆y = c− A∗b}, (3.12)

and subsequently recovers the dual-optimal solution y = [b1 + ∆y1; . . . ; bm + ∆ym].
For primal saddle point problems, one computes some bshift ∈ Rm+n satisfying
(Aµ)∗bshift = c and then defines bµ = [b; 0n]− bshift. Any solution to the resulting
problem

min
x∈Rn

{
‖Aµx− bµ‖2

2
}

(3.13)

is primal-optimal. Of course, this reformulation is only useful if we have a cheap way
to compute bshift. As it happens, however, randomized methods for preconditioner
generation provide methods to compute a near-minimum-norm solution to A∗u = c
in O(mn) extra time compared to when c = 0. We illustrated this process earlier
with an SVD-based preconditioner in Algorithm 2.

Inconsistent saddle point systems

Suppose that µ is zero, so as to allow for the possibility that (3.10) is consistent.
Under this assumption, (3.10) is inconsistent if and only if c is not in the range
of A∗. When framed in this way, we have that (3.10) is inconsistent if and only if
(3.4) has no feasible solution. What’s more, since c 6∈ range(A∗) is equivalent to
c 6∈ ker(A)⊥, we see that inconsistency of (3.10) is equivalent to (3.2) having no
optimal solution. Therefore a saddle point system is consistent if and only if its
associated saddle point problems are well-posed; for ill-posed problems, recall that
we canonically assign solutions per (3.5).

3.3.2 Preconditioning least squares and saddle point problems:
tall data matrices

There is a simple unifying framework for preconditioner generation of the kind used
in [RT08; AMT10; MSM14]. The framework is applicable to any least squares or
saddle point problem (3.2)–(3.4) in the regime m� n. We describe its general form
below and then turn to its concrete instantiations.

Sketch and orthogonalize

To describe our framework, begin by defining a sketch Ask = SA where the sketching
operator S has d ≳ n rows. We also define the augmented matrices

Aµ =
[

A√
µI

]
and Ask

µ =
[

Ask
√

µI

]
.

These augmented matrices are only used as a formalism. They reflect the influ-
ence of the normal equations (3.11) on preconditioner design. We emphasize that
we specifically allow for µ = 0 and one need not form these augmented matrices
explicitly in memory.

Next, we introduce two key terms.

Page 50

Early Release

We say that a matrix M orthogonalizes Ask
µ if the columns of Ask

µ M are
an orthonormal basis for the range of Ask

µ . Such a matrix is called a
valid preconditioner for Aµ if, in addition, rank(Ask

µ) = rank(Aµ).

We note that the rank requirement of a valid preconditioner is nearly universal
in practice. For example, it holds with probability one for uniform and Gaussian
operators (§2.3). We conjecture that it holds with exponentially-high probability
for suitable SASOs (§2.4.1) and for SRFTs (§2.5).

How good are these preconditioners? In our context, M is a good preconditioner if
the spectrum of AµM can be divided into a small number of tightly clustered groups.
Given the tools at our disposal in RandNLA, we mostly aim for the spectrum of
this matrix to be tightly clustered into a single group, i.e., for its condition number
to be small. In this regard, we can provide the following principle.

If M is a valid preconditioner for Aµ, then the condition number of AµM
does not depend that of Aµ.

This principle can be formalized with the following proposition, which we state
without regularization for the sake of clarity.

Proposition 3.3.1. Let U be a matrix whose columns form an orthonormal basis
for the range of A. If M is a valid preconditioner for A, then the spectrum of AM
is equal to that of (SU)†.

[RT08, Theorem 1] provides a very similar statement under the assumption that A
is full-rank. [MSM14, Lemma 4.2] improved upon [RT08] by supporting the rank-
deficient case, at the price of strong assumptions on the sketching operator and the
form of the preconditioner. In Appendix B.1 we provide what to our knowledge is
the first proof of Proposition 3.3.1 in its general form; we also explain its application
to regularized problems.

Up next. We now turn to how one can compute orthogonalizers. To keep things at
a reasonable length we only speak to QR-based and SVD-based methods, although
others could also be used. Our goal is to provide a general overview that includes
time and space complexity considerations. As to the latter consideration, we must
note that these preconditioners have insubstantial space requirements when A is
dense and m � d ≳ n. Separately, we note that details of the preconditioner
generation process can affect the sketch-and-solve preprocessing step in sketch-and-
precondition algorithms. For more information on theoretical properties of these
preconditioners in a RandNLA context, we refer the reader to [CFS21].

QR-based preconditioning in the full-rank case

QR-based preconditioning when µ = 0 is very simple; one need only run Householder
QR on Ask and return M = R−1 as a linear operator. We note that specialized
methods for QR decomposition of tall-and-skinny matrices would not be appropriate
here, since the d× n matrix Ask will have d ≳ n. Householder-type representations
of Ask’s QR decomposition are especially useful since they require a modest amount
of added workspace on top of storing Ask.

Page 51

Early Release

The case with µ > 0 is more complicated if we want to avoid forming Ask
µ

explicitly. To describe it, suppose we have an initial QR decomposition Ask = QoRo.
It is easy to show that the factor R from a QR decomposition of Ask

µ is the same as
the triangular factor from a QR decomposition of R̂ := [Ro;√µI]. This observation
is useful because there are specialized algorithms for QR decomposition of matrices
given by an implicit vertical concatenation of a triangular matrix and a diagonal
matrix; these specialized algorithms only require O(n) additional workspace. The
factor Q from a QR decomposition of Ask

µ can also be recovered with this approach,
although the representation would be somewhat complicated.

If A is not too ill-conditioned then the same preconditioner can be obtained by
Cholesky-decomposing the regularized Gram matrix

(Ask
µ)∗(Ask

µ) = (Ask)∗(Ask) + µI,

since the upper-triangular Cholesky factor of that matrix is the same as the factor
R from the QR decomposition of Ask

µ . This approach is simple to implement, and
its time and space requirements are unaffected by whether or not µ is zero. A
sophisticated implementation could even try to form the regularized Gram matrix
without allocating dn space for Ask as an intermediate quantity. Although, it is
clear that unless such a sophisticated implementation is used, there is no material
memory savings compared to the Q-less QR approach described above. This ap-
proach also affects sketch-and-solve preprocessing by requiring that we solve the
normal equations, which is not a numerically stable approach [Bjö96].

QR-based preconditioning in the rank-deficient case

Suppose for ease of exposition that µ = 0 and let k = rank(Ask) ≲ n. One can use
a variety of methods to compute preconditioners that are morally triangular in the
sense that they are of the form M = PR−1 for an n× k partial-permutation matrix
P and a triangular matrix R. As long as the preconditioner orthogonalizes Ask,
we can postprocess zsol = argmin ‖AMz − b‖2

2 to obtain xsol = Mz which solves
min ‖Ax− b‖2

2.
The subtlety here is that when k < n there is a nontrivial affine subspace of

optimal solutions to min ‖Ax − b‖2
2. Our stated goal in the rank-deficient case is

to find the minimum-norm solution to the least squares problem (see Eq. (3.5)).
Unfortunately, if we assume that b has no role in defining M, then it is clearly
impossible to guarantee that the norm of the recovered solution is anywhere near
the minimum possible among all minimizers of ‖Ax− b‖2

2.

SVD-based preconditioners

Let us denote the SVD of Ask by U diag(σ)V∗.
First we consider preconditioner generation when µ = 0. In this case we must

account for the fact that Ask might be rank-deficient. Letting k denote the rank of
Ask, the SVD-based preconditioner is the n× k matrix

M =
[

v1

σ1
, . . . ,

vk

σk

]
.

This construction is important, because it can be shown that if z⋆ solves

min
z
‖AMz − b‖2

2 + c∗Mz (3.14)

Page 52

Early Release

then x = Mz⋆ satisfies (3.5). We note in particular that (3.14) has a unique optimal
solution and so computing z⋆ is a well-posed problem.

SVD-based preconditioning is conceptually simpler when µ is positive, since
in that case it does not matter if Ask is rank-deficient. However, it is harder to
efficiently implement compared to when µ = 0. Here we present an efficient con-
struction based on the relationship between the SVD of a matrix and the eigende-
composition of its Gram matrix. Specifically, recall that the right singular vectors
of a matrix F are the eigenvectors of F∗F, and that the singular values of F are the
square roots of the eigenvalues of F∗F.

When used in our context this fact implies that the right singular vectors of Ask
µ

are equal to those of Ask, and that its singular values are

σ̂i =
√

σ2
i + µ.

These observations alone are sufficient to recover the preconditioner

M = V diag
(

1
σ̂1

, . . . ,
1

σ̂n

)

which orthogonalizes Ask
µ .

As a final point we consider the problem of recovering the left singular vectors
of Ask

µ given the SVD of Ask. This is useful in settings such as Algorithm 2 for
presolve and problem transformation purposes. Moreover, it can actually be done
efficiently. If we define

D1 = diag
(

σ1

σ̂1
, . . . ,

σn

σ̂n

)
and D2 = diag

(√
µ

σ̂1
, . . . ,

√
µ

σ̂n

)

then by assumption on M the left singular vectors of Ask
µ are given by

[
Ask
√

µI

]
M =

[
AskM√

µM

]
=

[
UD1
VD2

]
.

We note that the column-orthonormality of this matrix can easily be verified by its
rightmost representation.

To recap, we have introduced three key benefits of SVD-based preconditioning
for tall least squares and saddle point problems. First, it can be used to find the
minimum norm solutions in (3.5) in the rank-deficient case. Second, an SVD-based
preconditioner can be computed in the presence of regularization given only the
singular values and right singular vectors of Ask. Third, the SVD of Ask is sufficient
to recover the SVD of Ask

µ , which facilitates sketch-and-solve as a preprocessing step
in sketch-and-precondition.

Remark 3.3.2 (Computational complexity). The default algorithm for SVD is cur-
rently divide-and-conquer [GE95]. Two somewhat-outdated algorithms for comput-
ing the SVD are described in [GV13, §8.6]; [GV13, Figure 8.6.1] provides complexity
estimates for these algorithms depending on whether the left singular vectors need
to be computed.

Page 53

Early Release

3.3.3 Preconditioning least squares and saddle point problems:
data matrices with fast spectral decay

Interpreting the Nyström preconditioner. Recall from Section 3.2.3 that the Nyström
preconditioning approach to solving (G + µI)x = h starts by constructing a low-
rank approximation of G. That approximation defines a preconditioner P satisfying
three properties:

1. P is positive definite.

2. (G + µI)P−1 is well-conditioned on a subspace L that contains G’s dominant
eigenspaces.

3. P acts as the identity on L⊥ (the orthogonal complement of L).

Such a preconditioner will be effective when the action of G on L⊥ is “not too
pronounced” compared to that of µI. Specifically, if we define the restricted spectral
norm of G on L⊥

‖G‖L⊥ = max{‖Gz‖2 : z ∈ L⊥, ‖z‖2 = 1}

then the preconditioner will be effective if ‖G‖L⊥/µ is O(1).

Adaptation to saddle point problems. Nyström preconditioners can naively be used
for regularized saddle point problems by taking G = A∗A and considering the
normal equations (3.11). However, the numerical properties of iterative least squares
solvers that only access A∗A tend to be less robust than those of iterative solvers
that access A and A∗ separately (i.e., solvers such as LSQR). This motivates having
an extension of the Nyström preconditioner to be compatible with the latter type
of solver.

Towards this end, let us express P−1 with a (possibly non-symmetric) matrix
square-root M, satisfying the relation P−1 = MM∗. We appeal to the well-known
fact that running PCG on (G + µI)z = h with preconditioner P is equivalent to
running the “unpreconditioned” CG algorithm on

M∗(G + µI)Mz = M∗h.

When framed in this way, we can ask how M should relate to A and µ so that it
would be a good preconditioner if it were used on the normal equations.

To answer this question we work with the augmented matrix Aµ = [A;√µIn].
The basic criteria for a P as a Nyström preconditioner for the normal equations
(3.11) can be stated with M as follows:

1. AµM should be well-conditioned on a subspace L that includes the dominant
right singular vectors of Aµ.

2. we should have AµMx = Aµx for all x ∈ L⊥.

Whether such a preconditioner will be effective can be stated with the “restricted
spectral norm” as defined above. Specifically, M should be effective if the above
conditions hold and ‖A‖L⊥/

√
µ is O(1). We note that the requisite matrix M can

be constructed efficiently by similar principles as methods for low-rank SVD in
Section 4, and we leave the details to future work.

Page 54

Early Release

3.3.4 Deterministic preconditioned iterative solvers
Most of the drivers described in Section 3.2 amount to using randomization to obtain
a preconditioner and then calling a traditional iterative solver that can make use
of that randomized preconditioner. Here we list some iterative solvers that could
be of use for these drivers. We note up front that many factors can affect the ideal
choice of iterative method in a given setting.

• CG [HS52] is the most broadly applicable solver in our context. It applies to
the regularized positive definite system (3.1) and the normal equations of the
primal saddle point problem (3.11).

• CGLS [HS52] applies when c is zero. It is equivalent to CG on the normal
equations in exact arithmetic, but is more stable than CG in finite-precision
arithmetic.

• LSQR [PS82] applies when at least one of c or b is zero. When considered for
overdetermined problems it is algebraically (but not numerically) equivalent
to CGLS. It is more stable than CG [Bjö96, § 7.6.3], [Bjö15, § 4.5.4] and
CGLS [PS82, § 9] for ill-conditioned problems.

• CS (the Chebyshev semi-iterative method) [GV61] applies to the same class
of systems as CG. It has fewer synchronization points in each iteration and so
can take better advantage of parallelism. It requires knowledge of an upper
bound and a lower bound on the eigenvalues of the system matrix. We refer
the reader to [Bjö96, § 7.2.5], [Bjö15, § 4.1.7] for information on this method.

• LSMR [FS11] applies to the same problems as LSQR. For overdetermined
least squares it is algebraically equivalent to MINRES on the normal equa-
tions. In that context, the residual of the normal equations will decrease with
each iteration, which makes it safer to stop early compared to LSQR.

These algorithms vary in how they accommodate preconditioners. Some require
implicitly preconditioning the problem data, calling the “unpreconditioned” solver,
then applying some (cheap) postprocessing to the returned solution. We note that
it is necessary to “precondition” any regularization term in the problem’s objective
when using such an algorithm.3 For other algorithms, a preconditioner is supplied
alongside the problem data, and the algorithm returns a solution that requires no
postprocessing. The difference between these situations is that different quanti-
ties end up being available for use in termination criteria (at least for off-the-shelf
implementations). We emphasize that appropriate choices of termination criteria
can be crucial for iterative solvers to work effectively, and we refer the reader to
Appendix B.2 for discussion on this and other topics.

Any standard library implementing the drivers from Section 3 should include
computational methods for (preconditioned) CG and LSQR. LSQR is most natu-
rally applied to dual saddle point problems by reformulation to (3.12) and to primal
saddle point problems by reformulation to (3.13). More full-featured RandNLA li-
braries would do well to include implementations of CS or LSMR, and “blocked”
versions of iterative solvers. Such blocked methods apply to linear systems and least

3That is, if we precondition a ridge regression problem, then it is necessary to precondition the
augmented matrix [A; √

µI] in an unregularized version of the problem.

Page 55

Early Release

squares problems with multiple right-hand sides; they take better advantage of par-
allel hardware and have slightly faster convergence rates than their non-blocked
counterparts.

3.4 Other optimization functionality
Here, we briefly discuss other RandNLA algorithms of note for least squares or
optimization, often commenting on how they fit into our plans for RandLAPACK.
Some of these algorithms are out-of-scope for a linear algebra library but can be
directly facilitated by the drivers we described in Section 3.

Facilitating second-order optimization algorithms

Many second-order optimization algorithms need to solve sequences of saddle point
systems, where A, b, c vary continuously from one iteration to the next. RandLA-
PACK will support such use-cases indirectly through methods that help amortize
the dominant computational cost of a single randomized algorithm across multi-
ple saddle point solves. See [PW17; RM19] for uses of RandNLA for second-order
optimization.

The most common way for A to vary is by a reweighting: when A = WAo for a
fixed matrix Ao and an iteration-dependent matrix W. The matrix W is typically
(but not universally) a matrix square root of the Hessian of some separable convex
function. The randomized algorithms described in this section will only be useful for
such problems when W and its adjoint can be applied to m-vectors in O(m) time.
This condition is satisfied in limited but important situations such as in algorithms
for logistic regression, linear programming, and iteratively-reweighted least squares.

Stochastic Newton and subsampled Newton methods

Newton Sketch is a prototype algorithm developed over two papers [PW16; PW17]
which is closely related to subsampled Newton methods [XRM17; YXR+18; RM19].
Each is suited to optimization problems that feature non-quadratic objective func-
tions or problems with constraints other than linear equations. These methods
entail sampling a new sketching operator (and applying it to a new data matrix) in
each iteration, with the aim of approximating the Hessian of the objective at the
given iterate. The algorithms described in this section can easily serve as the main
subroutine in Newton Sketch and subsampled Newton methods.

Newton Sketch has a natural specialization for least squares which entails sam-
pling and applying only one sketching operator. This specialization can be viewed
as sketch-and-precondition, where the iterative method for solving the saddle point
system is based on preconditioned steepest-descent. The asymptotic convergence
of this approach can be established in various ways [OPA19; LP19; Tro20]. It has
been shown that “traditional” sketch-and-precondition methods (based on CG or
the Chebyshev semi-iterative method) exhibit faster convergence [LP19]. Therefore
we do not expect to incorporate this method into RandLAPACK.

There are two recently proposed extensions of Newton Sketch that may be suit-
able for solving the saddle point problems described in Section 3.1.2: Hessian av-
eraging [NDM22] and stochastic variance reduced Newton (SVRN) [Der22b]. The

Page 56

Early Release

performance profiles of these methods are better when A is very tall. When special-
ized to least squares, the former method amounts to preconditioned steepest-descent
where the preconditioner is updated at each iteration. By comparison (again in the
least squares setting), SVRN amounts to steepest-descent with a fixed precondi-
tioner that incorporates variance-reduced sketching methods (adapted from [JZ13])
to approximate the gradient at each iteration.

Random features preconditioning for KRR

A random-features approach for computing accurate solutions to problems of the
form (3.1) in the context of KRR is proposed in [ACW17b]. Specifically, [ACW17b]
advocates for using random features to obtain a preconditioner for use in an itera-
tive method such as PCG. Since any such iterative solver requires access to G by
matrix-vector multiplication, Nyström PCG can be applied to the same problems as
this random-features preconditioning. Empirical results strongly suggest that the
Nyström approach has better performance than random-features preconditioning
on shared-memory machines [FTU21]. Thus, we do not plan for RandLAPACK to
provide random-features preconditioning at this time.

Utilities for iterative refinement

Iterative refinement can be used as a tool to compensate for rounding errors in
otherwise reliable linear system solvers. These methods typically work by computing
residuals to higher precision than that used by the solver, running the solver with the
updated residual, and then adding the new solution to the original solution [Bjö96,
§2.9.2].4 LAPACK has some procedures of this kind. See [Hig97] and [DHK+06] for
theoretical and practical analyses.

The best way to use iterative refinement routines to support randomized algo-
rithms in this section is yet to be determined. On the one hand, it may suffice to in-
clude methods similar to those in LAPACK. However, sketch-and-precondition algo-
rithms might pose unique numerical problems that require different techniques. See
[AMT10, §5.7] for some discussion of numerical issues in the sketch-and-precondition
context. It might also be natural for a RandNLA library to have more iterative re-
finement methods than LAPACK in order to better exploit low-precision arithmetic
and accelerators.

3.5 Existing libraries
We know of four high-performance libraries with sketch-and-precondition methods
for least squares: Blendenpik [AMT10], LSRN [MSM14], LibSkylark [KAI+15], and
Ski-LLS [CFS21].5 To our knowledge, LibSkylark is the only RandNLA library which
supports least squares and low-rank approximation (see Section 4.5). None of these
libraries support saddle point problems of the kind we consider, and none of them
make use of Nyström preconditioning.

4In some situations, it can suffice to recompute the residual with the same precision used by
the underlying solver [Bjö96, §2.9.3].

5Note that “Blendenpik” and “LSRN” are names for algorithms and libraries.

Page 57

Early Release

Blendenpik. This library is written in C and callable from Matlab; it is currently
available on the Matlab File Exchange. It uses LSQR as the deterministic iterative
solver, and obtains the preconditioner by running QR on a sketch Ask = SA, where
S is an SRFT. Blendenpik also adaptively calls LAPACK if a problem is deemed too
poorly scaled or if the iterative method performs poorly. It was shown to outperform
an unspecified LAPACK least squares solver on a machine with 8GB RAM and an
AMD Opteron 242 processor [AMT10].

LSRN. This comprises a C++ implementation callable from Matlab and a Python
implementation. The C++ implementation was shown to outperform LAPACK’s
DGELSD on large dense problems, and Matlab’s backslash (SuiteSparseQR) on sparse
problems. The Python implementation has demonstrated that LSRN scales well on
Amazon Elastic Compute Cloud clusters. We note that the Python implementation
relies on an auxiliary Python package with a custom C-extension for sampling from
the Gaussian distribution via the ziggurat method.

LibSkylark. This library is written in C++ and is available on GitHub. Its sup-
port for least squares problems is very general and includes a few deterministic
preconditioned iterative solvers. Its sketch-and-precondition functionality includes
implementations in the styles of Blendenpik and LSRN. LibSkylark has a Python
interface, but only for Python 2.7. Its linear algebra kernels are implemented partly
in the Elemental distributed linear algebra library [PMG+13]. Unfortunately, Ele-
mental is no longer maintained.

Ski-LLS. This is a recently developed C++ library for solving dense and sparse
highly overdetermined least squares problems. It is distinguished by its flexibility in
preconditioner generation. In particular, it supports sketching by SRFTs, Gaussian
operators, and SASOs. It also supports factoring the sketch SA by several methods,
including a standard SVD algorithm, a randomized algorithm for full-rank column-
pivoted QR (see Section 5.1.1), and a standard algorithm for sparse QR. We record
the following (adapted) quote from the GitHub repository that hosts this software:

Ski-LLS is faster and more robust than Blendenpik and LAPACK on
large over-determined data matrices, e.g., matrices having 40,000 rows
and 4,000 columns. Ski-LLS is 10 times faster than Sparse QR and
incomplete-Cholesky preconditioned LSQR on sparse data matrices that
are ill-conditioned and sufficiently large, e.g., with 120,000 rows, 5,000
columns, and 1% non-zeros.

Falkon. Finally, we note the recently developed Falkon library for sketch-and-solve
approaches to KRR powered by multi-GPU machines [MCR+20; MCD+22]. While
this library works outside of our primary data model, it is of interest to anyone
developing software for KRR based on RandNLA.

Page 58

Section 4

Low-rank Approximation

Contents
4.1 Problem classes . 60

4.1.1 Spectral decompositions 61
4.1.2 Submatrix-oriented decompositions 64
4.1.3 On accuracy metrics . 66

4.2 Drivers . 68
4.2.1 Methods for SVD . 68
4.2.2 Methods for Hermitian eigendecomposition 70
4.2.3 Methods for CUR and two-sided ID 72

4.3 Computational routines 74
4.3.1 Power iteration . 75
4.3.2 Orthogonal projections: QB and rangefinders 75
4.3.3 Column-pivoted matrix decompositions 77
4.3.4 One-sided ID and CSS 77
4.3.5 Estimating matrix norms 80
4.3.6 Oblique projections . 81

4.4 Other low-rank approximations 81
4.5 Existing libraries . 83

Modern scientific computing, machine learning, and data science applications
generate massive matrices that need to be processed for reduced run time, reduced
storage requirements, or improved interpretability. Low-rank approximation is a
workhorse approach for achieving these goals. Here, given a target matrix A, the
task is to produce a suitably factored representation of a low-rank matrix Â of the
same dimensions which approximates the matrix A.

We can express the main aspects of a low-rank approximation as computing
factor matrices E and F where

A ≈ Â := E F
m× n m× n m× k k × n

(4.1)

for some k � min{m, n}. We note that it is very common to have a k × k “inner
factor” that appears in between E and F above.

59

Early Release

Such representations facilitate data interpretation by choosing the factors to
have useful structure, such as having orthonormal columns or rows, or being sub-
matrices of the target. The extent of storage reduction from low-rank approxima-
tion depends on whether A is dense or sparse. In the dense case, Â is stored in
O(mk + nk) space. In the sparse case, one representation consists of a dense k × k
inner factor, a slice of k rows of A, and a slice of k columns of A.

The rank k used in a low-rank approximation is a tuning-parameter that the
user can control to trade-off between approximation accuracy and data compression.
The best choice of this parameter depends on context. For instance, one may want
to choose k small enough to graphically visualize coherent structure in the target.
In such a setting one would not expect that Â is close to A in an absolute sense, but
one can still ask that the distance is near the minimum among all approximations
with the desired structure and rank. Alternatively, one might know that A can be
well-approximated by a low-rank matrix, and yet not know the rank necessary to
achieve a good approximation. Such matrices are called numerically low-rank and
arise in applications across the social, physical, biological, and ecological sciences.
For example, they can arise as discretizations of differential operators, where the
extent to which the matrix is numerically low-rank depends on the details of the
operator and the discretization; and they can arise as noisy corruptions of general
(hypothesized) data matrices with low exact rank. When dealing with such matrices
one can iteratively build Â until a desired distance ‖A − Â‖ is small. This section
covers a variety of efficient and reliable low-rank approximation algorithms for both
of these scenarios.

4.1 Problem classes
Low-rank approximation is naturally formalized as an optimization problem; one
chooses Â and its factors to minimize a loss function subject to some constraints.
The most common loss functions are distances Â 7→ ‖A− Â‖ induced by the Frobe-
nius or spectral norms. Alternatively, one can use the discontinuous loss function
Â 7→ rank(Â) as a measure of the storage requirements for Â. Constraints depend
on the loss function in a complementary way. When minimizing a norm-induced
distance, one imposes rank constraints by limiting the dimensions of the factors.
When minimizing the rank of Â (i.e., when seeking an approximation that admits
the smallest-possible representation) one constrains the approximation error ‖A−Â‖
to be at most some specified value. One can also impose structural constraints on
the factors of Â, such as being orthogonal, diagonal, or a submatrix of the target.

Our overview of randomized algorithms for low-rank matrix approximation is
organized around such structural constraints. Accordingly, we use the term prob-
lem class for loose groups of low-rank approximation problems wherein the factors
facilitate similar downstream tasks. Currently, our two problem classes are the
following.

• Spectral decompositions (§4.1.1): this consists of low-rank SVD and Hermi-
tian eigendecomposition.

• Submatrix-oriented decompositions, i.e., decompositions with factors based
on submatrices of the target matrix (§4.1.2): this consists of so-called CUR
and interpolative decompositions.

Page 60

Early Release

Optimal decompositions in the first class often serve as baselines in theoretical
analyses of randomized algorithms for low-rank decomposition in both classes. That
is, such comparisons are made regardless of whether the approximation is spectral
or submatrix-oriented. This fact can blur the distinction between the two problem
classes, and the distinctions can blur even further when one considers methods for
efficiently converting from one decomposition to another. Still, keeping the problem
classes separate is useful as an organizing principle for the most fundamental low-
rank approximation problems in RandNLA.
Remark 4.1.1. Low-rank approximations that impose no requirements on Â’s rep-
resentation are briefly addressed in Section 4.3.6 in the context of computational
routines. Methods for low-rank approximation with other representations (e.g., QR,
UTV, LU, nonnegative factorization) are discussed in Section 4.4.

4.1.1 Spectral decompositions
In what follows we provide an overview of the SVD and Hermitian eigendecomposi-
tion, with emphasis on the roles of these decompositions in low-rank approximation.
After covering these concepts we explain how they provide two perspectives on prin-
cipal component analysis (PCA). We advise the reader to at least skim this overview
material even if they are already familiar with the relevant concepts; low-rank ap-
proximation is much more prominent in RandNLA than it is in classical NLA.

Singular value decomposition

The SVD is widely used to compute low-rank approximations and as a workhorse
algorithm for PCA. Given a m× n matrix A, where n ≤ m (without loss of gener-
ality), its SVD is

A = U Σ V∗

m× n m× n n× n n× n
, (4.2)

where U = [u1, . . . , un] and V = [v1, . . . , vn] are column-orthonormal matrices that
contain the left and right singular vectors of A. The matrix Σ = diag(σ1, . . . , σn)
contains the corresponding singular values; we use the convention that they appear
in decreasing order σ1 ≥ . . . ≥ σn ≥ 0. We can also think about the SVD as
expressing A as the sum of n rank-one matrices

A =
n∑

i=1
σiuiv

∗
i . (4.3)

In applications it is common to encounter data matrices with low-rank structure,
i.e., matrices for which r = rank(A) is smaller than the ambient dimensions m and
n of A. In this case, the singular values {σi : i ≥ r + 1} are zero, the corresponding
singular vectors span the left and right null spaces, and it is natural to consider the
compact SVD where the sum in (4.3) is truncated at i = r. For a matrix A with
approximate low-rank structure, we can obtain approximations with low exact rank
by truncating this sum even earlier, at some k < r:

A ≈ Âk :=
k∑

i=1
σiuiv

∗
i

=[u1, . . . , uk] diag(σ1, . . . , σk)[v1, . . . , vk]∗ = UkΣkV∗
k, (4.4)

Page 61

Early Release

Truncating trailing singular values provides an optimal rank-k approximation in the
sense of solving

Âk ∈ arg min
rank(Â′)=k

‖A− Â′‖. (4.5)

This holds for every k ∈ JrK. In other words, if A is approximated by a rank-k
matrix Âk given through its SVD, no further computation is needed to canonically
obtain approximations of A with any rank k ≤ r.

The optimality result of (4.5) holds for any unitarily invariant matrix norm, and
it is known as the Eckart-Young-Mirsky Theorem when considered for the spectral
norm or Frobenius norm. The reconstruction errors according to these norms are

‖A− Âk‖2 = σk+1(A) and ‖A− Âk‖F =
√∑

j>k

σ2
j (A). (4.6)

These facts are important in applications, where it is common to see rank(A) =
min{m, n} in exact arithmetic and yet for many of the trailing singular values small
that they can be presumed to be noise. That is, the truncation introduced in (4.4)
is often used as a denoising technique.

Hermitian eigendecomposition

A matrix is called Hermitian if it is equal to its adjoint, i.e., if A = A∗. For real
matrices, being Hermitian is the same as being symmetric. The eigendecomposition
of a Hermitian matrix A is

A = V Λ V∗

n× n n× n n× n n× n
, (4.7)

where V is an orthogonal matrix of eigenvectors and Λ = diag(λ1, . . . , λn) is a real
matrix containing the eigenvalues of A. A Hermitian matrix is further called positive
semidefinite (or “psd”) if λi ≥ 0 for all i.

We use the convention of sorting eigenvalues in decreasing order of absolute
value: |λ1| ≥ · · · ≥ |λn|. This provides for a more direct comparison to the SVD.
In particular, under this convention, we obtain low-rank approximations

A ≈ Âk :=
k∑

i=1
λiviv

∗
i

=[v1, . . . , vk] diag(λ1, . . . , λk)[v1, . . . , vk]∗ = VkΛkV∗
k (4.8)

for which the spectral and Frobenius-norm distances to A are the same as those from
(4.6). Indeed, a (truncated) eigendecomposition can be converted to a (truncated)
SVD by taking the columns of V as the right singular vectors, setting the left
singular vectors according to

ui =

{
vi if λi > 0
−vi otherwise

and setting the singular values to σ = |λ| (elementwise).
If a matrix is Hermitian then it is better to compute (and work with) its eigen-

decomposition, rather than its SVD. The first reason for this is that a rank-k eigen-
decomposition requires almost half the storage of a rank-k SVD. The second reason

Page 62

Early Release

is that algorithms for computing low-rank eigendecompositions are able to leverage
structure in the matrix for improved efficiency. These efficiency improvements can
be dramatic for psd matrices, where an eigendecomposition is technically also an
SVD.

Connections to principal component analysis

PCA is a linear dimension reduction technique that is widely used in data science
applications for extracting features, or for visualizing and summarizing complicated
datasets. The idea of PCA is to form k new variables (components) Z = [z1, . . . , zk]
as linear combinations of the variables X = [x1, . . . , xn] ∈ Rm×n (that are assumed
to have been preprocessed to have column-wise zero empirical mean). Specifically,
given the data matrix X, one forms the variables as Z = XW where the weights
W = [w1, . . . , wk] ∈ Rn×k are chosen so that the first component z1 accounts
for most of the variability in the data, the second component z2 for most of the
remaining variability, and so on.

Formally, we can formulate this problem as a variance maximization problem

w1 := arg max
‖w‖2

2=1
Var(Xw) (4.9)

where we define the variance operator as Var(Xw) := 1
m−1‖Xw‖2

2. Defining the
sample covariance matrix C := 1

m−1 X∗X, this problem can be stated as

w1 := arg max
‖w‖2

2=1
w∗Cw. (4.10)

We recognize (4.10) as the variational formulation of the dominant eigenvector of a
Hermitian matrix. That is, w1 satisfies

Cw1 = λ1(C)w1. (4.11)

More generally, PCA finds the weights w1, . . . , wk by diagonalizing the empirical
sample covariance matrix C as C = WΛW∗, and retaining only the top k eigenvec-
tors.

How one actually computes the PCA depends on how the data is presented and
accessed. There are two situations of interest. In situations where the covariance
matrix C is given by the problem at hand—and thus where we access C directly,
but do not directly access the data matrix X—one can directly employ a low-rank
Hermitian eigendecomposition to compute the dominant k eigenvectors. If instead
we are presented with the variables in form of a mean-centered data matrix X, the
low-rank SVD provides a preferable approach to compute the weights W. This is
because we can relate the eigenvalue decomposition of the inner product X∗X to
the SVD of X = UΣV∗ by

X∗X = (VΣU∗)(UΣV∗) = VΣ2V∗. (4.12)

Hence, we obtain the k weights W = [w1, . . . , wk] by computing the top k right
singular vectors Vk = [v1, . . . , vk], and the eigenvalues of the sample covariance
matrix C are given by the diagonal elements 1

m−1 Σ2. Fast randomized algorithms
for computing the SVD and eigenvalue decomposition will enable scaling PCA to
large-scale problems.

Page 63

Early Release

4.1.2 Submatrix-oriented decompositions
Here we describe four types of submatrix-oriented decompositions: a CUR decompo-
sition and three types of interpolative decompositions. Historically, these have been
used far less often than spectral decompositions. However, their value propositions
have become much more compelling in recent years:

• They can offer reduced storage requirements compared to spectral decompo-
sitions. This can be very valuable in processing massive data sets.

• They provide for more transparent data interpretation. This is especially
true when data is modeled as a matrix more as a matter of convenience than
as a strong statement about the data defining a meaningful linear operator
A 7→ Av.

We note that our main purpose here is just to define these various submatrix-
oriented decompositions. As such, the material that follows is dense. We encourage
the reader to return to these definitions as needed while reading later parts of
this section.

CUR decomposition

A CUR decomposition is a low-rank approximation of the form

A ≈ C U R,
m× n m× k k × k k × n

(4.13)

where the factors C and R are formed by small subsets of actual columns and rows
(respectively) of A, and the linking matrix U is chosen so that some norm of A−CUR
is small.

The literature on CUR decomposition traces back to work by Goreĭnov, Zama-
rashkin, and Tyrtyshnikov, who proved existential results for CUR decompositions
with certain approximation error bounds [GZT95; GTZ97]. Goreĭnov et al. moti-
vated their investigations by pointing out that CUR decompositions have far lower
storage requirements than partial SVDs. In particular, they advocated for the ap-
plication of CUR decompositions for low-rank approximation of off-diagonal blocks
in block matrices.

The usage of CUR as a data-analysis tool was popularized by Mahoney and
Drineas [MD09], following the development of efficient randomized algorithms for
computing CUR decompositions with good approximation guarantees [DMM08].
The argument of Mahoney and Drineas was that experts have often a clear under-
standing of the actual meaning of certain columns and rows in a matrix, and this
meaning is preserved by the CUR. In contrast, SVD (or PCA) forms linear combi-
nations of the columns or rows of the input matrix; these linear combinations can
prove difficult to interpret and destroy structures such as sparsity or non-negativity.

Interpolative decompositions

Interpolative decompositions (IDs) represent Â by a product of a small submatrix
of A and an interpolative coefficient matrix, which has very different numerical
properties compared to the linking matrix in CUR. Specifically, an interpolative
coefficient matrix must contain an identity submatrix in a suitable location, and

Page 64

Early Release

it should be well-conditioned. The “conditioning” of an interpolative coefficient
matrix is not interpreted in terms of its singular values. Rather, it is interpreted
in terms of the magnitudes of its entries (see Remark 4.1.2 before the next heading
for discussion on this point). Before we formally define these decompositions it is
prudent for us to make the following distinction up-front:

Full-rank IDs (i.e., exact decompositions of the kind described below)
can be of interest if the matrix is very wide or very tall. By contrast,
CUR decompositions are only of interest as low-rank approximations.

We make this distinction because – as we explain momentarily – computing a full-
rank ID can be useful as a subroutine in algorithms for computing low-rank IDs.
However, any such full-rank IDs will be computed exclusively for very wide or very
tall matrices.

With that distinction in mind we introduce column-IDs. In the low-rank case,
these are decompositions of the form

A ≈ C X,
m× n m× k k × n

(4.14)

where C is given by a small number of columns of A and X is a wide interpolative
coefficient matrix (i.e., it should be well-conditioned in the sense of Remark 4.1.2,
and it must contain a k× k identity among its columns). Full-rank column IDs can
be of interest when m� n, in which case we have k = m and X = C−1A.

Next we consider row IDs. In the low-rank case, these are approximations of
the form

A ≈ Z R,
m× n m× k k × n

(4.15)

where the factors (Z, R) are analogous to before. Specifically, R comprises a small
number of rows of A, and Z is a tall interpolative coefficient matrix.

The column and row submatrices C and R can be represented by ordered column
and row index sets, which we denote by J and I. These ordered index sets are called
skeleton indices, and they determine the locations of the identity submatrix in the
interpolative coefficient matrices. Specifically, identity submatrices in X and Z are
subject to implicit constraints

A[:, J] = A[:, J]X[:, J] , and
A[I, :] = Z[I, :]A[I, :],

where C = A[:, J] and R = A[I, :].
We collectively refer to row IDs and column IDs as one-sided IDs. This concept

can be extended to two-sided ID by considering simultaneous row and column IDs.
In the low-rank case, a two-sided ID is an approximation of the form

A ≈ Z A[I, J] X.
m× n m× k k × k k × n

(4.16)

We note that methods for full-rank one-sided ID can be very useful in computing
low-rank two-sided IDs. That is, if we first compute a low-rank column ID Â = CX
by some black-box method, then after obtaining a full-rank row ID of the tall matrix
C = A[:, J] = ZA[I, J] we have Â = ZA[I, J]X.

Page 65

Early Release

Remark 4.1.2 (Conditioning). Early RandNLA approaches to column ID (e.g.,
[DMM08]) adopted a particular rule to choose the columns C and a particular
form for the matrix X. To this day, it is especially common to define X = C†A in
concrete implementations [DM21b]. Such a matrix X will contain a k × k identity
submatrix when C is full-rank. However, it is not guaranteed to have entries that
are bounded in modulus |Xij | ≤M for some small M . This is significant since such
a bound is related to the rank that may be needed for fixed-accuracy low-rank ID;
see (4.20) and [GE96]. This significance is even reflected in how [DMM08] referred
to their approximations as CX decompositions rather than column IDs.

In order to avoid further complications in our discussion of ID we do not empha-
size the distinction on how entries of interpolative coefficient matrices are bounded.

On relationships between submatrix-oriented decompositions

The landscape of methods for submatrix-oriented decompositions is very inter-
twined. As we have already indicated, algorithms for one-sided ID are the main
building blocks of algorithms for low-rank two-sided ID. Later in this section we also
mention several algorithms for CUR decomposition which depend on algorithms for
one-sided ID. In view of this, we emphasize the following point.

For our purposes it is helpful to introduce hierarchical relationships
among submatrix-oriented decompositions. As such, we will designate
algorithms for one-sided ID as computational routines, while methods
for CUR and two-sided ID will be drivers.

