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Abstract
Krylov methods provide a fast and highly parallel numerical tool for the iterative solution of many large-
scale sparse linear systems. To a large extent, the performance of practical realizations of these methods is
constrained by the communication bandwidth in current computer architectures, motivating the investigation
of sophisticated techniques to avoid, reduce, and/or hide the message-passing costs (in distributed
platforms) and the memory accesses (in all architectures). This article leverages Ginkgo’s memory accessor
in order to integrate a communication-reduction strategy into the (Krylov) GMRES solver that decouples the
storage format (i.e., the data representation in memory) of the orthogonal basis from the arithmetic precision
that is employed during the operations with that basis. Given that the execution time of the GMRES solver is
largely determined by the memory accesses, the cost of the datatype transforms can be mostly hidden,
resulting in the acceleration of the iterative step via a decrease in the volume of bits being retrieved from
memory. Together with the special properties of the orthonormal basis (whose elements are all bounded by
1), this paves the road toward the aggressive customization of the storage format, which includes some
floating-point as well as fixed-point formats with mild impact on the convergence of the iterative process. We
develop a high-performance implementation of the “compressed basis GMRES” solver in the Ginkgo sparse
linear algebra library using a large set of test problems from the SuiteSparse Matrix Collection. We
demonstrate robustness and performance advantages on a modern NVIDIA V100 graphics processing unit
(GPU) of up to 50% over the standard GMRES solver that stores all data in IEEE double-precision.
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Introduction

Krylov solvers enhanced with some type of sophisticated preconditioning technique nowadays compound a
sound approach for the iterative solution of large and sparse linear systems (Saad, 2003). In particular,
preconditioned Krylov solvers are often preferred over their direct counterparts for the solution of discretized
high-dimensional problems (e.g., 3D problems), where a factorization-based direct solver would incur
significant fill-in; see, for example, Davies (2006) and Saad (2003). Krylov solvers are also widely appealing
for massively parallel architectures (such as graphics processing units or GPUs) due to their superior
scalability.

At a high level, Krylov methods construct a basis that spans a Krylov subspace. At each iteration, this
basis is expanded by adding another Krylov basis via the multiplication of the sparse coefficient matrix with
the Krylov basis vector generated in the previous iteration and a sequence of vector operations and vector
scalings to obtain an orthonormal set of Krylov basis vectors (Saad, 2003). Thus, each iteration of a Krylov
solver comprises the multiplication of the sparse coefficient matrix with a vector (SPMV) plus a sequence of
vector operations and reductions. All the numerical operations (kernels) appearing in Krylov methods are
well-suited for parallelization. Unfortunately, most of these kernels, including SPMV, are memory-bound on
virtually all modern processor architectures (Horowitz, 2014). As a result, many generic as well as hardware-
specific optimization efforts for Krylov methods have focused on avoiding, reducing, or hiding (i.e.,
overlapping with computation) the communication/memory accesses of the algorithm. Some optimization
techniques targeting the communication overhead include the following:

• The design of specialized (i.e., application-specific) sparse matrix data layouts that reduce the indexing
information (overhead) and/or improve data locality when accessing the contents of the sparse coefficient
matrix (Saad, 2003).

• The reorganization of the operations inside the body of the Krylov solver trading off reduced
communication for an increase of computation per iteration, possibly also at the cost of introducing
numerical instabilities that may result in slower convergence of the iteration; see, for example, Hoemmen
(2010) and Cools (2019) and the references therein.

• The reformulation of the solver as an iterative refinement scheme combined with the use of mixed-
precision for the storage of and arithmetic operations with the sparse coefficient matrix (Higham, 2002).

• The utilization of adaptive-precision schemes for memory-bound preconditioners (Anzt et al., 2019a).

In this article, we also address the communication costs of Krylov methods, focusing on the generalized
minimal residual (GMRES) algorithm, a Krylov solver for general linear systems that explicitly maintains
the complete set of Krylov basis vectors instead of relying on short recurrences (as many other Krylov
solvers do) (Saad, 2003). Orthogonally to all previous communication optimization efforts, our optimized
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variant of the GMRES algorithm reduces communication in the access to the Krylov basis during the
iteration loop body. In more detail, our GMRES algorithm leverages Ginkgo’s memory accessor, introduced
in Anzt et al. (2021) and Grützmacher et al. (2021), to decouple the memory storage format from the
arithmetic precision so as to maintain the Krylov basis vectors in a compact “reduced precision” format. This
radically diminishes the memory access volume during the orthogonalization, while not affecting the
convergence rate of the solver, yielding notable performance improvements. Concretely, we make the
following contributions in our article:

• We follow the ideas in Anzt et al. (2021) and Grützmacher et al. (2021) and use the therein presented
“memory accessor” in order to decouple the memory storage format from the arithmetic precision,
specifically applying this strategy to maintain the Krylov basis in reduced precision in memory while
performing all arithmetic operations using full, hardware-supported IEEE 64-bit double-precision (DP).

• We analyze the benefits that result from casting the Krylov basis into different compact storage formats,
including the natural IEEE 32-bit single-precision (SP) and 16-bit half-precision (HP) as well as some
other non-IEEE fixed point-based alternatives enhanced with vector-wise normalization.

• We integrate the mixed-precision GMRES algorithm into the Ginkgo sparse linear algebra library
(https://ginkgo-project.github.io).

• We provide strong practical evidence of the advantage of our approach by developing a high-performance
realization of the solver for modern NVIDIA’s V100 GPUs and testing it on a considerable number of
large-scale problems from the SuiteSparse Matrix Collection (Davis and Hu, 2011)
(https://sparse.tamu.edu/).

