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Abstract—We present a general framework that couples the
PaRSEC runtime system and the HiCMA numerical library to solve
challenging 3D data-sparse problems. Though formally dense,
many matrix operators possess a rank structured property that
can be exploited during the most time-consuming computational
phase, i.e., the matrix factorization. In particular, this work
highlights how a software bundle powered by a task-based
programming model can address the heterogeneous workloads
engendered by compressing the dense operator. Using Tile Low-
Rank (TLR) approximation, our approach consists in capturing
the most significant information in each tile of the matrix using a
threshold which satisfies the application’s accuracy requirements.
Matrix operations are performed on the compressed data layout,
reducing memory footprint and algorithmic complexity. Our
proposed software solution accommodates a range of traditional
data structures of linear algebra, i.e., from dense and data-
sparse to sparse, within a single matrix operation. Separation
of concerns is at the heart: hardware-agnostic implementation,
asynchronous execution with a dynamic runtime system, and high
performance numerical kernels, to prepare scientific applications
to embrace exascale opportunities. This ambition necessitates
extensions to PaRSEC that incorporate information related to data
structure and rank distribution into the runtime decision-making.
We introduce two runtime optimizations to address the challenges
encountered when confronted with a large rank disparity: (1)
a trimming procedure performed at runtime to cut away data
dependencies from the directed acyclic graph discovered to be
no longer required after compression and (2) a rank-aware
diamond-shaped data distribution to mitigate the load imbalance
overheads, reduce data movement, and conserve memory foot-
print. We assess our implementation using 3D unstructured mesh
deformation based on Radial Basis Function (RBF) interpolation.
We report performance results on two different high-performance
supercomputers and compare against existing state-of-the-art im-
plementation. Our implementation shows up to 7-fold on Shaheen
II and 9-fold on Fugaku performance superiority in situations
where the 3D unstructured mesh deformation application renders
a matrix operator with low density. Our software framework
solves a formally dense 3D problem with 52M mesh points on
65K cores in about half an hour. This multidisciplinary work
emphasizes the need for runtime systems to go beyond their

primary responsibility of task scheduling on massively parallel
hardware system, by synergistically bridging matrix algebra
libraries with scientific applications.

Index Terms—Low-rank approximations, Task-based program-
ming model, Dynamic runtime system, HPC, Mesh deformations

I. Introduction

The last decades have witnessed a rapid improvement

of computational capabilities in high-performance computing

(HPC) platforms thanks to hardware technology scaling. This

has necessitated continuous adaptations across the software

stack to maintain high hardware utilization. HPC architec-

tures benefit from mainstream advances on the hardware with

many-core systems, deep hierarchical memory subsystem, non-

uniform memory access, and an ever-increasing gap between

computational power and memory bandwidth. In this HPC

landscape of potentially million-way parallelism, task-based

programming models associated with dynamic runtime sys-

tems are becoming more popular [1]–[7]. They foster devel-

opers’ productivity at extreme scale by abstracting the un-

derlying hardware complexity. Algorithms powered by a task-

based runtime system are divided into two parts: numerical
kernels carrying the fine-grained computational load and

data dependencies representing how the data flows be-

tween the different kernels. Algorithms can then be represented

as a directed acyclic graph (DAG) with vertices as tasks and

edges as dependencies. The resulting task-based algorithms

expose massive parallelism that can be exploited by a dynamic

runtime system. The runtime system can dynamically orches-

trate tasks and can map them onto the hardware resources. This

separation of concerns may relieve domain scientists from the

aforementioned programming burden.

With the advent of big data applications, the high algo-

rithmic complexity and large memory footprint of traditional
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matrix computations remain major obstacles for their efficient

deployments, despite the HPC hardware evolution. Low-rank

matrix approximations come to the rescue as a paradigm shift

from legacy HPC linear algebra algorithms. These algebraic

methods exploit data sparsity of the matrix operator by com-

pressing off-diagonal tiles up to an application-dependent ac-

curacy threshold. Each compressed tile captures the most sig-

nificant information to eventually deliver the required accuracy.