Next, let us point out a sense in which CUR and two-sided ID are “dual” to one
another. Both are submatrix-oriented decompositions that have three factors. For
CUR, the outer factors are submatrices of A and no requirements are placed on the
inner factor (the linking matrix). In particular, if we specify the outer factors by
ordered index sets J and I, then a CUR decomposition is expressed as

A ≈ A[:, J] U A[I, :].
m× n m× k k × k k × n

(4.17)

This can be contrasted with two-sided ID as defined in (4.16). There, the inner
factor is a submatrix of A, and moderate requirements are placed on the outer
factors (the interpolative coefficient matrices).

The properties of “linking matrices” and “interpolative coefficient matrices” are
different enough to warrant their different names. The problem of computing a low-
rank approximation via two-sided ID can be better numerically behaved, compared
to low-rank approximation by CUR [MT20, §13]. However, CUR offers far greater
potential for storage reduction when dealing with sparse matrices. The differences
between two-sided ID and CUR can become less pronounced when one considers
methods for losslessly converting one such representation to the other, as we mention
in Section 4.2.3.

4.1.3 On accuracy metrics
The problems from Section 3 were mostly unconstrained minimization of convex
quadratics. Such problems are very nice, since the gradient of the quadratic loss
function provides a canonical error metric that can be driven to zero. Low-rank

Page 66

Early Release

approximation problems can likewise be framed as optimization problems. However,
these formulations either involve constraints or a nonconvex objective function. This
distinction is important, since these structures rule out checking for a zero gradient
as a cheap optimality condition.

The main error metrics in low-rank approximation are norm-induced distances.
For reasons that we provide under the next two headings it is not appropriate to
consider distances from a computed approximation Â to some nominally “optimal”
approximation. Instead, one measures the distance from the approximation to the
target, most often in the spectral or Frobenius norms.

Distance to optimal approximations

Non-unique solutions and sensitivity to perturbations. Recall from Section 4.1.1 how
truncating A’s SVD at rank k provides an optimal rank-k approximation in any
unitarily invariant norm. Unfortunately, this truncation will be non-unique when
A has more than one singular value equal to σk. This is easiest to see when A = I
is the identity matrix, in which case every diagonal {0, 1}-matrix of rank k is an
optimal rank-k approximation to A.

More generally, if A has multiple singular values that are close to σk, then
extremely small perturbations to A can result in large changes to the singular vectors
corresponding to these singular values; see [Bha97, §6 – §8] for details. This has
a secondary complication: it is harder to estimate the dominant k singular vectors
of a matrix than it is to find a rank-k approximation that is “near optimal” in the
sense of (4.5).

Intractability of computing optimal approximations. When working with submatrix-
oriented decompositions, we do not even have the luxury of defining “optimal”
approximations in the manner of truncated SVDs. Indeed, the problem of finding
an “optimal” ID necessitates specifying a value for M in the regularity condition
|Xij | ≤M . Even when Â has exact rank k, a rank-k column ID with M = 1 always
exists but is NP-hard to find [ÇM09].

Going to another extreme, we could set aside the matter of M and simply set
X = C†A for a matrix C containing k columns of A. In this case it is not known if
the columns can be chosen to minimize Frobenius- or operator-norm error ‖Â−A‖
in time less than O(nk). Still, there are theoretical guarantees for approximation
quality by CUR relative to approximation quality achievable by SVD. We refer the
reader to [DMM08; BMD09] and also to [VM16, §1 - §2] for more information about
CUR and ID in our context.

Distance relative to that of a reference approximation

It is problematic to use a distance from Â to A as an error metric for Â. This is
because there are situations when any such distance will be large even when Â is
close to an “optimal” approximation. The simplest example of this is PCA, in which
cases the approximation rank is O(1), independent of the dimensions of the matrix
or properties of its spectrum. More generally, it can be hard to obtain a low-rank
approximation that is very close to A when A has slow spectral decay, in the sense
that the distribution of its singular values has a heavy tail. Accurate approximations
can also be hard to come by if the factors of Â are highly constrained.

Page 67

Early Release

One handles this situation by considering the distance between A and Â relative
to that between A and some reference matrix Ar. Formally, we concern ourselves
with the smallest value of ϵ needed to achieve

‖A− Â‖ ≤ (1 + ϵ)‖A− Ar‖.

The reference matrices Ar used in RandNLA theory are not available to us when
performing computations. In fact, they are usually not optimal for the formal low-
rank approximation problem at hand. The most common source of non-optimality
is that the reference is subject to a more stringent rank constraint: rank(Ar) <
rank(Â) ≤ rank(A). Another source of non-optimality is that it may not be pos-
sible to decompose the reference into factors with the required structure (e.g., the
structure required by low-rank CUR). For example, an approximation of A obtained
by a rank-k truncated SVD cannot (in general) be converted into a rank-k CUR
decomposition using submatrices of A.

4.2 Drivers
There exist many randomized algorithms for computing low-rank approximations
of matrices. This section focuses on low-rank approximation algorithms that take
the two-stage approach popularized by [HMT11], because this approach has been
demonstrated to be efficient and highly reliable over the years. The high-level
idea of the two-stage approach is the following: first one constructs a “simple”
representation of Â with the aid of randomization, and then one deterministically
converts that representation of Â into a more useful form.

In order to discuss these drivers for low-rank approximation, it is necessary to
mention briefly the following two concepts (these are handled by computational
routines, to be discussed in detail in Section 4.3):

• A QB decomposition is a simple representation that is useful for SVD and
eigendecomposition. The representation takes the form Â = QB for a tall
matrix Q with orthonormal columns and B = Q∗A. The important point
here is that the QB decomposition involves explicit construction of and access
to both Q and B. We discuss QB algorithms in Section 4.3.2.

• Column subset selection (CSS) is the problem of selecting from a matrix a set
of columns that is “good” in some sense. CSS algorithms largely characterize
algorithms for one-sided ID. We discuss methods for these two problems in
Section 4.3.4. They are important here because a one-sided ID can be used
for the simple representation of Â when working toward an SVD, eigendecom-
position, two-sided ID, or CUR decomposition.

4.2.1 Methods for SVD
The are several families of randomized algorithms for computing low-rank SVDs.
Here we describe a few such families, all of which represent Â = UΣV∗ ≈ A by
its compact SVD. Algorithm 3 presents the first such family. It uses a randomized
algorithm to compute a QB decomposition of A, then deterministically computes
QB’s compact SVD, and finally truncates that SVD to a specified rank.

Page 68

Early Release

Algorithm 3 assumes that the QBDecomposer is iterative in nature. Specifically,
it assumes that each iteration adds some number of columns to Q, some number of
rows to B, and that the algorithm can terminate once an implementation-dependent
error metric for QB ≈ A falls below ϵ or once QB reaches a rank limit. Here we
have set the rank limit to k + s where s is a nonnegative “oversampling parameter.”

Algorithm 3 SVD1 : QB-backed low-rank SVD (see [HMT11] and [RST10])
1: function SVD1(A, k, ϵ, s)

Inputs:
A is an m× n matrix. The returned approximation will have rank at
most k. The approximation produced by the randomized phase of the
algorithm will attempt to A to within ϵ error, but will not produce
an approximation of rank greater than k + s.

Output:
The compact SVD of a low-rank approximation of A.

Abstract subroutines:
QBDecomposer generates a QB decomposition of a given matrix; it
tries to reach a prescribed error tolerance but may stop early if it
reaches a prescribed rank limit.

2: Q, B = QBDecomposer(A, k + s, ϵ) # QB ≈ A
3: r = min{k, number of columns in Q}
4: U, Σ, V∗ = svd(B)
5: U = U[: , : r]
6: V = V[: , : r]
7: Σ = Σ[: r , : r]
8: U = QU
9: return U, Σ, V∗

The literature recommends setting s to a small positive number (e.g., s = 5
or s = 10) to account for the fact that the trailing singular vectors of QB may
not be good estimates for the corresponding singular vectors of A. However, using
any positive oversampling parameter complicates the interpretation of the error
tolerance ϵ. If a user deems this problematic then they can simply set k ← k + s
and s ← 0. Such an approach can be reasonable if tuning parameters for the
QB algorithm are chosen appropriately. Specifically, if techniques such as power
iteration are used (see Section 4.3.1) then the trailing singular vectors of QB can
be reasonably good approximations to the corresponding singular vectors of A.

Converting from an ID

Setting our sights beyond Algorithm 3, it is noteworthy that if Â is given in any
compact representation then it can be losslessly converted into an SVD without ever
accessing A. For example, conversion from a row ID to an SVD is illustrated implic-
itly in [HMT11, Algorithm 5.2]. Such approaches are potentially useful because row
IDs can easily be implemented in a way that accesses A with a single matrix-matrix
multiplication and then by selecting a subset of its rows. However, this comes at a
cost of a much less accurate solution compared to typical QB methods.

Page 69

Early Release

Single-pass algorithms

For very large problems the main measure of an algorithm’s complexity is the num-
ber of times it moves A through fast memory. Besides the above ID-based method,
there are three algorithms for low-rank SVD which move A through fast memory
only once. Each of them uses multi-sketching in the sense of Section 2.6. The first
and second options simply use Algorithm 3, but specifically with single-pass QB
methods based on type 1 or type 2 multi-sketching. Discussion of such QB algo-
rithms is deferred to Section 4.3.2. The third option is the algorithm described in
[TYU+17b, §7.3.2], which relies on type 3 multi-sketching.

One is unlikely to accurately approximate singular values or singular vectors
with single-pass algorithms. This motivates methods for estimating the error of
such approximations. Appendix E.3 provides a bootstrap-based error estimator
applicable when one only needs singular vectors from one side of the matrix.
Remark 4.2.1. Algorithms designed to minimize the number of views of a matrix
are usually analyzed in the pass efficient model for algorithm complexity [DKM06a].
Early work on randomized pass-efficient and single-pass algorithms can be found in
[FKV04; DKM06a; DKM06b].

4.2.2 Methods for Hermitian eigendecomposition
Each randomized algorithm for low-rank SVD has a corresponding version that is
specialized to Hermitian matrices. We recount those specialized algorithms here
and mention an additional algorithm that is unique to the approximation of psd
matrices. In general, we shall say that A is n×n and that the algorithms represent
Â = V diag(λ)V∗, where V is a tall column-orthonormal matrix and λ is a vector
with entries sorted in decreasing order of absolute value.

Hermitian indefinite matrices

Algorithm 4 provides a variation of [HMT11, Algorithm 5.3]. Its parameters (k, ϵ, s)
have essentially the same interpretations as in QB-backed SVD. When s = 0, the
output of the algorithm is simply a compact eigendecomposition of QCQ∗ where
C = Q∗AQ and Q is obtained from a black-box QBDecomposer function.

The main distinction between this method and Algorithm 3 is that ϵ is scaled
down by a factor 1/2 before being passed to QBDecomposer. This change is necessary
to ensure that if s = 0 and ‖QB − A‖ ≤ ϵ then the final approximation satisfies
‖Â− A‖ ≤ ϵ; see [HMT11, §5.3].

[HMT11, Algorithm 5.4] is a second approach to Hermitian eigendecomposition,
based on postprocessing a low-rank row ID of A. We do not provide pseudocode
for this algorithm in this monograph. However, the basic observation underlying
the approach is that one can use the symmetry of A to canonically approximate
an initial row ID Â = ZA[I, :] ≈ A by the Hermitian matrix ˆ̂A = ZA[I, I]Z∗.
The compact representation of this Hermitian matrix makes it easy to compute its
eigendecomposition by a lossless process.

When should one use [HMT11, Algorithm 5.4] over Algorithm 4? Our answer is
are the same as for using [HMT11, Algorithm 5.2] over Algorithm 3. In particular,
[HMT11, Algorithm 5.4] is only of interest when the row ID moves A through fast
memory once, and it should be considered alongside other low-rank eigendecompo-
sition algorithms with similar data movement patterns.

Page 70

Early Release

Algorithm 4 EVD1 : QB-backed low-rank eigendecomposition; see [HMT11]
1: function EVD1(A, k, ϵ, s)

Inputs:
A is an n × n Hermitian matrix. The returned approximation will
have rank at most k. The approximation produced by the randomized
phase of the algorithm will attempt to A to within ϵ error, but will
not produce an approximation of rank greater than k + s.

Output:
Approximations of the dominant eigenvectors and eigenvalues of A.

Abstract subroutines:
QBDecomposer generates a QB decomposition of a given matrix; it
tries to reach a prescribed error tolerance but may stop early if it
reaches a prescribed rank limit.

2: Q, B = QBDecomposer(A, k + s, ϵ/2)
3: C = BQ # since B = Q∗A, we have C = Q∗AQ
4: U, λ = eigh(C) # full Hermitian eigendecomposition
5: r = min{k, number of entries in λ}
6: P = argsort(|λ|)[: r]
7: U = U[: , P]
8: λ = λ[P]
9: V = QU

10: return V, λ

Some alternative approaches with similar access patterns are the QB methods
based on type 1 or type 2 multi-sketching alluded to in Section 4.2.1. Besides those
approaches, [HMT11, Algorithm 5.6] is especially notable. It accesses A exclusively
through a single sketch Y = AS and it makes no assumptions on the representation
of A in-memory. This access pattern is possible because the algorithm solves a
least squares problem involving Y, orth(Y), and S to project a small k × k “core
matrix” onto the set of Hermitian matrices. The re-use of the sketching operator
S at a later stage of the algorithm draws parallels with algorithms based on multi-
sketching, although it does not amount to multi-sketching in a technical sense.

Nyström approximations for positive semidefinite matrices

Now we suppose that the n × n matrix A is psd, in which case we can define the
Nyström approximation of A with respect to a matrix X as

Â = (AX) (X∗AX)† (AX)∗. (4.18)

When framed this way, the Nyström approximation is defined for any matrix X
with k ≤ n columns. Indeed, it does not even presume that X is random. However,
in RandNLA, we ultimately set X to a sketching operator and produce a compact
spectral decomposition Â = V diag(λ)V∗. For any given type of sketching operator,
low-rank approximation of psd matrices by Nyström approximations tend to be
more accurate than approximations produced by comparable algorithms for general
Hermitian eigendecomposition.

Page 71

Early Release

What’s in a name? Disambiguating “Nyström approximation.” The literature on
randomized algorithms for Nyström approximation heavily emphasizes using col-
umn selection operators [WS00; DM05; Pla05; KMT09a; KMT09b; LKL10; Bac13;
GM16; RCR15; DKM20]. This stems from an analogy between sampling columns
of kernel matrices in machine learning and the Nyström method from integral equa-
tion theory. See [DM05, §5] for a detailed discussion. In view of the prominence
of column sampling in Nyström approximations, part of Section 6 is dedicated to
specialized methods for sampling columns from psd matrices.

When X is a general sketching operator, the approximation (4.18) has been called
a “projection-based SPSD approximation” [GM16]. The different terminology for
general sketching operators X is helpful for distinguishing the resulting approxima-
tions from those referred to as “Nyström approximations” in the machine learning
literature. However, it is not in line with our philosophy that RandNLA concepts
should be described with minimal assumptions on the nature of the sketching distri-
bution. This philosophy, first advocated for by Drineas and Mahoney [DMM+11;
MD16], leads us to adopt the following convention.

The term “Nyström approximation” shall be used for any approximation
of the form (4.18), even when X is a general sketching operator.

We note that this also follows the convention used by El Alaoui and Mahoney in
their work on kernel ridge regression (see [AM15, Theorem 1]).

Algorithms. Algorithm 5 is a practical approach to low-rank eigendecomposition
by Nyström approximation. It includes a function call TallSketchOpGen(A, k + s)
which returns a sketching operator S with n rows and k + s columns. Our reason
for specifying a sketching operator in this way is to provide flexibility in whether
the sketching operator is data-oblivious or data-aware. In this context, the main
type of data-aware sketching operator would be based on so-called power iteration;
see Section 4.3.1 and [GM16].

The role of the parameter s in Algorithm 5 is analogous to that in Algorithms 3
and 4 – the algorithm effectively computes data needed for a rank k + s eigen-
decomposition before truncating that approximation to rank k. However, unlike
Algorithms 3 and 4, Algorithm 5 provides no control of approximation error. We
refer the reader to [FTU21, Algorithm E.2] for a more sophisticated version of this
algorithm which can accept an error tolerance.

4.2.3 Methods for CUR and two-sided ID
Here we describe two approaches to CUR and one approach to two-sided ID. The
descriptions are largely qualitative in that they are stated in terms of algorithms
for low-rank column ID and CSS (which are detailed in Section 4.3.4).

The first qualitative approach to CUR computes the column and row indices
(J, I) in one stage and then computes the linking matrix U in a second stage. The
column indices J are obtained by a randomized algorithm for CSS on A, then
the row indices I are obtained by some CSS algorithm on C∗ = A[:, J]∗.1 There
are two canonical choices for the linking matrix in this context: one obtained by
projection Uproj = (A[:, J])† A (A[I, :])† and one obtained by submatrix inversion
Usub = A[I, J]†.

1Of course, this process could be reversed to compute I and then J .

Page 72

Early Release

Algorithm 5 EVD2 : for psd matrices only; adapts [TYU+17a, Algorithm 3]
1: function EVD2(A, k, s)

Inputs:
A is an n×n psd matrix. The returned approximation will have rank
at most k, but the sketching operator used in the algorithm can have
rank as high as k + s.

Output:
Approximations of the dominant eigenvectors and eigenvalues of A.

Abstract subroutines:
TallSketchOpGen generates a sketching operator with a prescribed
number of columns, for use in sketching a given matrix from the
right.

2: S = TallSketchOpGen(A, k + s)
3: Y = AS
4: ν =

√
n · ϵmach · ‖Y‖ # ϵmach is machine epsilon for current numeric type

5: Y = Y + νS # regularize for numerical stability
6: R = chol(S∗Y) # R is upper-triangular and R∗R = S∗Y = S∗(A + νI)S
7: B = Y(R∗)−1 # B has n rows and k + s columns
8: V, Σ, W∗ = svd(B) # can discard W
9: λ = diag(Σ2) # extract the diagonal

10: r = min{k, number of entries in λ that are greater than ν}
11: λ = λ[:r]− ν # undo regularization
12: V = V[:, :r].
13: return V, λ

Such randomized algorithms for CUR were first proposed in [DMM08; BMD09],
particularly with linking matrices closer to the form Usub. However, we note that
the approximation error incurred by using Uproj will never be larger than when
using Usub. Furthermore, the process of computing the former matrix is better
conditioned than the process of computing the latter. Therefore it is generally
preferable to use Uproj as the linking matrix when using the qualitative approach
described above. Deterministic analyses of CUR approximation quality with various
linking matrices can be found in [GZT95; GTZ97].

The second qualitative approach to CUR computes one of (I, J) by an algorithm
for ID and then makes one application of a pseudo-inverse. Suppose that J came
from a column ID along with interpolative coefficient matrix X. Then we recover I
and U by running CSS on C∗ = A[:, J]∗ and setting U = X (A[I, :])†. In full gener-
ality, the CSS step could be handled by a randomized or a deterministic algorithm.

We have illustrated this approach to CUR in Algorithm 6. The CSS step of the
algorithm calls a deterministic function for QRCP with the semantics indicated in
Table 1.1. Whether the algorithm starts with a row ID or column ID depends on
the aspect ratio of the data matrix; [MT20, §13.3] recommend starting with a row
ID when A is wide in the related context of computing two-sided IDs. We note
that if Algorithm 6’s ColumnID subroutine uses X = C†A, then the resulting linking
matrix could have been produced by the first qualitative approach to CUR.

Page 73

Early Release

Algorithm 6 CURD1 : CUR by randomizing an initial ID [VM16; DM21b]
1: function CURD1(A, k, s)

Inputs:
A is an m× n matrix. The returned approximation will have rank at
most k. The ColumnID abstract subroutine can use sketching opera-
tors of rank up to k + s in its internal calculations.

Output:
A low-rank CUR decomposition of A.

Abstract subroutines:
ColumnID produces a low-rank column ID of a given matrix, up to
some specified rank.

2: if m ≥ n then
3: X, J = ColumnID(A, k, s) # |J | = k and A[:, J]X ≈ A
4: Q, T, I = qrcp(A[:, J]∗) # only care about the indices I

5: I = I[: k]
6: U = X (A[I, :])†

7: else
8: Z∗, I = ColumnID(A∗, k, s) # |I| = k and ZA[I, :] ≈ A.
9: Q, T, J = qrcp(A[I, :]) # only care about the indices J

10: J = J [: k]
11: U = (A[:, J])† Z
12: return J, U, I

Now we turn to two-sided IDs. These approximations are canonically computed
by a simple reduction to one-sided ID: first obtain (X, J) by a column ID of A and
then obtain (I, Z) by a row ID of A[:, J]. The initial column ID of A will be computed
by a randomized algorithm and hence will always be low-rank. However, it is
not expensive to compute a full-rank row ID A[:, J] = ZA[I, J] by a deterministic
method under the standard assumption that |J | � min{m, n}. Such an approach
to two-sided ID is described in [VM16, §2.4, §4].

Finally, we note that a two-sided ID can be naturally repurposed for CUR
decomposition by either of the two qualitative approaches to CUR described above.
In the first case one only needs the index sets (I, J) and computes the linking
matrix by any desired method. In the second case one needs the index sets and one
of the interpolative coefficient matrices (i.e., one of Z or X). The latter approach
for converting from two-sided ID to CUR is used in [VM16, §3 and §4]. General
discussion on converting from two-sided ID to CUR can be found in [Mar18, §11.2],
[MT20, §13.2], and [DM21b, §4.1].

4.3 Computational routines
The previous section explained how randomized algorithms for low-rank approx-
imation exhibit a great deal of modularity. Here we provide short summaries of
the design spaces for the constituent modules. These include summaries for the
basic primitives of QB and column ID (§4.3.2 and §4.3.4) and for their building

Page 74

Early Release

blocks (§4.3.1 and §4.3.3). In Section 4.3.5 we cover functions for norm estimation
which are important for solving low-rank approximation problems to fixed accuracy.
Finally, we discuss a viewpoint of low-rank approximation via oblique projections
(§4.3.6), which motivates a type of low-rank approximation that is cheap to compute
but for which the factor matrices have no meaningful structure.

We note that this section mentions many algorithms for a wide variety of prob-
lems. Due to practical constraints we only address a handful of these algorithms
in detail. Pseudocode for select algorithms can be found in Appendix C; these
algorithms have been selected based on some combination of their conceptual sig-
nificance and their practicality.

4.3.1 Power iteration
Given a matrix A, suppose we sketch Y = AS using a tall-and-thin sketching op-
erator S. In a low-rank approximation context – regardless of whether we work
with spectral or submatrix-oriented decompositions – it is generally preferable for
range(Y) to be well-aligned with the span of A’s dominant left singular vectors.
This, in turn, is facilitated by having range(S) be well-aligned with the span of
A’s dominant right singular vectors. To accomplish this, RandNLA libraries should
provide methods for generating such sketching operators based on power iteration.

A basic approach to power iteration makes alternating applications of A and A∗

to an initial data-oblivious sketching operator So, to obtain a data-aware sketching
operators such as

S = (A∗A)q So or S = (A∗A)q A∗So, (4.19)

for some parameter q ≥ 0. Practical implementations need to incorporate some
form of stabilization in between the successive applications of A and A∗). We
provide a general formulation of such a method in Appendix C.1 with Algorithm 8.
Notably, this allows an arbitrary number of passes over the data matrix (including
zero passes, as an API convenience). This method is similar to [ZM20, Algorithm
3.3]; another power method of interest is given in [Bja19, §2].

In the case when A is a linear operator represented as A = JJ∗ one can use
slightly modified power methods; see [Bja19, Algorithm 2 and §4.2.3].

4.3.2 Orthogonal projections: QB and rangefinders
Let’s start with the following definition.

Given a matrix A, a QB decomposition is given by a pair of matrices
(Q, B) where Q is column-orthonormal and B = Q∗A.

The value of QB decompositions stems from how they define approximations by
orthogonal projection: Â = QB = QQ∗A. It is important to represent B explicitly
as a dense matrix when using QB decompositions. If this is not done, then it is
preferable to work with the following related abstraction.

Given a matrix A, a rangefinder computes a column-orthonormal matrix
Q such that QQ∗A could, in principle, be used as an approximation
for A.

Page 75

Early Release

The point of this latter abstraction is that the matrix Q must be available, but the
matrix B = Q∗A need not be explicitly represented.

We note that frameworks of QB decompositions and rangefinders are of limited
use in the “full-rank” setting. Consider for example when A has full row-rank.
In this case any square orthogonal matrix Q and accompanying B = Q∗A would
be valid outputs of rangefinders and QB decomposition algorithms. This shows
that full-rank QB decompositions can not only be trivial (e.g., take Q = I) but
can also be entirely unstructured. Despite this caveat, QB decompositions are of
fundamental importance in randomized algorithms for low-rank approximation.

Algorithms

The simplest rangefinders are based on power iteration. For example, one can
prepare a data-aware sketching operator S of the form (4.19), compute Y = AS, and
then return Q = orth(Y); this is formalized as Algorithm 9 in Appendix C.2. More
advanced rangefinders use block Krylov subspace methods; see [MM15], [Bja19, §7],
and [MT20, §11.7]. Algorithm 10 in Appendix C.2 is the simplest QB algorithm. It
obtains Q by calling an abstract rangefinder and obtains B by explicitly computing
B = Q∗A.

The most effective QB algorithms work by building (Q, B) iteratively [MV16].
Generically, each iteration of such a QB method entails some number of matrix-
matrix multiplications with A (as a rangefinder step), adds a specified number of
columns to Q and rows to B, and makes a suitable in-place update to A. Iterations
terminate once some metric of approximation error A ≈ QB (e.g., ‖A−QB‖2 or an
approximation thereof) falls below a certain level.

Iterative QB methods were improved by [YGL18]. In particular, Algorithm 2 of
[YGL18] does not modify A, it uses a power-iteration-based rangefinder to compute
new blocks for (Q, B), and it efficiently updates the Frobenius error ‖A − QB‖F
as the iterations proceed. Algorithm 4 of [YGL18] performs power iteration before
entering its main iterative loop, it does not access A while in the iterative loop, and
it can terminate early if a target accuracy is met before a pre-specified rank-limit.
The latter algorithm has the advantage of reducing the number of times A is moved
through fast memory. However, it is vulnerable to wasting a substantial amount of
computational work if the rank limit is much higher than necessary.

We provide generalizations of these algorithms in Appendix C.2. Specifically,
Algorithm 11 generalizes [YGL18, Algorithm 2] by allowing an abstract rangefinder
in the iterative loop that updates (Q, B). Algorithm 12 generalizes [YGL18, Algo-
rithm 4] by allowing abstract data-aware sketching operators, which may or may
not be based on power iteration.

Stopping criteria for iterative algorithms

The Frobenius norm is easily computed for sparse matrices and dense matrices that
are stored explicitly in memory. However, it can be difficult to compute for abstract
linear operators when the matrix is accessed only via matrix-vector multiplies, and
this can pose problems in computing QB decompositions to specified accuracy. One
approach to address this situation is by careful application of a well-known random-
ized Frobenius norm estimator as part of the QB decomposition [GCG+19, §3.4,
§3.5, Eq. (3.26)]. We also note that those looking for high-quality approximations
often prefer that error be bounded in spectral norm (and only use the Frobenius

Page 76

Early Release

norm because it is usually very cheap to compute). The problem of estimating spec-
tral norms is well-studied in the NLA literature. Section 4.3.5 reviews randomized
algorithms for estimating various matrix norms.

4.3.3 Column-pivoted matrix decompositions
Consider a general matrix decomposition AP = FT for a well-conditioned factor F,
a triangular factor T, and a permutation matrix P. When F is column-orthonormal
this is QRCP; when F is lower triangular we have LU with partial pivoting (LUPP).2
We are interested in when P is chosen so that we can canonically obtain a rank-k
approximation of A by truncating

Â = F[:, :k]T[:k, :]P∗.

LAPACK provides methods for computing these decompositions (GEQP3 for QRCP
and GETRF for row-pivoted LU) at a cost of O(mn2) when m ≥ n. Some randomized
algorithms for CSS and column ID can be implemented efficiently using only these
methods. However, others require a variant of GEQP3 that only computes the parts
of F and T that are needed to define Â = F[:, I]T[I, :] for an adaptively-determined
index vector I. The standard algorithm to compute such a partial decomposition,
which runs in time O(mn|I|), will appear in version of LAPACK subsequent to
version 3.10.3

The strong rank-revealing QR (strong RRQR) factorizations of [GE96] lead to
the best theoretical guarantees for low-rank approximation by a partial column-
pivoted QR decomposition. In practice, it is more common to truncate the output
of QRCP in the vein of LAPACK’s DGEQP3, which is faster than strong RRQR.
Algorithms based on LUPP are even faster than those based on QRCP. While the
LUPP approach comes with weaker theoretical guarantees, these limitations are
less significant in a randomized context which calls these algorithms primarily on
sketches. There is little practical difference in solution quality between LUPP-based
and QRCP-based randomized algorithms for CSS and column ID [Mar22b].

Other possibilities for column-pivoted matrix decomposition include LU or QR
with tournament pivoting [GDX11; DGG+15]. Tournament pivoting based algo-
rithms exhibit reduced communication and hence can be more efficient without
significant loss of accuracy. We also note that Section 5 mentions a randomized
algorithm for full-rank QRCP. It would be easy enough to modify that algorithm
to support early termination. Some variants of this algorithm specifically focus on
low-rank approximation (e.g., the SRQR algorithm from [XGL17]).

4.3.4 One-sided ID and CSS
Without loss of generality we frame all of our discussion of one-sided ID around
column ID, and we begin this discussion by noting that column ID and CSS are
essentially equivalent problems. That is, a method for CSS can canonically be
extended to a method for column ID by taking X = (A[:, J])†A. Conversely, a
method for column ID can be adapted to CSS by discarding any calculations that
are only needed to form X.

2LU with partial pivoting is often referred to as Gaussian elimination with partial pivoting,
which is abbreviated as GEPP.

3See https://github.com/Reference-LAPACK/lapack/issues/661.

Page 77

https://github.com/Reference-LAPACK/lapack/issues/661

Early Release

Before describing algorithms, we explain an important way in which CSS and
column ID differ from QB. To begin, suppose for a moment that the m× n matrix
A is full row-rank, so m ≤ n. Then for any m ×m orthogonal matrix Q, setting
B = Q∗A provides a representation A = QB. Note that even Q = I and B = A
would be a valid – although useless – QB decomposition. By contrast, a full-rank
column ID provides information on a set of columns that span Rm. This could be of
use in a traditional NLA setting to solve underdetermined linear systems Ax = b.
In our context of low-rank approximation, discussed in Section 4.2.3, such full-rank
column IDs of wide matrices are useful in converting a one-sided ID into a CUR
decomposition or a two-sided ID without increasing approximation error.

In what follows summarize algorithms for these problems (deterministic and
randomized) and we comment on their application to low-rank approximation by
spectral decomposition.

Algorithms

Algorithm 6 from Section 4.2.3 already illustrated how the pivots from deterministic
(partial) QRCP can be used to carry out CSS. Indeed, since the call to QRCP in
that algorithm only used the pivots, it would be perfectly valid to use any (partial)
column-pivoted decomposition from Section 4.3.3. Here we suppose that the pivoted
decompositions are based on QRCP purely for ease of exposition and without loss
of generality. In this regard, it is widely appreciated that a (partial) QRCP of A can
be postprocessed to obtain the matrix X in a (low-rank) column ID. We illustrate
this deterministic approach to column ID in Appendix C.3 with Algorithm 13. We
refer the reader to [VM16, §2.2 – §2.3] for more information on this algorithm.

Now we mention five randomized algorithms for CSS and column ID.
1. One can sample columns with probability proportional to their norms, where

column norms are updated by projecting out selected columns as a QRCP-like
factorization proceeds [DV06].

2. One can sample columns according to a probability distribution related to
so-called leverage scores of the matrix under consideration. This approach is
especially important for Nyström approximation of psd matrices. We discuss
leverage score sampling in detail in Section 6.

3. The CSS algorithm in [BMD09] combines leverage score sampling with post-
processing by deterministic QRCP.

4. The approach to low-rank column ID in [VM16, §5.1] sets Â = A[:, J]X, where
J and X are obtained from a (nearly) full-rank column ID of a sketch Y = SA.

5. [XGL17, §V.D] suggests solving CSS by taking the pivots from a randomized
algorithm for QRCP.

The fourth method mentioned above is given in Appendix C.3 as Algorithm 14.
Appendix C.3 also provides the modification of this column ID method to the CSS
setting via Algorithm 15. For both of these algorithms, it is recommended that S
be a data-aware sketching operator based on power iteration. For more information
on these algorithms we refer the reader to [Mar18, §10.4] and [MT20, §13.4].
Remark 4.3.1. The value of power iteration in the context of CSS / column ID and
in the context of rangefinders / QB is a key reason for considering power iteration
as a basic primitive of RandNLA.

Page 78

Early Release

Application to low-rank spectral decompositions

It is straightforward to compute a low-rank column ID of A, where A is only accessed
with a single matrix-matrix multiplication followed by extraction of some of its
columns; simply consider Algorithm 14 in Appendix C.3 , where S is a data-oblivious
sketching operator. That access pattern for A is very cheap. Indeed, it is cheaper
than what is possible with QB-based algorithms unless one makes assumptions
about A’s representation in-memory.

Such cheap algorithms for column ID lead to especially fast algorithms for low-
rank approximation by spectral decompositions. Following [HMT11, Algorithms
5.2 or 5.4], one can simply compute a column ID and deterministically convert it
to an SVD or eigendecomposition without further accesses to A.

On fixed-accuracy one-sided ID

Standard implementations of deterministic QRCP-based algorithms for one-sided
ID can compute approximations to specified accuracy. Randomized algorithms for
low-rank one-sided ID do not possess this capability to the same extent. Problem
being: randomized algorithms perform QRCP on a sketch of A, e.g., on Y = SA,
and so while it is easy to approximate Y by a low-rank ID Ŷ to prescribed accuracy,
there is no simple relationship between the resulting errors ‖Y− Ŷ‖ and ‖A− Â‖.

In some respects, this is a principal disadvantage of randomized algorithms for
one-sided ID compared to QB. However, there are some partial workarounds which
(implicitly) approximate A via a QB decomposition up to some specified accuracy
and then convert to a one-sided ID. This conversion process incurs additional ap-
proximation error. However, the added approximation error cannot exceed certain
bounds if the conversion is done appropriately. The fact that the conversion process
is lossy leads us to emphasize the following point:

There is no value in computing a one-sided ID to prescribed accuracy
only to convert it to a spectral decomposition later on. The following
methods for fixed-accuracy one-sided ID are only useful for ID and CUR.

The first workaround is given implicitly in [HMT11, Algorithm 5.2], which trans-
forms “a sample from the range of A” (e.g., represented by Q from a rangefinder)
into a row ID in a lossy way, and then losslessly converts that row ID into an SVD.
In our context the sample from range(A) would be the factor Q from a QB de-
composition that satisfies ‖A−QB‖2 ≤ ϵ. Given such a matrix Q, one computes a
full-rank row ID Q = ZQ[I, :] by a method that ensures the entries of Z are bounded
in modulus by two (e.g., as is possible when using strong rank-revealing QR). An
appropriate interpretation of [HMT11, Lemma 5.1] shows that ˆ̂A = ZÂ[I, :] satisfies

‖A− ˆ̂A‖2 ≤
(

1 +
√

1 + 4k(min{m, n} − k)
)

ϵ, (4.20)

where k = |I|. More generally, if the entries of Z are bounded in modulus by some
M > 2, then (following the proof of [HMT11, Lemma 5.1]) the same bound holds
where the factor 4 appearing under the square root replaced by M2.

A second workaround comes from the final paragraph of [VM15, §3.5]. As before,
we suppose that we have computed an initial approximation Â = QB that satisfies
an error bound ‖A−Â‖2 ≤ ϵ. In this second approach, however, we compute column
indices J and an interpolative coefficient matrix X by a full-rank column ID of B;

Page 79

Early Release

this leads to an approximation ˆ̂A = A[:, J]X. If the column ID was obtained from
an appropriate application of rank-revealing QR, then [VM15, §3.5] reports that ˆ̂A
satisfies a modified version of (4.20) where “min{m, n}” is replaced by “n.”

4.3.5 Estimating matrix norms
Norm estimation plays an important role in stopping criteria for iterative low-rank
approximation algorithms, particularly for QB and Nyström approximations. Here
we summarize methods that would be appropriate for expensive norms or norms of
abstract linear operators that are only accessible by matrix-vector multiplications.
Remark 4.3.2. The material presented here is covered in greater detail in [HMT11,
§4.3 - §4.4] and [MT20, §5 - §6, §12.0 - §12.4].

A cheap spectral norm bound. Let the vectors z1, . . . , zr ∈ Rn be vectors with
components drawn iid from the standard normal distribution and let β > 1 be a
tuning parameter. Then, for any A, it is known that the inequality

‖A‖2 ≤ β

√
2
π

max
j∈JrK ‖Azj‖2 (4.21)

holds with probability at least 1 − β−r [HMT11; WLR+08]. Furthermore, this
bound is easy to compute because the necessary vectors Azj can be formed with a
single matrix-matrix product with A.

A basic Frobenius norm estimator. Let Z ∈ Rn×r be the matrix whose columns
are the random vectors z1, . . . , zr mentioned above. Then, it turns out that the
quantity 1

r‖AZ‖2
F is an unbiased estimate for the squared Frobenius norm, in the

sense that
E

[
1
r‖AZ‖2

F

]
= ‖A‖2

F. (4.22)

In addition to being unbiased, the variance of the error estimate can also be con-
trolled according to

var
(

1
r‖AZ‖2

F

)
≤ 2

r‖A‖
2
2‖A‖2

F, (4.23)

as shown in [Gir89]. Hence, as long as r is sufficiently large, then the error estimate
1
r‖AZ‖2

F is likely to be close to ‖A‖2
F. From a computational standpoint, this error

estimate is similar to the one described above for the spectral norm, insofar as it
only requires r matrix-vector products with A.

A cheap Schatten p-norm estimator. Letting σ denote the vector of singular values
of A, the Schatten 2p-norm of A is ‖A‖(S,2p) :=

(∑min{m,n}
i=1 σ2p

i

)1/2p

. Taking
p = 1 reduces to the Frobenius norm. The spectral norm is obtained in the limit
as p→∞. In fact, deterministic bounds show that the spectral norm and Schatten
p-norm more or less coincide when p ≳ log min{m, n}.

The Kong-Valiant estimator [KV17b] can be used to cheaply estimate these
norms. It only accesses A by multiplication with an n× k data-oblivious sketching
operator, where k can be materially smaller than min{m, n}. See [MT20, §5.4] for
a statement of the algorithm and remarks on its theoretical guarantees.

Page 80

Early Release

Accurate spectral norm estimators. There is a large literature on deterministic and
randomized algorithms for estimating spectral norms. Much of this literature is
based on methods designed for estimating the largest eigenvalue of a positive definite
matrix (which can naively be applied since

√
‖A∗A‖2 = ‖A‖2). In particular, Dixon

was the first to study the randomized power method [Dix83], and Kuczyński and
Woźniakowski were the first to study randomized Lanczos methods [KW92]. See
[MT20, Algorithm 5] for a basic randomized Lanczos method and the subsequent
remarks on block randomized Lanczos [MT20, §6.5].

4.3.6 Oblique projections
Low-rank approximations can be expressed in a manner resembling the triple-sketch
from Section 2.6. For sketching operators S1 ∈ Rn×k and S2 ∈ Rd×m, we can define

Â = AS1(S2AS1)†S2A = Y1Y†
3Y2,

where
Y1 = AS1, Y2 = S2A, and Y3 = S2AS1.

This construction obtains each column of Â by projecting the corresponding column
of A onto the range of Y1, where the projection is orthogonal with respect to
the possibly degenerate inner product (u, v) 7→ 〈S2u, S2v〉. We call Â an oblique
projection of A.

The simplest oblique projections use column and row selection operators for
(S1, S2). This provides a CUR decomposition where Y†

3 is the linking matrix U.
The connection to CUR foreshadows a more general fact: the sketching operators
used in oblique projection are not necessarily independent of one another [DMM08].
An example in this regard is that Nyström approximations amount to oblique pro-
jections that use S2 = S∗

1.
It is natural to consider oblique projections where S1 and S2 are independent

(e.g., independent Gaussian operators). Such approximations can entail extremely
ill-conditioned computations if one is not careful. This ill-conditioning can be
avoided through the numerically stable approach described by Nakatsukasa [Nak20].
These approximations employ oversampling for S2 (relative to S1) and split Y3 (or
a regularized variant thereof) into two factors. The representation returned by this
approach consists of four matrices.