The rest of the article is organized as follows. First, we review a list of related works in the direction of
mixed-precision Krylov solvers, and then, we briefly recall the GMRES algorithm before motivating the
compressed basis GMRES (CB-GMRES) storing the orthonormal basis in reduced precision. Next, we
provide details about how we decouple the memory precision from the arithmetic precision and how we
realize the implementation of CB-GMRES in Ginkgo. The experimental evaluation of the CB-GMRES
implementation follows, assessing the accuracy, convergence, performance, and flexibility of the developed
algorithm. We conclude with a summary of the findings and ideas for future research.

Related work

The potential of using lower precision in different components of a Krylov solver has been previously
investigated for both Lanczos-based (short-term recurrence) and Arnoldi-based (long-term recurrence)
algorithms and the associated methods for linear systems of equations.

From the theoretical point of view, most of those works are based on rounding error analysis for Krylov
solvers running in finite precision. In a relevant result, Paige (1980) derived distinct relations between the
loss of orthogonality and other important quantities in finite precision Lanczos. Greenbaum (1989) extended
these results to analyze backward stability for the CG method in finite precision. She also derived theoretical
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bounds for the maximum attainable accuracy in finite precision for CG, BiCG, BiCGSTAB, and other
Lanczos-based methods (Greenbaum, 1997). Carson (2015) expanded these results to s-step Lanczos/CG
variants, deducing that an s-step Lanczos in finite precision behaves like a classical Lanczos run in lower
“effective” precision, where this “effective” precision depends on the conditioning of the polynomials used
to generate the s-step bases. Additional bounds for Lanczos-based Krylov solvers running in finite precision
can be found in Meurant and Strakoš (2006).

Simoncini and Szyld (2003) and van Den Eshof and Sleijpen (2004) established a theory on “inexact
Krylov subspace methods” that applies the basis-generating SPMV as a perturbed operator carrying some
error, which may reflect situations where reducing the cost of the operator application is essential or where
the operator is only available as an approximation. Theoretical results prove that inexact Krylov methods can
achieve the same solution accuracy as high precision Krylov solvers if the error in the perturbed operator is
controlled and adapted to the residual (Simoncini and Szyld, 2003 and van Den Eshof and Sleijpen, 2004).

Concerning long-recurrence strategies, Gratton et al. (2020) combined the previous findings from Björck
(1967), Paige (1980), and Paige et al. (2006) to derive theoretical norms for a mixed-precision GMRES
algorithm based on modified Gram–Schmidt. In this algorithm, they consider using inexact (e.g., single-
precision) inner products in the orthogonalization process, which results in a loss of double-precision (DP)
orthogonality of the Krylov basis vectors. This makes the work by Gratton et al. (2020) very similar to our
approach. However, our solution is different in several aspects:

• In our CB-GMRES solver, we decouple the arithmetic precision from the memory storage format to
maintain the basis vectors in lower precision while using high precision in all arithmetic;

• we consider not only IEEE single-precision as the reference compact storage format but also IEEE half-
precision (HP) and fixed-point formats based on 32-bit and 16-bit integers;

• we realize a production-ready and sustainable implementation of CB-GMRES for high-performance GPU
architectures based on classical Gram–Schmidt with re-orthogonalization; and

• we provide comprehensive experimental results analyzing accuracy, convergence, and performance of
our CB-GMRES solver.

The GMRES algorithm

Consider the linear system

(1)

where the coefficient matrix  is sparse, with nz nonzero entries,  represents the right-
hand side vector, and  contains the sought-after solution vector. Figure 1 displays a mathematical
formulation of the restarted GMRES algorithm for the iterative solution of (1). There we assume that 

 defines an appropriate preconditioner, x0 is an initial approximation to the actual solution, e1

https://journals.sagepub.com/reader/content/184781dcdb4/10.1177/10943420221115140/format/epub/EPUB/xhtml/fig1-10943420221115140.xhtml
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stands for the first column of the square identity matrix of order m + 1, and the scalars m and η, respectively,
define the dimension of the orthogonal basis and the threshold for the re-orthogonalization. The
orthogonalization mechanism in the algorithm relies on the classical Gram–Schmidt (CGS) method, but a
version that employs the modified Gram–Schmidt (MGS) variant is simple to derive from that (see Golub
and Loan, 1996). Unless explicitly stated, we prefer CGS with re-orthogonalization over MGS as it is
competitive in terms of accuracy while enabling higher performance on modern hardware architectures via
the use of BLAS-2 routines. The stopping criterion for the iterative algorithm can be based, for example, on
the residual ‖rm‖2 = ‖b − Axm‖2 being smaller than a certain relative threshold τ ⋅‖b‖2. The GMRES
algorithm can internally keep track of the residual by iteratively updating the residual vector in every
iteration (for brevity, we omit this feature in Figure 1). However, rounding effects can cause the iterative
residual to differ from the explicit residual, and therefore, every restart explicitly computes the residual to re-
align the iteratively computed residual.

From the computational point of view, the main kernels appearing in the GMRES algorithm correspond
to the application of the preconditioner M and the SPMV operation with the coefficient matrix A (both in
Line 3), the orthogonalization of vector w with respect to the vectors in the basis Vj (Lines 5 and 8), the
solution of the linear least squares (LLS) problem (Line 17), the assembly of the next iterate, which requires
the application of the orthogonal basis followed by the preconditioner (Line 17), and a few minor vector
operations such as AXPYs and vector scaling.