The challenge resides in redesigning the numerical algorithms

to operate on a compressed data layout. The opportunities are

manifold: reducing the algorithmic complexity, saving memory

footprint, and minimizing data movement, while satisfying the

application accuracy.

In this paper, we implement a software framework

HiCMA-PaRSEC that couples the PaRSEC task-based runtime

system [7] and the HiCMA low-rank matrix computations

library [8] to accelerate large-scale scientific applications.

The synergism of such a software bundle has proven to

be highly efficient when tackling challenging problems in

many scientific domains [8]–[11]. Herein, we demonstrate the

versatility of our software framework by targeting 3D un-

structured mesh deformation for computational fluid dynamics

(CFD) applications, using the Radial Basis Function (RBF)
approach [12]. This technique interpolates the displacements

of the boundary nodes located on the surface of moving bodies

with high fidelity. Matrices from RBF kernels are symmetric
positive-definite and formally dense, yet exhibit inherent data

sparsity properties. This allows for the effective use of low-

rank approximation on the off-diagonal tile when using these

kernels. This translates into solving a data-sparse linear system

using the Cholesky factorization that represents the most time-

consuming phase. Depending on the targeted accuracy, the

low-rank compression format may actually nullify some of

the tiles of these RBF matrices. The matrix operator may

thus assume various data layouts during the lifespan of the

studied CFD application: initially dense during generation,

then rank structured after compression, and possibly leading

toward sparse. Moreover, the degree of the sparsity varies with

the problem types and the desired accuracy. This may further

exacerbate the already existing computational load imbalance

because of rank heterogeneity, as discussed in [13].

Our resulting framework expands on the capabilities of

Lorapo [9]—the state-of-the-art in TLR matrix computations.
Our software makes a leap forward by mixing data structures

that traditionally support the broad linear algebra discipline

within a single matrix operation. This expansion is made

possible thanks to the fundamental design of our approach

based on the aforementioned separation of concerns. Once the

matrix structure is exposed after compression of the dense

matrix, it becomes essential to trim the original DAG from

data dependencies on the null tiles that are no longer required.

A significant part of the PaRSEC runtime overhead can be

removed, including task management, scheduling, dependency

releases, and temporary memory usage. However, sparsifying

the DAG introduces further load imbalance in addition to the

rank disparity. We design a new rank-aware diamond-shaped

data distribution and deploy it at runtime, while reducing

expensive data movement in tasks belonging to the critical

path. We break the traditional owner-computes strategy to

hide the overheads engendered by the data redistribution with

useful computations. We evaluate the resulting TLR Cholesky
implementation on two large supercomputers. Our codes out-

perform Lorapo by up to a 7-fold speedup and can efficiently
solve 3D unstructured mesh deformations up to 52M mesh

points. We believe this multidisciplinary symbiosis of low-

rank approximation, runtime system and domain applications

is fundamental to leverage exascale opportunities.

The remainder of this paper is as follows. We present related

work in Section II and list our contributions in Section III.

Section IV provides basic backgrounds, and Section V details

challenges carried by the RBF kernels. The next two sections
detail the optimizations proposed in this work, i.e., the DAG

trimming and the diamond-shaped distributions in Section VI

and Section VII, respectively. Section VIII presents a compre-

hensive performance analysis of the resulting software ecosys-

tem, followed by conclusions and planned work in Section IX.

II. Related Work

This section briefly recaps runtime systems and TLR matrix
computations to accelerate large-scale applications.