Historical notes

Oblique projections for low-rank approximation are closely related to the rank re-
duction formula described in [CFG95]. Drineas et al. first used oblique projections
for low-rank approximation via CUR decomposition [DMM08], wherein S1, S2 are
column and row selection matrices respectively. Clarkson and Woodruff pioneered
the use of general oblique projections in randomized algorithms for low-rank ap-
proximation [CW09, Theorem 4.7]. Oblique projections have since been discussed
in the context of a generalized LU factorization [DGR19].

4.4 Other low-rank approximations
Here we review a handful of other low-rank approximation problems and algorithms,
particularly speaking to our development plans for RandLAPACK.

Page 81

Early Release

Domain-specific representations. Several low-rank approximation problems of inter-
est involve specialized factorizations. We plan for RandLAPACK to eventually sup-
port nonnegative matrix factorization [EMW+18], dynamic mode decomposition
(DMD) [EMK+19; EBK19], and possibly sparse PCA [EZM+20]. Among these
methods, we expect that DMD will have highest priority, since full-rank DMD is
slated for inclusion into LAPACK in the near future [Drm22]. For a general intro-
duction to DMD we refer the reader to [TRL+14].

Low-rank Cholesky. As a separate topic, we note that there is also a longstanding
algorithm for “low-rank Cholesky” decompositions [XG16]. We are unsure of its
eventual role in RandLAPACK, but it will be considered in the near future alongside
the recently proposed algorithm by [CET+22] for randomly pivoted partial Cholesky
decomposition.

Low-rank QR. Suppose A is a large full column-rank matrix with QR decompo-
sition A = QR. This decomposition has two especially prominent uses: (1) it
facilitates application of a pseudoinverse A†v = R−1Q∗v in O(mn) time, and (2) it
can be used as preprocessing for more complicated orthogonal decompositions such
as SVD. Unfortunately, low-rank QR decomposition, which is simply the economic
QR decomposition of a rank-k approximation of A, does not fully realize either of
these use-cases.

The trouble with low-rank QR is that a k × n upper-triangular matrix with
k � n is effectively a full matrix. That is, the mere representation of a low-rank
matrix by a QR decomposition is not much more useful than representation by QB
decomposition. Note also that unpivoted QR makes no effort to provide a rank-
revealing representation, compared to pivoted QR. Therefore RandLAPACK will not
offer methods for low-rank approximation by unpivoted QR.

Low-rank UTV. A UTV decomposition Â = UTV∗ uses column-orthogonal matri-
ces U, V and a triangular matrix T. UTV (also called QLP) can be thought of as a
cheaper alternative to SVD. As we discuss in the next section, RandLAPACK might
provide algorithms for UTV when Â is full-rank [GM18; MQH19; KCL21]. Some of
those algorithms (e.g., that in [MQH19]) proceed iteratively and can be terminated
early. If RandLAPACK supports full-rank UTV by such an algorithm then it will
expose the low-rank variant.

Several algorithms for producing low-rank approximations represented by UTV
are given in [DG17; FXG19; WX20; RB20; KC21]. We would need a better under-
standing of those methods, particularly how they compare to our planned methods
for low-rank SVD, before making decisions on which of them to support.

Low-rank LU. LU is central to solving systems of linear equations in the full-rank
case. There is a small literature on low-rank LU within the field of RandNLA:
[SSA+18; DGR19; ZM20]. In RandLAPACK we anticipate restricting our attention
to algorithms that are related to a Gaussian elimination process (that is, where the
error matrix can be expressed as a Schur complement of a block matrix), along the
lines of [DGR19]. These algorithms are likely more useful for low-rank approxima-
tion with a fixed accuracy requirement rather than with a fixed rank requirement.
They are based on an oblique projection with k = d, that is S2AS1 is square.

Page 82

Early Release

RandLAPACK might include the LU algorithms from [SSA+18] if they can
be proven to be significantly faster than high-quality implementations of QB al-
gorithms. If proven useful, we will consider in the future generalized LU-based
low-rank approximation, as introduced in [DGR19]. The algorithms for low-rank
LU in [ZM20] are based on QB and so are unlikely to be included in RandLAPACK.

4.5 Existing libraries
Here we review five established RandNLA libraries that support low-rank approx-
imation and comment on how they compare to our plans to RandLAPACK. All of
these libraries (except Ristretto) implement advanced sketching operators such as
SRFTs. The end of this section provides pointers to certain research codes and
randomized algorithms which appear in otherwise deterministic NLA libraries.

ID. ID is a Fortran library for ID/CUR [MRS+14]. It is callable as part of the
SciPy Python library. ID provides indirect support for SVD as part of its methods
for converting one low-rank factorization into another. It also includes routines for
rank estimation and norm estimation. RandLAPACK will include many of these
same utilities as ID while expanding its scope of driver-level functions.

RSVDPACK. RSVDPACK is a C and MATLAB library for low rank SVD and
ID/CUR [VM15]. It is callable after building from source code which is provided on
GitHub. Its SVD algorithms are based on a particular QB implementation [VM15,
§3.4] and its ID/CUR algorithms follow [VM16]. RandLAPACK will take more gen-
eral approaches to QB and ID/CUR and include methods for other factorizations
such as Nyström approximations. RSVDPACK comes in different implementations
which target different architectures (e.g., single-core, multi-core, GPU). RandLA-
PACK will target different architectures by building on LAPACK++ [GLA+17],
which is developed as part of SLATE [KWG+17; AAB+17].

Ristretto. Ristretto is available on the Python Package Index. This library is based
on the rsvd package implemented in R [EVB+19]. It supports low rank SVD,
ID/CUR, LU, Nyström, PCA, Hermitian eigendecomposition, nonnegative matrix
factorization [EMW+18], dynamic mode decomposition [EMK+19; EBK19; ED16],
and sparse PCA [EZM+20]. One algorithm is provided for each distinct type of
factorization. Many of these algorithms are based on QB [EVB+19, §3.3], while its
ID/CUR algorithms also follow [VM16]. This library has also been demonstrated
to be useful for finding patterns in large-scale climate data [VEK+19], and for
providing routines for randomized tensor decompositions [EMB+20].

We plan for RandLAPACK to eventually support the same range of factorizations
as Ristretto (with the exception of low-rank LU). However, our priority is to focus
on the factorizations in Section 4.2, and to offer a range of algorithms for computing
each of these decompositions. Our longer-term plans include making RandLAPACK’s
C++ implementation callable from Python.

LibSkylark. LibSkylark [KAI+15] is written in C++ and callable after installing
from source, which is available on GitHub. To our knowledge, it is the only
RandNLA library that supports both least squares and low-rank approximation.

Page 83

Early Release

Its low-rank approximation functionality is restricted to SVD through a QB ap-
proach. See Section 3.5 for its least squares functionality.

LowRankApprox.jl. LowRankApprox.jl is a Julia library for low-rank SVD, QR, ID,
CUR, and Hermitian eigendecomposition. It is callable after installation with the
Julia package manager. Most of its algorithms are based on first computing an ID,
rather than a QB decomposition. Note that this is quite different from the plans
we have outlined for RandLAPACK over Sections 4.2 and 4.3.

Other implementations. The many algorithms considered in [Bja19] are accom-
panied by Python implementations hosted on GitHub. The RandNLA tutorial
[Wan15] covers a wide range of algorithms for low-rank approximation and hosts
some MATLAB implementations on GitHub. There are a couple of packages for
NLA that include an algorithm for low-rank SVD based on QB decompositions.
Notably, MLSVD_RSI in the Tensorlab MATLAB toolbox, rsvd in SciKit-CUDA, and
cusolverDnXgesvdr in NVIDIA’s cuSOLVE. SciKit-CUDA also includes randomized
dynamic mode decomposition through rdmd.

Page 84

Section 5

Further Possibilities for Drivers

Contents
5.1 Multi-purpose factorizations 86

5.1.1 QRCP for general matrices 86
5.1.2 QR for tall-and-skinny matrices of full-rank 87
5.1.3 QRCP for tall-and-skinny matrices 87
5.1.4 UTV, URV, and QLP. 89

5.2 Factorizations for solving square linear systems 90
5.2.1 Stability through pivoting 91
5.2.2 Stability through rotations 91

5.3 Trace estimation . 92
5.3.1 Sampling-based methods 92
5.3.2 Quadrature-based methods 93
5.3.3 There’s much more to say 94

5.4 Iterative methods for unstructured linear systems . . . 94
5.4.1 Block-projection and block-descent methods 94
5.4.2 Sketched Gram-Schmidt for Krylov-subspace solvers . . 94

Practical RandNLA algorithms have been developed for important problems
beyond least squares and low-rank approximation. Here we briefly touch on several
such problem classes.

The first class, full-rank matrix decompositions, involves accepting an input
matrix and returning a factored representation of that same matrix. Here the term
“full-rank” contrasts with “low-rank” in “low-rank approximation.” It does not
imply that the matrix to be decomposed must be full-rank. We separately cover
multi-purpose decompositions and decompositions that are only of use for solving
linear systems. In the former category we propose a novel version of Cholesky
QR that applies to highly ill-conditioned or even outright rank-deficient matrices.
Although most of this section is dedicated to full-rank matrix decompositions, this
topic has a great deal of complexity, and we ultimately only scratch its surface.

The second and third problem classes are trace estimation and iterative solution
of unstructured linear systems. We list existing randomized algorithms for these
problems and summarize their qualitative properties.

85

Early Release

5.1 Multi-purpose factorizations
Most of the algorithms under this heading relate to QR with column pivoting
(QRCP) in one form or another. We recall the following reformulation of QRCP
for the reader’s convenience.

Given a matrix A, produce a column-orthogonal matrix Q, an upper-
triangular matrix R, and a permutation vector J so that

A[:, J] = QR.

The diagonal entries of R should approximate A’s singular values, and the columns
of Q should approximate A’s left singular vectors. These stipulations reflect QRCP’s
main use-cases: in low-rank approximation and in solving ill-conditioned least
squares problems. As usual, we say that our matrix A is m× n.

It’s all in the pivots

We note that if m ≥ n, then for any permutation vector J , the economic QR
decomposition of A[:, J] is unique.1 Therefore J completely determines how well
the columns of Q (resp., diagonal entries of R) approximate the left singular vectors
of A (resp., singular values of A).

5.1.1 QRCP for general matrices
Here, we outline a remarkable algorithm first developed by Martinsson [Mar15] and
Duersch and Gu [DG17], and then refined by Martinsson, Quintana-Ortí, Heavner,
and van de Geijn [MOH+17]. When this refined algorithm was introduced it was
called Householder QR with Randomization for Pivoting or HQRRP. As this name
implies, the factor Q from HQRRP is an m×m operator defined by n Householder
reflectors. The algorithm can run much faster than standard QRCP methods by
processing the matrix in blocks, which makes it possible to cast the overwhelming
majority of its operations in terms of BLAS 3, instead of about half BLAS 2.

While a full description of HQRRP is beyond our scope, we can outline its
structure. As input, it requires that the user provide a block size parameter b and
an oversampling parameter s. Typical values for these parameters are b = 64 and
s = 10. HQRRP starts by forming a thin (b + s) × n sketch Y = SA, and then it
enters the following iterative loop.

1. Use any QRCP method to find Pblock: the first b pivots for Y.

2. Process the panel A[:, Pblock] by QRCP.

3. Suitably update (A, Y) and return to Step 1.
The update to A at Step 3 can be handled by standard methods, such as those used
in blocked unpivoted Householder QR. The update to Y is more subtle. If done
appropriately (particularly, by Duersch and Gu’s method [DG17]) then the leading
term in the FLOP count for HQRRP is identical to that of unpivoted Householder
QR. The one downside of this algorithm is that the diagonal entries of R are not
guaranteed to decrease across block boundaries.

1Strictly speaking it is only unique up to sign flips on the columns of Q and rows of R. But if
the diagonal of R is to approximate the spectrum of A then it is clear how signs must be chosen.

Page 86

Early Release

Implementation notes

We adapted the C implementation from [MOH+17] into C++ code at

https://github.com/rileyjmurray/hqrrp.

Our main change was to access BLAS and LAPACK through BLAS++ and LA-
PACK++. The modified code also allows for matrix dimensions to be specified with
either 32-bit or 64-bit integers and includes a small test suite.

We briefly point out two opportunities to improve the performance of this algo-
rithm. The first is to use mixed-precision arithmetic. Specifically, both the sketch
of A and the call to deterministic QRCP on that sketch could use reduced preci-
sion. Given that the real purpose of QRCP on the sketch is to select the block pivot
indices for A, it might be that loss of accuracy in that phase does not compromise
the accuracy of the larger algorithm. The second opportunity is to call unpiv-
oted QR on the tall-and-skinny matrix Apanel in the second phase of processing a
block; if pivoting is used in the second phase then the pivots can be determined by
deterministic QRCP on the R factor from the unpivoted QR of Apanel.

5.1.2 QR for tall-and-skinny matrices of full-rank
Cholesky QR is a method for computing unpivoted QR decompositions of matrices
with linearly independent columns. It is based on the following elementary obser-
vation: given a QR decomposition A = QR of a full-column-rank matrix A, the
factor R is simply the upper-triangular Cholesky factor of the Gram matrix A∗A.
Therefore in principle one can compute a QR decomposition as follows.

1. Compute a Cholesky decomposition of the Gram matrix A∗A = R∗R.

2. Perform a matrix-matrix triangular solve to obtain Q = AR−1.

Implementing Cholesky QR only requires three functions: syrk from BLAS, potrf
from LAPACK, and trsm from BLAS. Standard implementations of these functions
parallelize extremely well. As a result, Cholesky QR can offer substantial speedups
over Householder QR (and even TSQR [DGG+15]) for tall-and-skinny matrices on
modern machines.

Despite the speed advantage of Cholesky QR, it is rarely used in practice, since
it is unsuitable for even moderately ill-conditioned matrices. Recently it has been
shown that randomization can overcome this limitation by preconditioning Cholesky
QR to ensure stability [FGL21]. In Section 5.1.3 we extend this methodology to
rank-deficient matrices, and we connect it to the randomized algorithm for QRCP
of general matrices discussed in Section 5.1.1.

Before concluding discussion on this topic, we note that Oleg Balabanov has
very recently provided a detailed investigation of randomized Cholesky QR methods
where the returned factor Q is orthonormal with respect to a sketched inner product
[Bal22]. Balabanov’s Cholesky QR algorithms are closely related to the sketched
Gram-Schmidt process that we mention in Section 5.4.

5.1.3 QRCP for tall-and-skinny matrices
The following (novel) algorithm overcomes the limitation of the preconditioned
Cholesky QR methodology of [FGL21] of requiring full-rank data matrices. It does
so by using a randomized preconditioner based on QRCP.

Page 87

https://github.com/rileyjmurray/hqrrp

Early Release

Algorithm 7 QRCP via sketch-and-precondition and Cholesky QR.
1: function [Q, R, J] = sap_chol_qrcp(A, d)

Inputs:
A matrix A ∈ Rm×n, an integer d satisfying n ≤ d� m

Output:
Column-orthonormal Q ∈ Rm×k, upper-triangular R ∈ Rk×n, and a
permutation vector J of length n.

Abstract subroutines:
SketchOpGen generates an oblivious sketching operator

2: S = SketchOpGen(d, n) # S is d×m

3: [Qsk, Rsk, J] = qrcp(SA) # SA[:, J] = QskRsk

4: k = rank(Rsk)
5: Apre = A[:, J [:k]](Rsk[:k, :k])−1

6: [Q, Rpre] = chol_qr(Apre)
7: R = RpreRsk[:k, :]
8: return Q, R, J

The following proposition states that Algorithm 7 produces correct output in
exact arithmetic, under mild assumptions on (S, A). We prove the proposition in
Appendix D.

Proposition 5.1.1. Consider the context of Algorithm 7. If rank(SA) = rank(A)
then A[:, J] = QR.

A practical implementation of Algorithm 7 would need to consider aspects of
finite-precision arithmetic. One such aspect is that we cannot use the exact rank
for Rsk on Line 4. Instead, some tolerance-based scheme would be needed. Another
concern in finite-precision arithmetic is the condition number of Apre; if Apre is not
well-conditioned, then the factor Q from Cholesky QR may not be orthonormal to
machine precision. More generally, if cond(Apre) ≥ ϵ−1/2 (where ϵ is the working
precision), then it is possible for Cholesky QR to fail.

Our next proposition says that the conditioning of Apre depends on neither the
conditioning of A nor that of Ask. Therefore if the distribution of the sketching oper-
ator is chosen judiciously, then the algorithm will return an accurate decomposition
with probability almost indistinguishable from one.

Proposition 5.1.2. Consider the context of Algorithm 7 and let U be an orthonor-
mal basis for the range of A. If rank(SA) = rank(A), then the singular values of
Apre are the reciprocals of the singular values of SU.

Proposition 5.1.2 follows easily from Proposition 3.3.1; we omit a formal proof.

Application to matrices with any aspect ratio

Although Cholesky QR is only applicable to tall-and-skinny matrices, one could
apply it to any m× n matrix A (with m ≥ n) by processing the matrix in blocks.

In fact, it would be natural to use Cholesky QR as the subroutine for processing a
block of columns of A in HQRRP. Since each iteration of HQRRP performs QRCP

Page 88

Early Release

on a sketch of A, the triangular factor from that run of QRCP can be used as
the preconditioner in processing the subsequent panel of A. However, there is a
complication in this approach.

HQRRP’s update rule for A requires that each panel’s orthogonal factor
is represented as a composition of b Householder reflectors, where each
reflector is m ×m. By contrast, Cholesky QR only returns an explicit
m× b column-orthonormal matrix Q.

This issue can be resolved by using a method to restore the full Householder rep-
resentation of the explicit column-orthonormal matrix Q. In LAPACK, this is done
with sorhr_col, which amounts to unpivoted LU factorization. While pairing
Cholesky QR with sorhr_col will reduce its speed benefit, it may still be faster
than Householder QR (geqrf) and tall-and-skinny QR (geqr) in certain settings.
Proper analysis of and benchmarks for this method are forthcoming.

5.1.4 UTV, URV, and QLP.
If QRCP cannot be relied upon to provide an adequate surrogate for the SVD, then
one can consider decompositions of the form

A = UTV∗,

where U, V are column-orthogonal and T is square and triangular. This recovers
the SVD when T is the diagonal matrix of singular values of A. It also recovers
QRCP when V is a permutation matrix. These decompositions were first meaning-
fully studied by Stewart [Ste92; Ste93; Ste99]. They are known by various names,
including UTV, URV, and QLP. We have a slight preference for the name “UTV”
for aesthetic reasons.

Deterministic algorithms

Stewart’s best-known algorithm for UTV (see [Ste99]) is as follows.

1. Run QRCP on the original matrix: A = Q1R1(P1)∗.

2. Run QRCP on (R1)∗, to obtain R1 = P2(R2)∗(Q2)∗.

3. Grouping terms, we find the factors

A =
(

Q1P2︸ ︷︷ ︸
U

)
(R2)∗︸ ︷︷ ︸

T

(
P1Q2︸ ︷︷ ︸

V

)∗
.

Note in particular that T is lower triangular.

Numerical experiments show that T can track the singular values of A much better
than the diagonal of R1 (see, e.g., [Ste99, §3]). One can find intuition for this by
considering the similarities between the successive calls to QRCP with the successive
calls to QR in the well-known QR iteration. In [FHH99], Stewart’s UTV algorithm
is even described as “half a QR iteration.” Remarkably, this algorithm can be
modified to interleave the computation of R1 with factoring R1 [Ste99, §5]. The
resulting method, like QRCP, can be stopped early at a specified rank or once some
accuracy metric is satisfied.

Page 89

Early Release

Strictly speaking, there is a notion of a UTV decomposition that is not the
SVD, not QRCP, and yet predates Stewart’s UTV by several decades. It is called
the complete orthogonal decomposition (COD), and it is computed by one call to
QRCP and one call to unpivoted QR [HL69] (see also [GV13, §5.4.7] for a more
modern reference). However, the main use of a COD is to facilitate the application
of a pseudoinverse A† when A is rank-deficient. This is only modestly in line with
the “spirit” of UTV, which asks for a decomposition that can be used as a surrogate
for the SVD more generally.

Randomized algorithms

One can trivially incorporate randomization into Stewart’s UTV algorithm by using
HQRRP for the requisite QRCP calls. However, the downside to this approach is
that the diagonal entries of T would not be guaranteed to decrease across block
boundaries. This could be circumvented by using HQRRP for the initial QRCP
of A and then using a standard QRCP algorithm (e.g., LAPACK’s GEQP3) for the
QRCP of (R1)∗. The speedup of such an approach over Stewart’s UTV would be
fundamentally limited, but it should still be observable for n×n matrices even when
n is as small as a few thousand.

The first randomized algorithm for UTV was described in [DDH07, §5]. It used
a random orthogonal transformation as a preconditioner for computing a COD.
The preconditioning removed the need for pivoting in COD’s call to QRCP, and so
opened up the possibility of using unpivoted QR for both steps of the decomposition.

The approach from [DDH07] has since been extended with power iteration ideas
through the PowerURV algorithm [GM18, §3]. PowerURV is able to obtain bet-
ter approximations of the SVD than Stewart’s UTV, without using any pivoted
QR decompositions. A principle limitation of PowerURV is that it cannot com-
pute the decomposition incrementally. A more complicated randomized UTV algo-
rithm, given in [MQH19, Figure 4], addresses this limitation by incorporating ideas
from HQRRP.
Remark 5.1.3 (History). The authors of [DDH07] were not trying to develop a
randomized algorithm for its own sake. Rather, they used randomization to obtain
a UTV algorithm based on recursive unpivoted QR, which in turn was accelerated
by fast matrix multiplication. The resulting UTV algorithm was “galactic,” but
nominally could run in time O(nω+ϵ) for arbitrarily small ϵ > 0, where ω is the
exponent of matrix multiplication. The algorithm was subsequently used to develop
galactic algorithms for eigendecomposition with the same asymptotic runtime.

5.2 Factorizations for solving square linear systems
The LU decomposition of a general n× n matrix takes the form

A = LU,

where L is lower-triangular with unit diagonal (Lii = 1 for all i) and U is upper-
triangular. For Hermitian matrices, there is the LDL decomposition

A = LDL∗,

where L is unit lower-triangular and D is block diagonal with blocks of size one
and two.

Page 90

Early Release

These are some of the most fundamental decompositions in NLA. Once either of
them is in hand, one can solve linear systems involving A in O(n2) time. However,
they should be used with caution, since there are some nonsingular matrices for
which they do not exist, or are numerically unstable in finite precision arithmetic.
Therefore these decompositions need to be carefully modified to ensure reliability
without sacrificing too much speed.

5.2.1 Stability through pivoting
Pivoting is the standard paradigm to modify LU and LDL for improved numerical
stability. For LU, we have partial pivoting and complete pivoting, which look like

PA = LU and P1AP2 = LU (5.1)

respectively, where P, P1, P2 are permutation matrices.
The standard algorithms for computing these decompositions are Gaussian elim-

ination with partial pivoting (GEPP) and Gaussian elimination with complete piv-
oting (GECP). While GEPP is substantially faster than GECP, it has weaker the-
oretical guarantees than GECP when it comes to numerical behavior. In [MG15],
Melgaard and Gu propose a randomized algorithm for partially pivoted LU that
makes pivoting decisions in a manner similar to HQRRP. The randomized algo-
rithm achieves efficiency comparable to that of GEPP, while also satisfying GECP-
like element-growth bounds with high probability.

For LDL, pivoted decompositions take the form

A = (PL)D(PL)∗, (5.2)

where (again) D is block-diagonal with blocks of size one and two. There are a
variety of ways to introduce pivoting into LDL decompositions. The most notable
are Bunch-Kaufman [BK77] and bounded Bunch-Kaufman (which incorporates rook
pivoting) [AGL98], both of which are available in LAPACK. In [FXG18], Feng, Xiao,
and Gu propose a randomized algorithm for pivoted LDL that is as stable as GECP
and yet only slightly slower than Bunch-Kaufman and bounded Bunch-Kaufman.

5.2.2 Stability through rotations
In Section 5.1.4, we mentioned how the first randomized algorithm for UTV used
randomized preconditioning to compute a COD-like factorization using only unpiv-
oted QR decompositions. This was not the first use of randomization to remove
the need for pivoting in matrix decompositions. In fact, this idea was explored by
Parker in 1995 to remove the need for pivoting in Gaussian elimination [Par95].
This section summarizes Parker’s approach.

We begin by introducing some terms. For an integer d ≥ 1, a butterfly matrix
of size 2d × 2d is a 2 × 2 block matrix, with diagonal matrices of order d in each
of the four blocks. Speaking loosely, a recursive butterfly transformation (RBT) is
a product of a chain of matrices, each with butterfly matrices as diagonal blocks.
RBTs of order n (i.e., RBTs of size n× n) are usually analyzed when n is a power
of two for the sake of simplicity. The recursive structure in RBTs makes it possible
to apply them with FFT-like methods. In particular, an RBT of order n = 2ℓ can
be applied to an n-vector in O(nℓ) time. Detailed discussion on RBTs of general
order can be found in [Pec21].

Page 91

Early Release

We are interested in RBTs that are orthogonal and random. The orthogonality
is useful since it means the same FFT-like algorithms used to apply an RBT can
be used to apply its inverse. The randomness in orthogonal RBT stems from how
one chooses the entries in the diagonal matrices. While there are a variety of ways
that this can be done [Par95], we simply speak in terms of a distribution Dn over
orthogonal RBTs of order n.

One of the major contributions of [Par95] was to prove that for any nonsingular
matrix A of order n, one can sample B1, B2 iid from a certain distribution Dn, so
that matrix B1AB2 has an unpivoted LU decomposition with high probability. Put
another way, the decomposition

A = (B1)∗LU(B2)∗

exists with high probability.
The high speed at which RBTs can be applied and the excellent data locality

properties of unpivoted matrix decompositions have led to substantial interest in
RBTs from the HPC community. For example, implementation considerations for
hybrid CPU/GPU machines were studied in [BDH+13] (in the single-node setting)
and [LLD20] (in the distributed setting).

The idea of using RBTs to precondition an “unsafe” unpivoted method naturally
applies to LDL. In this case, one obtains factorizations of the form

A = (BL)D(BL)∗

where B is the random RBT. Again, this methodology has received recent attention
from the HPC community; see [BBB+14] for work in the multi-core distributed-
memory setting [BBB+14] and [BDR+17] for work in the setting of a single machine
with a hybrid CPU/GPU architecture.

Remarkably, although the idea of RBTs seems predicated on destroying sparsity
structure present in the matrix A, the random RBT methodology can be applied
to sparse matrices without catastrophic fill-in. See [BLR14] for work on this topic
for both general matrices and symmetric/Hermitian indefinite matrices.

5.3 Trace estimation
Many scientific computing and machine learning applications require estimating the
trace of a linear operator A that is represented implicitly. There are two classes of
randomized algorithms for this problem: sampling-based methods and quadrature-
based methods. The former need to access A by matrix-vector multiplication, while
the latter assume A is the positive definite image of some other matrix under a
spectral function.

5.3.1 Sampling-based methods
Let A be n× n and {e1, . . . , en} be the standard basis vectors in Rn. Clearly, one
can compute the trace of A with n matrix-vector products by using the identity

tr(A) =
n∑

i=1
e∗

i Aei.

Page 92

Early Release

Randomization creates opportunities to estimate this quantity using m� n matrix-
vector multiplications. The most basic method uses the fact that if ω ∼ D is a
random vector satisfying E[ωω∗] = In, then

tr(A) = E [ω∗Aω] .

Therefore it is natural to approximate the expected value by the empirical mean,
drawing m copies of ω iid from D. The idea for this approach goes back to at least
the 1990s, with work by Hutchinson [Hut90].

Recent years have seen methods from contemporary RandNLA brought to bear
for sampling-based trace estimation. Examples in this regard include Lin’s trace
estimator [Lin16], the estimator of Saibaba, Alexanderian, and Ipsen [SAI17], com-
puting approximate Hessian information in machine learning [YGK+19; YGS+20],
and the Hutch++ estimator by Meyer et al. [MMM+21]. When A is psd, Hutch++
can (with some small fixed failure probability) compute tr A to within ϵ relative er-
ror using O(1/ϵ) matrix-vector products. This sample complexity actually cannot
be improved when considering a large class of algorithms [MMM+21, Theorems 4.1
and 4.2].

Persson, Cortinovis, and Kressner have very recently extended Hutch++ so that
it can proceed adaptively, only terminating once some error tolerance has been
achieved (up to a controllable failure probability) [PCK21]. Their modifications of
Hutch++ can also accommodate matrices A that are symmetric indefinite rather
than positive definite. We note that the accuracy guarantees of trace estimators
for indefinite matrices cannot be as strong as those for positive definite matrices.
In particular, relative error guarantees are essentially impossible when tr A = 0.
Persson et al., therefore, provide additive error guarantees in this setting.

5.3.2 Quadrature-based methods

Sampling-based methods for trace estimation can be expensive if A is given as a
spectral function of some other matrix B, such as A = B−1 or A = log(I + B).
There is specialized machinery available for this case, known as stochastic Lanczos
quadrature (SLQ), which only requires matrix-vector multiplications with B. We
do not attempt a proper summary of the ideas that go into SLQ. However, we can
point the reader to such a summary in [MT20, §6.6], and explain the progression of
ideas in [MT20, §6] that build up to it.

First, [MT20, §6.2] explains the power method for estimating the largest eigen-
value of a psd matrix. Then, [MT20, §6.3] explains how a Krylov subspace ap-
proach (with random initialization) can be used instead of the power method to
achieve faster convergence. The Krylov subspace approach to estimating the maxi-
mum eigenvalue is conceptually important, because if one builds up a basis for the
Krylov subspace explicitly via a Lanczos iteration, then that basis can be used for a
variety of purposes. For example, [MT20, §6.4] comments on how it can be used to
estimate the minimium eigenvalue of a psd matrix, and [MT20, §6.6] explains how
it can be used for SLQ. Building up the basis explicitly does come at the price of
increased storage costs (specifically, storage scales as O(nt) for t iterations), but in
many situations this can trade-off can be well worth it.

Page 93

Early Release

5.3.3 There’s much more to say
Many of the aforementioned trace estimation algorithms are extremely effective
at scaling to large problems. For example, the IMATE package for implicit trace
estimation implements Hutch++ and SLQ, and it can handle petascale problems by
running on GPU farms.2 Initially, our short treatment of these algorithms stemmed
from how we focused on problems that are similar to those handled by LAPACK,
and trace estimation is certainly not in LAPACK’s scope. However, it is clear that
they warrant more attention. For now, we refer the reader to the lecture notes
[Tro20, §1 and §3] for details on basic sampling-based trace estimation and SLQ.

5.4 Iterative methods for unstructured linear systems
When a randomized algorithm is effective for a given class of problems, there is
usually a sense in which the algorithm uses randomness to identify hidden problem
structures. The solution of unstructured linear systems, therefore, is a challenging
proposition for randomized algorithms. Still, there are a handful of methods of note.

5.4.1 Block-projection and block-descent methods
Sketch-and-project is a template iterative algorithm for solving linear systems Kz =
h, where K ∈ Rr×m has at least as many rows as columns (r ≥ m) [GR15]. Its
special cases include randomized Kaczmarz [SV08] and randomized block Kacz-
marz [NT14]. It also has variants that are specifically designed for overdetermined
(possibly inconsistent) least squares problems [GIG21].

These methods share a significant weakness: their convergence rates worsen as
one considers larger and larger problems. We think they are most likely to be useful
when one cannot fit an m×m matrix in memory. While such situations fall outside
this monograph’s primary data model, the subproblems encountered in sketch-and-
project are amenable to methods we have covered. Specifically, the subproblems
are equivalent to problems of the form

min
y∈Rm

{‖y − b‖2
2 : A∗y = c}. ((3.4), revisited)

where the number of columns in A is a user-selected tuning parameter n� m. Such
problems are amenable to Algorithm 2.

Very recently, a general analysis framework for block randomized linear sys-
tem solvers, including solvers for underdetermined linear systems, has been pro-
posed [PJM22]. We refer the reader to Table 3 of [PJM22] (and appendices A.15 –
A.26) for an extensive list of new and old randomized linear system solvers that are
amenable to their proposed analysis framework. As with sketch-and-project, the
subproblems encountered in essentially all of these methods can be chosen to have
a structure amenable to Algorithm 2.

5.4.2 Sketched Gram-Schmidt for Krylov-subspace solvers
[BG22, Algorithm 2] is a randomized Gram-Schmidt process that orthogonalizes n
vectors in Rm with respect to a sketched inner product. The sketching distribution

2See https://ameli.github.io/imate/ for IMATE documentation.

Page 94

https://ameli.github.io/imate/

Early Release

can be chosen so that the returned vectors are nearly-orthonormal with respect to
the standard inner product, with high probability. The algorithm is faster than
classic Gram-Schmidt but as stable as modified Gram-Schmidt. It can be used to
maintain bases for Krylov subspaces in a randomized GMRES algorithm [BG22,
§ 4.2]. Matlab implementations of this method (and similar methods, for possibly-
nonsymmetric eigenproblems) can be found at

https://github.com/obalabanov/randKrylov.

Block versions of these algorithms (suitable for use in block Krylov subspace meth-
ods to solve linear systems with multiple right-hand sides or eigenvalue problems)
are presented in [BG21].

Additional randomized algorithms for (parameterized) linear systems and eigen-
value problems are described in [BN19; BN21; NT21].

Page 95

https://github.com/obalabanov/randKrylov

Early Release

Page 96

Section 6

Advanced Sketching:
Leverage Score Sampling

Contents
6.1 Definitions and background 98

6.1.1 Standard leverage scores 98
6.1.2 Subspace leverage scores 101
6.1.3 Ridge leverage scores . 102

6.2 Approximation schemes 103
6.2.1 Standard leverage scores 103
6.2.2 Subspace leverage scores 104
6.2.3 Ridge leverage scores . 105

6.3 Special topics and further reading 106
6.3.1 Leverage score sparsified embeddings 106
6.3.2 Determinantal point processes 107
6.3.3 Further variations on leverage scores 108

Leverage scores quantify the extent to which a low-dimensional subspace aligns
with coordinate subspaces. They are fundamental to RandNLA theory since they
determine how well a matrix can be approximated through sketching by row or
column selection, and thus indirectly how well a matrix can be approximated by
sparse data-oblivious sketching methods [DM16]. They have algorithmic uses in
least squares [DMM06; DMM+12] and low-rank approximation [DMM08; BMD09;
MD16] among other topics. More broadly, they play a key role in statistical regres-
sion diagnostics [CH88; MMY15].

The computational value of leverage scores stems from how they induce data-
aware probability distributions over the rows or columns of a matrix. Leverage score
sampling refers to sketching by row or column sampling according to a leverage score
distribution (or an approximation thereof). The quality of sketches produced by
leverage score sampling is relatively insensitive to numerical properties of the matrix
to be sketched. This can be contrasted with sketching by uniform row or column
sampling, which can perform very poorly on certain families of matrices.

97

Early Release

Leverage score distributions can be computed exactly with standard determin-
istic algorithms. However, exact computation is expensive except in very specific
cases (see Section 7). Therefore in practice it is necessary to use randomized algo-
rithms to approximate leverage score distributions. On the one hand, this point is
significant since the costs of the approximation algorithms undermine the efficiency
gains obtained from sketching by simple row or column selection, making the cost
comparable to implementing data-oblivious random projection methods. On the
other hand, uniform sampling is clearly suboptimal in many cases, e.g., in that it
can miss important nonuniformity structures needed to obtain data-aware subspace
embeddings. In general, the practical utility of leverage scores derives from when
row or column selection of a matrix is required by a particular application. Lever-
age scores, therefore, compete with both uniform sampling and other methods for
column (or row) selection as discussed in Section 4.3.4.

We emphasize that we have made no concrete plans regarding RandLAPACK’s
support for leverage score sampling methods. We review them here since they are
prominent and sophisticated sketching methods, and they might be appropriate to
support in RandLAPACK via a suite of computational routines.

In what follows we introduce three flavors of leverage scores (§6.1) and meth-
ods for approximately computing them (§6.2). We also cover three special topics:
Section 6.3.1 explains how leverage scores can be used to define long-axis-sparse
sketching operators (in the sense of Section 2.4.2), and Sections 6.3.2 and 6.3.3
discuss generalizations of leverage scores.

6.1 Definitions and background
Here we cover three types of leverage scores and corresponding approaches to lever-
age score sampling. The first type of leverage score (which we mean by default) is
applicable to sketching in the embedding regime. As such, it is applicable primarily
to highly overdetermined least squares problems or other saddle point problems with
tall data matrices. We spend more time on this first type of leverage score since it
has theoretical value in understanding the behavior of RandNLA algorithms. The
second type is used for sketching in the sampling regime and has applications in
a variety of low-rank approximation problems. The third type is specifically for
approximating psd matrices (typically kernel matrices) in the presence of explicit
regularization.

6.1.1 Standard leverage scores
Let U be an n-dimensional linear subspace of Rm and PU be the orthogonal pro-
jector from Rm to U . The ith leverage score of U is

ℓi(U) = ‖PU δi‖2
2 = PU [i, i]. (6.1)

where δi is the ith standard basis vector. Collectively, leverage scores describe how
well the subspace U aligns with the standard basis in Rm. They have algorithmic
implications when we consider induced leverage score distributions, defined by

pi(U) = ℓi(U)∑m
j=1 ℓj(U)

= ℓi(U)
n

. (6.2)

Page 98

Early Release

Given a matrix A, one can associate as many sets of leverage scores to that
matrix A, as one can associate subspaces to A. Two of the most important such
subspaces are U = range(A) and V = range(A∗). In these contexts we say that
the leverage score for the ith row of A is ℓi(U), while the leverage score for the
jth column is ℓj(V). Such leverage scores provide leverage score distributions over
the rows and columns of A, respectively. Note that only one of these distributions
can be nonuniform if A is full-rank. Therefore when speaking of leverage scores we
typically assume the m× n matrix A is tall, which provides for the possibility that
p(U) is nonuniform.

Moving forward, we routinely replace U by A in (6.1) and (6.2), with the un-
derstanding that U = range(A).

Probabilistic guarantees of sketching via row sampling

Suppose S is a wide d×m sketching operator that implements row sampling accord-
ing to a probability distribution q. We are interested in evaluating the statistical
quality of S as a row sampling operator for an m× n matrix A. Here, our measure
of sketch quality the smallest ϵ ∈ (0, 1) where y ∈ range(A) implies

(1− ϵ)‖y‖2
2 ≤ ‖Sy‖2

2 ≤ (1 + ϵ)‖y‖2
2. (6.3)

Note that this metric is very similar to subspace embedding distortion. In this
monograph we have generally advocated for measuring sketch quality by a scale-
invariant metric called effective distortion. Despite this, we care about (6.3) since
it provides for the following standard result (which we prove in Appendix A.3).

Proposition 6.1.1. Suppose A is an m× n matrix of rank n. If

r := min
j∈JmK

qj

pj(A)

then for all 0 < ϵ < 1, we have

Pr {(6.3) fails for (S, A, ϵ)} ≤ 2n

(
exp(ϵ)

(1 + ϵ)(1+ϵ)

)rd/n

(6.4)

and exp(ϵ) < (1 + ϵ)(1+ϵ).

The proposition’s basic message is that the probability of SA being a good
sketch improves as q gets closer to the leverage score distribution p(A), where
“closer” means that the value r becomes larger. This makes it desirable for q to
approximate the leverage score distribution. In practice, such approximations would
be obtained by first estimating leverage scores (e.g., via the method described in
Section 6.2.1) and then normalizing according to the estimates. That is, we compute
ℓ̂ as an estimate of ℓ(A), then set

qi = ℓ̂i∑m
j=1 ℓ̂j

.

With this in mind, we turn to our next question: how large should d be so that the
failure probability (6.4) tends to zero as n tends to infinity?

Page 99

Early Release

As a short answer, it can be shown that taking d ∈ O
(
n log n/rϵ2)

is sufficient
for (6.4) to tend to zero as n tends to infinity.1 With (exact) leverage score sampling
we are fortunate to have r = 1, and so it suffices for the embedding dimension to
satisfy

dlev ∈ O

(
n log n

ϵ2

)
. (6.5)

To describe the bound with uniform sampling, we introduce the coherence of A as

C (A) := m max
i∈JmK ℓi(A).