The LLS problem in the GMRES algorithm can be solved via the QR factorization (Golub and Loan,

Figure 1. Algorithmic formulation of the restarted GMRES algorithm for the solution of sparse linear systems.

https://journals.sagepub.com/reader/content/184781dcdb4/10.1177/10943420221115140/format/epub/EPUB/xhtml/fig1-10943420221115140.xhtml
https://journals.sagepub.com/reader/content/184781dcdb4/10.1177/10943420221115140/format/epub/EPUB/xhtml/fig1-10943420221115140.xhtml
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1996), where this decomposition can be cheaply obtained using an updating technique as the Hessenberg
matrices for two consecutive iterations that differ only in one column. Therefore, the cost associated with the
solution of this problem is minor in comparison with that of the global algorithm. In addition, the operations
that are necessary to update the new estimate to the solution xm (Line 17) also contribute a minor cost to the
overall procedure, as they are m times less frequent in comparison with the kernel calls in Lines 3, 5, and 8.

CB-GMRES storing the orthonormal basis in reduced precision

For simplicity, consider that the GMRES algorithm integrates a simple preconditioner, such as a Jacobi
scheme (or a block-Jacobi variant with a small block size) (Saad, 2003). The performance of the algorithm is
then strongly determined by the costs of the SPMV kernel and the general matrix–vector products (GEMV),
with  and Vj. These are memory-bound kernels, with their execution times largely dictated by the number
of memory accesses (memory operations or memops hereafter). The optimization we propose thus aims to
reduce the cost of the GEMV operations by storing the Krylov basis Vj in a more compact reduced precision
format.

In order to analyze the theoretical memop count of the SPMV and the GEMV kernels, for simplicity, let
us assume the following:

1. The right-hand side vectors for both types of matrix–vector products reside in cache. In general, this is not
true but, for the following theoretical derivation, the memory layer where the vectors reside is not
important.

2. The sparse coefficient matrix is stored using the compressed sparse row (CSR) format. This is a general
and flexible data layout that employs one integer per nonzero value to represent its column index, plus n
+ 1 integers for the row pointers (Saad, 2003).

3. The re-orthogonalization mechanism included in the GMRES algorithm (Lines 7–11 in Figure 1) is not
needed.

Then, the ratio between the contributions of the two GEMV and the CSR SPMV to the memop count, due
to the accesses to the corresponding matrices, is given by

(2)

where s = nz/n is the average number of nonzero entries per row of the sparse matrix; mʹ = j − 1 is the size
of the already-computed Krylov basis, that is, the number of vectors the new basis vector is orthogonalized
against; and f represents a factor for the indexing overhead into the sparse data structures, for example, when
using 32-bit integers to represent the indices and 64-bit for the data values, f = 32/64 = 1/2.

For a non-restarted version of GMRES, the size of the Krylov subspace mʹ steadily grows with the
iteration count (mʹ = j − 1 at iteration j), which hints that the memory operations related to the

https://journals.sagepub.com/reader/content/184781dcdb4/10.1177/10943420221115140/format/epub/EPUB/xhtml/fig1-10943420221115140.xhtml
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orthogonalization can quickly dominate the cost. In practical implementations though, the GMRES solver is
usually enhanced with a restart mechanism, as in the formulation of the algorithm in the previous section, to
keep both the memory requirements and the orthogonalization cost at reasonable levels. Depending on the
problem size and the available resources, the typical values for the restart parameter vary between m = 30
and 200. At the same time, the nonzero-per-row ratio s is in general relatively small and often significantly
smaller than the restart parameter m. Therefore, considering the memory operations in that restart cycle,
equation (2) then becomes

(3)

With typical parameters f = 1/2 (CSR format) and a restart parameter m = 100, the memory access count
due to the orthogonalization theoretically thus exceeds the memory access overhead for the SPMV kernel for
matrices with ratio s = nz/n < 67.

CB-GMRES. In order to reduce the memory access volume in the orthogonalization step of GMRES, we
propose to store the vectors of the Krylov basis Vj in a compact reduced precision format, retrieve the data
from memory in that format, and transform the values into IEEE 64-bit DP prior to the orthogonalization
computations they are involved in (Lines 5, 8, and 17). This advocates for decoupling the memory storage
format from the arithmetic precision while preserving IEEE 64-bit precision in the arithmetic operations (Anzt
et al., 2019b).

The decoupling strategy provides full flexibility in terms of choosing a memory representation format,
enabling the usage of the natural IEEE 16-bit or 32-bit formats as well as other, “more flexible” alternatives
(with no hardware support for the arithmetic). In particular, the property that the entries of the orthonormal
vectors forming the Krylov basis are all bounded by 1 pushed us to explore the efficiency of more aggressive
customized formats. For example, it is possible to reduce the number of bits employed for the exponent in
the floating-point format by normalizing it with respect to a baseline factor. In our investigation, we take this
approach to the extreme, resulting in the evaluation of fixed-point formats for the storage of the orthogonal
basis. For this purpose 1) we normalize each vector of the basis by scaling its entries with (the inverse of) its
largest vector entry (in absolute value); and 2) we then store only the fractional part of each value of the
result as an integer number, plus the normalization factor for each vector.

For convenience, we refer to the resulting algorithm as compressed basis GMRES (CB-GMRES) in the
remainder of the article. We again emphasize that we still use DP in all arithmetic operations and only use
lower precision formats for the memory operations.

Discussion. Storing the orthogonal basis of a Krylov method in a reduced precision format will typically
introduce rounding errors that may affect the numerical properties of the method, potentially impacting the
convergence and numerical stability of the iterative solver. As the solution approximation is optimal in the
generated Krylov subspace, the perturbed Krylov basis vectors may result in a loss in the DP orthogonality
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of the basis vectors and a different (Krylov) subspace and in which the solution approximation is computed.
However, the solution approximation process in the LLS solver accounts for the perturbed basis vectors, and
as long as the generated subspace allows for a good approximation of the solution in the sense that there
exists a good solution approximation in the space spanned by the Krylov basis vectors, this approximation
will be found in the optimization process. Hence, on the one hand, as long as the basis vectors are
“relatively” close to the optimal basis vectors, we can expect that the convergence will be only mildly
affected. On the other hand, we may assume that the need for increasing the Krylov subspace dimension
(equivalent to additional iterations) can be compensated by the faster execution of each iteration. The
numerical experiments in this work generally confirm this assumption.