Runtime Systems. The dynamic runtime programming

paradigm is not a new concept. For the purpose of this paper,

we are primarily interested in task-based dynamic runtimes

that target distributed-memory systems and schedule fine-

grained computational tasks running well below the order of

a second. OpenMP [1] is widely used and provides a portable
set of compiler-directives in many programming languages for

writing parallel sections of code. Its main goal is to provide

functionalities on shared-memory systems; support for inter-

process communications and synchronizations is delegated

via explicit calls to an external communication substrate,

e.g., MPI. On distributed-memory systems, StarPU [2] and
OmpSs [3] provide users with a simple task-insertion API,

similar to the task interface in OpenMP. The task-graph can

be dynamically built and unrolled as computational progress

occurs. Besides, peer-to-peer and collective communications

are provided in StarPU with certain limitations, assuming

all related dependencies are discovered before a collective

starts [4]. OmpSs is based on compiler directives and supports
many-core architectures, which is considered a forerunner for

OpenMP. Distributed memory support in OmpSs is offered

by COMP Superscalar (COMPSs) [14]. Both aforementioned

runtimes suffer from a sequential task-insertion, which along

with the DAG pruning phase, may have potential limitations

on scalability [15]. HPX [5] follows the concepts of the

ParalleX execution model, supporting inter-process scheduling

and many-core architectures, with communications implicitly

described in the language. By describing logical regions of

data, Legion [6] presents abstractions that allow programmers

to describe properties of program data (e.g., independence,

locality). It relies on REALM [16], an event-based low-level

runtime for scheduling on distributed-memory machines.
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Tile Low-rank Matrix Computations. Low-rank matrix

approximations constitute a renaissance for dense linear al-

gebra. Indeed, low-rank matrix approximations in the form

of hierarchical matrices (H -matrices) [17]–[19] permit the

reduction of arithmetic complexity and memory footprint of

direct dense factorizations and solvers. There are currently

many state-of-the-art data compression formats for H -matrix

approximation supporting weak (e.g., Hierarchically Semi-

Separable (HSS) [20], [21], Hierarchically Off-Diagonal Low-

Rank (HODLR) [22], [23]) and strong admissibility (e.g., H2-

matrix [24], Block/Tile Low-Rank (BLR / TLR) [25], [26]). A

subset of these data compression formats may achieve almost

linear arithmetic complexity and memory storage for some

matrix kernels/operations [27]. However, these data compres-

sion formats have their own computational bottlenecks when

dealing with typical 3D problems: either because of the high

ranks required for accuracy in the large off-diagonal blocks

(i.e., for weak admissibility with HODLR/HSS) or the limited

performance scalability on distributed-memory systems (i.e.,

for strong admissibility with H2). The authors of [8]–[11]

provide extended support for TLR matrix computations in

order to tackle 3D problems (e.g., acoustic wave scattering

and geospatial statistics) on distributed-memory systems. The

main idea is to flatten the recursion and to avoid synchro-

nizations in-between hierarchical steps, while promoting task-

based dynamic runtime systems for mitigating load imbalance

on distributed-memory systems.

By leveraging data sparsity of the underlying matrix op-

erator, solving a broad class of large-scale scientific appli-

cations [28] becomes feasible. For instance, computing the

unstructured mesh deformation of moving 3D bodies using

RBF interpolations leads to solving a large dense system of

linear equations, for which the matrix factorization account

for most of the time. The RBF matrix size of the problem

corresponds to the number of the boundary elements located

at the surface of the 3D objects. Due to the resulting cubic

arithmetic complexity, the RBF approach has not traditionally
been considered as a solution of choice when targeting large

mesh deformation.

III. Contributions

The contributions of this paper are as follows. We propose

a framework, powered by the PaRSEC runtime [7] and the

HiCMA linear algebra library [8], to efficiently compute the TLR
Cholesky factorization on data-sparse matrices, as generated

by the challenging CFD dynamic meshing problem from

Gaussian RBF kernels. Compressing such matrix operators

may generate a mixture of data structures (i.e., dense, TLR,
and sparse), which have not been observed for 3D spatial

statistics [8]–[10], [13] or computational electromagnetic [11].