It is easily be shown that coherence is bounded by n ≤ C (A) ≤ m and that uniform
sampling leads to r = n/C (A). In view of these facts, the embedding dimension for
uniform sampling should be on the order of

dunif ∈ O

(
C (A) log n

ϵ2

)
.

This is no better than leverage score sampling, and it can be much worse.
As a final point on the effectiveness of sketching by row selection methods,

consider the situation of using approximate leverage scores where we have a bound
qj ≥ βpj(A) for all j. In such a situation we would have β ≤ r and setting d = dlev/β
would suffice to achieve the same guarantees as leverage score sampling.

Preconditioned leverage score sampling, hidden in plain sight

Many data-oblivious sketching operators can be described as applying a “rotation”
and then performing coordinate subsampling. Here are two such examples.

• A wide d ×m Haar sketching operator S can be viewed as a composition of
an m×m orthogonal matrix followed by a coordinate sampling operator.

• The diagonal sign flip and the fast trig transform in an SRFT amounts to a
rotation, and the full action of the SRFT is just applying coordinate sampling
to the rotated input.

In both cases, the rotation acts as a type of preconditioner for sampling, i.e., as
a transformation that converts a given problem into a related form that is more
suitable for sampling methods [DM16]. The example of SRFTs is especially infor-
mative, since using an embedding dimension d ∈ O(n log n) suffices for a d × m
SRFT to be a subspace embedding with constant distortion (say, distortion 1/2)
with high probability [AMT10].

Formulas for leverage scores

There are many concrete ways to express the leverage scores of a tall m×n matrix
A. Here is an expression that emphasizes the matrix itself, without making explicit
reference to its range:

ℓj(A) = A[j, :] (A∗A)† A[j, :]∗. (6.6)
1Technically, this choice of d does provide an explicit rate at which the probability tends to

zero, but we do not dwell on that here.

Page 100

Early Release

We can obtain other concrete expressions for the leverage scores by considering
any matrix U whose columns form an orthonormal basis for U = range(A). For
example, this matrix U could be the Q from a QR decomposition or the U from
the SVD or any other such matrix. Any such matrix suffices since P = UU∗, as the
orthogonal projector onto U , satisfies

ℓj(A) = ‖U[j, :]‖2
2 = (UU∗)[j, j].

The subspace perspective is useful since it shows that leverage scores are unchanged
if A is replaced by AA∗. More generally, if A = EF and F has full row-rank then
the leverage scores of E match those of A.

6.1.2 Subspace leverage scores
The standard leverage scores described in Section 6.1.1 are not suitable for low-
rank approximation. The first problem is that it is perfectly reasonable to ask for a
low-rank approximation of a matrix that is invertible but has many small singular
values. In such situations both the row and column leverage scores will be uniform,
and hence contain no information. The second problem is that the map from a
matrix to its leverage scores is not locally continuous at A whenever A is rank-
deficient. (As a general rule, it is difficult to solve linear algebra problems where
the map from problem data to the solution is discontinuous.)

These shortcomings can partially be addressed with the concept of subspace
leverage scores, which are also called rank-k leverage scores and leverage scores
relative to the best rank-k approximation; see [DMM+12, §5] along with [DMM08]
as an earlier conference version of the same.

Expressing the m × n matrix A by its compact SVD, A = UΣV∗, the rank-k
leverage scores for its range are

ℓk
j (A) = ‖U[j, :k]‖2

2.

Note that the rank-k leverage scores can be nonuniform regardless of the aspect
ratio of the matrix. Indeed, so long as k < rank(A), the rank-k leverage scores of
both range(A) and range(A∗) can be nonuniform. The problem of discontinuity of
the map from a matrix to its rank-k subspace leverage scores can still persist. More
generally, there is a problem that a matrix may admit multiple distinct “best rank-k
approximations” for a given value of k. These problems are less troublesome if one
assumes that the kth spectral gap σk(A) − σk+1(A) is bounded away from zero.
(This assumption is perhaps more often made than well-justified.) Alternatively,
one can consider how well the computed scores approximate the leverage scores for
some “nearby” rank-k space [DMM+12].

Let us turn to how subspace leverage scores are used. Continuing to focus on
the case of row sampling, we are interested in the rank-k leverage score distribution

pk
j (A) =

ℓk
j (A)∑m

i=1 ℓk
i (A)

.

If S denotes a d × m row-sampling operator induced by pk(A), then the sketch
Y = SA leads naturally to the approximation Â = AY†Y. Letting Ak denote some
best-rank-k approximation of A in a unitarily invariant matrix norm “‖ · ‖,” it is
possible to choose d sufficiently large so that

‖A− Â‖ ≲ ‖A− Ak‖ (6.7)

Page 101

Early Release

holds with high probability. Note that if Y were an arbitrary matrix then it would
be possible to choose Y so that the projection Â = AY†Y was equal to some best-
rank-k approximation of A. However, the restriction that the rows of Y are scaled
rows of A significantly limits the projectors that could be used to define Â. Because
of this limitation, one may need d� k to have any chance that (6.7) holds.
Remark 6.1.2. One rarely samples according to an exact rank-k leverage score distri-
bution in practice. Rather, one uses randomized algorithms to approximate them.
The key fact that enables this approximation is that leverage scores (“standard”
or “subspace”) are preserved if we replace A by AA∗. Moreover, as leverage scores
quantify a notion of eigenvector localization, we should note that in many applica-
tions one has domain knowledge that eigenvalues should be localized [SCS10], and
this could be used to construct approximations.

6.1.3 Ridge leverage scores
Ridge leverage scores are used to approximate matrices in the presence of explicit
regularization. That is, we are given an m ×m psd matrix K and a positive reg-
ularization parameter λ, and we approximate K + λI by K̂ + λI where K is a psd
matrix of rank n � m. The low-rank structure in these approximations makes it
much cheaper to apply (K̂ + λI)−1 compared to (K + λI)−1. This motivates the
following question.

What rank n is needed for (K̂ + λI)−1 to approximate (K + λI)−1 up to
some fixed accuracy?

It turns out that this is determined by quantity tr(K(K + λI)−1), which is called
the effective rank of K. Using µi to denote the ith-largest eigenvalue of K, we can
express the effective rank as

tr(K(K + λI)−1) =
m∑

i=1

µi

µi + λ
.

Since we are working with psd matrices it is natural to define K̂ as a Nyström
approximation of K with respect to some sketching operator S (see Section 4.2.2).
Taking that as given, this leaves the question of how to choose the distribution for S.
Here it is worth considering how many numerically-low-rank psd matrices arising in
applications are defined implicitly through pairwise evaluations of a kernel function
on a given dataset. Taking S as a column-selection operator is especially appealing
in these settings.

[AM15] introduced ridge leverage scores as a framework for data-aware column
sampling in this context. Formally, the ridge leverage scores of (K, λ) are

ℓi(K; λ) =
(

K (K + λI)−1
)

[i, i]. (6.8)

In certain cases – particularly for estimating ridge leverage scores – it can be conve-
nient to express these quantities in terms of a matrix B that satisfies K = BB∗ and
that has at least as many rows as columns. Specifically, by expressing B in terms
of its compact SVD, one can show that

ℓi(K; λ) = b∗
i (B∗B + λI)−1

bi (6.9)

where b∗
i is the ith row of B. We note that the identity matrix appearing in (6.9)

will be smaller than that from (6.8) if B is not square.

Page 102

Early Release

6.2 Approximation schemes
Computing leverage scores exactly is an expensive proposition. If A is a tall m× n
matrix, then it takes O(mn2) time to compute the standard leverage scores exactly.2
If one is interested in subspace leverage scores and k is small, then one can in
principle use Krylov methods to approximate the dominant k singular vectors in
far less than O(mn2) time. Such methods are not very reliable for producing good
approximations to the truncated SVD, but they might suffice for estimating leverage
scores, in particular in applications such as machine learning where it is acceptable
to consider leverage scores for some “nearby” rank-k space. If we want to compute
the ridge leverage scores of an m ×m matrix K exactly, then the straightforward
implementation takes O(m3) time.

These facts necessitate the development of methods for efficient leverage score
estimation, which we discuss below. While these methods are generally too sophis-
ticated for the RandBLAS, they may be appropriate for higher-level libraries such
as RandLAPACK.

6.2.1 Standard leverage scores
Suppose the m×n matrix A is very tall, i.e., m� n. Here we summarize a method
by Drineas et al. that can compute approximate leverage scores, to within a constant
multiplicative error factor, in O(mn log m) time, i.e., in roughly the time it takes
to implement a random projection, with some constant failure probability bounded
away from one [DMM+12]. This can offer improved efficiency over straightforward
O(mn2) approaches when m� n and yet m ∈ o(2n).

We set the stage for this method by expressing leverage scores as follows

ℓj(A) = ‖δ∗
j U‖2

2 = ‖δ∗
j UU∗‖2

2 = ‖δ∗
j AA†‖2

2 (6.10)

where we note that the second equality in the above display follows from unitary
invariance of the spectral norm. The method proceeds by approximating two opera-
tions in the right-most expression in (6.10). First we approximate the pseudoinverse
of A and then we approximate the matrix-matrix product AA†. It is important to
note that using approximations in both steps is essential for asymptotic complexity
improvements, since traditional methods would take O(mn2) for the first step and
O(m2n) time for the second step. (In extreme situations, depending on the hard-
ware that would be used, it may be worth performing the matrix-matrix product
of the second step explicitly.)

The pseudoinverse computation is approximated by applying a wide d1 × m
SRFT S1 to the left of A. Letting U1Σ1V∗

1 be an SVD of this d1 × n sketched
matrix S1A, we approximate

ℓj(A) ≈ ℓ̂j(A) = ‖δ∗
j A(S1A)†‖2

2

= ‖δ∗
j AV1Σ−1

1 U∗
1‖2

2

= ‖δ∗
j AV1Σ−1

1 ‖2
2

at a cost of O(d1n2). However, we are not out of the woods yet, since multiplying A
with V1Σ−1

1 would still cost O(mn2). This is addressed by applying a tall sketching
2The preferred way to do this would be to take the row norms of the factor Q from a thin QR

decomposition of A.

Page 103

Early Release

operator S2 of size n × d2 to the right of V1Σ−1
1 before multiplying it by A. That

is, we further approximate

ℓ̂j(A) ≈ ˆ̂
ℓj(A) = ‖δ∗

j A(V1Σ−1
1 S2)‖2

2. (6.11)

This reduces the cost of the matrix multiplication to O(mnd2) and hence the cost
of the overall procedure to O(d1n2 + d2mn). [DMM+12] provide details on how
large d1 and d2 must be to ensure useful accuracy guarantees for the approximate
leverage scores; see also [MMY15, §5.2] for a related evaluation.

This estimation method can be adapted to efficiently compute “cross-leverage
scores,” as well as subspace leverage scores; see [DMM+12] for details. It also has
natural adjustments to make it faster. For example, [CW17] suggest replacing the
SRFT S1 by S̃1 = FC where C is a CountSketch and F is an SRFT that further
compresses the output of C; [NN13] propose replacing S1 by a SASO (recall from
Section 2.4.1 that a SASO is generalized CountSketch), which yields a similar speed-
up as that achieved in [CW17].

6.2.2 Subspace leverage scores
There is a wide range of possibilities for estimating subspace leverage scores. We
describe two such methods here (slightly adapted) from [DMM+12]. Let us say
that we want to estimate the rank-k leverage scores of A for some k � min{m, n}.
Both of the algorithms below work by finding the exact leverage scores of an implicit
rank-k matrix Â, for which a distance ‖Â − A‖ is near-optimal among all rank-k
approximations.

An adaptation of [DMM+12, Algorithm 5]

The original goal of this algorithm was to return the leverage scores of a rank-k
approximation of A that was near-optimal in Frobenius norm. Framing things more
abstractly, the approach requires that the user specify an oversampling parameter
s ∈ O(k). Its first step is to compute a rank-(k + s) QB decomposition of A (e.g.,
by some method from Section 4.3.2) A ≈ QB. Next, it computes the top k left
singular vectors of B by some traditional method. Letting Uk denote the (k +s)×k
matrix of such leading left singular vectors, the algorithm takes the columns of QUk

to define approximations of the leading k left singular vectors of A. The row-norms
of this matrix define the approximate rank-k leverage scores.

In context, [DMM+12, Algorithm 5] used an elementary QB decomposition with
Q = orth(AS) for an n×(k+s) Gaussian operator S. The analysis of this algorithm
presumed that s ≥ dk/ϵ + 1e for some tolerance parameter ϵ. The meaning of ϵ was
as follows: when viewed as random variables, the returned leverage scores coincide
with those of a rank-k approximation Â where

E‖Â− A‖2
F ≤ (1 + ϵ)

∑
j>k

σj(A)2.

Looking back at this error bound from our present perspective, it is clear that
a huge variety of similar bounds can be obtained by using different methods for
the QB decomposition. One possibility on this front would be to use adaptive QB
algorithms that approximate A to some prescribed accuracy. Subspace leverage
scores obtained in this way may be well-suited for approximating A by a low-rank
submatrix-oriented decomposition up to prescribed accuracy.

Page 104

Early Release

A description of [DMM+12, Algorithm 4]

This is a two-stage method to find the leverage scores of a rank-k approximation to
A that is near-optimal in spectral norm.

To understand the first stage, recall that some of the simplest QB algorithms
make use of power iteration as described in Section 4.3.1. That is, rather than
setting Q = orth(AS) for Gaussian S, they set S = (A∗A)qS0 for Gaussian S0.
Practical implementations of QB based on power iteration introduce stabilization
between successive applications of A and A∗. Such stabilization preserves the range
of AS, but it may change its singular vectors. If such stabilization is not used,
then the left singular vectors of A(A∗A)qS0 for Gaussian S0 would be reasonable
approximations to the leading left singular vectors of A (modulo numerical problems
that are sure to arise for moderate q).

The observation above provides the basis for [DMM+12, Algorithm 4]. In con-
text, its first stage is to compute Sq+1 = (AA∗)qAS0 from an n × 2k Gaussian
operator S0. In a second stage, approximate leverage scores of Sq+1 – call them ℓ̂i

– are obtained from any method that ensures

|ℓ̂i − ℓi(Sq+1)| ≤ ϵ ℓi(Sq+1).

These approximations are the estimates for the rank-k leverage scores of A.
[DMM+12, Lemma 15 and Theorem 16] prescribe a value for q (as a function

of m, n, k, and ϵ) that ensures an approximation guarantee for the leverage score
estimates given above. Specifically, for the prescribed q, the estimated leverage
scores are within a factor 1−ϵ

2(1+ϵ) of the leverage scores of a rank-k matrix Â that
satisfies

E‖Â− A‖2 ≤ (1 + ϵ/10)σk+1(A).

As before, the randomness in this expectation is over the randomness used to esti-
mate the leverage scores.

6.2.3 Ridge leverage scores
A wide variety of algorithms have been devised to estimate ridge leverage scores or
carry out approximate ridge leverage score sampling. The simplest such algorithm,
proposed in [AM15] alongside the definition of ridge leverage scores, proceeds as
follows:

• Start with a distribution p = (pi)i∈JmK over the column index set of K.

• Construct a column selection operator S with n columns, where each column
is independently set to δi ∈ Rm with probability pi.

• Compute the Nyström approximation of K with respect to S. Suppose the
approximation is represented as K̂ = BB∗ for an m× n matrix B.

• Using bi ∈ Rn for the ith row of B, take ℓ̃i := b∗
i (B∗B + λI)−1bi as an

approximation for the ith ridge leverage score of K with regularization λ.

One can of course start with p = (1/m)i∈JmK as the uniform distribution over
columns of K. An alternative starting point is the distribution p = diag(K)/ tr(K).
While the latter distribution can lead to useful theoretical guarantees (see [AM15,
Theorem 4]) it is not suitable for computing very accurate approximations.

Page 105

Early Release

Iterative methods should be used if accurate approximations to ridge leverage
scores are desired. Notably, most of the iterative methods in the literature simul-
taneously estimate the ridge leverage scores and sample columns from K according
to the estimates [MM17; CLV17; RCC+18]. This algorithmic structure blurs the
distinction between approximating ridge leverage scores and producing a Nyström
approximation of K via column selection. This precise nature of the blurring can
also vary substantially from one algorithm to another. For example, [MM17, Al-
gorithms 2 and 3] are very different from [CLV17, Algorithm 1], which in turn is
materially different from [RCC+18, Algorithms 1 and 2].

The abundance and sophistication of these methods make it impractical for us
to summarize them here. We instead settle for stating their general qualitative
conclusions. Letting d = tr(K(K + λI)−1) denote the effective rank of K, one can
construct an approximation K̂ of rank n ∈ O(d log d) for which ‖K− K̂‖2 ≤ λ holds
with high probability. Furthermore, these approximations can be constructed in
time O(mn2) using only n column samples from K. We refer the reader to the cited
works above for details on specific algorithms.

6.3 Special topics and further reading
Here, we mention a handful of generalizations and variants of leverage score sam-
pling that, while not part of our immediate plans, may be of longer-term inter-
est. The interested reader should consult the source material for details of what
we describe below. In addition to those source materials, the interested reader
is referred to Sobczyk and Gallopoulos’ paper [SG21], which is accompanied by
a carefully developed C++ and Python library called pylspack [SG22]. We also
recommend Larsen and Kolda’s recent work [LK20, §4 and Appendix A] – which
provides practical advice on leverage score sampling and theoretical results with
explicit constant factors.

6.3.1 Leverage score sparsified embeddings
Our concept of long-axis-sparse operators from Section 2.4.2 is based on the Leverage
Score Sparsified or LESS embeddings of Dereziński et al. [DLD+21]. Here we
explain the role of leverage scores when using these sketching operators.

Let S be a a random d × m long-axis-sparse operator (d � m) with sparsity
parameter k and sampling distribution p = (p1, . . . , pm). The idea of LESS embed-
dings is that varying k should provide a way to interpolate between the low cost
of sketching by row sampling and the high cost of sketching by Gaussian opera-
tors, while still obtaining a sketch that is meaningfully Gaussian-like. Indeed, if
k ≈ n = rank(A), then [Der22a] showed that, with high probability, the resulting
sketching operator is nearly indistinguishable from a dense sub-gaussian operator
(such as Gaussian or Rademacher), despite the reduction from O(dmn) time to
O(dn2). This performance comparison was demonstrated for several estimation
tasks involving the inverse covariance matrix A∗A [DLD+21], as well for the New-
ton Sketch optimization method [DLP+21].

As with other uses of leverage scores, approximate leverage scores suffice for
LESS embeddings; and the computational cost of a LESS embedding is typically
dominated by the cost of estimating the leverage scores of A. The use of leverage
scores in the sparsification pattern is essential for theoretically showing that a LESS

Page 106

Early Release

embedding exhibits nearly identical performance to a Gaussian operator for all
matrices A. Good empirical performance observed in practice, to a varying degree,
also when p is the uniform distribution and k � rank(A) [DLP+21, §5].

6.3.2 Determinantal point processes
In many data analysis applications, submatrix-oriented decompositions such as Nys-
tröm approximation via column selection are desirable for their interpretability. In
this context, we may wish to produce a very small but high-quality sketch of the
matrix A, using a method more refined (albeit slower) than leverage score sampling.
Here we discuss Determinantal Point Processes (DPPs; [DM21a]) as one of many
such methods from the literature.

Let A be an m×m psd matrix. A Determinantal Point Process is a distribution
over index subsets J ⊆ JmK such that:

P(J = S) = det(A[S, S])
det(A + I) .

The above DPP formulation is known as an L-ensemble, and it is also sometimes
called volume sampling [DRV+06; DM10]. Unlike leverage score sampling, individ-
ual indices sampled in a DPP are not drawn independently, but rather jointly, to
minimize redundancies in the sampling process. In fact, a DPP can be viewed as
an extension of leverage score sampling that incorporates dependencies between the
samples, inducing diversity in the selected subset [KT12].

DPP sampling can be used to construct improved Nyström approximations
Â = (AS)(S∗AS)†(AS)∗ where the selection matrix S corresponds to the random
subset J . In particular, [DRV+06; GS12; DKM20] established strong guarantees
for this approach in terms of the nuclear norm error relative to the best rank k
approximation: ‖Â − A‖∗ ≤ (1 + ϵ)‖Ak − A‖∗, where k is the target rank and
the subset size |J | is chosen to be equal or slightly larger than k. DPPs have also
found applications in machine learning [KT12; DKM20; DM21a] as a method for
constructing diverse and interpretable data representations.

It is challenging to implement efficient methods for sampling from a DPP, and
this is an area of ongoing work. One promising method has recently been proposed
by Poulson [Pou20]. Two other classes of methods can be obtained by exploiting
the connection between DPPs and ridge leverage scores.

1. One can use intermediate sampling with ridge leverage scores to produce a
larger index set T , which is then trimmed down to produce a smaller DPP
sample J ⊆ T [Der19; DCV19; CDV20].

2. One can use iterative refinement on a Markov chain, where we start with
an initial subset J1, and then we gradually update it by swapping out one
index at a time, producing a sequence of subsets J1, J2, J3, ..., which rapidly
converges to a DPP distribution [AGR16; AD20; ADV+22].

The computational cost of these procedures is usually dominated by the cost of
estimating the ridge leverage scores (recall that there are methods for doing this
that do not need to access all of A). However, these procedures carry additional
overhead since some of the ridge leverage score samples must be discarded to produce
the final DPP sample.

Page 107

Early Release

6.3.3 Further variations on leverage scores
In the case of tall data matrices A, leverage scores are useful for finding data-aware
sketching operators S so that the Euclidean norms of vectors in the range of SA
are comparable to the Euclidean norms of vectors in the range of A. A related
concept called Lewis weights can be used for matrix approximation where we want
S to approximately preserve the p-norm of vectors in the range of A for some p 6= 2
[CP15]. These are improved versions of leverage-like scores used by Dasgupta et al.
for ℓp regression [DDH+09]. A more recently proposed concept samples according
to the probabilities

pi =

∥∥∥(A∗A)−1 A[i, :]
∥∥∥

2∑m
j=1

∥∥∥(A∗A)−1 A[j, :]
∥∥∥

2

in order to estimate the variability of sketch-and-solve solutions to overdetermined
least squares problems [MZX+22]; see also [MMY15] for related importance sam-
pling probabilities that come with useful statistical properties. Similar probabilities
(where all norms in the above expression were squared) were studied in [DCM+19].

Page 108

Section 7

Advanced Sketching:
Tensor Product Structures

Contents
7.1 The Kronecker and Khatri–Rao products 110
7.2 Sketching operators . 111

7.2.1 Row-structured tensor sketching operators 111
7.2.2 The Kronecker SRFT . 112
7.2.3 TensorSketch . 113
7.2.4 Recursive sketching . 113
7.2.5 Leverage score sampling for implicit matrices with tensor

product structures . 114
7.3 Partial updates to Kronecker product sketches 116

7.3.1 Background on the CP decomposition 117
7.3.2 Sketching for the CP decomposition 118
7.3.3 Background on the Tucker decomposition 119
7.3.4 Sketching for the Tucker decomposition 120
7.3.5 Implementation considerations 120

This section considers efficient sketching of data with tensor product structure.
We specifically focus on implicit matrices with Kronecker and Khatri–Rao product
structure. These structures are of interest in RandNLA due to their prominent role
in certain randomized algorithms for tensor decomposition. A secondary point of
interest is that the operators discussed in this section can also be used for sketching
unstructured matrices. They may, for example, be used as alternatives to unstruc-
tured test vectors in norm and trace estimation [BK21]. In this case, the main
benefit would not be improved speed but reduced storage requirements for storing
the sketching operator.

In Section 7.1 we provide definitions of the Kronecker and Khatri–Rao matrix
products. Section 7.2 presents four families of sketching operators that can be ap-
plied efficiently to matrices that are stored implicitly with these product structures.
Section 7.3 discusses implementation considerations for the structured sketching op-
erators in this section, with a focus on how they can be used in tensor decomposition
algorithms.

109

Early Release

A note on scope

We should emphasize that algorithms for general tensor computations are out-of-
scope for RandLAPACK. The functionality described here would only be made avail-
able as utility functions (i.e., computational routines) for facilitating certain tensor
computations. This is part of a broader idea that RandLAPACK should facilitate
advanced sketching operations of interest in RandNLA that are outside the scope
of the RandBLAS.

7.1 The Kronecker and Khatri–Rao products
Suppose that B is an m×n matrix and C is a p× q matrix. The Kronecker product
of B and C is the mp× nq matrix

B⊗ C =


B[1, 1] · C B[1, 2] · C · · · B[1, n] · C
B[2, 1] · C B[2, 2] · C · · · B[2, n] · C

...
...

...
B[m, 1] · C B[m, 2] · C · · · B[m, n] · C

 .

If B and C have the same number of columns (i.e., if n = q), then their Khatri–Rao
product is the mp× n matrix

B� C =
[
B[:, 1]⊗ C[:, 1] B[:, 2]⊗ C[:, 2] · · · B[:, n]⊗ C[:, n]

]
.

The Khatri–Rao product is sometimes also referred to as the matching columnwise
Kronecker product for transparent reasons. The Kronecker and Khatri–Rao prod-
ucts for more than two matrices are defined in the obvious way. Note that for two
vectors x and y we have that

x⊗ y = x� y = vec(x ◦ y)

where ◦ denotes the outer product and vec(·) is an operator that turns a matrix
into a vector by vertically concatenating its columns. We also use ⊛ to denote the
elementwise (Hadamard) product.

Matrices with Kronecker and Khatri–Rao product structure tend to be very
large. For example, consider matrices B1, . . . , BL, all of size m × n. Their Kro-
necker product B1 ⊗ · · · ⊗BL is an mL × nL matrix and their Khatri–Rao product
B1 � · · · � BL is an mL × n matrix. The exponential dependence on L means
that these products can become very large even if the matrices B1, . . . , BL are not
especially large. Even just forming and storing these products may therefore be
prohibitively expensive.

Kronecker and Khatri–Rao product matrices feature prominently in algorithms
for tensor decomposition (i.e., decomposition of multidimensional arrays into sums
and products of more elementary objects, see Section 7.3). They also appear in a
variety of other contexts when sketching techniques are helpful, such as for repre-
sentation of polynomial kernels [PP13; ANW14; WZ20; WZ22], when fitting poly-
nomial chaos expansion models in surrogate modeling [TNX15; SNM17; CMX+22],
multi-dimensional spline fitting [DSS+18], and in PDE inverse problems [CLN+20].

Page 110

Early Release

7.2 Sketching operators
Section 7.2.1 introduces sketching operators that are distinguished by having rows
with particular structures. Section 7.2.2 discusses a variant of the SRFT with an ad-
ditional tensor-produce structure. Section 7.2.3 discusses TensorSketch operators,
which are analogous to CountSketch operators from Section 2.4.1. In Section 7.2.4
we describe sketching operators that are recursive and have multi-stage structure.
These incorporate some of the sketching operators discussed in the previous sub-
sections as stepping stones. Section 7.2.5 covers row sampling methods for tall
matrices with tensor product structure.

We note that the sketching operators in Sections 7.2.1–7.2.4 are all oblivious,
whereas the sampling-based methods in Section 7.2.5 are not. We also note that
all of the oblivious sketching operators we discuss could be applied to unstructured
matrices. This would yield no speed benefit compared to using their unstructured
counterparts, but it would reduce the storage requirement compared to traditional
dense sketching operators of the kind supported by the RandBLAS.

7.2.1 Row-structured tensor sketching operators
Here we describe three types of sketching operators whose rows can be applied to
Kronecker and Khatri–Rao product matrices very efficiently. The second of these
methods requires notions of tensor representations such as the CP format, which
we will revisit in Section 7.3.

Khatri–Rao products of elementary sketching operators

The most basic row-structured sketching operator takes the form
S = (S1 � S2 � · · · � SL)∗, (7.1)

where each Sk is an appropriate random matrix of size mk × d for k ∈ JLK. Such
an operator maps (m1 · · ·mL)-vectors to d-vectors. It can be efficiently applied to
Kronecker product vectors, which in turn means that it can be applied efficiently
(column-wise) to both Kronecker and Khatri–Rao product matrices. Consider vec-
tors x1, . . . , xL where xk is a length-mk vector. The operator in (7.1) is then applied
to a vector v = x1 ⊗ · · · ⊗ xL via the formula

Sv = (S∗
1x1) ⊛ (S∗

2x2) ⊛ · · ·⊛ (S∗
LxL).

To the best of our knowledge, [BBB15] were the first to use random matrices
of the form (7.1) to accelerate tensor computations in the spirit of RandNLA.1
They suggest drawing the entries of each Sk independently from a distribution with
mean zero and unit variance, but they do not provide any theoretical guarantees for
the performance of such sketching operators. Sun et al. [SGT+18] independently
propose using operators of the form (7.1) where the submatrices Sk are chosen
to be either Gaussian or sparse operators. They also propose a variance-reduced
modification which is an appropriate rescaling of the sum of several maps of the
form (7.1). They provide theoretical guarantees for sketching operators in (7.1)
with L = 2 (and its variance-reduced modification) when S1 and S2 have entries
that are drawn independently from an appropriately scaled mean-zero sub-Gaussian
distribution, leaving analysis for the case when L > 2 open for future work.

1Similar ideas were used earlier for applications in differential privacy; see [KRS+10; Rud12].

Page 111

Early Release

Row-wise vectorized tensors

Rakhshan and Rabusseau [RR20] propose a distribution of sketching operators for
which the ith row is given by S[i, :] = vec(Xi)∗, where Xi is a tensor in some
factorized format and vec is a function that returns a vectorized version of its input
as a column vector (vec(X) = X (:) in Matlab notation). More specifically, they
consider two cases: In the first case, Xi is in CP format and defined elementwise
via

Xi[j1, j2, . . . , jL] =
R∑

r=1
a(i,1)

r [j1] · a(i,2)
r [j2] · · ·a(i,L)

r [jL] (7.2)

where the vector entries a
(i,n)
r [jn] are drawn independently from an appropriately

scaled Gaussian distribution. In the second case, Xi is in so-called tensor train
format and defined elementwise via

Xi[j1, j2, . . . , jL] = A(i,1)
j1

A(i,2)
j2
· · ·A(i,L)

jL
, (7.3)

where L is the number of tensor modes, and each matrix A(i,n)
jn

is of size Rn×Rn+1

where R1 = RL+1 = 1 to ensure that the product is a scalar. The entries of A(i,n)
jn

are drawn independently from an appropriately scaled Gaussian distribution.
For both of the constructs described above, the inner product of vec(Xi) and

Kronecker product vectors can be computed efficiently due to the special structure
of the CP and tensor train formats. This makes efficient application of the operator
to Kronecker and Khatri–Rao product matrices possible. Theoretical guarantees are
provided for these vectorized tensor sketching operators in [RR20]. The follow-up
work [RR21] shows that the results for the tensor train-based sketching operators
also extend to the case when the cores are drawn from a Rademacher distribution.

Two-stage operators

Iwen et al. [INR+20] propose a two-stage sketching procedure for mapping (m1 · · ·mL)-
vectors to d-vectors. The first step consists of applying a row-structured matrix
(S1 ⊗ · · · ⊗ SL), where each Sk is a sketching operator of size pk ×mk. This maps
the (m1 · · ·mL)-vector to an intermediate embedding space of dimension (p1 · · · pL).
This is then followed by another sketching operator T of size d× (p1 · · · pL) which
maps the intermediate representation to the final d-dimensional space.

7.2.2 The Kronecker SRFT
Kronecker SRFTs are a variant of the SRFTs discussed in Section 2.5. They can be
applied very efficiently to a Kronecker product vector without forming the vector
explicitly. They were first proposed by [BBK18] for efficient sketching of the Khatri–
Rao product matrices that arise in tensor CP decomposition. Theoretical analysis
of these sketching operators can be found in [JKW20; MB20; BKW21].

The Kronecker SRFT that maps (m1 · · ·mL)-vectors to d-vectors takes the form

S =
√

m1 · · ·mL

d
R

(L⊗
k=1

Fk

)(L⊗
k=1

Dk

)
, (7.4)

where each Dk is a diagonal mk×mk matrix of independent Rademachers, each Fk

is an mk×mk fast trigonometric transform, and R randomly samples d components

Page 112

Early Release

from an (m1 · · ·mL)-vector. The Kronecker SRFT replaces the F and D operators
in the standard SRFT by Kronecker products of smaller operators of the same form.
With x1, . . . , xL defined as in Section 7.2.1, the operator in (7.4) can be applied
efficiently to x1 ⊗ · · · ⊗ xL via the formula√

m1 · · ·mL

d
R

(L⊗
k=1

Fk

)(L⊗
k=1

Dk

)(L⊗
k=1

xk

)
=

√
m1 · · ·mL

d
R

(L⊗
k=1

FkDkxk

)
.

The formula shows that only those entries in
⊗

k FkDkxk that are sampled by R
need to be computed. From this, we can back out the indices of each vector FkDkxk

that need to be computed. Given these indices one could compute the relevant
entries of these vectors using subsampled FFT methods of the kind alluded to in
Section 2.5. We note that this formula is straightforwardly extended to Kronecker
and Khatri–Rao product matrices.

7.2.3 TensorSketch
A TensorSketch operator is a kind of structured CountSketch that can be applied
very efficiently to Kronecker product matrices.2 The improved computational effi-
ciency of TensorSketch comes at the cost of needing a larger embedding dimension
than CountSketch. TensorSketch was first proposed in [Pag13] for fast approximate
matrix multiplication. It was further developed in [PP13; ANW14; DSS+18] where
it is used for low-rank approximation, regression, and other tasks.

Let x1, . . . , xL be defined as in Section 7.2.1. A TensorSketch, which we denote
by S below, maps an (m1 · · ·mL)-vector v = x1 ⊗ · · · ⊗ xL to a d-vector via the
formula

Sv = DFT−1
(L⊛

k=1

DFT(Skxk)
)

, (7.5)

where each Sk is an independent CountSketch that maps mk-vectors to d-vectors.
Here, DFT denotes the discrete Fourier transform which can be efficiently applied
using fast Fourier transform (FFT) methods. TensorSketches use the fact that
polynomials can be multiplied using the DFT, which is why DFT and its inverse
appear in the formula above; see [Pag13] for details.
Remark 7.2.1. We have not investigated whether fast trig transforms other than
the discrete Fourier transform (e.g., the discrete cosine transform) can be used for
this type of sketching operator.

7.2.4 Recursive sketching
In order to achieve theoretical guarantees, the sketching operators discussed so far
require an embedding dimension d which scales exponentially with L when embed-
ding a vector of the form x1 ⊗ · · · ⊗ xL. Ahle et al. [AKK+20] propose sketching
operators that are computed recursively and have the remarkable property that
their requisite embedding dimensions scale polynomially with L. Since [AKK+20]
are concerned with oblivious subspace embedding of polynomial kernels, they con-
sider the case when all x1, . . . , xL are of the same length. However, their results

2Recall that a CountSketch is a SASO in the sense of Section 2.4.1. Each short-axis vector in
a CountSketch has a single nonzero entry, sampled from the Rademacher distribution.

Page 113

Early Release

should extend to the general case when the vectors are of different lengths (for
example, see [Mal22, Corollary 18]).

Suppose x1, . . . , xL are m-vectors and that L = 2q for a positive integer q. The
recursive sketching operator first computes

y
(0)
k = Tkxk for k ∈ JLK

where T1, . . . , TL are independent SASOs (e.g., CountSketches, see Section 2.4.1)
that map m-vectors to d-vectors. The d-vectors y

(0)
1 , . . . , y

(0)
L are now combined

pairwise into L/2 = 2q−1 vectors. This is done by computing

y
(1)
k = Sk(y(0)

2k−1 ⊗ y
(0)
2k) for k ∈ JL/2K

where S1, . . . , SL/2 are independent sketching operators that map d2-vectors to d-
vectors. If the initial T1, . . . , TL are CountSketches then the Si are canonically
TensorSketches. If instead T1, . . . , TL are more general SASOs then the Si are
canonically Kronecker SRFTs. Regardless of which configuration we use, the pair-
wise combination of vectors is repeated for a total of q = log2(L) steps until
a single d-vector remains, which is the embedding of x1 ⊗ · · · ⊗ xL. The case
when L is not a power of two is handled by adding additional vectors xk = e1 for
k = L+1, . . . , 2dlog2(L)e where e1 is the first standard basis vector in Rm. Recursive
sketching operators are linear despite their somewhat complicated description.

Song et al. [SWY+21] develop a similar recursive sketching operator which takes
inspiration from the one discussed above and applies it to the sketching of polyno-
mial kernels. For the degree-L polynomial kernel, this involves sketching of matrices
of the form A�L = A� · · · � A, where the matrix A appears L times in the right-
hand side.

The recursive sketching operator by [AKK+20] can be described by a binary
tree, with each node corresponding to an appropriate sketching operator. Ma and
Solomonik [MS22] generalize this idea by allowing for other graph structures, but
limit nodes in these graphs to be associated with Gaussian sketching operators. Un-
der this framework, they develop a structured sketching operator whose embedding
dimension only scales linearly with L. These operators can be adapted for effi-
cient application to vectors with general tensor network structure which includes
Kronecker products of vectors as a special case.

7.2.5 Leverage score sampling for implicit matrices with tensor
product structures

Consider the problem of sketching and solving a least squares problem

min
x
‖AX− Y‖F (7.6)

when the columns of A have tensor product structure and Y is a thin unstructured
matrix. The sketching operators discussed so far in this section can be efficiently
applied to A. However, since Y lacks structure, these sketching operators require
accessing all nonzero elements of Y. This can be prohibitively expensive in appli-
cations such as the following.

• In iterative methods for tensor decomposition, one typically solves a sequence
of least squares problems for which A is structured and Y contains all the

Page 114

Early Release

entries of the tensor being decomposed [KB09]. When Y has a fixed proportion
of nonzero entries, the cost will therefore scale exponentially with the number
of tensor indices—a manifestation of the curse-of-dimensionality.

• When fitting polynomial chaos expansion functions in surrogate modeling
[TNX15; SNM17; CMX+22], A contains evaluations of a multivariate poly-
nomial on a structured quadrature grid and Y (which will now be a column
vector) contains the outputs of an expensive data generation process (e.g., an
experiment or high-fidelity PDE simulation).

In both example applications, it is clearly desirable to avoid using all entries of
Y when solving (7.6). As discussed in Section 6, leverage score sampling can be
used to sketch-and-solve least squares problems without accessing all entries of the
right-hand side Y while still providing performance guarantees. Here we discuss
how to take advantage of the structure of A to speed up leverage score sampling.

Kronecker product structure

Consider a Kronecker product A = A1 ⊗ · · · ⊗ AL of mk × nk matrices Ak. It is
possible to perform exact leverage score sampling on A without even forming it.
Cheng et al. [CPL+16] used this fact to approximately solve least squares problems
with Kronecker product design matrices, which has applications in algorithms for
Tucker tensor decomposition. Formal statements and proofs of these results later
appeared in [DJS+19].

To see how the sampling works, let (pi) be the leverage score sampling distribu-
tion of A and let (pik

) be the leverage score sampling distribution of Ak for k ∈ JLK.
For any i ∈ J∏L

k=1 mkK and corresponding multi-index (i1, . . . , iL) satisfying

A[i, :] = A1[i1, :]⊗ · · · ⊗ AL[iL, :], (7.7)

it holds that
pi = p

(1)
i1

p
(2)
i2
· · · p(L)

iL
. (7.8)

Therefore, instead of drawing an index i according to (pi), one can draw the index
ik according to (p(k)

ik
) for each k ∈ JLK. Due to (7.7), the row corresponding to the

drawn index can be computed and rescaled without constructing A. This process
can be easily adapted to drawing multiple samples.

Fahrbach et al. [FFG22] discuss how the sampling approach above can be adapted
for use in ridge regression when the design matrix is a Kronecker product. Malik
et al. [MXC+22] show an approach for efficient sampling according to the exact
leverage scores of matrices of the form A[:, J] when A is a Kronecker product and
J is an index vector that satisfies certain monotonicity properties.

Khatri–Rao product structure

Sampling according to the leverage scores of a Khatri–Rao product matrix A =
A1 � · · · � AL is more challenging than it is for a Kronecker product matrix. Still,
several approaches for doing so have been proposed. We divide them into two
categories. The methods in the first category sample according to the leverage scores
of the Kronecker product of A1, . . . , AL instead of the Khatri–Rao product since this
allows for simple and efficient sampling. This can be viewed as sampling from a
coarse approximation of the Khatri–Rao product leverage scores. The methods in

Page 115

Early Release

the second category sample according to exact or high-accuracy approximations of
the Khatri–Rao product leverage score distribution.