To close this section, we emphasize that:
• Our approach is complementary to other techniques which aim to reduce the memory access overhead,

in the sense that it can be combined with these other optimizations. For example, CB-GMRES can be
complemented by customizing the sparse matrix data layout to the application, operating with an iterative
refinement scheme, or exploiting customized precision in the preconditioner, among others.

• The arithmetic precision is decoupled from the representation format so that we can actually store the
data for the Krylov basis in any format while relying on the data types with hardware support for the
arithmetic operations.

Implementation of CB-GMRES

The Ginkgo sparse linear algebra library

For convenience and ease of use, we have realized the CB-GMRES algorithm in the Ginkgo ecosystem
(Anzt et al., 2020a,b): Ginkgo is a sparse linear algebra library implemented in modern C++ that embraces
two principal design concepts: The first principle, aiming at future technology readiness, is to consequently
separate the numerical algorithms from the hardware-specific kernel implementation to ensure correctness
(via comparison with sequential reference kernels), performance portability (by applying hardware-specific
kernel optimizations), and extensibility (via kernel backends for other hardware architectures). The second
design principle—pursuing user-friendliness—is the convention to express functionality in terms of linear
operators: every solver, preconditioner, factorization, matrix–vector product, and matrix reordering are
expressed as linear operators (or composition thereof). This allows to easily combine the CB-GMRES with
any preconditioner available in Ginkgo and to select the realization of the SPMV kernel that is most
appropriate for the characteristics of a specific problem (Anzt et al., 2020c).

Ginkgo relies on an “executor” concept to favor platform portability. The executor encapsulates all
information about memory location and execution domain of linear algebra objects and automatically
orchestrates memory allocation, memory transfers, and kernel selection. For the CB-GMRES
implementation with the orthonormal Krylov basis stored in reduced precision, the executor concept is
extended with a “memory accessor,” described next, that handles the data conversion transparently to the
user.
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Memory accessor

At a high level, the idea of the CB-GMRES solver is to compress the orthogonal matrix/vector before and
after the memory operations using one of the reduced/customized storage formats but still use the working
precision (i.e., IEEE754 DP) for the arithmetic operations (Anzt et al., 2021 and Grützmacher et al., 2021).
Retrieving the orthonormal basis in reduced precision from memory thus requires reading the basis contents
and converting them into DP. When these values are stored in SP, the conversion is easy to perform via a
datatype casting operator. For fixed-point representations, though, the conversion requires some additional
manipulations plus the scaling with a normalization factor.

To decouple the memory access and conversion from the code development effort, we use a memory
accessor that converts the data between DP and the memory storage/communication format on-the-fly (see
Figure 2). The efficient implementation of the accessor aims to hide the cost of these data conversions by
overlapping them with the memory accesses, in principle introducing a minor or even negligible overhead. In
addition, the introduction of this technique can accelerate the execution as accessing the data in lower
precision significantly reduces the volume of memory accesses per iteration.

Figure 2. Accessor separating the memory format from the arithmetic format and realizing on-the-fly data
conversion in each memory access.

https://journals.sagepub.com/reader/content/184781dcdb4/10.1177/10943420221115140/format/epub/EPUB/xhtml/fig2-10943420221115140.xhtml
https://journals.sagepub.com/reader/content/184781dcdb4/10.1177/10943420221115140/format/epub/EPUB/xhtml/fig2-10943420221115140.xhtml
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Considering the realization of the CB-GMRES algorithm, after the new basis vector vj = v is formed at
iteration j, the memory accessor is activated in order to compress the DP contents of this vector before
storing them into memory; see Lines 13 and 14 in the algorithm in Figure 1. The memory accessor is also
active when retrieving the full orthogonal basis Vj from memory; see Lines 5 and 8 of the algorithm.

On the technical side, the accessor leverages static polymorphism (via C++ templates) for both the
arithmetic precision (in our work, fixed to IEEE DP) and the memory format. While this flexible design can
accommodate any memory format, we currently only support fp64, fp32, and fp16 (for ieee DP, SP, and HP,
respectively) and int32 and int16 (for 32-bit and 16-bit fixed-point formats) in Ginkgo. The versions based
on integer formats rely on a fixed-point representation in order to maintain the orthonormal basis vectors.
This representation only requires a fractional part because the vectors are normalized, making each vector
entry smaller than one. However, this is not efficient for large vectors because the largest absolute value will
likely be significantly smaller than one, therewith wasting representation range (and precision). To optimize
the accuracy, a different scaling factor is used for each vector

where vj is the vector computed at iteration j before normalization and max_intbb is the maximum
positive value of the integer representation using bb ∈ {16, 32} bits. Both norms can be computed
simultaneously so that the extra overhead due to the memory accesses to obtain the infinity norm remains
small. The vector vj is then stored in Vj+1 as

and any subsequent access to the contents of Vj+1 implies an intrinsic post-multiplication by a diagonal
matrix Σj+1 = diag (σ1, σ2, …, σj, σj+1) that contains the scaling factors on the diagonal. This scaling adds
one multiplication per element to the computational cost of any operation involving the orthogonal basis and
storing the scaling factor in memory. However, as the whole algorithm is heavily bandwidth-bound, we
expect that this arithmetic overhead remains small.