To provide an efficient support for the resulting compressed

matrices, PaRSEC must revisit the original algorithm depen-

dency graph and reduce the number of tasks with related data

dependencies, prior to launching the matrix factorization. At

the same time, the use of these compressed matrices raises new

challenges with regards to the compute and communication

balance between the participating processes. We introduce

two runtime-level optimizations related to a rank-aware data

distribution, and show their impact on the time-to-solution. In

particular, we alter the distribution space for the kernel exe-

cution, which breaks the traditional owner-computes strategy

supported by most of the existing runtimes. This change allows

the PaRSEC runtime to transparently rebalance the work while
respecting the initial data distribution provided by the user.

We demonstrate the scalability and efficiency of our software

framework on a very large SARS-CoV-2 dataset that reveals
the various aforementioned data structures after compression.

We illustrate our software capability to solve the problem at

an unprecedented scale.

To the best of our knowledge, this is the first time a

runtime system tackles 3D data-sparse problems morphing into

a mixture of data structures on distributed-memory systems.

IV. Background

A. PaRSEC Runtime System

PaRSEC [7] is a generic task-based runtime system for

asynchronous, architecture-aware scheduling of fine-grained

tasks on distributed many-core heterogeneous architectures. In

PaRSEC, like most task-based runtime systems, concepts of

task and dependency are utilized to describe the computations

and the corresponding data directions used by these tasks, re-

spectively; therefore, algorithms can be represented as a DAG

with vertices as tasks and edges as dependencies. PaRSEC can
dynamically unfold this DAG on a set of distributed resources

and satisfy the declared data dependencies by shepherding

data between memory spaces (intra-node, inter-nodes, differ-

ent devices, etc.) and scheduling tasks across heterogeneous

resources. The interactions with the runtime are handled via

several Domain-Specific Languages (DSLs) to provide more

flexibility and help domain scientists to express algorithms in

a more productive way. Parameterized Task Graph (PTG) [29],

used in this paper, represents the dependencies between tasks

by a concise, yet comprehensive task graph description called

Job Data Flow (JDF). The represented DAG can be considered

as a collection of task classes which holds information about

enabling the creation and execution of the task instances,

including the operations to be executed on different computa-

tional units. The communications are implicit, derived directly

from the dependencies between tasks and supporting many

protocols such as peer-to-peer and collective (e.g., broadcast,

gather, scatter, reductions) to enhance productivity. Template

Task Graph (TTG) [30] provides C++ API and extends the

idea of PTG by generalizing the notion of parameters to

arbitrary types and enabling data-dependent selection of task

dependencies. Other DSLs, such as Dynamic Task Discovery

[15], are less domain science-oriented and express DAG by

sequential task insertion in nested loops. Due to the sequential

discovery of tasks, it may suffer from the same high overhead

as other distributed task-insertion runtimes, such as StarPU.
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B. Tile Low-Rank Cholesky Factorization
TLR Cholesky exploits data sparsity of the matrix by com-

pressing off-diagonal tiles, i.e., capturing the most significant

singular values (which define the rank of the tile), up to an

application-dependent accuracy threshold. Therefore, each off-

diagonal dense tile is compressed to two tall-and-skinny tiles,

i.e., U and V of size b× k with b the tile size and k the rank.

The algorithms of TLR Cholesky and its dense counterpart

are similar except for the computational kernels [9], i.e.,

POTRF (Cholesky factorization), TRSM (triangular solve), SYRK
(SYRK-Dense or SYRK-TLR, symmetric rank-k update) and

GEMM (GEMM-Dense or GEMM-TLR, general matrix multiply).

We rely on HiCMA [8] to provide an efficient implementation
for these computational kernels. Also, the dense and TLR
Cholesky share the same definitions of the critical path and

dependencies patterns. In particular, the critical path results

in a sequential series of operations on tiles mostly with full

dense structure. It repetitively follows the same pattern: POTRF
on a dense diagonal tile, a single TRSM on a tile directly below
the diagonal and, the first SYRK on the next diagonal tile for
the next panel factorization. Hiding the cost of the critical

path constitutes one of the main challenges for TLR Cholesky
since matrix computations outside of it are limited compared

to dense Cholesky.