Sampling according to Kronecker product leverage scores As noted by [CPL+16;
BBK18], the leverage scores of A can be upper bounded by

ℓi(A) ≤
L∏

k=1

ℓik
(Ak), (7.9)

where (i1, . . . , iL) is the multi-index corresponding to i. The two papers [CPL+16;
LK20] use the expression on the right-hand side of (7.9) as an approximation to the
exact leverage scores on the left-hand side. By using the bound (7.9), they are able
to prove theoretical performance guarantees when this approach is used for sketch-
and-solve in least squares problems. More precisely, Cheng et al. [CPL+16] sample
according to a mixture of the distribution in (7.8) and a distribution which depends
on the magnitude of the dependent variables (i.e., the entries in the “right-hand
sides” in the least squares problem). Larsen and Kolda [LK20] sample with respect
to only the distribution in (7.8). Bharadwaj et al. [BMM+22] extend the work
by [CPL+16; LK20] to a distributed-memory setting and provide high-performance
parallel implementations. Ideas similar to those in [LK20] are developed for the more
complicated design matrices that arise in algorithms for tensor ring decomposition
in [MB21]. Those matrices have columns that are sums of vectors with Kronecker
product structure.

Sampling according to exact or high-quality approximations of leverage scores Malik
[Mal22] proposes a different approach for the Khatri–Rao product least squares
problem. By combining some of the ideas for fast leverage score estimation (see
§6.2) and recursive sketching (see §7.2.4) with a sequential sampling approach,
he improves the sampling and computational complexities of [LK20]. Malik et
al. [MBM22] simplify and generalize the method by [Mal22] to a wider family of
structured matrices. An upshot of this work is a method for efficiently sampling
a Khatri–Rao product matrix according to its exact leverage score distribution
without forming the matrix.

Motivated by applications in kernel methods, [WZ20] develop a recursive lever-
age score sampling method for sketching of matrices of the form A�L = A�· · ·�A.
Their method starts by sampling from a coarse approximation to the leverage score
sampling distribution and then iteratively refining it. These ideas are further re-
fined in [WZ22] where the method is also extended to general Khatri–Rao products
of matrices that can all be distinct.

7.3 Partial updates to Kronecker product sketches
The structured sketching operators discussed in Section 7.2 are notable in that
they are defined in terms of multiple smaller sketching operators. Here we discuss
situations when it is advantageous to reuse some of these smaller sketches across
multiple calls to the structured sketching operator. The examples we discuss come
from works that use sketching in tensor decomposition algorithms. Our goal with
this discussion is to bring to light some of the functionality we think is important

Page 116

Early Release

for structured sketches to have in order to best support potential usage in the
tensor community.

By tensor, we mean multi-index arrays containing real numbers. A tensor with
L indices is called an L-way tensor. Vectors and matrices are one- and two-way
tensors, respectively. Calligraphic capital letters (e.g., X) are used to denote tensors
with three or more indices. Much like matrix decomposition, the purpose of tensor
decomposition is to decompose a tensor into some number of simpler components.
We only give minimal background material on tensor decomposition here; see the
review papers [KB09; CMD+15; SDF+17] for further details.

7.3.1 Background on the CP decomposition
We first consider the CANDECOMP/PARAFAC (CP) decomposition which is also
known as the canonical polyadic decomposition [KB09, §3]. It decomposes an L-way
tensor X of size m1 ×m2 × · · · ×mL into a sum of R rank-1 tensors:

X =
R∑

r=1
a(1)

r ◦ a(2)
r ◦ · · · ◦ a(L)

r , (7.10)

where ◦ denotes the outer product. The mn×R matrices A(n) =
[
a

(n)
1 · · · a

(n)
R

]
for n ∈ JLK are called factor matrices. When R is sufficiently large, we can express
the factor matrices as the solution to

arg min
A(1),...,A(L)

∥∥∥X − R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(L)
r

∥∥∥
F

, (7.11)

where ‖ · ‖F denotes the Frobenius norm as generalized to tensors in the obvious
way. The broader problem of tensor decomposition is concerned with approximately
solving (7.11). In particular, it is common to seek locally optimal solutions to this
problem even when R is too small for an identity of the form (7.10) to hold for X .

It is computationally intractable to solve (7.11) in the general case. However,
the problem admits several heuristics that are effective in practice. One of the most
popular heuristics is alternating minimization, wherein one solves for only one factor
matrix at a time while keeping the others fixed. That is, one solves a sequence of
problems of the form

A(n) = arg min
A

∥∥∥X − R∑
r=1

a(1)
r ◦ · · · ◦ a(n−1)

r ◦ ar ◦ a(n+1)
r ◦ · · · ◦ a(L)

r

∥∥∥
F

(7.12)

for n ∈ JLK. If we adopt appropriate notation then (7.12) can be stated as a familiar
linear least squares problem. Accordingly, this alternating minimization approach
is called alternating least squares (ALS). The ALS approach cycles through the
indices n ∈ JLK multiple times until some termination criteria is met. Typical
termination criteria include reaching a maximum number of iterations or seeing
that the improvement in the objective falls below some threshold.

Formulating and solving the least squares problem

We begin by introducing flattened representations of X . Specifically, for n ∈ JLK,
the mn×

(∏
j 6=n mj

)
matrix X(n) is given by horizontally concatenating the mode-n

Page 117

Early Release

fibers X [i1, . . . , in−1, :, in+1, . . . , iN] as columns. Such a matrix can be expressed in
Matlab notation as follows

X(n) = reshape

permute(X , [n, 1, . . . , n− 1, n + 1, . . . , L]), mn,
∏
j 6=n

mj

 .

(7.13)
Next, we introduce the following flattened tensorizations of the factor matrices:

A 6=n := A(L) � · · · � A(n+1) � A(n−1) � · · · � A(1) =:
1⊙

j=L
j 6=n

A(j). (7.14)

Where we emphasize that the order of the matrices in the above product is im-
portant; our notation for the Khatri–Rao product at right reflects how the order
proceeds from j = L to j = 1, skipping j = n.

In terms of these matrices, the ALS update rule for the nth factor matrix is

A(n) = arg min
A

∥∥A 6=nA∗ − X∗
(n)

∥∥
F. (7.15)

We note that the Gram matrix for this least squares problem can be computed
efficiently by the formula

A 6=n∗A6=n = (A(L)∗A(L)) ⊛ · · ·⊛ (A(n+1)∗A(n+1))

⊛ (A(n−1)∗A(n−1)) ⊛ · · ·⊛ (A(1)∗A(1)). (7.16)

Therefore solving the least squares problem in (7.15) via the normal equations can
be very efficient [KB09, §3.4]. Indeed, the ALS update rule for the nth factor matrix
becomes

A(n) = X(n)A 6=n(A 6=n∗A 6=n)†. (7.17)

The most expensive part of this update is actually computing X(n)A 6=n [BBK18,
§3.1.1], which is analogous to the vector F∗h in the normal equations for an overde-
termined least squares problem minz ‖Fz − h‖2

2. Therefore, the fact that comput-
ing this matrix is the computational bottleneck in solving (7.15) is the opposite of
what one would expect when not working with tensors. This phenomenon is why
row-sampling sketching operators have been successful in ALS algorithms that use
sketch-and-solve for the least squares subproblems [LK20].
Remark 7.3.1. Although it is cheap to form the Gram matrix (7.16), there is poten-
tial for very bad conditioning even when L is small. We do not know how seriously
the poor conditioning affects ALS approaches to CP decomposition in practice.

7.3.2 Sketching for the CP decomposition
Battaglino et al. [BBK18] apply the Kronecker SRFT from Section 7.2.2 to the least
squares problem in (7.15). Letting Tj and Fj be of size mj × mj , the sketching
operator used before solving for the nth factor matrix is

Sn =

√√√√∏L
j=1
j 6=n

mj

d
R

(1⊗
j=L
j 6=n

Tj

)(1⊗
j=L
j 6=n

Fj

)
. (7.18)

Page 118

Early Release

Our notation for the Kronecker product operator indexes from j = L to j = 1 so as
to mimic our earlier notation for the Khatri–Rao product (see (7.14)).

A by-the-book application of this operator would require drawing new R and
(Fj)j 6=n every time it is applied in (7.15), i.e., L times for every execution of the
for loop. Battaglino et al. [BBK18, Alg. 4] instead propose drawing F1, . . . , FL once
and then reusing them throughout the algorithm, only drawing R anew for each
least squares problem. This reduces the computational cost considerably since it
allows for greater reuse of various computed quantities. In particular, the expensive
application of the full Kronecker SRFT to the unstructured matrix X∗

(n) does not
have to be computed for every least squares problem.

Larsen and Kolda [LK20] also sketch the least squares problems in (7.15).
They use the efficient leverage score sampling scheme for Khatri–Rao products
discussed in Section 7.2.5. This approach also allows for some reuse between
subsequent sketches. When solving for A(n) in (7.15), a row with multi-index
(i1, . . . , in−1, in+1, . . . , iL) is sampled with probability p

(1)
i1
· · · p(n−1)

in−1
p

(n+1)
in+1

· · · p(L)
iL

,
where (p(k)

ik
) is the leverage score sampling distribution for A(k). Since each A(k)

only change for every Lth least squares problem, the probability distribution (p(k)
ik

)
can be used in L− 1 least squares problems before it needs to be recomputed.

7.3.3 Background on the Tucker decomposition
The Tucker decomposition [KB09, §4] is another popular method that decomposes
an L-way tensor X of size m1 ×m2 × · · · ×mL into

R1∑
r1=1

R2∑
r2=1
· · ·

RL∑
rL=1

G[r1, r2, . . . , rL] a(1)
r1
◦ a(2)

r2
◦ · · · ◦ a(L)

rL
, (7.19)

where the so-called core tensor G is of size R1×R2×· · ·×RL. The mn×Rn matrices
A(n) =

[
a

(n)
1 · · · a

(n)
Rn

]
for n ∈ JLK are called factor matrices. Similarly to the

CP decomposition, the core tensor and factor matrices can be initialized randomly
and then updated iteratively via ALS:3

For n in JLK : A(n) = arg min
A

‖B 6=nG∗
(n)A

∗ − X∗
(n)‖F, (7.20)

G = arg min
Z

‖B vec(Z)− vec(X)‖F, (7.21)

where

B6=n = A(L) ⊗ · · · ⊗ A(n+1) ⊗ A(n−1) ⊗ · · · ⊗ A(1),

B = A(L) ⊗ · · · ⊗ A(1),

and the unfolding G(n) is defined analogously to X(n) in (7.13). The steps in (7.20)
and (7.21) are then repeated until some convergence criterion is met. We note
that the least squares problems (7.20) and (7.21) are highly overdetermined when
(Rn)n∈JLK are small compared to (mn)n∈JLK.

3The update rules in (7.20) and (7.21) have been formulated as least squares problems in order
to show where sketching can be applied in the ALS algorithm. A more standard formulation of
the update rules can be found in [KB09, §4.2].

Page 119

Early Release

7.3.4 Sketching for the Tucker decomposition
Malik and Becker [MB18] apply the TensorSketch discussed in Section 7.2.3 to these
problems. From a straightforward adaption of (7.5) to matrix Kronecker products,
we have that the TensorSketch of the design matrix B6=n is computed via the formula

DFT−1
((1⊙

j=L
j 6=n

(
DFT(SjA(j))

)>
)>

)
,

where Sj is a d×mj CountSketch, and where > denotes transpose without complex
conjugation. The formula for sketching B is the same except for that it also includes
the nth term in the Khatri–Rao product.

Instead of drawing new CountSketches for every application of TensorSketch,
[MB18, Alg. 2] draw two sets of independent CountSketches at the start of the
algorithm: (S(1)

j)L
j=1 where S(1)

j is of size d1 × mj , and (S(2)
j)L

j=1 where S(2)
j is of

size d2 ×mj . These two sets of sketches are then reused throughout the algorithm:
(S(1)

j) are used for sketching (7.20) and (S(2)
j) are used for sketching (7.21). The

latter least squares problems are much larger than the former. Using two sets
of sketching operators makes it possible to choose a larger embedding dimension
for the latter problem, i.e., choosing d2 > d1. By reusing CountSketches in this
fashion, considerable improvement in run time is achieved. Moreover, it is possible
to compute all relevant sketches of unfoldings of X at the start of the algorithm,
leading to an algorithm that requires only a single pass of X in order to decompose it.

7.3.5 Implementation considerations
We deem it most appropriate to implement the structured sketches discussed in
Section 7.2 in RandLAPACK rather than RandBLAS. In order to facilitate the appli-
cations discussed in Section 7.3, it should be possible to update or redraw specific
components of the sketching operator after it has been created. For example, when
applying the operator in (7.18) in an ALS algorithm for CP decomposition as in
[BBK18, Alg. 4], we want to keep the random diagonal matrices F1, . . . , FL fixed
but draw a new sampling operator R before each application of Sn.

In the applications above, components are shared across the L different sketching
operators that are used when updating the L different factor matrices. Rather than
defining L different sketching operators with shared components, it is better to
define a single operator that contains all components and which allows “leaving
one component out” when applied to a matrix or vector. For example, consider
a Kronecker SRFT from (7.4) but with reversed order in the Kronecker products.
It contains the components R and F1, . . . , FL. A user should be able to supply a
parameter n which indicates that the nth term in the Kronecker products should
be left out when computing the sketch, resulting in a sketch of the form (7.18).

Page 120

Appendix A

Details on Basic Sketching

Contents
A.1 Subspace embeddings and effective distortion 121

A.1.1 Effective distortion of Gaussian operators 123
A.2 Short-axis-sparse sketching operators 123

A.2.1 Implementation notes 123
A.2.2 Theory and practical usage 125

A.3 Theory for sketching by row selection 126

This appendix covers sketching theory and implementation of sketching opera-
tors. Its contents are relevant to Sections 2, 3 and 6.

A.1 Subspace embeddings and effective distortion
Let S be a wide d×m sketching operator and L be a linear subspace of Rm. Recall
from Section 2.2.2 that S embeds L into Rd with distortion δ ∈ [0, 1) if

(1− δ)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + δ)‖x‖2

holds for all x in L. We often use the term δ-embedding (and sometimes simply
subspace embedding) for such a sketching operator.

Note that if S is an δ-embedding and δ′ is greater than δ, then S is also an
δ′-embedding. It can be useful to speak of the smallest distortion for which S is a
subspace embedding for L; we refer to this simply as the distortion of S for L, and
denote it by

D(S; L) = inf{ δ : 0 ≤ δ < 1
S is an δ-embedding for L}.

In this notation, we have D(S; L) = +∞ when ker S ∩ L is nontrivial.
Subspace embedding distortion has a significant limitation in that we can have

D(S; L) = +∞ even in the extreme case when the orthogonal projector S†S is
the identity map on L. This is a consequence of the more general limitation that

121

Early Release

distortion depends on the scale of S, while many RandNLA algorithms are scale-
invariant with respect to S. These shortcomings lead us to define the effective
distortion of S for L as

De(S; L) = inf
t>0

D(tS; L). (A.1)

This definition gives the infimum over t > 0 rather than over t 6= 0 simply because
D(S; L) = D(−S; L).

There is a convenient formula for effective distortion using concepts of restricted
singular values and restricted condition numbers. Restricted singular values are a
fairly general concept of use in random matrix theory; see, e.g., [OT17]. They are
measures an operator’s “size” when considered from different vantage points within
a set of interest. Formally, we define the largest and smallest restricted singular
values of a sketching operator S for a subspace L as

σmax(S; L) = max
x∈L
{‖Sx‖2 : ‖x‖2 = 1}

and
σmin(S; L) = min

x∈L
{‖Sx‖2 : ‖x‖2 = 1}

Given these concepts, we define the restricted condition number of S on L as

cond(S; L) = σmax(S; L)
σmin(S; L)

,

where we take c/0 = +∞ for any c ≥ 0.
We have formulated the concepts of restricted singular values and condition

numbers in a way that reflects their geometric meaning. More concrete descriptions
can be obtained by considering any matrix U whose columns provide an orthonormal
basis for L. With this one can see that σmin(S; L) and σmax(S; L) coincide with the
extreme singular values of SU, and that cond(S; L) = cond(SU).

Next, we provide the connection between restricted condition numbers and ef-
fective distortion. Appendix B.1.1 explores this connection more in the context of
sketch-and-precondition algorithms for saddle point problems.

Proposition A.1.1. Let L be a linear subspace and S be a sketching operator
for which the restricted condition number κ = cond(S; L) is finite. The effective
distortion of S for L is

De(S; L) = κ− 1
κ + 1

.

Proof. The scaled sketching operator tS is an δ-embedding for L if and only if

(1− δ)‖x‖2 ≤ t‖Sx‖2 ≤ (1 + δ)‖x‖2 for all x in L.

This is equivalent to

1− δ

t
≤ ‖Sx‖2

‖x‖2
and ‖Sx‖2

‖x‖2
≤ 1 + δ

t
for all x in L.

These bounds can be simplified by optimizing over x. Abbreviating σ1 := σmax(S; L)
and σn := σmax(S; L) for n = dim(L), we find that tS is an δ-embedding for L if
and only if

1− δ

t
≤ σn and 1 + δ

t
≤ σ1.

Page 122

Early Release

These identities can be rearranged to find the following constraints on δ:

1− σ1t ≤ δ and tσn − 1 ≤ δ.

The value of t which permits minimum δ is that which makes the lower bounds
coincide. That is, the optimal t is t⋆ = 2/(σ1 + σn). Plugging this into the bounds
above, our constraints on δ reduce to

δ ≥ 1− σ1t⋆ = t⋆σn − 1 = σ1 − σn

σ1 + σn
= κ− 1

κ + 1
,

as desired.

A.1.1 Effective distortion of Gaussian operators
It is informative to consider the concepts of restricted condition numbers and ef-
fective distortion for Gaussian sketching operators. Therefore, let us suppose that
our d×m sketching operator S has iid mean-zero Gaussian entries, and consider an
n-dimensional subspace L in Rm. By rotational invariance of Gaussian distribution,
we can infer that the distribution of cond(S; L) coincides with that of cond(S̃) for a
d× n Gaussian matrix S̃. Strong concentration results are available to understand
the distribution of cond(S̃).

Specifically, letting d = sn for a constant s > 1, results by Silverstein [Sil85] and
Geman [Gem80] imply

cond(S; L)→
√

s + 1√
s− 1

almost surely as n→∞. (A.2)

This can be turned around using Proposition A.1.1 to obtain

De(S; L)→ 1√
s

almost surely as n→∞. (A.3)

We emphasize that (A.2) and (A.3) hold for any fixed n-dimensional subspace L.
These facts justify aggressively small choices of embedding dimension when using
Gaussian sketching operators in randomized algorithms for least squares. Meng,
Saunders, and Mahoney come to the same conclusion in their work on LSRN
[MSM14, Theorem 4.4].

A.2 Short-axis-sparse sketching operators
In this appendix we make liberal use of the abbreviation SASO (for “short-axis-
sparse sketching operator”) introduced in Section 2.4.1. Without loss of generality,
we describe SASOs in the wide case, i.e., when S is d×m with d� m.

A.2.1 Implementation notes
Constructing SASOs column-wise

It is extremely cheap to construct and store a wide SASO. The precise storage
format depends on how one wants to apply the SASO later on, which can vary
depending on context. However, the construction is embarrassingly parallel across

Page 123

Early Release

columns provided one uses CBRNGs (counter-based random number generators;
see §2.1.1), and this structure leads to canonical methods for generating SASOs.

We first consider the SASO construction where row indices are partitioned into
index sets I1, . . . , Ik of roughly equal size. Given such a partition, the indices of
nonzeros for a given column are chosen by taking one element (independently and
uniformly) from each of the index sets Ij . The naive implementation can sample
these row indices with k parallel calls to the CBRNG.

Now consider the construction where the row indices for a column are chosen by
selecting k elements from JdK uniformly without replacement. This can be done in
O(km) time by using Fisher-Yates sampling and carefully re-using workspace. For
a concrete implementation, we refer the reader to

https://github.com/BallisticLA/RandBLAS/blob/19sept22/src/sjlts.
cc#L14-L78.1

While the implementation above is sequential, it is easy to parallelize. Given T
threads, the natural modification to the algorithm takes O(mk/T) time and requires
O(Td) workspace. The constants in the big-O notation are small.

Remarks on storage formats

It is reasonable for a standard library to restrict SASOs to only the most common
sparse matrix formats. We believe both compressed sparse row (CSR) and com-
pressed sparse column (CSC) are worth considering. CSC is the more natural of the
two since (wide) SASOs are constructed columnwise. If CSR format is preferred for
some reason, then we recommend constructing S columnwise while retaining extra
data to facilitate conversion to CSR.

In principle, if the nonzero entries of S are ±1 and CSC is used as the storage
format, then one could do away with storing the nonzero values explicitly; one could
instead store the sign information using signed integers for the row indices. We do
not favor this approach since it precludes working with SASOs with more than two
distinct nonzero values.

For the matrices A and Â, we must consider whether they are in column-major
or row-major format. Indeed, both formats need to be supported since Section 3
framed all least squares problems with tall data matrices. While this was without
loss of generality from a mathematical perspective, a user with an underdetermined
least squares problem involving a wide column-major data matrix B is effectively
needing to sketch the tall row-major matrix A = B∗.

Applying a wide SASO

There are four combinations of storage formats we need to consider for (S, A).

S is CSC, A is row-major. Suppose we have P processors. Our suggested approach
is to partition the row index set JdK into I1, . . . , IP and to have each processor be
responsible for its own block of rows. The pth processor computes its row block by
streaming over the columns of S and rows of A, accumulating outer products as
indicated below

Ask[Ip, :] =
∑

ℓ∈JmK S[Ip, ℓ]A[ℓ, :].

1This code was written when we used the term “SJLT” for what we now call a “SASO.”

Page 124

https://github.com/BallisticLA/RandBLAS/blob/19sept22/src/sjlts.cc#L14-L78
https://github.com/BallisticLA/RandBLAS/blob/19sept22/src/sjlts.cc#L14-L78

Early Release

An individual term S[Ip, ℓ]A[ℓ, :] can cheaply be accumulated into Ask[Ip, :] by using
the fact that S[Ip, ℓ] is extremely sparse. If R denotes the number of nonzeros
in S[Ip, ℓ], then the outer-product accumulation can be computed with R axpy
operations involving the row A[ℓ, :]. Note that since S has k nonzeros per column
(with row indices distributed uniformly at random), this value R is a sum of |Ip|
iid Bernoulli random variables with mean k/d. Therefore the expected number of
axpy’s performed by processor p for term ℓ is |Ip|k/d.

S is CSR, A is row-major. Here, we suggest that the d rows of Ask be computed
separately from one another. An individual row is given by Ask[i, :] = S[i, :]A.
Evaluating the product of this sparse vector and dense matrix can be done by
taking a linear combination of a small number of rows of A. Specifically, if R is
the number of nonzeros in S[i, :] then computing Ask[i, :] only requires R rows from
A. Since the columns of S are independent, R is a sum of m iid Bernoulli random
variables with mean k/d. Therefore we expect to access mk/d rows of A in order
to compute Ask[i, :].

S is CSC, A is column-major. Here, we suggest that the n columns of Ask be com-
puted separately from one another. An individual column is given by Ask[:, j] =
SA[:, j]. We evaluate this product by taking a linear combination of the columns of
S, according to

Ask[:, j] =
∑

ℓ∈JmK S[:, ℓ]A[ℓ, j].

Note that each of the ℓ terms in this sum is a sparse vector with k nonzero entries.
Based on our preliminary experiments, this method has mediocre single-thread per-
formance, but it has excellent scaling properties for many-core machines.

S is CSR, A is column-major. We were unable to determine a method that paral-
lelizes well for this pair of data formats. The most efficient algorithm may be to
convert S to CSC and then to apply the preferred method when S is CSC and A is
column-major.

A.2.2 Theory and practical usage
SASO theory

A precursor to the SASOs we consider is described in [DKS10], which sampled row
indices for nonzero entries from JdK with replacement. The first theoretical analysis
of the SASOs we consider was conducted in [KN12] and concerned the distributional
Johnson-Lindenstrauss property. Shortly thereafter, [CW13] and [MM13] studied
OSE properties for SASOs with a single nonzero per column; the latter referred to
the construction as “CountSketch.”

Theoretical analyses for OSE properties of general SASOs (i.e., those with more
than one nonzero per column) were first carried out by [NN13; KN14] and sub-
sequently improved by [BDN15; Coh16]. Much of the SASO analysis has been
through the lens of “hashing functions,” and does not require that the columns of
the sketching operator are fully independent, but [MM13] provides a very simple
linear algebraic proof of the main result. We do not know of any practical advantage
to SASOs with partial dependence across the columns.

Page 125

Early Release

Remark A.2.1 (Navigating the literature). [CW17] is a longer journal version of
[CW13]. [KN14] and [KN12] have the same title, and the former is considered a
more developed journal version of the latter.

Selecting parameters for SASOs

We are in the process of developing recommendations for how to set the parameters
d and k for a distribution over SASOs. So far we have observed that when d is
fixed the sketch quality increases rapidly with k before reaching a plateau. As
one point of reference, we have observed that there is no real benefit in k being
larger than eight when embedding the range of a 100, 000 × 2, 000 matrix into a
space with ambient dimension d = 6, 000. Furthermore, for the data matrices we
tested, the restricted condition numbers of those sketching operators were tightly
concentrated at O(1). Extensive experiments with parameter selection for SASOs
in a least squares context are given in [Ura13].

A.3 Theory for sketching by row selection
Here we prove Proposition 6.1.1. Our proof is inspired by [Tro20, Problem 5.13],
which begins with the following adaptation of [Tro15, Theorem 5.1.1].

Theorem A.3.1. Consider an independent family {X1, . . . , Xs} ⊂ Hn of random
psd matrices that satisfy λmax(Xi) ≤ L almost surely. Let Y =

∑s
i=1 Xi, and define

the mean parameters

µmax = λmax(EY) and µmin = λmin(EY).

One has that

Pr {λmax(Y− (1 + t)EY) ≥ 0} ≤ n

[
exp(t)

(1 + t)(1+t)

]µmax/L

for t > 0, and

Pr {λmax((1− t)EY− Y) ≥ 0} ≤ n

[
exp(−t)

(1− t)(1−t)

]µmin/L

for t ∈ (0, 1).

Here, we restate the result we aim to prove.

Proposition A.3.2 (Adaptation of Proposition 6.1.1). Suppose A is an m × n
matrix of rank n, q is a distribution over JmK, and t is in (0, 1). Let S be a d×m
sketching operator with rows that are distributed iid as

S[i, :] = δj√
dqj

with probability qj ,

and let E(t, S) denote the event that

(1− t)‖y‖2
2 ≤ ‖Sy‖2

2 ≤ (1 + t)‖y‖2
2 ∀y ∈ range A.

Using r := minj∈JmK qj

pj(A) , we have

Pr {E(t, S) fails} ≤ 2n

(
exp(t)

(1 + t)(1+t)

)rd/n

.

Page 126

Early Release

Proof. The way that we use Theorem A.3.1 is along the lines of the hint in [Tro20,
Problem 5.13, Part 3]. We begin by considering the Gram matrices G = A∗A and
Gsk = A∗S∗SA. The event E(t, S) is equivalent to

(1− t)In � G−1/2GskG−1/2 � (1 + t)In.

The sketched Gram matrix can be expressed as a sum of d outer products of
rows of SA. Each of the d outer products is conjugated by G−1/2 to obtain our
matrices {X1, . . . , Xd}. That is, we set

Xi = G−1/2 ((SA) [i, :])∗ ((SA) [i, :]) G−1/2 (A.4)

so that Y =
∑d

i=1 Xi satisfies EY = In. A union bound provides

Pr{E(t, S) fails} ≤ Pr{λmax(Y) ≥ 1 + t}+ Pr{1− t ≥ λmin(Y)}.

Note that the claim of this proposition only invokes Theorem A.3.1 in the special
case when t is between zero and one. Moreover, our particular choice of Y leads to
µmin = µmax = 1. Given these restrictions, it can be shown that the larger of the
two probability bounds in the theorem is that involving the term exp(t)/(1+t)(1+t).
Therefore we have

Pr{E(t, S) fails} ≤ 2n
(

exp(t)/(1 + t)(1+t)
)1/L

.

Next, we turn to finding the smallest possible L given this construction, so as to
maximize 1/L.

Let i be an arbitrary index in JdK. By the definition of S, the following must
hold for some k ∈ JmK:

Xi = 1
d

(
1
qk

G−1/2A[k, :]∗A[k, :]G−1/2
)

.

Our next step is to use the fact that the trace of a rank-1 psd matrix is equal to its
largest eigenvalue. Cycling the trace shows that

λmax

(
G−1/2A[k, :]∗A[k, :]G−1/2

)
= A[k, :]G−1A[k, :]∗ = ℓk(A),

and hence
L = 1

d
max

j∈JmK
{

ℓj(A)
qj

}
is the smallest value that guarantees λmax(Xi) ≤ L.

To complete the proof we use the assumption that A is of full rank n to express
the leverage score ℓj(A) as ℓj(A) = npj(A). This shows that

L = n

d
max

j∈JmK
pj(A)

qj
,

and the proposition’s claim follows from just a little algebra.

Page 127

Early Release

Page 128

Appendix B

Details on Least Squares
and Optimization

Contents
B.1 Quality of preconditioners 129

B.1.1 Effective distortion in sketch-and-precondition 131
B.2 Basic error analysis for least squares problems 132

B.2.1 Concepts: forward and backward error 132
B.2.2 Sensitivity of unregularized least squares problems . . . 133
B.2.3 Simple constructions to bound backward error 135
B.2.4 More advanced concepts 136

B.3 Ill-posed saddle point problems 137
B.4 Minimizing regularized quadratics 138

B.4.1 A primer on kernel ridge regression 138
B.4.2 Efficient sketch-and-solve for regularized quadratics . . . 140

This appendix covers several distinct topics. In Appendix B.1, we prove a novel
result relevant to sketch-and-precondition algorithms for saddle point problems; we
also connect this result to the concept of effective distortion. In Appendix B.2,
we provide background from classical NLA on what it means to compute an “ac-
curate” solution to a least squares problem (overdetermined or underdetermined).
Appendix B.3 derives limiting solutions of saddle point problems as the regulariza-
tion parameter tends to zero from above. These limiting solutions are important
for treating saddle point problems as linear algebra problems even when their opti-
mization formulations are ill-posed. Finally, Appendix B.4 provides background on
kernel ridge regression and details a new approach to sketch-and-solve of regularized
quadratics.

B.1 Quality of preconditioners
Our discussions here concern preconditioners of the kind described in Section 3.3.2.
These are obtained by sketching a tall m×n data matrix A in the embedding regime
and factoring that sketch.

129

Early Release

Proposition B.1.1 (Adaptation of Proposition 3.3.1). Consider a sketch Ask =
SA and a matrix U whose columns are an orthonormal basis for range(A). If
rank(Ask) = rank(A) and the columns of AskM are an orthonormal basis for the
range of Ask, then singular values of AM are the reciprocals of the singular values
of SU.

Observe that this proposition is a linear algebraic result, i.e., there is no ran-
domness. When applied to randomized algorithms, the randomness enters only via
the construction of the sketch.

This result can be applied to problems with ridge regularization by working
with augmented matrices in the vein of Section 3.3.2. In that context it is necessary
to not only replace (A, Ask) by (Â, Âsk), but also to replace S by the augmented
sketching operator Ŝ that takes Â to Âsk. The augmented sketching operator in
question was already visualized in Algorithm 2.

Our proof of Proposition B.1.1 requires finding an explicit expression for M.
Towards this end, we prove the following lemma.

Lemma B.1.2. Suppose Ask is a tall d×n matrix and that M is a full-column-rank
matrix for which the columns of AskM form an orthonormal basis for range(Ask).
If B is a full-row-rank matrix for which Ask = AskMB, then we have M = B†.

Proof of Lemma B.1.2. Let k = rank(Ask) = rank(AskM). Since the columns of
AskM are orthonormal we can infer that it has dimensions d × k. Similarly, since
M is full column-rank we can infer that it is n× k. We prove that B = M†, which
amounts to showing four properties:

1. MBM = M,

2. BMB = B,

3. BM is an orthogonal projector, and

4. MB is an orthogonal projector.

By the lemma’s assumption we have the identity Ask = AskMB. Left multiply this
expression through by (AskM)∗ to see that

M∗A∗
skAsk = B. (B.1)

Next, we right multiply both sides of (B.1) by M and use column orthonormality
of AskM to obtain BM = Ik — this is sufficient to show the first three conditions
for the pseudoinverse. Showing the fourth and final condition takes more work. For
that we left multiply (B.1) by M so as to express

MM∗A∗
skAsk = MB.

Therefore our task is to show that MM∗A∗
skAsk is an orthogonal projector.

Consider the compact SVD Ask = UskΣskVsk. Since Ask is rank-k we have that
Usk has k columns and Σ is a k × k invertible matrix. Since the columns of AskM
form an orthonormal basis for the range of Ask, it must be that AskM = UskW
for some k × k orthogonal matrix W. Furthermore, this orthogonal matrix can be
expressed as ΣskV∗

skM = W, which implies

VskV∗
skM = VskΣ−1

sk W. (B.2)

Page 130

Early Release

We have reached a checkpoint in the proof. Our next task is to obtain an expression
for M by simplifying (B.2).

Consider the subspaces X = range Vsk, Y = ker Ask, and Z = range M, all
contained in Rn. We know that Y ∩ Z is trivial since rank(AskM) = rank(M). At
the same time, since Y and Z are of dimensions n − k and k respectively, it must
be that Z = Y ⊥. This fact can be combined with Y = X⊥ (from the fundamental
theorem of linear algebra) to obtain Z = X, which in turn implies VskV∗

skM = M.
Therefore (B.2) simplifies to

M = VskΣ−1
sk W.

This expression is precisely what we need; when the dust settles, it tells us that

MM∗A∗
skAsk = VskV∗

sk.

Proof of Proposition B.1.1. Let k = rank(A). It suffices to prove the statement
where U is the m × k matrix containing the left singular vectors of A. Our proof
involves working with the compact SVD A = UΣV∗, where V is n × k and Σ is
invertible. Noting that Ask = SUΣV∗ holds by definition of Ask, we can replace SU
by its economic QR factorization SU = QR to see

Ask = QRΣV∗. (B.3)

Furthermore, since rank(Ask) = k it must be that rank(SU) = k. This tells us that
R is invertible and that Q provides an orthonormal basis for the range of Ask.

By assumption on M, the matrix AskM is also an orthonormal basis for the range
of Ask. Therefore there exists a k× k orthogonal matrix P where QP = AskM. We
can rewrite (B.3) as

Ask = (QP) (P∗RΣV∗) .

Since the left factor in the above display is simply AskM, we have

Ask = AskM (P∗RΣV∗) . (B.4)

The next step is to abbreviate B = P∗RΣV∗ and apply Lemma B.1.2 to infer that
B = M†. Invoking the column-orthonormality of V and invertibility of (Σ, R, P) we
further have B† = M = VΣ−1R−1P. Plug in this expression for M to see that

AM = (UΣV∗)
(
VΣ−1R−1P

)
= UR−1P. (B.5)

The proof is completed by noting that the singular values of R−1 are the reciprocals
of the singular values of QR = SU.

B.1.1 Effective distortion in sketch-and-precondition
Recall from Appendix A.1 that if the columns of U are an orthonormal basis for a
linear subspace L, then the restricted condition number of S on L is

cond(S; L) = cond(SU).

This identity combines with Proposition B.1.1 to make for a remarkable fact.
Namely, if L = range(A) and M is an orthogonalizer of a sketch SA, then

cond(S; L) = cond(AM). (B.6)

Let us contextualize this fact algorithmically.

Page 131

Early Release

If A is an m×n matrix (m� n) appearing in a saddle point problem, and
if the saddle point problem is approached by a sketch-and-precondition
methodology described in Section 3.2.2, then the condition number of
the preconditioned matrix handed to the iterative solver is equal to the
restricted condition number of S on range(A).

But we can take this one step further. By invoking Proposition A.1.1 and applying
(B.6), we obtain the following expression for the effective distortion of S for L:

De(S; L) = cond(AM)− 1
cond(AM) + 1

. (B.7)

Alarm bells should be going off in some readers’ heads. The right-hand-side of
(B.7) is none other than the convergence rate of LSQR (or CGLS) for a least
squares problem with data matrix AM! This shows a deep connection between our
proposed concept of effective distortion and the venerated sketch-and-precondition
paradigm in RandNLA.

B.2 Basic error analysis for least squares problems
When solving a computational problem numerically it is inevitable that the com-
puted solutions deviate from the problem’s exact solution. This is a simple con-
sequence of working in finite-precision arithmetic, and it remains true even when
using very reliable algorithms. Furthermore, for large-scale computations it is of-
ten of interest to trade off computational complexity with solution accuracy; this
has led to algorithms that produce approximate solutions even when run in exact
arithmetic.

These facts were encountered in the earliest days of NLA. Their consequence
in applications has motivated the development of a vast literature on quantifying
and bounding the error of approximate solutions to computational problems. Since
several of the randomized algorithms from Section 3.2 purport to solve problems to
any desired accuracy, it is prudent for us to summarize key points from this vast
literature here. The material from Appendices B.2.1 to B.2.3 is typically covered in
an introductory course on numerical analysis. Appendix B.2.4 mentions important
topics which might not be covered in such a course.
Remark B.2.1. We have focused this appendix strongly on basic least squares prob-
lems (overdetermined and underdetermined) to keep it a reasonable length.

B.2.1 Concepts: forward and backward error
The forward error of an approximate solution to a computational problem is its
distance to the problem’s exact solution. Forward error is easy to interpret, but it
is not without its limitations. First, it can rarely be computed in practice, since
it is presumed that we do not have access to the problem’s exact solution. This
means that substantial effort is needed to approximate or bound forward error in
different contexts. Second, even if one algorithm’s behavior with respect to forward
error has been analyzed, it may not be feasible to repurpose the analysis for another
algorithm.

These shortcomings motivate the ideas of backward error and sensitivity analysis,
wherein one asks the following questions, respectively.

Page 132

Early Release

How much do we need to perturb the problem data so that the computed
solution exactly solves the perturbed problem?
How does a small perturbation to a given problem change that problem’s
exact solution?

The connection between the two concepts is clear: any bound on backward error can
be combined with sensitivity analysis to obtain an estimate of forward error. The
idea of sensitivity analysis is especially powerful since it is agnostic to the source of
the problem’s perturbation; the perturbations might be due to rounding errors from
finite-precision arithmetic, uncertainty in data (as might arise from experimental
observations), or deliberate choices to only compute approximate solutions. In
any of these cases one can combine knowledge of an algorithm’s backward-error
guarantees to obtain forward error estimates.

This reasoning can be carried further to arrive at two major benefits of the
“backward error plus sensitivity analysis” approach.

• A large portion of algorithm-specific error analysis can be accomplished purely
by understanding the algorithm’s behavior with respect to backward error.

• For many problems one can cheaply compute upper bounds on a solution’s
backward error at runtime.

The combination of backward error and sensitivity analysis can therefore be used
to establish a priori guarantees on algorithm numerical behavior and a posteriori
guarantees on the quality of an approximate solution. However, we do note that
sensitivity analysis results require knowledge of problem data that may not be
available, such as extreme singular values of a data matrix in a least squares problem.
This complication means it is still difficult to compute forward error bounds at
runtime.