Experimental evaluation of the compressed basis GMRES

In this section, we analyze several properties of the CB-GMRES algorithm in order to assess the benefits of
this solver as part of a production code. Concretely, we investigate the following questions:

1. Can we achieve high accuracy in the solution approximations?
2. How significant is the convergence delay introduced by moving away from the “full” precision Krylov

basis vectors and utilizing instead basis vectors that are low precision approximations of these

https://journals.sagepub.com/reader/content/184781dcdb4/10.1177/10943420221115140/format/epub/EPUB/xhtml/fig1-10943420221115140.xhtml
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orthonormal vectors?
3. What are the performance advantages of the CB-GMRES over the standard (DP) GMRES?

4. Which specific storage format should we use for the memory operations?

Setup

To answer these questions, we select a subset of 49 large-scale test matrices from the SuiteSparse Matrix
Collection (Davis and Hu, 2011) that we adopt as benchmark problems to explore the accuracy, convergence,
and performance of the CB realizations of the GMRES algorithm. The selected test matrices (listed along
with some key properties in Table 1) correspond to the largest regular test cases from the SuiteSparse Matrix
Collection for which a preconditioned GMRES running in double-precision converges within a reasonable
iteration count. All solver implementations are part of the Ginkgo library and utilize building blocks from the
Ginkgo environment such as preconditioners, utility functions, and benchmarking environments. The SPMV
kernel integrated into all variants of GMRES to generate the Krylov basis vectors is Ginkgo’s CSR-based
SPMV routine; this particular realization of SPMV maintains the coefficient matrix in compressed sparse row
(CSR) format and accounts for the nonzero distribution in the target matrices by automatically selecting the
CSR kernel that provides the best performance (Anzt et al., 2020c). The orthogonalization kernel inside the
GMRES solvers is based on CGS with optional re-orthogonalization. For the majority of the test cases, this
strategy has shown to be superior over the MGS orthogonalization in terms of accuracy and runtime. For
convenience, we offer the convergence results for an MGS-based GMRES in the supplementary material.
The GMRES and CB-GMRES solvers are algorithmically identical except that the CB-GMRES algorithm
can store the basis in reduced precision. We use the notation GMRES<arith, mem>, where arith refers to the
precision format used in the arithmetic operations and mem refers to the precision format used to store the
Krylov basis. Consequently, GMRES<fp64, fp64> and GMRES<fp32, fp32> denote the standard GMRES
solver operating in ieee 754 DP and ieee 754 SP, respectively. In contrast, GMRES<fp64, fp32>,
GMRES<fp64, fp16>, GMRES<fp64, int32>, and GMRES<fp64, int16> are CB-GMRES versions differing
in the memory precision format. In Table 2, we list the distinct GMRES variants we use in the remainder of
the article along with details and markers we use in the performance graphs.
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In the performance tests, we utilize Ginkgo’s CUDA executor, which is heavily optimized for NVIDIA
GPUs. We run all experiments on an NVIDIA V100 GPU with support for compute capability 7.0 NVIDIA
Corp (2017). The V100 accelerator board is equipped with 16 GB of main memory, 128 KB L1 cache, and
6 MB of L2 cache. A bandwidth test reported 897 GB/s for main memory access in this particular device
(Tsai et al., 2020). The theoretical peak performance for the V100 GPU is 7.83 DP TFLOPS (i.e., 7.83 ⋅ 1012

floating-point operations per second). Ginkgo’s CUDA backend was compiled using CUDA version 9.2.

Impact on basis orthogonality

As a first step in the experimental analysis, we investigate how rounding the values in the Krylov basis
vectors to a lower precision format affects the quality of the Krylov basis. In particular, we are interested in
the orthogonality loss. For that, we choose the GMRES<fp64,fp32> configuration where all arithmetic
operations use IEEE 754 DP while IEEE 754 SP is used for storing the basis vectors. As a metric to assess the
orthogonality at iteration k, we consider the basis V = [v1, v2…vk+1] and evaluate 

. Figure 3 visualizes this metric before and

after the re-orthogonalization step for the CB-GMRES solver and compares the results of this orthogonality
metric against those attained from a standard DP GMRES and a standard SP GMRES. The analysis reveals
that the orthogonality of the Krylov basis vectors degrades when the basis vectors are stored in lower
precision, yet the quality remains superior to that observed for SP GMRES. We next investigate how storing
the Krylov basis in a compressed form impacts the attainable accuracy.
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Accuracy of CB-GMRES

To investigate whether the CB-GMRES can match the accuracy levels attained by DP GMRES, we consider
49 linear systems of the form Ax = b, with the coefficient matrix defined from the test matrices in Table 1.
For each problem, we set the i-th entry of the exact solution x to x [i] = sin(i), i = 1, 2, …, n; then scale x to a
unit norm (x≔x/‖x‖2); and finally generate b as b≔A ⋅ x. The GMRES algorithm is started with an initial
guess x0 = 0, uses a restart parameter m = 100, and is stopped when the solution approximation x* yields a
residual ‖Ax* − b‖2 ≤ 10−12‖b‖2. In this experiment, we consider both the non-preconditioned solvers and a
setting where all methods (both GMRES and CB-GMRES) are left-preconditioned with a scalar Jacobi
preconditioner—which is equivalent to scaling the linear problems to a unit diagonal prior to the iterative
solution process. The motivation is that a Jacobi-preconditioned GMRES is more realistic for production use
while the non-preconditioned GMRES may enhance numerical instabilities. The Jacobi preconditioner is

Figure 3. Orthogonality of the Krylov basis vectors before and after re-orthogonalization for the standard DP
GMRES and SP GMRES and the CB-GMRES GMRES<fp64,fp32>. The test matrices are parabolic_fem (top),
ss (center), and circuit5M_dc (bottom).
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always stored in the arithmetic precision of the solver in order to isolate the convergence difference to the
change in the storage format.