C. 3D Unstructured Mesh Deformation
Simulation of fluid-structure interactions involving moving

3D bodies requires computation of large mesh deformations.

The RBF technique is an interpolation method that produces

high-quality unstructured adaptive meshes. However, the RBF-

based boundary problem necessitates solving a large dense

linear system that is computationally expensive and prohibitive

in terms of storage requirement.

RBF is used to describe the displacement of the internal

volume nodes given the displacement of the boundary nodes.

As described in [12], an interpolation function describing the

displacement d in the whole domain, can be approximated by

a sum of basis functions: d(x) = ∑
i=1,nb αiφ(| |x− xbi | |)+p(x),

where xbi = [xbi , ybi , zbi ] are the boundary nodes at which the
values are known, p a polynomial, nb the number of boundary
nodes and φ a given basis function. The coefficients αi and the
polynomial p are determined by the interpolation conditions

d(xbi ) = dbi , where db contains the known displacement

values at the boundary. The system of unknowns α is subject
to the following constraint:

∑
i=1,nb αip(xbi ) = 0. A unique

interpolant is given if the basis function is a conditionally

positive definite function. If the basis functions are condi-

tionally positive definite of order m ≤ 2, one can use a

linear polynomial. Herein, we only consider basis functions

that satisfy this criterion. A variety of RBF kernels exists in

the literature [31], [32], in which a distinction is usually made

between global and compact support. The values of the former

are always non-zero, while the values of the latter are exactly

zero at some distance away from the source (i.e., outside their

support radius). This paper focuses on Gaussian RBF from the

global support category: φ(r) = exp(−r2), where r is Euclidean

distance. The global support functions are usually scaled by

a shape parameter δ to avoid excessive condition numbers of
the resulting RBF matrices. The scaled version of the RBF

function is defined as follows: φδ(r) := φ(r/δ) where δ is
chosen as: δ = 1/2 × min| |x − xbi | |. In general, the global

support function leads to a more accurate solution because it

considers all interactions between mesh points, at the cost of

producing a dense matrix [12]. We employ mesh reordering

based on Hilbert Space Filling Curves in order to preserve a

good spatial locality, while improving compression rate and

reducing arithmetic complexity.

V. New Challenges

As detailed in Section IV-C, the global support category

for RBF kernels produces a dense matrix. This dense matrix
can be compressed by low-rank approximation based on an

application-dependent accuracy threshold. As the compression

happens at the level of each tile, some tiles may disappear if

their contributions turn out to be below the application-defined

threshold. In addition, the shape parameter may increase the

matrix sparsity of the RBF, leading to further null tiles. For the
remaining tiles, the rank becomes relatively small compared to

the tile size, which reduces the arithmetic intensity of the tile

operations [10]. The mixture of data structures introduces new

challenges compared to other previous TLR applications [8]–
[11], [13]. At the lowest level, a decreasing rank leads to

lower task granularity and therefore emphasizes the underlying

overheads of the runtime and of the communication layer [33].

At a higher level, the entire critical path of the algorithm

as well as the data distribution, load and communication

balance are drastically affected. This will require a complete

overhaul to maintain the scalability and efficiency of the

original algorithm applied on the dense matrix.

To understand exactly how much the compression step and

the factorization we apply affect the sparsity of the matrix,

Fig. 1 displays the heatmap of the rank distribution on a lower

triangular matrix according to two shape parameters. It shows

the initial rank distribution, i.e., after matrix compression, and

final rank distribution, i.e., after the Cholesky factorization,

with matrix size 1.49M and tile size 4880, along with the

maximal, average and minimal rank (the average rank is only

for non-zero tiles). We define the matrix density as the ratio
of non-zero tiles, while sparsity is the complement, i.e.,

sparsity = 1−density. Three things need to be highlighted:
the impact of the shape parameter on the density of the matrix,

the variability of the matrix density between the initial and

final step, and the sharp decrease in the ranks of the tiles with

the distance to the diagonal. These parameters, i.e., shape,

density and rank, are problem dependent, which makes even

more challenging the construction of an algorithm that works

well across the entire spectrum. From Fig. 1, we can see the

ranks for all off-diagonal tiles are relatively small compared

to the tile size, which means a greater discrepancy between

tiles on- and off- diagonal with regard to the computational

intensity and communication volume. Also, the shape pa-

rameter has a significant impact on matrix sparsity, from a
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(a) Initial rank; shape parameter
3.7 × 10−4, density 0.024606.