B.2.2 Sensitivity of unregularized least squares problems
Here we paraphrase facts from [GV13, §5.3 and §5.6] on sensitivity analysis of least
squares problems with full-rank data matrices. Our restatements adopt the notation
we used for saddle point problems, wherein both overdetermined and underdeter-
mined involve a tall m × n matrix A. The overdetermined problem is defined in
the usual way, by (A, b) where b is an m-vector. The underdetermined problem is
defined by (A, c) where c is an n-vector, according to the formulation (3.4).
Theorem B.2.2. Suppose b is neither in the range of A nor the kernel of A∗, and
let x = A†b be the optimal solution of the overdetermined least squares problem with
data (A, b). Consider perturbations δb and δA where ‖δA‖2 < σn(A). Define

ϵ = max
{
‖δA‖2

‖A‖2
,
‖δb‖2

‖b‖2

}
(B.8)

together with some auxiliary quantities

sin θ = ‖b− Ax‖2

‖b‖2
and ν = ‖Ax‖2

σn(A)‖x‖2
. (B.9)

The perturbation δx necessary for x + δx to solve the least squares problem with
data (A + δA, b + δb) satisfies

‖δx‖2

‖x‖2
≤ ϵ

{ ν

cos θ
+ κ(A)(1 + ν tan θ)

}
+ O(ϵ2). (B.10)

Page 133

Early Release

Theorem B.2.2 restates part of [GV13, Theorem 5.3.1]; following the proof of
this result, the source material presents some simplified estimates for these bounds.
The first step in producing the simplified estimate is to note that ν ≤ κ(A) holds
for all nonzero x. Then, under the modest geometric assumption that θ is bounded
away from π/2, (B.10) suggests that

‖δx‖2

‖x‖2
≲ ϵ

{
κ(A) + ‖b− Ax‖2

‖b‖2
κ(A)2

}
. (B.11)

The significance of this bound is that it shows the dependence of ‖δx‖2 on the square
of the condition number of A. This dependence is a fundamental obstacle to solving
least squares problems to a high degree of accuracy when measured by forward error.
The situation is different if we try to bound the perturbation ‖A(δx)‖. We provide
the following result (which completes the restatement of [GV13, Theorem 5.3.1]) as
a step towards explaining why.
Theorem B.2.3. Under the hypothesis and notation of Theorem B.2.2, we have

‖A(δx)‖2

‖b− Ax‖2
≤ ϵ

{
1

sin θ
+ κ(A)

(
1

ν tan θ
+ 1

)}
+ O(ϵ2). (B.12)

Theorem B.2.3 can be seen as a sensitivity analysis result for a very specific
class of dual saddle point problems. Specifically, since we have assumed that A is
full rank, y solves the dual problem if and only if y = b − Ax where x solves the
primal problem. In the same vein, if x + δx solves a perturbed primal problem and
we set δy = −A(δx), then y + δy solves the perturbed dual problem.

As with the bound for δx, (B.12) can be estimated under mild geometric as-
sumptions; [GV13, pg. 267] points out that if θ is sufficiently bounded away from
0 and π/2, then we should have

‖δy‖2

‖y‖2
≲ ϵ κ(A). (B.13)

This shows there is more hope for solving dual saddle point problems to a high
degree of forward error accuracy, at least by comparison to primal saddle point
problems. Indeed, the following adaptation of [GV13, Theorem 5.6.1] provides an
even more favorable sensitivity analysis result for underdetermined least squares.
Theorem B.2.4. Let y = (A∗)†c solve the underdetermined least squares problem
with data (A, c) for a nonzero vector c. Consider perturbations δc and δA where

ϵ = max
{
‖δc‖2

‖c‖2
,
‖δA‖2

‖A‖2

}
< σn(A).

The perturbation δy needed for y + δy to solve the underdetermined least squares
problem with data (A + δA, c + δc) satisfies

‖δy‖2

‖y‖2
≤ 3 ϵ κ(A) + O(ϵ2). (B.14)

The sensitivity analysis results above concern normwise perturbations to the
problem data. More informative bounds can often be had by considering compo-
nentwise perturbations. For example, one can measure a perturbation of A by the
smallest α for which |δAij | ≤ α|Aij | for all i, j. We refer the reader to [Hig02, §20.1]
(specifically, Theorem 20.2 of the same) for a componentwise sensitivity analysis
result on overdetermined least squares.

Page 134

Early Release

B.2.3 Simple constructions to bound backward error
We focused our discussion of sensitivity analysis on normwise perturbations since
these are natural for iterative solvers. Here we describe two methods for constructing
explicit perturbations to problem data that render an approximate solution exact.
The norms of these perturbations provide upper bounds on the backward error of
the approximate solution; such bounds are useful as termination criteria for iterative
solvers. For discussion on componentwise backward error bounds for overdetermined
least squares we again refer the reader to [Hig02, §20.1].

Inconsistent overdetermined problems

We adopt notation where an “original” overdetermined least squares problem with
data (Ao, bo) is approximately solved by x. Letting r = bo − Aox, we define

δAo = rr∗Ao

‖r‖2
2

and A = Ao + δAo, (B.15)

and subsequently
δbo = −(δAo)x and b = bo + δbo. (B.16)

Some simple algebra shows that x satisfies the normal equations

A∗ (b− Ax) = 0,

therefore it solves the overdetermined least squares problem with data (A, b).
This construction was first given in [Ste77, Theorem 3.2]. It is especially nice

since the perturbation is rank-1, and so its spectral norm

‖δAo‖2 = ‖A
∗
or‖2

‖r‖2

is easily computed at runtime by an iterative solver. Furthermore, if the iterative
solver in question is LSQR, and if we assume exact arithmetic, then the perturbation
will satisfy δAox = 0 [PS82, §6.2]. Therefore in exact arithmetic this construction
can be used in LSQR without any perturbation to bo. The same observation applies
to any method that is equivalent to LSQR in exact arithmetic, such as CGLS.

Consistent overdetermined problems

The perturbations given in (B.15) – (B.16) are not suitable for least squares prob-
lems where the optimal residual, (I − AoA†

o)bo, is zero or nearly zero. In these
situations one should use a perturbation designed for consistent linear systems. We
describe such a construction here based on termination criteria used in LSQR.

Let δbo be an arbitrary m-vector. It can be seen that taking b = bo + δbo

together with

δAo = (b− Aox) x∗

‖x‖2
2

and A = Ao + δAo

provides Ax = b. Again it is clear that since δAo is rank-1, an iterative solver could
cheaply compute its spectral norm at runtime.

Page 135

Early Release

The specific construction for LSQR (described in [PS82, §6.1]) sets δbo to a
scaled-down copy of the current residual:

δbo =
(

ϵb‖bo‖2

ϵb‖bo‖2 + ϵA‖Ao‖‖x‖2

)
(bo − Aox). (B.17)

The parameters ϵA and ϵb indicate the sizes of perturbations to (Ao, bo), relative to
their norms, that a user deems allowable. It is suggested that “allowable” be based
on the extent to which (Ao, bo) are not actually known exactly in applications.
As a minor detail, we point out that the norm of Ao in (B.17) is deliberately
ambiguous. While the spectral norm would probably be most natural, the formal
LSQR algorithm replaces ‖Ao‖ by an estimate of ‖Ao‖F that monotonically increases
from one iteration to the next; see [PS82, §5.3].

B.2.4 More advanced concepts
Some of the earliest work on backward-error analysis for solutions to linear sys-
tems is given in [OP64] and focused on componentwise backward error for direct
methods. Componentwise backward error constructions have been used in iterative
refinement procedures for sparse direct solvers [ADD89]. A principal shortcoming
of componentwise error metrics is that they are expensive to compute, especially as
stopping criteria for iterative solvers. [ADR92] provides an investigation of metrics
for componentwise backward error suitable for iterative solvers.

The “backward error plus sensitivity analysis” approach does not provide sharp
bounds on forward error. Luckily, forward error estimates are available for some
Krylov subspace methods such as PCG, wherein one uses algorithm-specific re-
currences to estimate forward error in the Euclidean norm or the norm induced by
Aµ := [A;√µ]. See, for example, [AK01; ST02; ST05]. These error bounds are more
accurate when used with a good preconditioner, which we can generally expect to
have when using the randomized algorithms described herein.

It is not easy to apply sensitivity analysis results to compute forward error
bounds at runtime; one of the biggest obstacles is the need to have accurate es-
timates for the extreme singular values of the perturbed matrix A. On this topic
we note that if M is an SVD-based preconditioner then we will have computed the
singular values and right singular vectors of a sketch SAo. Those singular values
can be used as approximations to the reciprocals of the singular values of Ao. It
is conceivable that more accurate approximations could be obtained by applying
iterative preconditioned eigenvalue estimation methods for (Ao)∗Ao. Such iterative
methods typically require initialization with an approximate eigenvector. On this
front one can use the leading (resp. trailing) left singular vector of M to approxi-
mate the trailing (resp. leading) right singular vector of Ao. One should not expect
too much of such estimates, however.1

Finally, we note that some Krylov-subspace iterative methods can estimate con-
dition numbers. For example, when LSQR is applied to a problem with data ma-
trix L, it can estimate the Frobenius condition number ‖L‖F‖L†‖F. Bear in mind
that in our context we call LSQR with the preconditioned augmented data matrix,
L = AµM. It would be useful to embed estimators for componentwise condition
numbers (which are known to be computable in polynomial time [Dem92]) into
Krylov subspace solvers.

1Any “cheap” method for estimating the smallest singular value even of triangular matrices can
return substantial overestimates and underestimates [DDM01].

Page 136

Early Release

B.3 Ill-posed saddle point problems
Our saddle point formulations of least squares problems can be problematic when A
is rank-deficient and µ is zero, in which case our problems can actually be infeasible
or unbounded below. This appendix uses a limiting analysis to define canonical
solutions to saddle point problems in these settings.

We begin by recalling

min
x∈Rn

‖Ax− b‖2
2 + µ‖x‖2

2 + 2c∗x, ((3.2), revisited)

min
y∈Rm

‖A∗y − c‖2
2 + µ‖y − b‖2

2, ((3.3), revisited)

and min
y∈Rm

{‖y − b‖2
2 : A∗y = c}. ((3.4), revisited)

We also note the following form of solutions to (3.3), when µ is positive

y(µ) = (AA∗ + µI)−1 (Ac + µb) . (B.18)

Proposition B.3.1. For any tall m×n matrix A, any m-vector b, and any n-vector
c, we have

lim
µ↓0

y(µ) = (A∗)†c + (I− AA†)b. (B.19)

Proof. Let k = rank(A). If k = 0 then the claim is trivial since (B.18) reduces to
y(µ) = b for all µ > 0. Henceforth, we assume k > 1. To establish the claim,
consider how the compact SVD A = UΣV∗ lets us express

AA∗ + µIm = Hµ + Gµ

in terms of the Hermitian matrices

Hµ = U
(
Σ2 + µIk

)
U∗

and Gµ = µ(Im −UU∗).

Since HµGµ = GµHµ = 0, the following identity holds for all positive µ:

(AA∗ + µI)−1 = H†
µ + G†

µ.

Furthermore, by expressing

H†
µAc = U

(
Σ2 + µIk

)−1 ΣV∗c

G†
µAc = 0

µH†
µb = U

(
Σ2/µ + Ik

)−1 U∗b

µG†
µb = (Im −UU∗)b

we find that

y(µ) = H†
µ(Ac + µb) + G†

µ(Ac + µb)
→ UΣ−1V∗c + (Im −UU∗)b.

This is equivalent to the desired claim since (A∗)† = UΣ−1V∗ and AA† = UU∗.

Page 137

Early Release

In light of the above proposition, we take y(0) = (A∗)†c + (I − AA†)b as our
canonical solution to the dual problem when µ = 0.

Now we let x(µ) denote the solution to (3.2) parameterized by µ > 0. It is clear
that this is given by

x(µ) = (A∗A + µI)−1 (A∗b− c).

It is easy to show that if c is not orthogonal to the kernel of A, then the norms
‖x(µ)‖ will diverge to infinity as µ tends to zero. However, if c is orthogonal to the
kernel of A, then we have

lim
µ↓0

x(µ) = (A∗A)†(A∗b− c) =: x(0). (B.20)

We actually take the limit above as our canonical solution to the primal problem
(3.2) regardless of whether or not c is orthogonal to the kernel of A. Our reasons
for this are two-fold. First, the values x(0), y(0) given above are unchanged when
c is replaced by its orthogonal projection onto range of A∗. Second, the value y(0)
is always the limiting solution to the dual problem. Meanwhile, the proposed value
for x(0) relates to y(0) by y(0) = b− Ax(0).

B.4 Minimizing regularized quadratics

Appendix B.4.1 provides a brief introduction to kernel ridge regression (KRR).
It covers the finite-dimensional linear algebraic formulation and the Hilbert space
formulation of this regression model, and it explains how ridge regression can be
understood in the KRR framework. Appendix B.4.2 presents a novel preconditioner-
generation procedure for solving a sketch of the regularized quadratic minimization
problem (3.1).

B.4.1 A primer on kernel ridge regression
Kernel ridge regression (KRR) is a type of nonparametric regression for learning
real-valued nonlinear functions f : X → R. It can be formulated as a linear algebra
problem as follows: we are given λ > 0, an m ×m psd “kernel matrix” K, and a
vector of observations h in Rm; we want to solve

argmin
α∈Rm

1
m‖Kα− h‖2

2 + λ α∗Kα. (B.21)

Equivalently, we want to solve the KRR normal equations (K + mλ I)α = h. The
normal equations formulation makes it clear that KRR is an instance of (3.1).

A standard library for RandNLA would be well-served to not dwell on how
K is defined; it should instead only focus on how K can be accessed. However,
strictly speaking, (B.21) only encodes a KRR problem when the entries of K are
given by pairwise evaluations of a suitable two-argument kernel function on some
datapoints {xi}m

i=1 ⊂ X . Letting k : X × X → R denote this kernel function,
the user will take α that approximately solves (B.21) to define the learned model
g(z) =

∑m
i=1 αik(xi, z).

Page 138

Early Release

A more technical description

The kernel function k induces a reproducing kernel Hilbert space, H, of real-valued
functions on X . This space is (up to closure) equal to the set of real-linear combi-
nations of functions y 7→ ku(y) := k(y, u) parameterized by u ∈ X . Additionally,
if the function

y 7→ f(y) =
m∑

i=1
αik(y, xi)

is parameterized by α ∈ Rm and {xi}m
i=1 ⊂ X , then its squared norm is given by

‖f‖2
H =

m∑
i=1

m∑
j=1

αiαjk(xi, xj).

Using the kernel matrix K with entries Kij = k(xi, xj), we can express that squared
norm as ‖f‖2

H = α∗Kα. Furthermore, for any u ∈ X and any f ∈ H we have
f(u) = 〈f, ku〉H. For details on reproducing kernel Hilbert spaces we refer the
reader to [Aro50].

KRR problem data consists of observations {(xi, hi)}m
i=1 ⊂ X ×R and a positive

regularization parameter λ. We presume there are functions g in H for which
g(xi) ≈ hi, and we try to obtain such a function by solving

min
g∈H

1
m

m∑
i=1

(g(xi)− hi)2 + λ‖g‖2
H. (B.22)

It follows from [KW70] that the solution to (B.22) is in the span of the functions
{kxi}m

i=1. Specifically, the solution is g⋆ =
∑m

i=1 αik
xi where α solves (B.21).

Why is ridge regression a special case of kernel ridge regression?

Suppose we have an m × n matrix X = [x1, . . . , xn] with linearly independent
columns, and that we want to estimate a linear functional ĝ : Rm → R given access
to the point evaluations (xi, ĝ(xi))n

i=1.
Given a regularization parameter λ > 0, ridge regression concerns finding the

linear function g : Rm → R that minimizes

L(g) =

∥∥∥∥∥∥∥
g(x1)

...
g(xn)

−
ĝ(x1)

...
ĝ(xn)


∥∥∥∥∥∥∥

2

2

+ nλ‖g‖2.

To make this concrete, let us represent ĝ and g by m-vectors ĝ and g respectively,
and set h = X∗ĝ. We also adopt a slight abuse of notation to write L(g) = L(g),
so that the task of ridge regression can be framed as minimizing

L(g) = ‖X∗g − h‖2
2 + λn‖g‖2

2.

Remark B.4.1. We pause to emphasize that this is a KRR problem with n datapoints
that define functions on X = Rm. The parameter “m” here has nothing to do with
the number of datapoints in the problem; our notational choices for (m, n) here are
for consistency with Section 3.

Page 139

Early Release

The essential part of framing ridge regression as a type of KRR is showing that
the optimal estimate g is in the range of X. To see why this is the case, let P denote
the orthogonal projector onto the range of X. Using X∗Pg = X∗g, we have that

L(g) = ‖X∗Pg − h‖2
2 + λn

(
‖Pg‖2

2 + ‖(I− P)g‖2
2
)

≥ ‖X∗Pg − h‖2
2 + λn‖Pg‖2

2

= L(Pg),

and so g minimizes L only if L(Pg) = L(g). Since L(Pg) = L(g) holds if and only
if Pg = g, we have that g = Xα for some α in Rn. Therefore, under our stated
assumption that the columns of X are linearly independent, the following problems
are equivalent

arg min{L(g) : g is a linear functional on Rm},
arg min{‖X∗Xα− h‖2

2 + λn‖Xα‖2
2 : α ∈ Rn}, and

arg min{‖Xα− ĝ‖2
2 + λn‖α‖2

2 : α ∈ Rn}.

The second of these problems is KRR with a scaled objective and the n× n kernel
matrix K = X∗X. The last of these problems is ridge regression in the familiar form.

Given this description of ridge regression, one obtains KRR by applying the
so-called “kernel trick” (see, e.g., [Mur12, §14]). That is, one replaces hj = x∗

j ĝ by

hj = 〈kxj , ĝ〉H = ĝ(xj)

and expresses the point evaluation of g =
∑n

i=1 αik
xi at xj by

g(xj) =
n∑

i=1
αi〈kxi , kxj 〉H.

We note that within the KRR formalism it is allowed for K to be singular, so long
as it is psd. This is because if β is any vector in the kernel of K then the function
u 7→

∑n
i=1 βik(xi, u) is identically equal to zero.

B.4.2 Efficient sketch-and-solve for regularized quadratics
Let G be an m×m psd matrix and µ be a positive regularization parameter. The
sketch-and-solve approach to KRR from [AM15] can be considered generically as a
sketch-and-solve approach to the regularized quadratic minimization problem (3.1).
Specifically, the generic formulation is to approximate G ≈ AA∗ with an m × n
matrix A (m� n) and then solve

(AA∗ + µI) z = h. (B.23)

Identifying b = h/µ, c = 0, and y = z shows that this amounts to a dual saddle
point problem of the form (3.3). Here we explain how the sketch-and-precondition
paradigm can efficiently be applied to solve (B.23) under the assumption that AA∗

defines a Nyström approximation of G.
Let So be an initial m × n sketching operator. The resulting sketch Y = GSo

and factor R = chol(S∗
oY) together define A = YR−1. This defines a Nyström

approximation since
AA∗ = (KSo) (S∗

oKSo)† (KSo)∗
.

Page 140

Early Release

Recall that the problem of preconditioner generation entails finding an orthogonal-
izer of a sketch of Aµ = [A;√µI]. The fact that A is only represented implicitly
makes this delicate, but it remains doable, as we explain below.

For the sketching phase of preconditioner generation, we sample a d×m operator
S (with d ≳ n) and set

Ask
µ =

[
S 0
0 I

]
Aµ =

[
SY√
µR

]
R−1.

We then compute the SVD of the augmented matrix[
SY√
µR

]
= UΣV∗

and find that setting M = RVΣ−1 satisfies Ask
µ M = U. The preconditioned linear

operator AµM (and its adjoint) should be applied in the iterative solver by noting
the identity [

A√
µI

]
M =

[
Y√
µR

]
VΣ−1.

This identity is important since it shows that R−1 need never be applied at any
point in the sketch-and-precondition approach to (B.23).

Page 141

Early Release

Page 142

Appendix C

Low-rank Approximation
Computational Routines

Contents
C.1 Power iteration for data-aware sketching 144
C.2 RangeFinders and QB decompositions 145
C.3 ID and subset selection . 149

As we explained in Section 4, the design space for low-rank approximation algo-
rithms is quite large. Here we illustrate the breadth and depth of that design space
with pseudocode for computational routines needed for four drivers: SVD1, EVD1,
EVD2, and CURD1 (Algorithms 3 through 6, respectively). All pseudocode here uses
Python-style zero-based indexing.

The dependency structure of these drivers and their supporting functions is
given in Figure C.1. From the figure we see that the following three interfaces are
central to low-rank approximation.

• Y = Orth(X) returns an orthonormal basis for the range of a tall input matrix;
the number of columns in Y will never be larger than that of X and may be
smaller. The simplest implementation of Orth is to return the orthogonal
factor from an economic QR decomposition of X.

• S = SketchOpGen(ℓ, k) returns an ℓ × k oblivious sketching operator sam-
pled from some predetermined distribution. The most common distributions
used for low-rank approximation were covered in Section 2.3. In actual im-
plementations this function would accept an input representing the state of
the random number generator.

• Y = Stabilizer(X) has similar semantics Orth. It differs in that it only
requires Y to be better-conditioned than X while preserving its range. The
relaxed semantics open up the possibility of methods that are less expensive
than computing an orthonormal basis, such as taking the lower-triangular
factor from an LU decomposition with column pivoting.

We explain the remaining interfaces as they arise in our implementations.

143

Early Release

Figure C.1: Dependency illustration for low-rank approximation functionality.
Lighter gray boxes correspond to abstract interfaces which specify semantics. Any
interface can have many different implementations. To keep things at a reasonable
length the only interface with multiple implementations is QBDecomposer. Sec-
tion 4.3 describes many algorithms that could be used for any such interface.

The computational routines represented in Figure C.1 include Algorithms 9
through 14. This appendix provides pseudocode for one additional function that is
not reflected in the figure: Algorithm 15 shows one way to perform row or column
subset selection. We note that while Algorithm 15 is not used in the drivers men-
tioned above, it could easily have been used in a different implementation of CURD1.

C.1 Power iteration for data-aware sketching

When a TallSketchOpGen is called with parameters (A, k), it produces an n × k
sketching operator where range(S) is reasonably well-aligned with the subspace
spanned by the k leading right singular vectors of A. Here, “reasonably” is assessed
with respect to the computational cost incurred by running TallSketchOpGen. One
extreme case of interest is to return an oblivious sketching operator without reading
any entries of A.

This method uses a p-step power iteration technique. When p = 0, the method
returns an oblivious sketching operator. It is recommended that one use p > 0 (e.g.,
p ∈ {2, 3}) when the singular values of A exhibit “slow” decay.

Page 144

Early Release

Algorithm 8 TSOG1 : a TallSketchOpGen based on a power method, conceptually
following [ZM20]. The returned sketching operator is suitable for sketching A from
the right for purposes of low-rank approximation.

1: function TSOG1(A, k)
Inputs:

A is m× n, and k � min{m, n} is a positive integer.
Output:

S is n× k, intended for later use in computing Y = AS.
Abstract subroutines:

SketchOpGen and Stabilizer
Tuning parameters:

p ≥ 0 controls the number of steps in the power method. It is equal
to the total number of matrix-matrix multiplications that will involve
either A or A∗. If p = 0 then this function returns an oblivious
sketching operator.
q ≥ 1 is the number of matrix-matrix multiplications with A or A∗

that accumulate before the stabilizer is called.
2: pdone = 0
3: if p is even then
4: S = SketchOpGen(n, k)
5: else
6: S = A∗SketchOpGen(m, k)
7: pdone = pdone + 1
8: if pdone mod q = 0 then
9: S = stabilizer(S)

10: while p− pdone ≥ 2 do
11: S = AS
12: pdone = pdone + 1
13: if pdone mod q = 0 then
14: S = stabilizer(S)
15: S = A∗S
16: pdone = pdone + 1
17: if pdone mod q = 0 then
18: S = stabilizer(S)
19: return S

C.2 RangeFinders and QB decompositions
A general RangeFinder takes in a matrix A and a target rank parameter k, and
returns a matrix Q of rank d = min{k, rank(A)} such that the range of Q is an
approximation to the space spanned by A’s top d left singular vectors.

The rangefinder problem may also be viewed in the following way: given a matrix
A ∈ Rm×n and a target rank k � min(m, n), find a matrix Q with k columns such
that the relative norm error ϵ = ‖A−QQ∗A‖/‖A‖ is small. Some RangeFinder

Page 145

Early Release

implementations are iterative and can accept ϵ as a third argument that specifies a
target accuracy.

The RangeFinder below, RF1, is very simple. It relies on an implementation of
the TallSketchOpGen interface (e.g., TSOG1) as well as the Orth interface.

Algorithm 9 RF1 : a RangeFinder that orthogonalizes a single row sketch
1: function RF1(A, k)

Inputs:
A is m× n, and k � min{m, n} is a positive integer

Output:
Q is a column-orthonormal matrix with d = min{k, rank A} columns.
We have range(Q) ⊂ range(A); it is intended that range(Q) is an
approximation to the space spanned by A’s top d left singular vectors.

Abstract subroutines and tuning parameters:
TallSketchOpGen

2: S = TallSketchOpGen(A, k) # S is n× k

3: Y = AS
4: Q = orth(Y)
5: return Q

The conceptual goal of QB decomposition algorithms is to produce an approx-
imation ‖A − QB‖ ≤ ϵ (for some unitarily-invariant norm), where rank(QB) ≤
min{k, rank(A)}. Our next three algorithms are different implementations of the
QBDecomposer interface. The first two of these algorithms require an implementa-
tion of the RangeFinder interface. The ability of the implementation QB1 to control
accuracy is completely dependent on that of the underlying rangefinder.

Algorithm 10 QB1 : a QBDecomposer that falls back on an abstract rangefinder
1: function QB1(A, k, ϵ)

Inputs:
A is an m× n matrix and k � min{m, n} is a positive integer.
ϵ is a target for the relative error ‖A − QB‖/‖A‖ measured in some
unitarily-invariant norm. This parameter is passed directly to the
RangeFinder, which determines its precise interpretation.

Output:
Q an m × d matrix returned by the underlying RangeFinder and
B = Q∗A is d× n; we can be certain that d ≤ min{k, rank(A)}. The
matrix QB is a low-rank approximation of A.

Abstract subroutines and tuning parameters:
RangeFinder

2: Q = RangeFinder(A, k, ϵ)
3: B = Q∗A
4: return Q, B

The following algorithm builds up a QB decomposition incrementally. It’s said to

Page 146

Early Release

be fully-adaptive because it has fine-grained control over the error ‖A−QB‖F. If the
algorithm is called with k = min{m, n}, then its output will satisfy ‖A−QB‖F ≤ ϵ.

Algorithm 11 QB2 : a QBDecomposer that’s fully-adaptive
(see [YGL18, Algorithm 2])

1: function QB2(A, k, ϵ)
Inputs:

A is an m× n matrix and k � min{m, n} is a positive integer.
ϵ is a target for the relative error ‖A−QB‖F/‖A‖F. This parameter
is used as a termination criterion upon reaching the desired accuracy.

Output:
Q an m×d matrix combined of successive outputs from the underlying
RangeFinder and B = Q∗A is d × n; we can be certain that d ≤
min{k, rank(A)}. The matrix QB is a low-rank approximation of A.

Abstract subroutines:
RangeFinder

Tuning parameters:
block_size ≥ 1 - at every iteration (except possibly for the final
iteration), block_size columns are added to the matrix Q.

2: d = 0
3: Q = [] ∈ Rm×d # Preallocation is dangerous; k = min{m, n} is allowed.
4: B = [] ∈ Rd×n

5: squared_error = ‖A‖2
F

6: while k > d do
7: block_size = min{block_size, k − d}
8: Qi = RangeFinder(A, block_size)
9: Qi = orth(Qi −Q (Q∗Qi)) # for numerical stability

10: Bi = Q∗
i A # original matrix A is valid here

11: B =
[

B
Bi

]
12: Q =

[
Q Qi

]
13: d = d + block_size
14: A = A−QiBi # modification can be implicit, but is required by Line 8
15: squared_error = squared_error−‖Bi‖2

F # compute by a stable method
16: if squared_error ≤ ϵ2 then
17: break
18: return Q, B

Our third and final QB algorithm also builds up its approximation incrementally.
It is called pass-efficient because it does not access the data matrix A within its
main loop (see [DKM06a] for the original definition of the pass-efficient model).
The algorithm can use a requested error tolerance as an early-stopping criterion.
This function should never be called with k = min{m, n}. We note that it takes a
fair amount of algebra to prove that this algorithm produces a correct result.

Page 147

Early Release

Algorithm 12 QB3 : a QBDecomposer that’s pass-efficient and partially adaptive
(based on [YGL18, Algorithm 4])

1: function QB3(A, k, ϵ)
Inputs:

A is an m× n matrix and k � min{m, n} is a positive integer.
ϵ is a target for the relative error ‖A−QB‖F/‖A‖F. This parameter
is used as a termination criterion upon reaching the desired accuracy.

Output:
Q an m × d matrix combined of successively-computed orthonor-
mal bases Qi and B = Q∗A is d × n; we can be certain that
d ≤ min{k, rank(A)}. The matrix QB is a low-rank approximation
of A.

Abstract subroutines:
TallSketchOpGen

Tuning parameters:
block_size is a positive integer; at every iteration (except possibly for
the last), we add block_size columns to Q.

2: Q = [] ∈ Rm×0 # It would be preferable to preallocate.
3: B = [] ∈ R0×n

4: squared_error = ‖A‖2
F

5: S = TallSketchOpGen(A, k)
6: G = AS, H = A∗G # Can be done in one pass over A
7: max_blocks = dk/block_sizee
8: i = 0
9: while i < max_blocks do

10: bstart = i · block_size + 1
11: bend = min{(i + 1) · block_size, k}
12: Si = S[: , bstart : bend]
13: Yi = G[: , bstart : bend]−Q(BSi)
14: Qi, Ri = qr(Yi) # the next three lines are for numerical stability
15: Qi = Qi −Q(Q∗Qi)
16: Qi, R̂i = qr(Qi)
17: Ri = R̂iRi

18: Bi = (H[: , bstart : bend])∗ − (YiQ)B− (BSi)∗ B
19: Bi = (R∗

i)−1 Bi # in-place triangular solve

20: B =
[

B
Bi

]
21: Q =

[
Q Qi

]
22: squared_error = squared_error−‖Bi‖2

F # compute by a stable method
23: i = i + 1
24: if squared_error ≤ ϵ2 then
25: break
26: return Q, B

Page 148

Early Release

C.3 ID and subset selection

As we indicated in Sections 4.2.3 and 4.3.3, the collective design space of algorithms
for ID, subset selection, and CUR is very large. This appendix presents one ran-
domized algorithm for one-sided ID (Algorithm 14) and an analogous randomized
algorithm for subset selection (Algorithm 15). These algorithms are implemented in
our Python prototype. The Python prototype has two more randomized algorithms
which are not reproduced here (one for one-sided and one for two-sided ID).

We need two deterministic functions in order to state these algorithms. The
first deterministic function – called as Q, R, J = qrcp(F, k) – returns data for an
economic QR decomposition with column pivoting, where the decomposition is
restricted to rank k and may be incomplete. The second deterministic function (Al-
gorithm 13, below) is the canonical way to use QRCP for one-sided ID. It produces
a column ID when the final argument “axis” is set to one; otherwise, it produces a
row ID. When used for column ID, it’s typical for Y ∈ Rℓ×w to be (very) wide and
for k to be only slightly smaller than ℓ (say, ℓ/2 ≤ k ≤ ℓ).

Algorithm 13 deterministic one-sided ID based on QRCP
1: function osid_qrcp(Y, k, axis)

Inputs:
Y is an ℓ× w matrix, typically a sketch of some larger matrix.
k is an integer, typically close to min{ℓ, w}.
axis is an integer parameter, equals to 1 for row ID and 2 for col-
umn ID.

Output:
Z is an interpolative coefficients matrix of size k × w.
I is a skeletal indices vector of length k.
Computed such that Y[I, :] = (ZY[I, :])[I, :].

Abstract subroutines:
qrcp

2: if axis == 2 then
3: (ℓ, w) = the number of (rows, columns) in Y
4: assert k ≤ min{ℓ, w}
5: Q, R, J = qrcp(Y, k)
6: T = (R[:k, :k])−1 R[:k, k + 1:] # use trsm from BLAS 3
7: X = zeros(k, w)
8: X[:, J] = [Ik×k, T]
9: J = J [:k]

10: return X, J

11: else
12: X, I = osid_qrcp(Y∗, k, axis = 1)
13: Z = X∗

14: return Z, I

Page 149

Early Release

The one-sided ID interface is

M, P = OneSidedID(A, k, s, axis).

The output value M is the matrix of interpolative coefficients and P is the length-k
vector of skeleton indices. When axis = 1 we are considering a row ID and so
obtain the approximation Â = MA[P, :] to A. When axis = 2, the approximation is
Â = A[:, P]M. Implementations of this interface perform internal calculations with
sketches of rank k + s.

Algorithm 14 OSID1 : implements OneSidedID by re-purposing an ID of a
sketch [VM16]

1: function OSID1(A, k, axis)
Inputs:

A is an m× n matrix and k � min{m, n} is a positive integer.
axis is an integer, equal to 1 for row ID or 2 for column ID.

Output:
A matrix Z and vector I satisfying Y[I, :] = (ZY[I, :])[I, :]
or
a matrix X and vector J satisfying Y[:, J] = (Y[:, J]X)[:, J].

Abstract subroutines:
TallSketchOpGen and osid_qrcp

Tuning parameters:
s is a nonnegative integer. The algorithm internally works with a
sketch of rank k + s.

2: if axis == 1 then # row ID
3: S = TallSketchOpGen(A, k + s)
4: Y = AS
5: Z, I = osid_qrcp(Y, k, axis = 0)
6: return Z, I

7: else
8: S = TallSketchOpGen(A∗, k + s)∗

9: Y = SA
10: X, J = osid_qrcp(Y, k, axis = 1)
11: return X, J

Consider the following interface for (randomized) row and column subset selec-
tion algorithms

P = RowOrColSelection(A, k, s, axis).

The index vector P and oversampling parameter is understood in the same way as
the OneSidedID interface. That is, P is a partial permutation of the row index setJmK (when axis = 1) or the column index set JnK (when axis = 2). Implementations
are supposed to perform internal calculations with sketches of rank k + s.

Page 150

Early Release

Algorithm 15 ROCS1 : implements RowOrColSelection by QRCP on a sketch
1: function ROCS1(A, k, s, axis)

Inputs:
A is an m× n matrix and k � min{m, n} is a positive integer.
axis is an integer, equal to 1 for row selection or 2 for column selection.

Output:
I: a row selection vector of length k

or
J : a column selection vector of length k.

Abstract subroutines:
TallSketchOpGen

Tuning parameters:
s is a nonnegative integer. The algorithm internally works with a
sketch of rank k + s.

2: if axis == 1 then
3: S = TallSketchOpGen(A, k + s)
4: Y = AS
5: Q, R, I = qrcp(Y∗)
6: return I[: k]
7: else
8: S = TallSketchOpGen(A∗, k + s)
9: Y = SA

10: Q, R, J = qrcp(Y)
11: return J [: k]

Page 151

Early Release

Page 152

Appendix D

Correctness of Preconditioned
Cholesky QRCP

In this appendix we prove Proposition 5.1.1. Since this would involve a fair amount
of bookkeeping if we used the notation of Algorithm 7, we begin with a more detailed
statement of the algorithm.

Let A be m× n and S be d×m with n ≤ d� m.

1. Compute the sketch Ask = SA

2. Decompose [Qsk, Rsk, J] = qrcp(Ask)

(a) J is a permutation vector for the index set JnK.
(b) Abbreviating Ask

J = Ask[:, J], we have Ask
J = QskRsk.

(c) Let k = rank(Ask).
(d) Qsk is m× k and column-orthonormal.
(e) Rsk = [Rsk

1 , Rsk
2] is k × n upper-triangular.

(f) Rsk
1 is k × k and nonsingular.

3. Abbreviate AJ = A[:, J] and explicitly from Apre = AJ [:, :k](Rsk
1)−1.

4. Compute an unpivoted QR decomposition Apre = QRpre.

(a) If rank(A) = k then Q is an orthonormal basis for the range of A.
(b) For the purposes of this appendix, it does not matter what algorithm

we use to compute this decomposition. We assume the decomposition
is exact.

5. Explicitly form R = RpreRsk

The goal of this proof is to show that the equality A[:, J] = QR holds under the
assumption that rank(SA) = rank(A). Let us first establish some useful identities.
By steps 3 and 4 of the algorithm description above, we know that

Rpre = Q∗AJ [:, :k](Rsk
1)−1.

153

Early Release

Combining this with the characterization of R from Steps 2e and 5, we have

R = Q∗AJ [:, :k](Rsk
1)−1[Rsk

1 , Rsk
2].

We may further expand this expression as such:

R = Q∗AJ [:, :k][Ik×k, (Rsk
1)−1Rsk

2].

Since Q is an orthonormal basis for the range of A and, consequently, AJ , we
have that

QR = AJ [:, :k][Ik×k, (Rsk
1)−1Rsk

2]. (D.1)
We use (D.1) to establish the claim by a columnwise argument. That is, we show
that QR[:, ℓ] = AJ [:, ℓ] for all 1 ≤ ℓ ≤ n.

First, consider the case when ℓ ≤ k. Let δn
ℓ be the ℓth standard basis vector in

Rn. Then, consider the following series of identities:

QR[:, ℓ] = QRδn
ℓ

= AJ [:, :k][Ik×k, (Rsk
1)−1Rsk

2]δn
ℓ

= AJ [:, :k]δk
ℓ = AJ [:, ℓ],

hence the desired statement holds for ℓ ≤ k.
It remains to show that QR[:, ℓ] = AJ [:, ℓ] for ℓ > k. Note that

QR[:, ℓ] = AJ [:, :k][Ik×k, (Rsk
1)−1Rsk

2]δn
ℓ

= AJ [:, :k]((Rsk
1)−1Rsk

2)[:, ℓ− k].

Let γ = ((Rsk
1)−1Rsk

2)[:, ℓ− k]. Therefore, in order to obtain the desired identity for
ℓ > k, we will need to show that

AJ [:, k]γ = AJ [:, ℓ].

Proposition D.0.1. If Ask
J [:, ℓ] = Ask

J [:, :k]u for some u ∈ Rk, then
AJ [:, ℓ] = AJ [:, :k]u.

Proof. To simplify notation, define the m×k matrix X = AJ [:, :k] and the m-vector
y = AJ [:, ℓ].

Suppose to the contrary that y 6= Xu and Sy = SXu. Then, SXu − Sy = 0.
Define U = ker(S[X, y]) and V = ker([X, y]). Clearly, U contains V . Additionally,
if U contains a nonzero vector that is not in V , then dim(U) > dim(V). This would
further imply that rank(S[X, y]) < rank([X, y]).

If SXu−Sy = 0, then (u,−1) is a nonzero vector in U that is not in V . However,
by our assumption, the sketch does not drop rank. Consequently, no such vector
(u,−1) can exist, and we must have y = Xu.

We now prove that Ask
J [:, :k]γ = Ask

J [:, ℓ]. To do this, start by noting that
Ask

J [:, :k] = QskRsk
1 . Plugging in the definition of γ, we have

Ask
J [:, :k]γ = QskRsk

1 (Rsk
1)−1(Rsk

2)[:, ℓ− k] = Qsk(Rsk
2)[:, ℓ− k].

The next step is to use the simple observation that Rsk
2 [:, ℓ− k] = Rsk[:, ℓ] to find

Ask
J [:, :k]γ = (QskRsk)[:, ℓ] = Ask

J [:, ℓ].

Combining the above results and Proposition D.0.1 proves Proposition 5.1.1.

Page 154

Appendix E

Bootstrap Methods
for Error Estimation

Contents
E.1 Bootstrap methods in a nutshell 156

E.2 Sketch-and-solve least squares 157

E.3 Sketch-and-solve one-sided SVD 158

Whenever a randomized algorithm produces a solution, a question immediately
arises: Is the solution sufficiently accurate? In many situations, it is possible to
estimate numerically the error of the solution using the available problem data —
a process that is often referred to as (a posteriori) error estimation.1 In addition
to resolving uncertainty about the quality of a solution, another key benefit of er-
ror estimation is that it enables computations to be done more adaptively. For
instance, error estimates can be used to determine if additional iterations should be
performed, or if tuning parameters should be modified. In this way, error estimates
can help to incrementally refine a rough initial solution so that “just enough” work
is done to reach a desired level of accuracy.

In this appendix, we provide a brief overview of bootstrap methods for error
estimation in RandNLA. Up to now, these tools (which are common in statistics
and statistical data analysis) have been designed for a handful of sketch-and-solve
type algorithms, and the development of bootstrap methods for a wider range of
randomized algorithms is an open direction of research. Our main purpose in writing
this appendix is to record the consideration we have given to bootstrap methods.
Our secondary purpose is to provide a starting point for non-experts to survey this
literature as it evolves.

1This should be contrasted with (a priori) error bounds often used in theoretical development
of RandNLA algorithms, in which one bounds rather than estimates the error, and does so in a
worst-case way that does not depend on the problem data.