To avoid expensive explicit residual computations, the GMRES algorithm internally updates a recurrence
residual that is used to check convergence. However, when using finite precision and due to the
accumulation of rounding error, this iteratively computed residual can diverge from the real residual, and the
GMRES algorithm may stop “too early” even though the real residual did not fall below the selected
threshold. Using the compressed basis formats to store the orthonormal basis may enlarge this effect. To
tackle this problem, we modify all the implementations to compute the explicit residual once convergence is
indicated by the recurrence residual but continue iterating with the updated residual in case the actual
accuracy threshold is not fulfilled.

To assess the solution accuracy, in Figure 4, we report the normalized explicitly computed residual ‖Ax*
− b‖2/‖b‖2 for the solution approximations generated with the distinct CB-GMRES versions either executed
as a plain algorithm (top) or enhanced with a scalar Jacobi preconditioner (bottom). For comprehensiveness,
we report the final residual norm also for those cases where the accuracy target cannot be reached. In these
initial results, we observe that the standard DP GMRES based on CGS with re-orthogonalization
(GMRES<fp64,fp64>), the standard DP GMRES based on modified Gram–Schmidt (MGS-
GMRES<fp64,fp64>), and the CB-GMRES variants storing the basis vectors in 32-bit floating-point
precision (GMRES<fp64,fp32>) or 32-bit fixed-point precision (GMRES<fp64,int32>) generally achieve the
same residual accuracy for both the non-preconditioned application and the Jacobi-preconditioned case. We
furthermore observe that an SP GMRES (MGS-GMRES<fp32,fp32>) fails to provide solution
approximations of the same accuracy level and may therefore be disregarded as a valid option when aiming
for high accuracy. By storing the Krylov basis in fp16 or int16, the CB-GMRES algorithm converges to a
solution of lower accuracy, however, often still achieving a residual accuracy better than an SP GMRES
(MGS-GMRES<fp32,fp32>).
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Convergence of CB-GMRES

Next, we investigate the impact of storing the basis vectors in a compressed format on the convergence of
GMRES. To expose the effects, in Figure 5, we visualize the convergence behavior of the Jacobi-
preconditioned CB-GMRES variants for the circuit5M_dc and Serena problems. While all CB-GMRES
variants ultimately reach the relative residual stopping criterion, the storage format selected for the Krylov
basis impacts the convergence rate and, in consequence, the iteration count. The spikes in the residual curves
occur in the iterations where the recurrently computed residual is updated by an explicit residual. This occurs
when the Krylov basis size reaches the restart parameter or the recurrence residual indicates convergence.
For GMRES<fp64,int16> in particular, we notice significant corrections of the recurrence residual. Overall,
we observe that using a compressed format to store the Krylov basis can delay convergence and require
additional basis vectors. In order to quantify this effect for a broad range of problems, in Figure 6, we display
the iteration count of the CB-GMRES variants relative to the DP GMRES iteration count if they reach the
same residual accuracy (even if that accuracy does not fulfill the residual norm stopping criteria). Again, we
include results for the non-preconditioned solvers (top) and the Jacobi-preconditioned solvers (bottom). If a
solver does not succeed in reaching the same residual accuracy, we set the iteration overhead marker to
“100” to clearly indicate that this solver is not a valid option.

Figure 4. Normalized residual of plain GMRES (top) and Jacobi-preconditioned GMRES (bottom) using different
precision for arithmetic and memory operations. Detailed results are listed in the supplementary material.
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This experiment shows that the CB-GMRES realizations GMRES<fp64,fp32> and GMRES<fp64,int32>
generally match the iteration count of DP GMRES. Exceptions are the ATMOSMOD problems where the CB-
GMRES variants using 32-bit memory precision need a few additional iterations. In contrast, when the
orthogonal basis is stored using the 16-bit formats, even if the residual accuracy can be achieved, the
overhead often increases dramatically. We recall that the orthogonalization inside GMRES is based on a
classical Gram–Schmidt equipped with re-orthogonalization (CGS-reortho). For convenience, we also
include the iteration counts for a DP GMRES using modified Gram–Schmidt (MGS) orthogonalization. In

Figure 5. Detailed convergence analysis of the Jacobi-preconditioned CB-GMRES variants for the circuit5M_dc
and Serena problems.

Figure 6. Iteration overhead of the CB-GMRES variants relative to the DP GMRES iteration count. The upper
graph represents the results for the plain solver runs and the lower graph for the Jacobi-preconditioned solver
runs.
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contrast to CGS-reortho, MGS requires the use of less efficient BLAS-1 routines and therefore results in
lower performance on highly parallel architectures. At the same time, the iteration counts reveal that the use
of MGS rarely improves the convergence of the GMRES solver (see cases with iteration overhead smaller
1).

In the left-hand side plot in Figure 7, we report a few key statistics obtained from the experimental
evaluation with the 49 test problems using either the non-preconditioned GMRES or the Jacobi-
preconditioned GMRES. While storing the Krylov basis in fp32 or int32 generally incurs no iteration
overhead, when using fp16 storage, we obtain a median iteration overhead of 1.5× with the 50%-quantiles
reaching up to 2.5× and the 90%-quantiles reaching up to 5×. For int16, we obtain a median iteration
overhead of 2.5× with the 50%-quantiles reaching up to 4× and the 90%-quantiles reaching up to 8×.