(b) Final rank; shape parameter
3.7 × 10−4, density 0.206908.

(c) Initial rank; shape parameter
5.0 × 10−2, density 0.552031.

(d) Final rank; shape parameter
5.0 × 10−2, density 0.936969.

Fig. 1: Initial (after compression) and final (after Cholesky) rank distribution of off-diagonal tiles based on the shape parameter.

very sparse matrix, e.g., Fig. 1 (a) and (b), to a quite dense

matrix, e.g., Fig. 1 (c) and (d). Matrix sparsity and the variable

rank of each tile may cause load imbalance and increase

programming efforts, especially on distributed systems. This

necessitates new tools focused on user-productivity, while ad-

dressing performance and scalability challenges. Therefore, a

general framework orchestrated in a versatile runtime PaRSEC
is needed to efficiently solve this challenging problem.

VI. Dynamic DAG Trimming

As previously mentioned, the matrix sparsity resulting from

the compression step needs to be exploited to reduce the run-

time overhead. Indeed, since the entire dense DAG is exposed

to the runtime system, tasks operating on zero-rank tiles and

their dependencies are still fed to the runtime decision-making.

Unlike other TLR approximation research on distributed mem-
ory in the literature [9], [10], we alter at runtime the DAG
structure taking into account the disappeared tiles, in order to

remove overheads due to handling unnecessary tasks and their

dependencies. Therefore, the DAG needs to be trimmed: only

Algorithm 1: Matrix analysis for DAG trimming.

Input : initial rank array: rank
Output: hicma_parsec_analysis_t *analysis

1 Initialize structure: analysis
2 for ( k = 0; k < NT-1; k++ )
3 trsm_index = 0
4 for ( m = k+1; m < NT; m++ )
5 if ( rank[k*NT+m] > 0 )
6 analysis.trsm[k][trsm_index++] = m
7 analysis.nb_trsm[k]++
8 syrk_index = analysis.nb_syrk[m]
9 analysis.syrk[m][syrk_index] = k
10 analysis.nb_syrk[m]++
11 for ( i = 1; i < analysis.nb_trsm[k]; i++ )
12 for ( j = 0; j < i; j++ )
13 m = analysis.trsm[k][i]
14 n = analysis.trsm[k][j]
15 rank[n*NT+m] = 1
16 if ( tile(m, n) resides this MPI process )
17 gemm_index = analysis.nb_gemm[m][n]
18 allocate a piece memory if needed
19 analysis.gemm[m][n][gemm_index] = k
20 analysis.nb_gemm[m][n]++

dependencies related to non-zero or fill-in tiles in that panel

factorization should be exposed to the runtime system. An

analysis of the compressed matrix is required, so that enough

information can be gathered from the structure of the resulting

TLR matrix. The outcome is provided to the runtime via the
DSL, indicating how to trim the DAG. Algorithm 1 describes

such analytical process, which identifies null tiles and deploys

the trimming procedure. In this algorithm, array ‘rank’ is a 1D

array to differentiate tiles from non-zero rank to zero rank, and

is initialized to the initial rank after matrix compression. NT
is the number of tiles in a dimension, and all values in the

structure ‘analysis’ are initialized to 0. The time complexity

of Algorithm 1 is O(max(NT2, d2 ∗NT3)), where d is the final

density after Cholesky factorization. The distributed version
of the trimming procedure will only consider the tiles that

will be locally updated on each process, therefore, limiting the

memory requirements to analyze the matrix’s sparsity pattern.