155

Early Release

E.1 Bootstrap methods in a nutshell
Bootstrap methods have been studied extensively in the statistics literature for
more than four decades, and they comprise a very general framework for quantify-
ing uncertainty [ET94; ST12]. One of the most common uses of these methods in
statistics is to assess the accuracy of parameter estimates. This use-case provides
the connection between bootstrap methods and error estimation in RandNLA. In-
deed, an exact solution to a linear algebra problem can be viewed as an “unknown
parameter,” and a randomized algorithm can be viewed as providing an “estimate”
of that parameter. Taking the analogy a step further, a random sketch of a ma-
trix can also be viewed as a “dataset” from which the estimate of the “population”
quantity is computed. Likewise, when bootstrap methods are applied in RandNLA,
the rows or columns of a sketched matrix often play the role of “data vectors”.

We now formulate the task of error estimation in a way that is convenient for
discussion of bootstrap methods. First, suppose the existence of some fixed but
unknown “true parameter” θ ∈ R. Suppose we estimate this parameter by a value
θ̂ depending on random samples from some probability distribution. The error of θ̂
is defined as ϵ̂ = |θ̂ − θ|, which we emphasize is both random and unknown. From
this standpoint, it is natural to seek the tightest upper bound on ϵ̂ that holds with
a specified probability, say 1−α. This ideal bound is known as the (1−α)-quantile
of ϵ̂, and is defined more formally as

q1−α = inf{t ∈ [0,∞) |P(ϵ̂ ≤ t) ≥ 1− α}.

An error estimation problem is considered solved if it is possible to construct a
quantile estimate q̂1−α such that the inequality ϵ̂ ≤ q̂1−α holds with probability
that is close to 1− α.

The bootstrap approach to estimating q1−α is based on imagining a scenario
where it is possible to generate many independent samples ˆ̂ϵ1, . . . , ˆ̂ϵN of the random
variable ϵ̂. Of course, this is not possible in practice, but if it were, then an estimate
of q1−α could be easily obtained using the empirical (1−α)-quantile of the samples
ˆ̂ϵ1, . . . , ˆ̂ϵN . The key idea that bootstrap methods use to circumvent the difficulty is
to generate “approximate samples” of ϵ̂, which can be done in practice.

To illustrate how approximate samples of ϵ̂ can be constructed, consider a generic
situation where the estimate θ̂ is computed as a function of a dataset X1, . . . , Xn.
That is, suppose θ̂ = f(X1, . . . , Xn) for some function f . Then, a bootstrap sample
of ϵ̂, denoted ˆ̂ϵ, is computed as follows:

• Sample n points { ˆ̂Xi}n
i=1 with replacement from the original dataset {Xi}n

i=1.

• Compute ˆ̂θ := f(ˆ̂X1, . . . , ˆ̂Xn)

• Compute ˆ̂ϵ := |ˆ̂θ − θ̂|.

By performing N independent iterations of this process, a collection of bootstrap
samples ˆ̂ϵ1, . . . , ˆ̂ϵN can be generated. Then, the desired quantile estimate q̂1−α can
be computed as the smallest number t ≥ 0 for which the inequality

1
N

N∑
i=1

I{ˆ̂ϵi ≤ t} ≥ 1− α

Page 156

Early Release

is satisfied, where I{·} refers to the {0, 1}-valued indicator function. This quantity
is also known as the empirical (1 − α)-quantile of ˆ̂ϵ1, . . . , ˆ̂ϵn. We will sometimes
denote it by quantile[̂̂ϵ1, . . . , ˆ̂ϵn; 1− α].

To provide some intuition for the bootstrap, the random variable ˆ̂θ can be viewed
as a “perturbed version” of θ̂, where the perturbing mechanism is designed so that
the deviations of ˆ̂θ around θ̂ are statistically similar to the deviations of θ̂ around
θ [ET94]. Equivalently, this means that the histogram of ˆ̂ϵ1, . . . , ˆ̂ϵN will serve as
a good approximation to the distribution of the actual random error variable ϵ̂.
Furthermore, it turns out that this approximation is asymptotically valid (i.e., n→
∞) and supported by quantitative guarantees in a broad range of situations [ST12].

E.2 Sketch-and-solve least squares
There is a direct analogy between the discussion above and the setting of sketch-
and-solve algorithms for least squares. First, the “true parameter” θ is the exact
solution x⋆ = argminx∈Rn‖Ax− b‖2

2. Second, the dataset X1, . . . , Xn corresponds
to the sketches [Â, b̂] = S[A, b]. Third, the estimate θ̂ corresponds to the sketch-
and-solve solution x̂ = argminx∈Rn‖Âx − b̂‖2

2. Fourth, the error variable can be
defined as ϵ̂ = ρ(x̂, x⋆), for a preferred metric ρ, such as that induced by the ℓ2 or
ℓ∞ norms.

Once these correspondences are recognized, the previous bootstrap sampling
scheme can be applied. For further background, as well as extensions to error es-
timation for iterative randomized algorithms for least squares, we refer to [LWM18].

Method 1 (Bootstrap error estimation for sketch-and-solve least squares).

Input: A positive integer B, the sketches Â ∈ Rd×n, b̂ ∈ Rd, and x̂ ∈ Rn.
For ℓ ∈ JBK do in parallel

1. Draw a vector I := (i1, . . . , id) by sampling d numbers with replacement fromJdK.
2. Form the matrix ˆ̂A := Â[I, :], and vector ˆ̂b := b̂[I].

3. Compute the following vector and scalar,

ˆ̂x := arg min
x∈Rn

‖ ˆ̂Ax− ˆ̂b‖2 and ˆ̂ϵℓ := ‖ ˆ̂x− x̂‖. (E.1)

Return: The estimate quantile[̂̂ϵ1, . . . , ˆ̂ϵB ; 1−α] for the (1−α)-quantile of ‖x̂−x‖.

To briefly comment on some of the computational characteristics of this method,
it should be emphasized that the for loop can be implemented in an embarrassingly
parallel manner, which is typical of most bootstrap methods. Second, the method
only relies on access to sketched quantities, and hence does not require any access
to the full matrix A. Likewise, the computational cost of the method is independent
of the number of rows of A.

Page 157

Early Release

E.3 Sketch-and-solve one-sided SVD
We call the problem of computing the singular values and right singular vectors of
a matrix a “one-sided SVD.” We further use the term “sketch-and-solve one-sided
SVD” for an algorithm that approximates the top k singular values and singular
vectors of A by those of a sketch Â = SA. Here we consider estimating the error
incurred by such an algorithm. As matters of notation, we let {(σj , vj)}k

j=1 denote
the top k singular values and right singular vectors of A and {(σ̂j , v̂j)}k

j=1 the
corresponding quantities for Â. We suppose that error is measured uniformly over
j ∈ JkK, which leads us to consider error variables of the form

ϵΣ := max
j∈JkK |σ̂j − σj | and ϵ

V
:= max

j∈JkK ρ(v̂j , vj).

The following bootstrap method, developed in [LEM20], provides corresponding
estimates q̂Σ and q̂v .

Method 2 (Bootstrap error estimation for sketch-and-solve SVD).

Input: The sketch Â ∈ Rd×n and its top k singular values and right singular
vectors (σ̂1, v̂1), . . . , (σ̂k, v̂k), a number of samples B, a parameter α ∈ (0, 1).

• For ℓ ∈ JBK do in parallel

1. Form ˆ̂A ∈ Rd×n by sampling d rows from Â with replacement.

2. Compute the top k singular values and right singular vectors of ˆ̂A, denoted
as ˆ̂σ1, . . . , ˆ̂σk and ˆ̂v1, . . . , ˆ̂vk. Then, compute the bootstrap samples

ˆ̂ϵΣ,ℓ
:= max

j∈JkK |ˆ̂σj − σ̂j | (E.2)

ˆ̂ϵV,ℓ
:= max

j∈JkK ρ(ˆ̂vj , v̂j). (E.3)

Return: The quantile estimates q̂Σ := quantile[̂̂ϵΣ,1 , . . . , ˆ̂ϵΣ,B
; 1 − α] and q̂V :=

quantile[̂̂ϵV,1 , . . . , ˆ̂ϵV,B
; 1− α].

Although this method is only presented with regard to singular values and right
singular vectors, it is also possible to apply a variant of it to estimate the errors
of approximate left singular vectors. However, a few extra technical details are
involved, which may be found in [LEM20].

Another technique to estimate error in the setting of sketch-and-solve one-sided
SVD is through the spectral norm ‖Â∗

Â−A∗A‖2. Due to the Weyl and Davis-Kahan
inequalities, an upper bound on ‖Â∗

Â − A∗A‖2 directly implies upper bounds on
the errors of all the sketched singular values σ̂1, . . . , σ̂n and sketched right singular
vectors v̂1, . . . , v̂n. Furthermore, the quantiles of the error variable ‖Â∗

Â− A∗A‖2
can be estimated via the bootstrap, as shown in [LEM23].

Page 158

Bibliography

[AAB+17] A. Abdelfattah, H. Anzt, A. Bouteiller, A. Danalis, J. Dongarra, M. Gates,
A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, S. Wood, P. Wu, I. Yamazaki,
and A. YarKhan. Roadmap for the Development of a Linear Algebra Library
for Exascale Computing: SLATE: Software for Linear Algebra Targeting
Exascale. SLATE Working Notes 01, ICL-UT-17-02. June 2017.

[ABB+99] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra,
J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Jan. 1999.

[AC06] N. Ailon and B. Chazelle. “Approximate nearest neighbors and the Fast
Johnson-Lindenstrauss Transform”. In: Proceedings of the Thirty-Eighth
Annual ACM Symposium on Theory of Computing (STOC). STOC ’06.
Seattle, WA, USA: Association for Computing Machinery, 2006, pp. 557–
563. isbn: 1595931341.

[AC09] N. Ailon and B. Chazelle. “The Fast Johnson–Lindenstrauss Transform
and approximate nearest neighbors”. In: SIAM Journal on Computing 39.1
(Jan. 2009), pp. 302–322.

[Ach03] D. Achlioptas. “Database-friendly random projections: Johnson-Lindenstrauss
with binary coins”. In: Journal of Computer and System Sciences 66.4
(2003), pp. 671–687.

[ACW17a] H. Avron, K. L. Clarkson, and D. P. Woodruff. “Sharper bounds for regu-
larized data fitting”. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (2017).

[ACW17b] H. Avron, K. L. Clarkson, and D. P. Woodruff. “Faster kernel ridge re-
gression using sketching and preconditioning”. In: SIAM Journal on Matrix
Analysis and Applications 38.4 (2017), pp. 1116–1138.

[AD20] N. Anari and M. Dereziński. “Isotropy and log-concave polynomials: ac-
celerated sampling and high-precision counting of matroid bases”. In: 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 1331–1344.

[ADD+09] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H.
Ltaief, P. Luszczek, and S. Tomov. “Numerical linear algebra on emerging
architectures: the PLASMA and MAGMA projects”. In: Journal of Physics:
Conference Series 180 (July 2009), p. 012037.

[ADD89] M. Arioli, J. W. Demmel, and I. S. Duff. “Solving sparse linear systems
with sparse backward error”. In: SIAM Journal on Matrix Analysis and
Applications 10.2 (Apr. 1989), pp. 165–190.

159

Early Release

[ADN20] P. Ahren, J. Demmel, and H.-D. Nguyen. “Algorithms for efficient repro-
ducible floating point summation”. In: ACM Transactions on Mathematical
Software 46.3 (2020).

[ADR92] M. Arioli, I. Duff, and D. Ruiz. “Stopping criteria for iterative solvers”.
In: SIAM Journal on Matrix Analysis and Applications 13.1 (Jan. 1992),
pp. 138–144.

[ADV+22] N. Anari, M. Dereziński, T.-D. Vuong, and E. Yang. “Domain sparsification
of discrete distributions using entropic independence”. In: ACM Symposium
on Discrete Algorithms (SODA). 2022.

[AGL98] C. Ashcraft, R. G. Grimes, and J. G. Lewis. “Accurate symmetric indef-
inite linear equation solvers”. In: SIAM Journal on Matrix Analysis and
Applications 20.2 (Jan. 1998), pp. 513–561.

[AGR16] N. Anari, S. O. Gharan, and A. Rezaei. “Monte carlo markov chain al-
gorithms for sampling strongly rayleigh distributions and determinantal
point processes”. In: Conference on Learning Theory (COLT). PMLR. 2016,
pp. 103–115.

[AK01] O. Axelsson and I. Kaporin. “Error norm estimation and stopping criteria in
preconditioned conjugate gradient iterations”. In: Numerical Linear Algebra
with Applications 8.4 (2001), pp. 265–286.

[AKK+20] T. Ahle, M. Kapralov, J. Knudsen, R. Pagh, A. Velingker, D. Woodruff, and
A. Zandieh. “Oblivious sketching of high-degree polynomial kernels”. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, 2020, pp. 141–160.

[AM15] A. E. Alaoui and M. W. Mahoney. “Fast randomized kernel methods with
statistical guarantees”. In: Annual Advances in Neural Information Pro-
cessing Systems. 2015, pp. 775–783.

[AMT10] H. Avron, P. Maymounkov, and S. Toledo. “Blendenpik: Supercharging LA-
PACK’s Least-Squares Solver”. In: SIAM Journal on Scientific Computing
32.3 (Jan. 2010), pp. 1217–1236.

[ANW14] H. Avron, H. Nguyen, and D. Woodruff. “Subspace embeddings for the
polynomial kernel”. In: Advances in Neural Information Processing Systems.
Vol. 27. Curran Associates, Inc., 2014.

[Aro50] N. Aronszajn. “Theory of reproducing kernels”. In: Transactions of the
American mathematical society 68.3 (1950), pp. 337–404.

[Bac13] F. Bach. “Sharp analysis of low-rank kernel matrix approximations”. In:
Proceedings of the 26th Annual Conference on Learning Theory (COLT).
2013, pp. 185–209.

[Bal22] O. Balabanov. Randomized Cholesky QR factorizations. 2022.
[BBB+14] M. Baboulin, D. Becker, G. Bosilca, A. Danalis, and J. Dongarra. “An ef-

ficient distributed randomized algorithm for solving large dense symmetric
indefinite linear systems”. In: Parallel Computing 40.7 (July 2014), pp. 213–
223.

[BBB15] D. J. Biagioni, D. Beylkin, and G. Beylkin. “Randomized interpolative
decomposition of separated representations”. In: Journal of Computational
Physics 281 (2015), pp. 116–134.

[BBG+22] O. Balabanov, M. Beaupere, L. Grigori, and V. Lederer. Block subsampled
randomized Hadamard transform for low-rank approximation on distributed
architectures. 2022.

Page 160

Early Release

[BBK18] C. Battaglino, G. Ballard, and T. G. Kolda. “A practical randomized CP
tensor decomposition”. In: SIAM Journal on Matrix Analysis and Applica-
tions 39.2 (2018), pp. 876–901.

[BDH+13] M. Baboulin, J. Dongarra, J. Herrmann, and S. Tomov. “Accelerating linear
system solutions using randomization techniques”. In: ACM Trans. Math.
Softw. 39.2 (Feb. 2013).

[BDN15] J. Bourgain, S. Dirksen, and J. Nelson. “Toward a unified theory of sparse
dimensionality reduction in Euclidean space”. In: Geometric and Functional
Analysis 25.4 (July 2015), pp. 1009–1088.

[BDR+17] M. Baboulin, J. Dongarra, A. Rémy, S. Tomov, and I. Yamazaki. “Solv-
ing dense symmetric indefinite systems using GPUs”. In: Concurrency and
Computation: Practice and Experience 29.9 (2017). e4055 cpe.4055, e4055.

[BG13] C. Boutsidis and A. Gittens. “Improved matrix algorithms via the sub-
sampled randomized Hadamard transform”. In: SIAM Journal on Matrix
Analysis and Applications 34.3 (Jan. 2013), pp. 1301–1340.

[BG21] O. Balabanov and L. Grigori. Randomized block Gram-Schmidt process for
solution of linear systems and eigenvalue problems. 2021.

[BG22] O. Balabanov and L. Grigori. “Randomized Gram–Schmidt process with
application to GMRES”. In: SIAM Journal on Scientific Computing 44.3
(2022), A1450–A1474. eprint: https://doi.org/10.1137/20M138870X.

[BGL05] M. Benzi, G. H. Golub, and J. Liesen. “Numerical solution of saddle point
problems”. In: Acta Numerica 14 (2005), pp. 1–137.

[Bha97] R. Bhatia. Matrix Analysis. Springer New York, 1997.
[Bja19] E. K. Bjarkason. “Pass-efficient randomized algorithms for low-rank matrix

approximation using any number of views”. In: SIAM Journal on Scientific
Computing 41.4 (Jan. 2019), A2355–A2383.

[Bjö15] Å. Björck. Numerical Methods in Matrix Computations. Vol. 59. 2015. isbn:
978-3-319-05088-1.

[Bjö96] Å. Björck. Numerical Methods for Least Squares Problems. Society for In-
dustrial and Applied Mathematics, Jan. 1996.

[BK21] Z. Bujanovic and D. Kressner. “Norm and trace estimation with random
rank-one vectors”. In: SIAM Journal on Matrix Analysis and Applications
42.1 (2021), pp. 202–223. eprint: https://doi.org/10.1137/20M1331718.

[BK77] J. R. Bunch and L. Kaufman. “Some stable methods for calculating inertia
and solving symmetric linear systems”. In: Mathematics of Computation
31.137 (1977), pp. 163–179.

[BKW21] S. Bamberger, F. Krahmer, and R. Ward. Johnson–Lindenstrauss Embed-
dings with Kronecker Structure. 2021. arXiv: 2106.13349.

[BLR14] M. Baboulin, X. S. Li, and F. Rouet. “Using random butterfly transfor-
mations to avoid pivoting in sparse direct methods”. In: High Performance
Computing for Computational Science - VECPAR. Ed. by M. J. Daydé, O.
Marques, and K. Nakajima. Vol. 8969. Lecture Notes in Computer Science.
Springer, 2014, pp. 135–144.

[BM58] G. E. P. Box and M. E. Muller. “A note on the generation of random
normal deviates”. In: The Annals of Mathematical Statistics 29.2 (1958),
pp. 610–611.

Page 161

https://doi.org/10.1137/20M138870X
https://doi.org/10.1137/20M1331718
https://arxiv.org/abs/2106.13349

Early Release

[BMD09] C. Boutsidis, M. W. Mahoney, and P. Drineas. “An improved approxima-
tion algorithm for the column subset selection problem”. In: Proceedings of
the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
2009, pp. 968–977.

[BMM+22] V. Bharadwaj, O. A. Malik, R. Murray, A. Buluç, and J. Demmel. “Distributed-
memory randomized algorithms for sparse tensor CP decomposition”. In:
arXiv preprint arXiv:2210.05105 (2022). arXiv: 2210.05105.

[BN19] O. Balabanov and A. Nouy. “Randomized linear algebra for model reduc-
tion. part I: Galerkin methods and error estimation”. In: Advances in Com-
putational Mathematics 45.5 (2019), pp. 2969–3019.

[BN21] O. Balabanov and A. Nouy. “Randomized linear algebra for model reduction—
part II: minimal residual methods and dictionary-based approximation”. In:
Advances in Computational Mathematics 47.2 (2021), p. 26.

[BV21] D. Blackman and S. Vigna. “Scrambled linear pseudorandom number gen-
erators”. In: ACM Trans. Math. Softw. 47.4 (Sept. 2021). Software available
at https://prng.di.unimi.it/.

[CDD+96] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. “ScaLAPACK: a portable lin-
ear algebra library for distributed memory computers—design issues and
performance”. In: Computer Physics Communications 97.1-2 (1996), pp. 1–
15.

[CDO+95] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. W. Walker, and R. C.
Whaley. “A proposal for a set of parallel basic linear algebra subprograms”.
In: Proceedings of the Second International Workshop on Applied Parallel
Computing, Computations in Physics, Chemistry and Engineering Science.
PARA ’95. Berlin, Heidelberg: Springer-Verlag, 1995, pp. 107–114. isbn:
3540609024.

[CDV20] D. Calandriello, M. Derezinski, and M. Valko. “Sampling from a k-DPP
without looking at all items”. In: Advances in Neural Information Processing
Systems 33 (2020), pp. 6889–6899.

[CET+22] Y. Chen, E. N. Epperly, J. A. Tropp, and R. J. Webber. Randomly piv-
oted Cholesky: Practical approximation of a kernel matrix with few entry
evaluations. 2022.

[CFG95] M. T. Chu, R. E. Funderlic, and G. H. Golub. “A rank–one reduction
formula and its applications to matrix factorizations”. In: SIAM Review
37.4 (Dec. 1995), pp. 512–530.

[CFS21] C. Cartis, J. Fiala, and Z. Shao. Hashing embeddings of optimal dimension,
with applications to linear least squares. 2021.

[CH88] S. Chatterjee and A. Hadi. Sensitivity Analysis in Linear Regression. New
York: John Wiley & Sons, 1988.

[CLA+20] A. Chowdhury, P. London, H. Avron, and P. Drineas. “Faster randomized
infeasible interior point methods for tall/wide linear programs”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 8704–8715.

[CLN+20] K. Chen, Q. Li, K. Newton, and S. J. Wright. “Structured random sketch-
ing for PDE inverse problems”. In: SIAM Journal on Matrix Analysis and
Applications 41.4 (2020), pp. 1742–1770. eprint: https://doi.org/10.
1137/20M1310497.

Page 162

https://arxiv.org/abs/2210.05105
https://prng.di.unimi.it/
https://doi.org/10.1137/20M1310497
https://doi.org/10.1137/20M1310497

Early Release

[CLV17] D. Calandriello, A. Lazaric, and M. Valko. “Distributed adaptive sampling
for kernel matrix approximation”. In: Artificial Intelligence and Statistics.
PMLR. 2017, pp. 1421–1429.

[ÇM09] A. Çivril and M. Magdon-Ismail. “On selecting a maximum volume sub-
matrix of a matrix and related problems”. In: Theoretical Computer Science
410.47-49 (Nov. 2009), pp. 4801–4811.

[CMD+15] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and H. A. Phan. “Tensor decompositions for signal processing applications:
from two-way to multiway component analysis”. In: IEEE Signal Processing
Magazine 32.2 (2015), pp. 145–163.

[CMX+22] N. Cheng, O. A. Malik, Y. Xu, S. Becker, A. Doostan, and A. Narayan.
“Quadrature sampling of parametric models with bi-fidelity boosting”. In:
arXiv preprint arXiv:2209.05705 (2022). arXiv: 2209.05705.

[Coh16] M. B. Cohen. “Nearly tight oblivious subspace embeddings by trace in-
equalities”. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics, Dec. 2016.

[CP15] M. B. Cohen and R. Peng. “Lp row sampling by lewis weights”. In: Proceed-
ings of the forty-seventh annual ACM Symposium on Theory of Computing
(STOC). 2015, pp. 183–192.

[CPL+16] D. Cheng, R. Peng, Y. Liu, and I. Perros. “SPALS: fast alternating least
squares via implicit leverage scores sampling”. In: Advances in Neural In-
formation Processing Systems. 2016, pp. 721–729.

[CW09] K. L. Clarkson and D. P. Woodruff. “Numerical linear algebra in the
streaming model”. In: Proceedings of the Forty-First Annual ACM Sym-
posium on Theory of Computing (STOC). STOC ’09. Bethesda, MD, USA:
Association for Computing Machinery, 2009, pp. 205–214. isbn: 9781605585062.

[CW13] K. L. Clarkson and D. P. Woodruff. “Low rank approximation and re-
gression in input sparsity time”. In: Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing (STOC). Palo Alto, Califor-
nia, USA: Association for Computing Machinery, 2013, pp. 81–90. isbn:
9781450320290.

[CW17] K. L. Clarkson and D. P. Woodruff. “Low-rank approximation and regres-
sion in input sparsity time”. In: J. ACM 63.6 (Jan. 2017). This is the journal
version of a 2013 STOC article by the same name.

[DCM+19] M. Dereziński, K. L. Clarkson, M. W. Mahoney, and M. K. Warmuth. “Min-
imax experimental design: bridging the gap between statistical and worst-
case approaches to least squares regression”. In: Conference on Learning
Theory (COLT). PMLR. 2019, pp. 1050–1069.

[DCV19] M. Derezinski, D. Calandriello, and M. Valko. “Exact sampling of determi-
nantal point processes with sublinear time preprocessing”. In: Advances in
Neural Information Processing Systems 32 (2019).

[DDD+87] J. Demmell, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and
D. Sorensen. Prospectus for the development of a linear algebra library for
high-performance computers. https://netlib.org/lapack/lawns/. LAPACK
Working Note 01. Sept. 1987.

[DDG+22] J. Demmel, J. Dongarra, M. Gates, G. Henry, J. Langou, X. Li, P. Luszczek,
W. Pereira, J. Riedy, and C. Rubio-González. Proposed Consistent Excep-
tion Handling for the BLAS and LAPACK. 2022.

Page 163

https://arxiv.org/abs/2209.05705

Early Release

[DDH+09] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W. Mahoney. “Sam-
pling algorithms and coresets for ℓp regression”. In: SIAM Journal on Com-
puting 38 (2009), pp. 2060–2078.

[DDH+88] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. “An ex-
tended set of fortran basic linear algebra subprograms”. In: ACM Trans.
Math. Softw. 14.1 (Mar. 1988), pp. 1–17.

[DDH+90] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. “A set of level 3
basic linear algebra subprograms”. In: ACM Trans. Math. Softw. 16.1 (Mar.
1990), pp. 1–17.

[DDH07] J. Demmel, I. Dumitriu, and O. Holtz. “Fast linear algebra is stable”. In:
Numerische Mathematik 108.1 (Oct. 2007), pp. 59–91.

[DDL+20] J. Demmel, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and M. W.
Mahoney. Prospectus for the Next LAPACK and ScaLAPACK Libraries:
Basic ALgebra LIbraries for Sustainable Technology with Interdisciplinary
Collaboration (BALLISTIC). http://www.netlib.org/lapack/lawnspdf/
lawn297.pdf. July 2020.

[DDM01] J. Demmel, B. Diament, and G. Malajovich. “On the complexity of com-
puting error bounds”. In: Foundations of Computational Mathematics 1.1
(Jan. 2001), pp. 101–125.

[Dem92] J. Demmel. “The componentwise distance to the nearest singular matrix”.
In: SIAM Journal on Matrix Analysis and Applications 13.1 (Jan. 1992),
pp. 10–19.

[Der19] M. Dereziński. “Fast determinantal point processes via distortion-free in-
termediate sampling”. In: Conference on Learning Theory (COLT). PMLR.
2019, pp. 1029–1049.

[Der22a] M. Dereziński. “Algorithmic gaussianization through sketching: converting
data into sub-gaussian random designs”. In: arXiv preprint arXiv:2206.10291
(2022).

[Der22b] M. Dereziński. “Stochastic variance-reduced Newton: accelerating finite-
sum minimization with large batches”. In: arXiv preprint arXiv:2206.02702
(2022).

[DG03] S. Dasgupta and A. Gupta. “An elementary proof of a theorem of Johnson
and Lindenstrauss”. In: Random Structures and Algorithms 22.1 (2003),
pp. 60–65.

[DG17] J. A. Duersch and M. Gu. “Randomized QR with column pivoting”. In:
SIAM Journal on Scientific Computing 39.4 (Jan. 2017), pp. C263–C291.

[DGG+15] J. Demmel, L. Grigori, M. Gu, and H. Xiang. “Communication-avoiding
rank-revealing QR decomposition”. In: SIAM Journal on Matrix Analysis
and its Applications 36.1 (2015), pp. 55–89.

[DGH+19] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Ya-
mazaki, A. Yarkhan, M. Abalenkovs, N. Bagherpour, S. Hammarling, J.
Šı́stek, D. Stevens, M. Zounon, and S. D. Relton. “PLASMA”. In: ACM
Transactions on Mathematical Software 45.2 (June 2019), pp. 1–35.

[DGR19] J. Demmel, L. Grigori, and A. Rusciano. “An improved analysis and unified
perspective on deterministic and randomized low rank matrix approxima-
tions”. In: arXiv preprint arXiv:1910.00223 (2019).

[DHK+06] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy.
“Error bounds from extra-precise iterative refinement”. In: ACM Trans.
Math. Softw. 32.2 (June 2006), pp. 325–351.

Page 164

http://www.netlib.org/lapack/lawnspdf/lawn297.pdf
http://www.netlib.org/lapack/lawnspdf/lawn297.pdf

Early Release

[Dix83] J. D. Dixon. “Estimating extremal eigenvalues and condition numbers of
matrices”. In: SIAM Journal on Numerical Analysis 20.4 (1983), pp. 812–
814.

[DJS+19] H. Diao, R. Jayaram, Z. Song, W. Sun, and D. P. Woodruff. “Optimal
sketching for Kronecker product regression and low rank approximation”.
In: arXiv preprint arXiv:1909.13384 (2019). arXiv: https://arxiv.org/
abs/1909.13384.

[DKM06a] P. Drineas, R. Kannan, and M. W. Mahoney. “Fast Monte Carlo algorithms
for matrices I: approximating matrix multiplication”. In: SIAM Journal on
Computing 36 (2006), pp. 132–157.

[DKM06b] P. Drineas, R. Kannan, and M. W. Mahoney. “Fast Monte Carlo algorithms
for matrices II: computing a low-rank approximation to a matrix”. In: SIAM
Journal on Computing 36 (2006), pp. 158–183.

[DKM20] M. Derezinski, R. Khanna, and M. W. Mahoney. “Improved guarantees
and a multiple-descent curve for Column Subset Selection and the Nyström
method”. In: Annual Advances in Neural Information Processing Systems.
2020, pp. 4953–4964.

[DKS10] A. Dasgupta, R. Kumar, and T. Sarlos. “A sparse Johnson-Lindenstrauss
transform”. In: Proceedings of the Forty-Second ACM Symposium on Theory
of Computing (STOC). STOC ’10. Cambridge, Massachusetts, USA: Asso-
ciation for Computing Machinery, 2010, pp. 341–350. isbn: 9781450300506.

[DLD+21] M. Dereziński, Z. Liao, E. Dobriban, and M. Mahoney. “Sparse sketches
with small inversion bias”. In: Conference on Learning Theory (COLT).
PMLR. 2021, pp. 1467–1510.

[DLL+20] M. Derezinski, F. T. Liang, Z. Liao, and M. W. Mahoney. “Precise ex-
pressions for random projections: low-rank approximation and randomized
Newton”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 18272–18283.

[DLP+21] M. Dereziński, J. Lacotte, M. Pilanci, and M. W. Mahoney. “Newton-LESS:
sparsification without trade-offs for the sketched Newton update”. In: Ad-
vances in Neural Information Processing Systems 34 (2021).

[DM05] P. Drineas and M. W. Mahoney. “On the Nyström method for approxi-
mating a Gram matrix for improved kernel-based learning”. In: Journal of
Machine Learning Research 6 (2005), pp. 2153–2175.

[DM10] P. Drineas and M. Mahoney. Effective Resistances, Statistical Leverage, and
Applications to Linear Equation Solving. Tech. rep. Preprint: arXiv:1005.3097.
2010.

[DM16] P. Drineas and M. W. Mahoney. “RandNLA: randomized numerical linear
algebra”. In: Communications of the ACM 59 (2016), pp. 80–90.

[DM18] P. Drineas and M. W. Mahoney. “Lectures on randomized numerical linear
algebra”. In: The Mathematics of Data. Ed. by M. W. Mahoney, J. C.
Duchi, and A. C. Gilbert. IAS/Park City Mathematics Series. Available at
https://arxiv.org/abs/1712.08880. AMS/IAS/SIAM, 2018, pp. 1–48.

[DM21a] M. Derezinski and M. W. Mahoney. “Determinantal point processes in
randomized numerical linear algebra”. In: Notices of the AMS 68.1 (2021),
pp. 34–45.

[DM21b] Y. Dong and P.-G. Martinsson. “Simpler is better: a comparative study of
randomized algorithms for computing the CUR decomposition”. In: arXiv
preprint arXiv:2104.05877 (2021).

Page 165

https://arxiv.org/abs/https://arxiv.org/abs/1909.13384
https://arxiv.org/abs/https://arxiv.org/abs/1909.13384
https://arxiv.org/abs/1712.08880

Early Release

[DMB+79] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK
users guide. SIAM, 1979.

[DMM+11] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós. “Faster least
squares approximation”. In: Numerische Mathematik 117.2 (2011), pp. 219–
249.

[DMM+12] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. “Fast
approximation of matrix coherence and statistical leverage”. In: Journal of
Machine Learning Research 13 (2012), pp. 3475–3506.

[DMM06] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. “Sampling algorithms
for ℓ2 regression and applications”. In: Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 2006, pp. 1127–1136.

[DMM08] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. “Relative-error CUR
matrix decompositions”. In: SIAM Journal on Matrix Analysis and Appli-
cations 30.2 (Jan. 2008). This is a longer journal version of two conference
papers from 2006., pp. 844–881.

[Drm22] Z. Drmac. A LAPACK implementation of the Dynamic Mode Decomposi-
tion I. https://netlib.org/lapack/lawns/. LAPACK Working Note 298. Oct.
2022.

[DRV+06] A. Deshpande, L. Rademacher, S. S. Vempala, and G. Wang. “Matrix ap-
proximation and projective clustering via volume sampling”. In: Theory of
Computing 2.1 (2006), pp. 225–247.

[DSS+18] H. Diao, Z. Song, W. Sun, and D. Woodruff. “Sketching for Kronecker
product regression and P-splines”. In: Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics. 2018, pp. 1299–1308.

[DV06] A. Deshpande and S. Vempala. “Adaptive sampling and fast low-rank ma-
trix approximation”. In: Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques. Ed. by J. Díaz, K. Jansen,
J. D. P. Rolim, and U. Zwick. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 292–303. isbn: 978-3-540-38045-0.

[EBK19] N. B. Erichson, S. L. Brunton, and J. N. Kutz. “Compressed dynamic mode
decomposition for background modeling”. In: Journal of Real-Time Image
Processing 16.5 (2019), pp. 1479–1492.

[ED16] N. B. Erichson and C. Donovan. “Randomized low-rank dynamic mode
decomposition for motion detection”. In: Computer Vision and Image Un-
derstanding 146 (2016), pp. 40–50.

[EMB+20] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz. “Randomized
CP tensor decomposition”. In: Machine Learning: Science and Technology
1.2 (2020), p. 025012.

[EMK+19] N. B. Erichson, L. Mathelin, J. N. Kutz, and S. L. Brunton. “Randomized
dynamic mode decomposition”. In: SIAM Journal on Applied Dynamical
Systems 18.4 (2019), pp. 1867–1891.

[EMW+18] N. B. Erichson, A. Mendible, S. Wihlborn, and N. J. Kutz. “Random-
ized nonnegative matrix factorization”. In: Pattern Recognition Letters 104
(2018), pp. 1–7.

[ET94] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC press,
1994.

[EVB+19] N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz. “Randomized
matrix decompositions using R”. In: Journal of Statistical Software 89.11
(2019).

Page 166

Early Release

[EZM+20] N. B. Erichson, P. Zheng, K. Manohar, S. L. Brunton, J. N. Kutz, and A. Y.
Aravkin. “Sparse principal component analysis via variable projection”. In:
SIAM Journal on Applied Mathematics 80.2 (2020), pp. 977–1002.

[FFG22] M. Fahrbach, T. Fu, and M. Ghadiri. “Subquadratic Kronecker regression
with applications to tensor decomposition”. In: Preprint arXiv:2209.04876
(2022). arXiv: 2209.04876.

[FGL21] Y. Fan, Y. Guo, and T. Lin. A Novel Randomized XR-Based Preconditioned
CholeskyQR Algorithm. 2021.

[FHH99] R. D. Fierro, P. C. Hansen, and P. S. K. Hansen. “UTV tools: Matlab tem-
plates for rank-revealing UTV decompositions”. In: Numerical Algorithms
20.2 (1999), pp. 165–194.

[FKV04] A. Frieze, R. Kannan, and S. Vempala. “Fast Monte-Carlo algorithms for
finding low-rank approximations”. In: Journal of the ACM 51.6 (2004),
pp. 1025–1041.

[FS11] D. C.-L. Fong and M. Saunders. “LSMR: an iterative algorithm for sparse
least-squares problems”. In: 33.5 (Jan. 2011), pp. 2950–2971.

[FTU21] Z. Frangella, J. A. Tropp, and M. Udell. Randomized Nyström Precondi-
tioning. 2021. arXiv: 2110.02820 [math.NA].

[FXG18] Y. Feng, J. Xiao, and M. Gu. “Randomized complete pivoting for solving
symmetric indefinite linear systems”. In: SIAM Journal on Matrix Analysis
and Applications 39.4 (Jan. 2018), pp. 1616–1641.

[FXG19] Y. Feng, J. Xiao, and M. Gu. “Flip-flop spectrum-revealing QR factor-
ization and its applications to singular value decomposition”. In: ETNA -
Electronic Transactions on Numerical Analysis 51 (2019), pp. 469–494.

[GCG+19] C. Gorman, G. Chávez, P. Ghysels, T. Mary, F.-H. Rouet, and X. S. Li.
“Robust and accurate stopping criteria for adaptive randomized sampling
in matrix-free hierarchically semiseparable construction”. In: SIAM Journal
on Scientific Computing 41.5 (2019), S61–S85.

[GDX11] L. Grigori, J. Demmel, and H. Xiang. “CALU: a communication optimal
LU factorization algorithm”. In: SIAM Journal on Matrix Analysis and
Applications 32 (2011), pp. 1317–1350.

[GE95] M. Gu and S. C. Eisenstat. “A divide-and-conquer algorithm for the bidi-
agonal SVD”. In: SIAM Journal on Matrix Analysis and Applications 16.1
(Jan. 1995), pp. 79–92.

[GE96] M. Gu and S. C. Eisenstat. “Efficient algorithms for computing a strong
rank-revealing QR factorization”. In: SIAM Journal on Scientific Comput-
ing 17.4 (July 1996), pp. 848–869.

[Gem80] S. Geman. “A limit theorem for the norm of random matrices”. In: The
Annals of Probability 8.2 (1980), pp. 252–261.

[GIG21] N. Gazagnadou, M. Ibrahim, and R. M. Gower. RidgeSketch: A Fast
sketching based solver for large scale ridge regression. arXiv:2105.05565.
2021.

[Gir89] A. Girard. “A fast ‘monte-carlo cross-validation’procedure for large least
squares problems with noisy data”. In: Numerische Mathematik 56.1 (1989),
pp. 1–23.

[GLA+17] M. Gates, P. Luszczek, A. Abdelfattah, J. Kurzak, J. Dongarra, K. Arturov,
C. Cecka, and C. Freitag. C++ API for BLAS and LAPACK. Tech. rep.
02, ICL-UT-17-03. Revision 02-21-2018. June 2017.

Page 167

https://arxiv.org/abs/2209.04876
https://arxiv.org/abs/2110.02820

Early Release

[GM16] A. Gittens and M. W. Mahoney. “Revisiting the Nyström method for im-
proved large-scale machine learning”. In: Journal of Machine Learning Re-
search 17.117 (2016), pp. 1–65.

[GM18] A. Gopal and P.-G. Martinsson. “The PowerURV algorithm for comput-
ing rank-revealing full factorizations”. In: arXiv preprint arXiv:1812.06007
(2018).

[GR15] R. M. Gower and P. Richtárik. “Randomized iterative methods for lin-
ear systems”. In: SIAM Journal on Matrix Analysis and Applications 36.4
(2015), pp. 1660–1690.

[GS12] V. Guruswami and A. K. Sinop. “Optimal column-based low-rank ma-
trix reconstruction”. In: Proceedings of the twenty-third annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM. 2012, pp. 1207–1214.

[GTZ97] S. Goreinov, E. Tyrtyshnikov, and N. Zamarashkin. “A theory of pseu-
doskeleton approximations”. In: Linear Algebra and its Applications 261.1-3
(Aug. 1997), pp. 1–21.

[GV13] G. H. Golub and C. F. Van Loan. Matrix Computations. en. 4th ed. Johns
Hopkins Studies in the Mathematical Sciences. Baltimore, MD: Johns Hop-
kins University Press, Feb. 2013.

[GV61] G. H. Golub and R. S. Varga. “Chebyshev semi-iterative methods, succes-
sive overrelaxation iterative methods, and second order Richardson iterative
methods”. In: Numerische Mathematik 3.1 (Dec. 1961), pp. 157–168.