Performance of CB-GMRES

Even though we have now experimentally demonstrated that the CB-GMRES variants can compensate for
the perturbations in the subspace via additional iterations (which is equivalent to extending the subspace by
additional basis vectors), the resulting algorithms will only be useful in production if the associated iteration
overhead is compensated by a runtime reduction coming from the decreased memory access volume. In the
right-hand side plot in Figure 7, we show statistics on the performance improvements that CB-GMRES
renders over DP GMRES when using different storage formats for the Krylov basis, again considering both a
plain GMRES and its Jacobi-preconditioned variant. As could be expected from the large iteration
overheads, storing the Krylov basis in int16 or fp16 usually results in a slow-down of the global solution
process. Conversely, storing the Krylov basis in int32 or fp32 yields attractive performance improvements,
with slight advantages for the GMRES<fp64,fp32> variant. As listed in Table 3, the median speed-up for
GMRES<fp64,fp32> is 1.4×, with the 50%-quantiles reaching up to 1.5× and outliers reaching up to 1.75×.
We note a few outliers that are likely related to rounding effects enabling faster or slower convergence than
the DP GMRES.

Figure 7. Statistics obtained from running the CB-GMRES algorithms on the 49 test problems. Left: iteration
overhead (relative to DP GMRES) and right: speed-up relative to DP GMRES. The data reflects both the non-
preconditioned runs and the Jacobi-preconditioned settings.
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In Figure 8, we provide a detailed performance evaluation by visualizing the speed-up for the distinct test
problems, distinguishing between the non-preconditioned GMRES (top graph) and the Jacobi-preconditioned
GMRES (bottom graph). Here, we notice a rather uniform picture concerning the speed-ups for
GMRES<fp64,fp32> and GMRES<fp64,int32>, with the exception of the atmosmod problems where the
iteration overhead cannot be compensated with faster memory access. Overall, GMRES<fp64,fp32> is
slightly superior over GMRES<fp64,int32>, which is likely due to the overhead of the scaling process and
the additional scaling factors needed when storing the basis vectors in int32. From this experiment, we
conclude that the GMRES<fp64,fp32> is an appropriate choice for a wide range of problems. We also note
that GMRES based on modified Gram–Schmidt orthogonalization (MGS-GMRES<fp64,fp64>) is
consequently slower than GMRES based on classical Gram–Schmidt orthogonalization
(GMRES<fp64,fp64>). This may be expected as MGS requires the use of less efficient BLAS-1 operations.

Figure 8. Speed-up of the non-preconditioned CB-GMRES (top) and Jacobi-preconditioned CB-GMRES
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Varying the Krylov subspace dimension

When motivating the use of a more compact storage format to maintain the orthonormal vectors in an earlier
section, we argued that the memory savings against DP GMRES grow with the dimension of the Krylov
subspace m. In more detail, when ignoring numerical effects, we can expect that the speed-up asymptotically
reaches the ratio between the storage format complexities: 4× when using GMRES<fp64,fp16> or
GMRES<fp64,int16> and 2× when using GMRES<fp64,fp32> or GMRES<fp64,int32>. In Figure 9, we
quantify those speed-ups experimentally, considering restart parameters in the range 10–300. We note that
larger restart values are rarely employed as they come with high computational complexity and memory
requirements typically exceeding the hardware capabilities. We emphasize that in this experiment, we ignore
any numerical effects but only focus on the runtime needed to execute 10 restart cycles with different restart
sizes. Also, even though we already identified the GMRES<fp64,fp32> as being superior in terms of
convergence and performance, we include all CB variants in this analysis. In Figure 9, we employ gray lines
to indicate the speed-up behavior for the distinct matrices and use boxplots to illustrate the statistics for the
CB-GMRES variants. The results indicate that the average speed-ups for GMRES<fp64,fp32> or
GMRES<fp64,int32> asymptotically approach a value below 2×, with the speed-ups being constantly higher
for the former (which requires no scaling). The speed-up is smaller than 2× because the cost savings are
limited to those obtained from the compressed storage of the orthogonal basis but not in other parts of the
algorithm , for example, the SPMV kernel (see Amdahl’s law). For GMRES<fp64,fp16> or
GMRES<fp64,int16>, the speed-up values are larger, though below the 4× theoretical bound. Again, the
scaling process and memory overhead make the GMRES<fp64,int16> speed-ups inferior to the
GMRES<fp64,fp16> speed-ups.

(bottom) over the respective DP GMRES variants.
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Acknowledging that Figure 9 does not reflect the numerical effects that occur when using larger restart
parameters, in Figure 10, we quantify the actual iteration overheads (left) and speed-ups (right) for the non-
preconditioned and Jacobi-preconditioned CB-GMRES over the DP GMRES variants when increasing the
restart value to m = 300. Compared to Figure 7, we notice a moderate growth in the iteration overhead and a
more substantial increase of speed-up. The median speed-ups increase to 1.6× for GMRES<fp64,fp32> and
1.5× for GMRES<fp64,int32> over the DP GMRES baseline, respectively. The fact that these speed-ups
match those expected from Figure 9 indicates that using 32-bit formats for storing the Krylov basis in CB-
GMRES has only a negligible impact on the convergence behavior. Conversely, the speed-ups for
GMRES<fp64,fp16> and GMRES<fp64,int16> do not fulfill the expectations, confirming that 16-bit formats
are insufficient for storing the Krylov basis in CB-GMRES.