In this way, the DAG can be pruned by reducing the

execution space of each task class, i.e., TRSM, SYRK, and
GEMM, according to the analyzed information, so that unnec-
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(b) After trimming.

Fig. 2: Data dependencies before and after DAG trimming with

10 × 10 tiles for the 1st and 2nd panel factorization. White

indicates tiles that have disappeared during the compression,

other colors are non-zero or fill-in tiles due to panel factor-

ization. Tiles labeled with P (POTRF), T (TRSM), S (SYRK) and
G (GEMM) represent the task to be executed on that tile during
factorization. Arrows are data flows between different tasks,

with multiple flows from the same source tile representing a

broadcast operation. The dashed green and magenta arrows

show all dependencies between the 1st and 2nd panel/update

after DAG trimming.
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Fig. 3: Data distribution of a matrix of 10 × 10 tiles using 6 processes. (a) ScaLAPACK 2DBCDD; (b) Lorapo hybrid

1DBCDD+2DBCDD; (c) band distribution to reduce communication in the critical path; (d) diamond-shaped distribution to

balance workload for off-band tiles. 1DBCDD/2DBCDD with process grids 1 × 6/2 × 3 for green and white tiles, respectively.

essary dependencies are eliminated. Fig. 2 demonstrates how

the DAG is trimmed. Before DAG trimming, the matrix is

assumed to have all tiles (in dense or TLR formats) and their
dependencies active. Fig. 2a showcases dependencies within a

panel factorization without DAG trimming. However, once the

sparsity is taken into account, only a fraction of tasks and their

dependencies remains operational, as demonstrated in Fig. 2b.

All in all, compressing the matrix operator may result also

into a compression of its DAG, where only the eligible tasks

and their dependencies are kept functional.

VII. Rank-Aware Diamond-Shape Data Distribution

Besides optimizations pioneered in prior work [9], [10], i.e.,

reducing communication, lookahead, and nested parallelism,

we introduce a novel rank-aware data distribution. This distri-

bution not only mitigates the work imbalance produced by the

RBF kernel (see Section V) but also generalizes our approach
for tackling various 3D data-sparse scientific applications.

A. Reducing Communication in the Critical Path
In the literature, the definition of the critical path in dense

Cholesky factorization (see Section IV-B) usually only in-

cludes the numerical kernel execution—assuming kernels in

the critical path sequentially execute on shared memory—but

skips the communications in the critical path. The main reason

is that in dense Cholesky, the communications in the critical

path are not crucial: either the portion of communication in

the critical path is low, and/or there is enough work off the

critical path to hide that communication. However, as men-

tioned hereinbefore, the resulting sparsity of the compressed

matrix and the small rank of the compressed tiles lead to

the great discrepancy in computational intensity between on-

and off-diagonal tiles. Therefore, the critical path becomes

cumbersome to get overall performance. Lorapo [9] pro-

poses the concept of “hybrid distribution”, which builds upon

the traditional two-dimensional block cyclic data distribution

(2DBCDD, Fig. 3a). It combines 1DBCDD and 2DBCDD

together to balance workload between on- and off-diagonal

tiles, respectively, as shown in Fig. 3b. We extend this idea to

reduce communication in the critical path by binding the task

operating the TRSM in the critical path (the first TRSM in each
panel factorization) to the same affinity as the task executing

the POTRF in each panel factorization. Fig. 3c highlights this
band distribution, which results in having the diagonal and

subdiagonal with the same process pattern. In this way, we

replace the expensive communication in the critical path due

to POTRF-TRSM data dependencies that involves remote nodes
with a local communication instead.

B. Diamond-Shaped Data Distribution
Load imbalance is one of the main bottlenecks for TLR

matrix computations. It arises because of the rank disparity

and eventually the sparsity of the compressed matrix. By

applying the previous optimization, load imbalance gets further

exacerbated. For general 3D covariance matrix problems, the

correlation strength usually decreases as we get farther from

the main diagonal. This pattern is even more severe in RBF
applications, creating abrupt changes in the rank distribution.