[GZT95] S. A. Goreı̆nov, N. L. Zamarashkin, and E. E. Tyrtyshnikov. “Pseudo-
skeleton approximations of matrices”. In: Dokl. Akad. Nauk 343.2 (1995),
pp. 151–152.

[Hig02] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2002, pp. xxx+680. isbn: 0-89871-521-0.

[Hig97] N. J. Higham. “Iterative refinement for linear systems and LAPACK”. In:
IMA Journal of Numerical Analysis 17.4 (1997), pp. 495–509.

[HL69] R. J. Hanson and C. L. Lawson. “Extensions and applications of the house-
holder algorithm for solving linear least squares problems”. In: Mathematics
of Computation 23.108 (1969), pp. 787–812.

[HMT11] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding structure with
randomness: probabilistic algorithms for constructing approximate matrix
decompositions”. In: SIAM Review 53.2 (Jan. 2011), pp. 217–288.

[HS52] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving
linear systems”. In: Journal of Research of the National Bureau of Standards
49.1 (1952).

[Hut90] M. Hutchinson. “A stochastic estimator of the trace of the influence ma-
trix for Laplacian smoothing splines”. In: Communications in Statistics -
Simulation and Computation 19.2 (Jan. 1990), pp. 433–450.

[IEE19] IEEE. “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-
2019 (Revision of IEEE 754-2008) (2019), pp. 1–84.

[IM98] P. Indyk and R. Motwani. “Approximate nearest neighbors: towards re-
moving the curse of dimensionality”. In: Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC). 1998, pp. 604–613.

Page 168

Early Release

[INR+20] M. A. Iwen, D. Needell, E. Rebrova, and A. Zare. “Lower memory oblivi-
ous (tensor) subspace embeddings with fewer random bits: modewise meth-
ods for least squares”. In: arXiv preprint arXiv:1912.08294 (2020). arXiv:
https://arxiv.org/abs/1912.08294.

[Int19] Intel. Notes for oneMKL Vector Statistics. Tech. rep. Intel Corporation,
2019, p. 120.

[JKW20] R. Jin, T. G. Kolda, and R. Ward. “Faster Johnson–Lindenstrauss trans-
forms via Kronecker products”. In: Information and Inference: A Journal
of the IMA 10.4 (Oct. 2020), pp. 1533–1562.

[JL84] W. Johnson and J. Lindenstrauss. “Extensions of Lipshitz mapping into
Hilbert space”. In: Contemporary Mathematics 26 (1984), pp. 189–206.

[JZ13] R. Johnson and T. Zhang. “Accelerating stochastic gradient descent using
predictive variance reduction”. In: Advances in Neural Information Process-
ing Systems 26 (2013).

[KAI+15] G. Kollias, H. Avron, Y. Ineichen, C. Bekas, A. Curioni, V. Sindhwani,
and K. Clarkson. libSkylark: A Framework for High-Performance Matrix
Sketching for Statistical Computing. http://sc15.supercomputing.org/
sites/all/themes/SC15images/tech_poster/poster_files/post213s2-
file3.pdf. 2015.

[KB09] T. G. Kolda and B. W. Bader. “Tensor decompositions and applications”.
In: SIAM Review 51.3 (Aug. 2009), pp. 455–500.

[KC21] M. F. Kaloorazi and J. Chen. “Projection-based QLP algorithm for effi-
ciently computing low-rank approximation of matrices”. In: IEEE Transac-
tions on Signal Processing 69 (2021), pp. 2218–2232.

[KCL21] M. F. Kaloorazi, J. Chen, and R. C. de Lamare. “A QLP decomposition
via randomization”. In: arXiv preprint arXiv:2110.01011 (2021).

[KMT09a] S. Kumar, M. Mohri, and A. Talwalkar. “Ensemble Nyström method”. In:
Annual Advances in Neural Information Processing Systems. 2009.

[KMT09b] S. Kumar, M. Mohri, and A. Talwalkar. “Sampling techniques for the Nys-
tröm method”. In: Proceedings of the 12th Tenth International Workshop
on Artificial Intelligence and Statistics. 2009, pp. 304–311.

[KN12] D. M. Kane and J. Nelson. “Sparser Johnson-Lindenstrauss Transforms”.
In: Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2012, pp. 1195–1206.

[KN14] D. M. Kane and J. Nelson. “Sparser Johnson-Lindenstrauss Transforms”.
In: J. ACM 61.1 (Jan. 2014). Notes: journal version of a 2012 SODA paper
by the same name; called “OSNAPs” in a related 2013 paper.

[KRS+10] S. P. Kasiviswanathan, M. Rudelson, A. Smith, and J. Ullman. “The price
of privately releasing contingency tables and the spectra of random matrices
with correlated rows”. In: Proceedings of the Forty-Second ACM Symposium
on Theory of Computing. 2010, pp. 775–784.

[KT12] A. Kulesza and B. Taskar. “Determinantal point processes for machine
learning”. In: Foundations and Trends® in Machine Learning 5.2–3 (2012),
pp. 123–286.

[KV17a] R. Kannan and S. Vempala. “Randomized algorithms in numerical linear
algebra”. In: Acta Numerica 26 (2017), pp. 95–135.

[KV17b] W. Kong and G. Valiant. “Spectrum estimation from samples”. In: The
Annals of Statistics 45.5 (2017), pp. 2218–2247.

Page 169

https://arxiv.org/abs/https://arxiv.org/abs/1912.08294
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post213s2-file3.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post213s2-file3.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/poster_files/post213s2-file3.pdf

Early Release

[KW70] G. S. Kimeldorf and G. Wahba. “A correspondence between Bayesian esti-
mation on stochastic processes and smoothing by splines”. In: The Annals
of Mathematical Statistics 41.2 (1970), pp. 495–502.

[KW92] J. Kuczyński and H. Woźniakowski. “Estimating the largest eigenvalue by
the power and lanczos algorithms with a random start”. In: SIAM Journal
on Matrix Analysis and Applications 13.4 (1992), pp. 1094–1122.

[KWG+17] J. Kurzak, P. Wu, M. Gates, I. Yamazaki, P. Luszczek, G. Ragghianti,
and J. Dongarra. Designing SLATE: Software for Linear Algebra Targeting
Exascale. SLATE Working Notes 03, ICL-UT-17-06. Oct. 2017.

[LEM20] M. E. Lopes, N. B. Erichson, and M. Mahoney. “Error estimation for
sketched SVD via the bootstrap”. In: Proceedings of the 37thInternational
Conference on Machine Learning (ICML). Ed. by H. D. III and A. Singh.
Vol. 119. Proceedings of Machine Learning Research. PMLR, July 2020,
pp. 6382–6392.

[LEM23] M. E. Lopes, N. B. Erichson, and M. W. Mahoney. “Bootstrapping the
operator norm in high dimensions: Error estimation for covariance matrices
and sketching”. In: Bernoulli 29.1 (2023), pp. 428–450.

[LHK+79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. “Basic linear
algebra subprograms for fortran usage”. In: ACM Trans. Math. Softw. 5.3
(Sept. 1979), pp. 308–323.

[Li92] K.-h. Li. “Generation of random matrices with orthonormal columns and
multivariate normal variates with given sample mean and covariance”. In:
Journal of Statistical Computation and Simulation 43.1-2 (Oct. 1992), pp. 11–
18.

[Lib09] E. Liberty. “Accelerated dense random projections”. PhD thesis. Yale Uni-
versity, May 2009.

[Lin16] L. Lin. “Randomized estimation of spectral densities of large matrices made
accurate”. In: Numerische Mathematik 136.1 (Aug. 2016), pp. 183–213.

[LK20] B. W. Larsen and T. G. Kolda. “Practical leverage-based sampling for low-
rank tensor decomposition”. In: arXiv preprint arXiv:2006.16438 (2020).
v3 released in 2022. arXiv: 2006.16438.

[LKL10] M. Li, J. Kwok, and B.-L. Lu. “Making large-scale Nyström approximation
possible”. In: Proceedings of the 27th International Conference on Machine
Learning (ICML). 2010, pp. 631–638.

[LLD20] N. Lindquist, P. Luszczek, and J. Dongarra. “Replacing pivoting in dis-
tributed Gaussian elimination with randomized techniques”. In: 2020 IEEE/ACM
11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA). 2020, pp. 35–43.

[LLS+17] H. Li, G. C. Linderman, A. Szlam, K. P. Stanton, Y. Kluger, and M. Tygert.
“Algorithm 971: an implementation of a randomized algorithm for principal
component analysis”. In: ACM Trans. Math. Softw. 43.3 (Jan. 2017).

[LP19] J. Lacotte and M. Pilanci. “Faster least squares optimization”. In: arXiv
preprint arXiv:1911.02675 (2019).

[LSS13] Q. Le, T. Sarlós, and A. Smola. “Fastfood-computing Hilbert space expan-
sions in loglinear time”. In: International Conference on Machine Learning.
PMLR. 2013, pp. 244–252.

[LWM+07] E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert. “Ran-
domized algorithms for the low-rank approximation of matrices”. In: Pro-
ceedings of the National Academy of Sciences 104.51 (2007), pp. 20167–
20172.

Page 170

https://arxiv.org/abs/2006.16438

Early Release

[LWM18] M. E. Lopes, S. Wang, and M. Mahoney. “Error estimation for randomized
least-squares algorithms via the bootstrap”. In: Proceedings of the 35th
International Conference on Machine Learning (ICML). Ed. by J. Dy and
A. Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,
July 2018, pp. 3217–3226.

[Mah11] M. W. Mahoney. Randomized algorithms for matrices and data. Founda-
tions and Trends in Machine Learning. Boston: NOW Publishers, 2011.

[Mah16] M. W. Mahoney. Lecture Notes on Randomized Linear Algebra. Tech. rep.
Preprint: arXiv:1608.04481. 2016.

[Mal22] O. A. Malik. “More efficient sampling for tensor decomposition with worst-
case guarantees”. In: Proceedings of the 39th International Conference on
Machine Learning. Vol. 162. Proceedings of Machine Learning Research.
PMLR, 2022, pp. 14887–14917.

[Mar15] P. G. Martinsson. “Blocked rank-revealing QR factorizations: how ran-
domized sampling can be used to avoid single-vector pivoting”. In: arXiv
preprint arXiv:1505.08115 (2015).

[Mar18] P.-G. Martinsson. “Randomized methods for matrix computations”. In: The
Mathematics of Data 25.4 (2018). Note: preprint arXiv:1607.01649 pub-
lished in 2016, updated in 2019., pp. 187–239.

[Mar22a] P. G. Martinsson. A remark on the precision of random number generation
for RandNLA. Personal communication. 2022.

[Mar22b] P. G. Martinsson. A remark on pivoting methods in randomized algorithms
for low-rank interpolative decomposition. Personal communication. 2022.

[MB18] O. A. Malik and S. Becker. “Low-rank Tucker decomposition of large ten-
sors using TensorSketch”. In: Advances in Neural Information Processing
Systems. Vol. 31. Curran Associates, Inc., 2018.

[MB20] O. A. Malik and S. Becker. “Guarantees for the Kronecker fast Johnson–
Lindenstrauss transform using a coherence and sampling argument”. In:
Linear Algebra and its Applications 602 (Oct. 2020), pp. 120–137.

[MB21] O. A. Malik and S. Becker. “A sampling-based method for tensor ring
decomposition”. In: International Conference on Machine Learning. PMLR,
2021, pp. 7400–7411.

[MBM22] O. A. Malik, V. Bharadwaj, and R. Murray. “Sampling-based decomposi-
tion algorithms for arbitrary tensor networks”. In: arXiv preprint arXiv:2210.03828
(2022). arXiv: 2210.03828.

[MCD+22] G. Meanti, L. Carratino, E. De Vito, and L. Rosasco. “Efficient hyperpa-
rameter tuning for large scale kernel ridge regression”. In: (to appear in)
Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics. 2022.

[MCR+20] G. Meanti, L. Carratino, L. Rosasco, and A. Rudi. “Kernel methods through
the roof: handling billions of points efficiently”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020,
pp. 14410–14422.

[MD09] M. W. Mahoney and P. Drineas. “CUR matrix decompositions for improved
data analysis”. In: Proceedings of the National Academy of Sciences 106.3
(2009), pp. 697–702.

Page 171

https://arxiv.org/abs/2210.03828

Early Release

[MD16] M. W. Mahoney and P. Drineas. “Structural properties underlying high-
quality randomized numerical linear algebra algorithms”. In: Handbook of
Big Data. Ed. by P. Bühlmann, P. Drineas, M. Kane, and M. van de Laan.
CRC Press, 2016, pp. 137–154.

[Mez07] F. Mezzadri. “How to generate random matrices from the classical compact
groups”. In: Notices of the AMS 54.5 (2007), pp. 592–604.

[MG15] C. Melgaard and M. Gu. “Gaussian elimination with randomized complete
pivoting”. In: arXiv preprint arXiv:1511.08528 (2015).

[MM13] X. Meng and M. W. Mahoney. “Low-distortion subspace embeddings in
input-sparsity time and applications to robust linear regression”. In: Pro-
ceedings of the 45th Annual ACM Symposium on Theory of Computing.
2013, pp. 91–100.

[MM15] C. Musco and C. Musco. “Randomized block Krylov methods for stronger
and faster approximate singular value decomposition”. In: Neural Informa-
tion Processing Systems. 2015, pp. 1396–1404.

[MM17] C. Musco and C. Musco. “Recursive sampling for the Nyström method”.
In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Vol. 30. Curran Associates, Inc., 2017.

[MMM+21] R. A. Meyer, C. Musco, C. Musco, and D. P. Woodruff. “Hutch++: op-
timal stochastic trace estimation”. In: Symposium on Simplicity in Algo-
rithms (SOSA). Society for Industrial and Applied Mathematics, Jan. 2021,
pp. 142–155.

[MMY15] P. Ma, M. W. Mahoney, and B. Yu. “A statistical perspective on algorithmic
leveraging”. In: Journal of Machine Learning Research 16 (2015), pp. 861–
911.

[MOH+17] P.-G. Martinsson, G. Q. Ortí, N. Heavner, and R. van de Geijn. “House-
holder QR factorization with randomization for column pivoting (HQRRP)”.
In: SIAM Journal on Scientific Computing 39.2 (Jan. 2017), pp. C96–C115.

[MQH19] P. G. Martinsson, G. Quintana-Ortı́, and N. Heavner. “RandUTV: A blocked
randomized algorithm for computing a rank-revealing UTV factorization”.
In: ACM Trans. Math. Softw. 45.1 (Mar. 2019).

[MRS+14] P.-G. Martinsson, V. Rokhlin, Y. Shkolinsky, and M. Tygert. ID: A software
package for low-rank approximation of matrices via interpolative decompo-
sitions, Version 0.4. http://www.tygert.com/id_doc.4.pdf. Available in
SciPy. See also https://github.com/klho/PyMatrixID. Mar. 2014.

[MS22] L. Ma and E. Solomonik. Cost-efficient Gaussian Tensor Network Embed-
dings for Tensor-structured Inputs. 2022.

[MSM14] X. Meng, M. A. Saunders, and M. W. Mahoney. “LSRN: a parallel iterative
solver for strongly over- or underdetermined systems”. In: SIAM Journal on
Scientific Computing 36.2 (Jan. 2014). Software at https://web.stanford.
edu/group/SOL/software/lsrn/, pp. C95–C118.

[MT00] G. Marsaglia and W. W. Tsang. “The ziggurat method for generating ran-
dom variables”. In: Journal of Statistical Software 5.8 (2000), pp. 1–7.

[MT20] P.-G. Martinsson and J. A. Tropp. “Randomized numerical linear algebra:
Foundations and Algorithms”. In: Acta Numerica 29 (2020), pp. 403–572.

[Mur12] K. P. Murphy. Machine Learning: A Probabilistic Perspective (Adaptive
Computation and Machine Learning series). English. Hardcover. The MIT
Press, Aug. 24, 2012, p. 1104.

Page 172

http://www.tygert.com/id_doc.4.pdf
https://github.com/klho/PyMatrixID
https://web.stanford.edu/group/SOL/software/lsrn/
https://web.stanford.edu/group/SOL/software/lsrn/

Early Release

[MV16] P.-G. Martinsson and S. Voronin. “A randomized blocked algorithm for
efficiently computing rank-revealing factorizations of matrices”. In: SIAM
Journal on Scientific Computing 38.5 (Jan. 2016), S485–S507.

[MXC+22] O. A. Malik, Y. Xu, N. Cheng, S. Becker, A. Doostan, and A. Narayan.
“Fast algorithms for monotone lower subsets of Kronecker least squares
problems”. In: arXiv preprint arXiv:2209.05662 (2022). arXiv: 2209.05662.

[MZX+22] P. Ma, X. Zhang, X. Xing, J. Ma, and M. W. Mahoney. “Asymptotic anal-
ysis of sampling estimators for randomized numerical linear algebra algo-
rithms”. In: Journal of Machine Learning Research 23.177 (2022). Journal
version of a 2020 PMLR paper of the same name., pp. 1–45.

[Nak20] Y. Nakatsukasa. “Fast and stable randomized low-rank matrix approxima-
tion”. In: arXiv preprint arXiv:2009.11392 (2020).

[NDM22] S. Na, M. Dereziński, and M. W. Mahoney. Hessian Averaging in Stochastic
Newton Methods Achieves Superlinear Convergence. 2022.

[NDT09] N. H. Nguyen, T. T. Do, and T. D. Tran. “A fast and efficient algorithm
for low-rank approximation of a matrix”. In: Proceedings of the Forty-First
Annual ACM Symposium on Theory of Computing (STOC). STOC ’09.
Bethesda, MD, USA: Association for Computing Machinery, 2009, pp. 215–
224. isbn: 9781605585062.

[Ngu07] H. Nguyen, ed. GPU Gems 3. First. Addison-Wesley Professional, 2007.
isbn: 9780321545428.

[NN13] J. Nelson and H. L. Nguyen. “OSNAP: faster numerical linear algebra al-
gorithms via sparser subspace embeddings”. In: 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science. IEEE, Oct. 2013.

[NT14] D. Needell and J. A. Tropp. “Paved with good intentions: Analysis of a ran-
domized block Kaczmarz method”. In: Linear Algebra and its Applications
441 (Jan. 2014), pp. 199–221.

[NT21] Y. Nakatsukasa and J. A. Tropp. Fast & Accurate Randomized Algorithms
for Linear Systems and Eigenvalue Problems. arXiv:2111.00113. 2021. arXiv:
2111.00113 [math.NA].

[NTD10] R. Nath, S. Tomov, and J. Dongarra. “Accelerating GPU kernels for dense
linear algebra”. In: Proceedings of the 2009 International Meeting on High
Performance Computing for Computational Science, VECPAR’10. Berke-
ley, CA: Springer, June 2010.

[OA17] D. Orban and M. Arioli. Iterative Solution of Symmetric Quasi-Definite
Linear Systems. Society for Industrial and Applied Mathematics, Apr. 2017.

[OP64] W. Oettli and W. Prager. “Compatibility of approximate solution of linear
equations with given error bounds for coefficients and right-hand sides”. In:
Numerische Mathematik 6.1 (Dec. 1964), pp. 405–409.

[OPA19] I. K. Ozaslan, M. Pilanci, and O. Arikan. “Iterative Hessian sketch with
momentum”. In: 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2019, pp. 7470–7474.

[OT17] S. Oymak and J. A. Tropp. “Universality laws for randomized dimension
reduction, with applications”. In: Information and Inference: A Journal of
the IMA 7.3 (2017), pp. 337–446. eprint: https://academic.oup.com/
imaiai/article-pdf/7/3/337/32468280/iax011.pdf.

[Pag13] R. Pagh. “Compressed matrix multiplication”. In: ACM Transactions on
Computation Theory 5.3 (Aug. 2013), 9:1–9:17.

Page 173

https://arxiv.org/abs/2209.05662
https://arxiv.org/abs/2111.00113
https://academic.oup.com/imaiai/article-pdf/7/3/337/32468280/iax011.pdf
https://academic.oup.com/imaiai/article-pdf/7/3/337/32468280/iax011.pdf

Early Release

[Par95] D. S. Parker. Random Butterfly Transformations with Applications in Com-
putational Linear Algebra. Tech. rep. University of California, Los Angeles,
1995.

[PCK21] D. Persson, A. Cortinovis, and D. Kressner. Improved variants of the Hutch++
algorithm for trace estimation. 2021.

[Pec21] J. Peca-Medlin. “Numerical, spectral, and group properties of random but-
terfly matrices”. PhD thesis. University of California, Irvine, 2021.

[PJM22] V. Patel, M. Jahangoshahi, and D. A. Maldonado. Randomized Block Adap-
tive Linear System Solvers. Preprint: arXiv:2204.01653. 2022.

[Pla05] J. Platt. “FastMap, MetricMap, and Landmark MDS are all Nyström al-
gorithms”. In: Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics. 2005, pp. 261–268.

[PMG+13] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A.
Romero. “Elemental”. In: 39.2 (Feb. 2013). https://github.com/elemental/
Elemental, pp. 1–24.

[Pou20] J. Poulson. “High-performance sampling of generic determinantal point
processes”. In: Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 378.2166 (Jan. 2020), p. 20190059.

[PP13] N. Pham and R. Pagh. “Fast and scalable polynomial kernels via explicit
feature maps”. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’13. New York,
NY, USA: ACM, 2013, pp. 239–247. isbn: 978-1-4503-2174-7.

[PS82] C. C. Paige and M. A. Saunders. “LSQR: an algorithm for sparse linear
equations and sparse least squares”. In: ACM Trans. Math. Softw. 8.1 (Mar.
1982), pp. 43–71.

[PW16] M. Pilanci and M. J. Wainwright. “Iterative Hessian Sketch: fast and ac-
curate solution approximation for constrained least-squares”. In: J. Mach.
Learn. Res. 17.1 (Jan. 2016), pp. 1842–1879.

[PW17] M. Pilanci and M. J. Wainwright. “Newton Sketch: a near linear-time opti-
mization algorithm with linear-quadratic convergence”. In: SIAM Journal
on Optimization 27.1 (Jan. 2017), pp. 205–245.

[RB20] H. Ren and Z.-J. Bai. “Single-pass randomized QLP decomposition for low-
rank approximation”. In: (2020).

[RCC+18] A. Rudi, D. Calandriello, L. Carratino, and L. Rosasco. “On fast leverage
score sampling and optimal learning”. In: Advances in Neural Information
Processing Systems 31 (2018).

[RCR15] A. Rudi, R. Camoriano, and L. Rosasco. Less is More: Nyström Computa-
tional Regularization. Tech. rep. Preprint: arXiv:1507.04717. 2015.

[RDA18] J. Riedy, J. Demmel, and P. Ahrens. “Reproducible BLAS: Make Addition
Associative Again!” In: SIAM News (Oct. 2018).

[RM19] F. Roosta-Khorasani and M. W. Mahoney. “Sub-sampled Newton meth-
ods”. In: Mathematical Programming 174.1-2 (2019), pp. 293–326.

[RR07] A. Rahimi and B. Recht. “Random features for large-scale kernel machines”.
In: Advances in Neural Information Processing Systems. Ed. by J. Platt,
D. Koller, Y. Singer, and S. Roweis. Vol. 20. Curran Associates, Inc., 2007.

Page 174

https://github.com/elemental/Elemental
https://github.com/elemental/Elemental

Early Release

[RR20] B. Rakhshan and G. Rabusseau. “Tensorized random projections”. In: Pro-
ceedings of the Twenty Third International Conference on Artificial In-
telligence and Statistics. Ed. by S. Chiappa and R. Calandra. Vol. 108.
Proceedings of Machine Learning Research. PMLR, Aug. 2020, pp. 3306–
3316.

[RR21] B. T. Rakhshan and G. Rabusseau. “Rademacher random projections with
tensor networks”. In: NeurIPS Workshop on Quantum Tensor Networks in
Machine Learning. 2021.

[RST10] V. Rokhlin, A. Szlam, and M. Tygert. “A randomized algorithm for prin-
cipal component analysis”. In: SIAM Journal on Matrix Analysis and Ap-
plications 31.3 (Jan. 2010), pp. 1100–1124.

[RT08] V. Rokhlin and M. Tygert. “A fast randomized algorithm for overdeter-
mined linear least-squares regression”. In: Proceedings of the National Academy
of Sciences 105.36 (Sept. 2008), pp. 13212–13217.

[Rud12] M. Rudelson. “Row products of random matrices”. In: Advances in Mathe-
matics 231.6 (2012), pp. 3199–3231.

[SAI17] A. K. Saibaba, A. Alexanderian, and I. C. F. Ipsen. “Randomized matrix-
free trace and log-determinant estimators”. In: Numerische Mathematik
137.2 (Apr. 2017), pp. 353–395.

[Sar06] T. Sarlos. “Improved approximation algorithms for large matrices via ran-
dom projections”. In: Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). FOCS ’06. USA: IEEE Com-
puter Society, 2006, pp. 143–152. isbn: 0769527205.

[SCS10] Y. Saad, J. Chelikowsky, and S. Shontz. “Numerical methods for electronic
structure calculations of materials”. In: SIAM Review 52.1 (2010), pp. 3–54.

[SDF+17] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos. “Tensor decomposition for signal processing and ma-
chine learning”. In: IEEE Transactions on Signal Processing 65.13 (2017),
pp. 3551–3582.

[SG21] A. Sobczyk and E. Gallopoulos. “Estimating leverage scores via rank re-
vealing methods and randomization”. In: SIAM Journal on Matrix Analysis
and Applications 42.3 (2021), pp. 1199–1228.

[SG22] A. Sobczyk and E. Gallopoulos. “Pylspack: parallel algorithms and data
structures for sketching, column subset selection, regression and leverage
scores”. In: arXiv preprint arXiv:2203.02798 (2022).

[SGT+18] Y. Sun, Y. Guo, J. A. Tropp, and M. Udell. “Tensor random projection for
low memory dimension reduction”. In: NeurIPS Workshop on Relational
Representation Learning. 2018.

[Sil85] J. W. Silverstein. “The smallest eigenvalue of a large dimensional Wishart
matrix”. In: The Annals of Probability 13.4 (1985), pp. 1364–1368.

[SMD+11] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. “Parallel random
numbers: as easy as 1, 2, 3”. In: SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis. 2011, pp. 1–12.

[SNM17] P. Seshadri, A. Narayan, and S. Mahadevan. “Effectively subsampled quadra-
tures for least squares polynomial approximations”. In: SIAM/ASA Journal
on Uncertainty Quantification 5.1 (2017), pp. 1003–1023. eprint: https:
//doi.org/10.1137/16M1057668.

Page 175

https://doi.org/10.1137/16M1057668
https://doi.org/10.1137/16M1057668

Early Release

[SSA+18] G. Shabat, Y. Shmueli, Y. Aizenbud, and A. Averbuch. “Randomized LU
decomposition”. In: Applied and Computational Harmonic Analysis 44.2
(Mar. 2018). Available on arXiv in 2013., pp. 246–272.

[ST02] Z. Strakoš and P. Tichý. “On error estimation in the conjugate gradient
method and why it works in finite precision computations”. In: Electron.
Trans. Numer. Anal. 13 (2002), pp. 56–80.

[ST05] Z. Strakoš and P. Tichý. “Error estimation in preconditioned conjugate
gradients”. In: BIT Numerical Mathematics 45.4 (Dec. 2005). Extends a
related 2002 paper by the same authors., pp. 789–817.

[ST12] J. Shao and D. Tu. The jackknife and bootstrap. Springer Science & Business
Media, 2012.

[Ste77] G. Stewart. “Research, development, and LINPACK”. In: Mathematical
Software. Elsevier, 1977, pp. 1–14.

[Ste80] G. W. Stewart. “The efficient generation of random orthogonal matrices
with an application to condition estimators”. In: SIAM Journal on Numer-
ical Analysis 17.3 (1980), pp. 403–409.

[Ste92] G. Stewart. “An updating algorithm for subspace tracking”. In: IEEE Trans-
actions on Signal Processing 40.6 (June 1992), pp. 1535–1541.

[Ste93] G. Stewart. “Updating a rank-revealing ULV decomposition”. In: SIAM
Journal on Matrix Analysis and Applications 14.2 (Apr. 1993), pp. 494–
499.

[Ste99] G. W. Stewart. “The QLP approximation to the singular value decompo-
sition”. In: SIAM J. Sci. Comput. 20.4 (Jan. 1999), pp. 1336–1348.

[SV08] T. Strohmer and R. Vershynin. “A randomized Kaczmarz algorithm with
exponential convergence”. In: Journal of Fourier Analysis and Applications
15.2 (Apr. 2008), pp. 262–278.

[SWY+21] Z. Song, D. Woodruff, Z. Yu, and L. Zhang. “Fast sketching of polynomial
kernels of polynomial degree”. In: Proceedings of the 38th International
Conference on Machine Learning (ICML). Vol. 139. Proceedings of Machine
Learning Research. PMLR, 2021, pp. 9812–9823.

[TDB10] S. Tomov, J. Dongarra, and M. Baboulin. “Towards dense linear algebra for
hybrid GPU accelerated manycore systems”. In: Parallel Computing 36.5-6
(June 2010), pp. 232–240.

[TNX15] Tao, A. Narayan, and D. Xiu. “Weighted discrete least-squares polynomial
approximation using randomized quadratures”. In: Journal of Computa-
tional Physics 298 (2015), pp. 787–800.

[TRL+14] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz.
“On dynamic mode decomposition: theory and applications”. In: Journal
of Computational Dynamics 1.2 (2014), pp. 391–421.

[Tro11] J. A. Tropp. “Improved analysis of the subsampled randomized Hadamard
transform”. In: Advances in Adaptive Data Analysis 03.01n02 (Apr. 2011),
pp. 115–126.

[Tro15] J. A. Tropp. “An introduction to matrix concentration inequalities”. In:
Foundations and Trends® in Machine Learning 8.1-2 (2015), pp. 1–230.

[Tro19] J. A. Tropp. Matrix Concentration & Computational Linear Algebra. Lec-
ture notes for a course at École Normale Supérieure, Paris. July 2019.

[Tro20] J. A. Tropp. Randomized Algorithms for Matrix Computations. Lecture
notes (available online in April 2021). Mar. 2020.

Page 176

Early Release

[Tyg22] M. Tygert. A suggestion for sparse sketching operators. Personal commu-
nication. 2022.

[TYU+17a] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. “Fixed-rank approxi-
mation of a positive-semidefinite matrix from streaming data”. In: Advances
in Neural Information Processing Systems. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30.
Curran Associates, Inc., 2017.

[TYU+17b] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher. “Practical sketch-
ing algorithms for low-rank matrix approximation”. In: SIAM Journal on
Matrix Analysis and Applications 38.4 (Jan. 2017), pp. 1454–1485.

[Ura13] Y. Urano. “A fast randomized algorithm for linear least-squares regression
via sparse transforms”. MA thesis. New York University, Jan. 2013.

[VEK+19] M. Velegar, N. B. Erichson, C. A. Keller, and J. N. Kutz. “Scalable di-
agnostics for global atmospheric chemistry using ristretto library (version
1.0)”. In: Geoscientific Model Development 12.4 (2019), pp. 1525–1539.

[Ver18] R. Vershynin. High-dimensional probability: An introduction with applica-
tions in data science. Cambridge, United Kingdom New York, NY: Cam-
bridge University Press, 2018. isbn: 9781108231596.

[VM15] S. Voronin and P.-G. Martinsson. “RSVDPACK: An implementation of
randomized algorithms for computing the singular value, interpolative, and
CUR decompositions of matrices on multi-core and GPU architectures”. In:
arXiv preprint arXiv:1502.05366 (2015).

[VM16] S. Voronin and P.-G. Martinsson. “Efficient algorithms for CUR and in-
terpolative matrix decompositions”. In: Advances in Computational Math-
ematics 43.3 (Nov. 2016), pp. 495–516.

[Wan15] S. Wang. A Practical Guide to Randomized Matrix Computations with
MATLAB Implementations. arXiv:1505.07570. 2015.

[WGM18] S. Wang, A. Gittens, and M. W. Mahoney. “Sketched ridge regression:
optimization perspective, statistical perspective, and model averaging”. In:
Journal of Machine Learning Research 18 (2018), pp. 1–50.

[WLR+08] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. “A fast randomized al-
gorithm for the approximation of matrices”. In: Applied and Computational
Harmonic Analysis 25.3 (2008), pp. 335–366.

[Woo14] D. P. Woodruff. “Sketching as a tool for numerical linear algebra”. In:
Found. Trends Theor. Comput. Sci. 10.1–2 (Oct. 2014), pp. 1–157.

[WS00] C. Williams and M. Seeger. “Using the nyström method to speed up kernel
machines”. In: Advances in Neural Information Processing Systems. Ed. by
T. Leen, T. Dietterich, and V. Tresp. Vol. 13. MIT Press, 2000.

[WX20] N. Wu and H. Xiang. “Randomized QLP decomposition”. In: Linear Algebra
and its Applications 599 (Aug. 2020), pp. 18–35.

[WZ20] D. Woodruff and A. Zandieh. “Near input sparsity time kernel embeddings
via adaptive sampling”. In: Proceedings of the 37th International Conference
on Machine Learning. Vol. 119. Proceedings of Machine Learning Research.
PMLR, 2020, pp. 10324–10333.

[WZ22] D. Woodruff and A. Zandieh. “Leverage score sampling for tensor product
matrices in input sparsity time”. In: Proceedings of the 39th International
Conference on Machine Learning. Vol. 162. Proceedings of Machine Learn-
ing Research. PMLR, 2022, pp. 23933–23964.

Page 177

Early Release

[XG16] J. Xiao and M. Gu. “Spectrum-revealing Cholesky factorization for kernel
methods”. In: 2016 IEEE 16th International Conference on Data Mining
(ICDM). IEEE, Dec. 2016.

[XGL17] J. Xiao, M. Gu, and J. Langou. “Fast parallel randomized QR with col-
umn pivoting algorithms for reliable low-rank matrix approximations”. In:
2017 IEEE 24th International Conference on High Performance Computing
(HiPC). 2017, pp. 233–242.

[XRM17] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-Type Methods
for Non-Convex Optimization Under Inexact Hessian Information. Tech.
rep. Preprint: arXiv:1708.07164. 2017.

[YCR+18] J. Yang, Y.-L. Chow, C. Re, and M. W. Mahoney. “Weighted SGD for
Lp regression with randomized preconditioning”. In: Journal of Machine
Learning Research 18.211 (2018), pp. 1–43.

[YGK+19] Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney. PyHessian: Neural
Networks Through the Lens of the Hessian. Tech. rep. Preprint: arXiv:1912.07145.
2019.

[YGL+17] W. Yu, Y. Gu, J. Li, S. Liu, and Y. Li. “Single-pass PCA of large high-
dimensional data”. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17. 2017, pp. 3350–3356.

[YGL18] W. Yu, Y. Gu, and Y. Li. “Efficient randomized algorithms for the fixed-
precision low-rank matrix approximation”. In: SIAM Journal on Matrix
Analysis and Applications 39.3 (Jan. 2018), pp. 1339–1359.

[YGS+20] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. W. Ma-
honey. ADAHESSIAN: An Adaptive Second Order Optimizer for Machine
Learning. Tech. rep. Preprint: arXiv:2006.00719. 2020.

[YMM16] J. Yang, X. Meng, and M. W. Mahoney. “Implementing randomized matrix
algorithms in parallel and distributed environments”. In: Proceedings of the
IEEE 104.1 (2016), pp. 58–92.

[YPW17] Y. Yang, M. Pilanci, and M. J. Wainwright. “Randomized sketches for ker-
nels: fast and optimal nonparametric regression”. In: The Annals of Statis-
tics 45.3 (2017), pp. 991–1023.

[YXR+18] Z. Yao, P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Inexact Non-
Convex Newton-Type Methods. Tech. rep. Preprint: arXiv:1802.06925. 2018.

[ZM20] B. Zhang and M. Mascagni. “Pass-efficient randomized LU algorithms for
computing low-rank matrix approximation”. In: arXiv preprint arXiv:2002.07138
(2020).

Page 178

	Introduction
	Our world
	Four value propositions of randomization
	What is, and isn't, subject to randomness

	This monograph, from an astronaut's-eye view
	This monograph, from a bird's-eye view
	Recommended reading
	Tutorials, light on prerequisites
	Broad and proof-heavy resources
	Perspectives on theory, light on proofs
	Deep investigations of specific topics
	Randomized numerical linear algebra: Foundations and Algorithms, by Martisson and Tropp

	Notation and terminology

	Basic Sketching
	A high-level plan
	Random number generation
	Portability, reproducibility and exception handling

	Helpful things to know about sketching
	Geometric interpretations of sketching
	Sketch quality
	(In)essential properties of sketching distributions

	Dense sketching operators
	Sparse sketching operators
	Short-axis-sparse sketching operators
	Long-axis-sparse sketching operators

	Subsampled fast trigonometric transforms
	Multi-sketch and quadratic-sketch routines

	Least Squares and Optimization
	Problem classes
	Minimizing regularized quadratics
	Solving least squares and basic saddle point problems

	Drivers
	Sketch-and-solve for overdetermined least squares
	Sketch-and-precondition for least squares and saddle point problems
	Nyström PCG for minimizing regularized quadratics
	Sketch-and-solve for minimizing regularized quadratics

	Computational routines
	Technical background: optimality conditions for saddle point problems
	Preconditioning least squares and saddle point problems: tall data matrices
	Preconditioning least squares and saddle point problems: data matrices with fast spectral decay
	Deterministic preconditioned iterative solvers

	Other optimization functionality
	Existing libraries

	Low-rank Approximation
	Problem classes
	Spectral decompositions
	Submatrix-oriented decompositions
	On accuracy metrics

	Drivers
	Methods for SVD
	Methods for Hermitian eigendecomposition
	Methods for CUR and two-sided ID

	Computational routines
	Power iteration
	Orthogonal projections: QB and rangefinders
	Column-pivoted matrix decompositions
	One-sided ID and CSS
	Estimating matrix norms
	Oblique projections

	Other low-rank approximations
	Existing libraries

	Further Possibilities for Drivers
	Multi-purpose factorizations
	QRCP for general matrices
	QR for tall-and-skinny matrices of full-rank
	QRCP for tall-and-skinny matrices
	UTV, URV, and QLP.

	Factorizations for solving square linear systems
	Stability through pivoting
	Stability through rotations

	Trace estimation
	Sampling-based methods
	Quadrature-based methods
	There's much more to say

	Iterative methods for unstructured linear systems
	Block-projection and block-descent methods
	Sketched Gram-Schmidt for Krylov-subspace solvers

	Advanced Sketching: Leverage Score Sampling
	Definitions and background
	Standard leverage scores
	Subspace leverage scores
	Ridge leverage scores

	Approximation schemes
	Standard leverage scores
	Subspace leverage scores
	Ridge leverage scores

	Special topics and further reading
	Leverage score sparsified embeddings
	Determinantal point processes
	Further variations on leverage scores

	Advanced Sketching: Tensor Product Structures
	The Kronecker and Khatri–Rao products
	Sketching operators
	Row-structured tensor sketching operators
	The Kronecker SRFT
	TensorSketch
	Recursive sketching
	Leverage score sampling for implicit matrices with tensor product structures

	Partial updates to Kronecker product sketches
	Background on the CP decomposition
	Sketching for the CP decomposition
	Background on the Tucker decomposition
	Sketching for the Tucker decomposition
	Implementation considerations

	Details on Basic Sketching
	Subspace embeddings and effective distortion
	Effective distortion of Gaussian operators

	Short-axis-sparse sketching operators
	Implementation notes
	Theory and practical usage

	Theory for sketching by row selection

	Details on Least Squares and Optimization
	Quality of preconditioners
	Effective distortion in sketch-and-precondition

	Basic error analysis for least squares problems
	Concepts: forward and backward error
	Sensitivity of unregularized least squares problems
	 Simple constructions to bound backward error
	More advanced concepts

	Ill-posed saddle point problems
	Minimizing regularized quadratics
	A primer on kernel ridge regression
	Efficient sketch-and-solve for regularized quadratics

	Low-rank Approximation Computational Routines
	Power iteration for data-aware sketching
	RangeFinders and QB decompositions
	ID and subset selection

	Correctness of Preconditioned Cholesky QRCP
	Bootstrap Methods for Error Estimation
	Bootstrap methods in a nutshell
	Sketch-and-solve least squares
	Sketch-and-solve one-sided SVD

	Bibliography