Figure 9. Speed-up for different CB-GMRES variants (GMRES<arith,mem>) over DP GMRES
(GMRES<fp64,fp64>) for increasing restart values.
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Combining CB-GMRES with incomplete factorization preconditioning

In the previous sections, we have analyzed the convergence and performance of CB-GMRES when being
used as a stand-alone solver or a preconditioned method equipped with a lightweight scalar Jacobi scheme.
Some situations, however, require the use of a more sophisticated preconditioner to aggressively reduce the
iteration count. One of the most popular and general preconditioners is the ILU(0) preconditioner, belonging
to the class of incomplete LU factorization (ILU) preconditioners (Saad, 2003). The ILU preconditioners
approximate the factorization of the system matrix, ignoring some of the fill-in that would arise in an exact
factorization, and applying the preconditioner by solving the triangular systems coming from the incomplete
factors (Saad, 2003). The most popular ILU preconditioner is ILU(0), which actually ignores all fill-in,
therewith preserving the sparsity pattern of the system matrix in the incomplete factors. As both the ILU
generation via a modified Gaussian elimination and the ILU application in terms of sparse triangular solves
are inherently sequential, significant efforts are being spent on developing algorithms that are capable of
leveraging the parallelism of GPU architectures (Chow et al., 2015 and Anzt et al., 2015). To acknowledge
the goal of evaluating a high-performance realization of an ILU-preconditioned GMRES solver, we next
consider the application of the (left) ILU preconditioner in terms of matrix–vector multiplications with
inverse approximations of the incomplete factors. Specifically, in this experiment, the ILU preconditioner
generation is handled via NVIDIA’s cuSPARSE ILU, followed by the approximate inversion and subsequent
application by the Incomplete Sparse Approximate Inverse (ISAI) algorithm (Anzt et al., 2018), both
available in the Ginkgo library. Similar to Jacobi, all sections of the ILU preconditioner compute and store
the values in the arithmetic precision of the corresponding solver in order to isolate the Krylov basis storage
precision as the only difference. We ignore test matrices where the generation of an ILU preconditioner or
the ISAI triangular solver fails. Using this setup, in Figure 11, we report the attainable relative residual
accuracy of the ILU-preconditioned CB-GMRES variants using a restart parameter m = 100 and a relative
residual stopping criterion of 10−12. As in the previous experiments, the ILU-preconditioned SP GMRES
(MGS-GMRES<fp32,fp32>) is unable to provide the same accuracy as the DP GMRES (ILU-
GMRES<fp64,fp64>). Conversely, the CB-GMRES using low precision only for storing the Krylov basis
generally succeeds in providing the same accuracy if 32-bit storage is used (ILU-GMRES<fp64,fp32> and
ILU-GMRES<fp64,int32>). Using 16-bit storage usually decreases the approximation accuracy, while often
still providing higher accuracy than the SP GMRES. In Figure 12, we quantify the iteration overhead (top)
and speed-up (bottom) that the ILU-preconditioned CB-GMRES achieves over the DP counterpart. Again,
markers indicating a 100× iteration overhead represent solvers that were unable to achieve the same
approximation accuracy. We highlight that the ILU-preconditioned ILU-GMRES<fp64,fp32> mostly
exhibits a negligible iteration overhead over the ILU-preconditioned DP GMRES (top graph in Figure 12),
resulting again in attractive speed-ups over the DP GMRES (bottom graph in Figure 12). Compared with the
un-preconditioned and Jacobi-preconditioned solver configurations reported in Figure 8, the advantages of

Figure 10. Statistics obtained from running the CB-GMRES algorithms on the 49 test problems. Left: iteration
overhead (relative to DP GMRES) and right: speed-up relative to DP GMRES. The data reflects both the non-
preconditioned runs and the Jacobi-preconditioned settings, all using the restart parameter m = 300.
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the ILU-GMRES<fp64,fp32> over the standard DP GMRES decrease when using an ILU preconditioner.
This is expected as the ILU preconditioner accounts for a significant portion of the solver execution time,
giving the CB-GMRES less room for improving the overall runtime.

Summary and outlook

We have introduced and evaluated a GMRES algorithm that maintains the Krylov basis in a compressed

Figure 11. Normalized residual of ILU-preconditioned GMRES and ILU-preconditioned CB-GMRES using
different precision for arithmetic and memory operations.

Figure 12. Iteration overhead (top) and speed-up (bottom) of the ILU-preconditioned CB-GMRES over the ILU-
preconditioned DP GMRES.
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(compact) form, in order to reduce the traffic between memory and the processor arithmetic units, while
performing all arithmetic in double-precision, to preserve the hardware-supported high precision arithmetic
in all computations. The key to this approach lies in decoupling the memory storage format of the orthogonal
basis from the arithmetic precision when operating with that basis. This general strategy was proposed and
integrated into Ginkgo’s library, in the form of a memory accessor, which is leveraged and applied in our
work to the specific case of the GMRES algorithm.

We have integrated a high-performance realization of the CB-GMRES operating with 16-bit and 32-bit
Krylov basis storage into the Ginkgo open source library. The performance evaluation of this solver on an
NVIDIA V100 GPU demonstrates the practical advantages of the communication-reduction technique,
which are aligned with the acceleration that could be expected from Amdahl’s law. Using 32-bit storage for
the Krylov basis, the algorithm achieves an average 1.6× speed-up over a standard double-precision
GMRES. On the other hand, the 16-bit formats further reduce the communication volume, but they regularly
fail to preserve the convergence characteristics of the GMRES solver. Overall, we believe that the proposed
technique is useful as it tackles the memory wall problem that dominates the performance of many current
processors-applications. Furthermore, its benefits are orthogonal and, therefore accumulative, to those that
can be attained with other communication-reduction techniques applied, for example, to the preconditioner,
the realization of SPMV, or the GMRES algorithm itself.

In future work, we will investigate whether compression techniques that are traditionally used to
compress large datasets can pose an alternative to the use of 32-bit and 16-bit fixed- and floating-point
formats for storing the compressed basis vectors.
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