We introduce a new diamond-shaped data distribution that

exploits this inherent pattern, while maintaining some reg-

ularity in the tile distribution. The new distribution assigns

process ID for each tile in the diamond shape by skewing the

original 2DBCDD. This creates more opportunity to balance

the workload than the original rectangular static 2DBCDD, as

implemented in ScaLAPACK (see Fig. 3a). Fig. 3d showcases

the diamond-shaped distribution using a 2×3 diamond process
grid. In addition, it can still keep the column process group

as optimal as 2DBCDD, which controls two broadcasts, i.e.,

POTRF to TRSMs and TRSM to GEMMs in a column. However,

more processes may be involved in the row process group. But

this is not critical since (1) only one broadcast is involved, i.e.,

TRSM to GEMMs in a row, and (2) the rank is tiny (see Fig. 1)
leading to small message size in this broadcast.
Instead of redistributing the data following this new rank-

aware diamond-shaped distribution, which would have re-

quired an additional step composed of all the necessary

communications to redistribute the data, we take advantage of

PaRSEC capability to dissociate the data ownership from the

operations on this data, and allow a task execution mapping

different than the mainstream owner-compute strategy. Thus,

we leave the compressed matrix uses its original distribution,

but bind the different task’s execution following the rank-aware

distribution described above. PaRSEC automatically satisfies

all dependencies necessary for tasks execution, and therefore,
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moves the data from the owner to the location where it is used.

Upon completion of all operations on the data, PaRSEC moves
it back to its original owner. As a result from the point of

view of the user, everything happens as if the data has not

been moved and as if the operations are applied in-place.

This approach may cause additional communications, but

they happen at most twice per non-zero tile during the entire

application execution, when reading and writing the data from

and to the original storage. Moreover, since no explicit redis-

tribution stage [34], [35] is required, no additional temporary

memory is needed, and the introduced additional communi-

cation overheads may be hidden by the computation during

runtime. Last but not least, the entire process of moving the

data to rebalance the workload is completely transparent from

the user perspective, being akin to some of temporary data

migration. Our non-invasive approach may eventually permit

the user to continue distributing their data using the traditional

2DBCDD in the remaining parts of their applications.

VIII. Performance Results and Analysis

A. Environment Settings
The experiments are conducted on two large clusters.

Shaheen II is a Cray XC40 cluster with 6,174 compute

nodes, each with two 16-core Intel Haswell CPUs running

at 2.30 GHz and 128 GB of DDR4 main memory. Fugaku
contains 158,976 compute nodes, each with a 48-core A64FX

CPU running at 2.2 GHz and 32 GB of HBM2 memory.

For optimized BLAS and LAPACK kernels: on Shaheen
II, Intel compiler suite 19.0.5.281 with sequential Math

Kernel Library (MKL) version 2019.5; on Fugaku, Fujitsu
compiler with clang mode and SSL2. We simulate a population

of SARS-CoV-2 viruses with a resolution of 44932 mesh

points. We extract the virus geometry extracted from the Pro-

tein Data Bank (PDB) codenamed PDBID 6VXX available at

(https://www.rcsb.org/structure/6VXX). We vary the number

of viruses in a cube with edge length 1.7μm from 30 (i.e.,

1.49M mesh points) virus to 1200 (i.e., 52.57M). An accu-

racy threshold of 10−4 has been used for subsequent results,
unless otherwise specified. This is sufficient to satisfy the

displacement accuracy requirements of this 3D unstructured

mesh deformation applications during the linear solver. For

the data distribution used for off-band tiles towards kernel

execution (Fig.3d), we deploy a process grid P×Q (as square as

possible) where P ≤ Q. Calculations and communications are
performed in double-precision floating-point arithmetic. We

run our experiments at least three times and since no noticeable

performance variability has been identified, the minimum time

to solution is reported.

B. Impact of the Shape Parameters
Gaussian RBF kernel formulation contains a free shape

parameter that has a significant impact on the overall accuracy.

This shape parameter controls the shape of the basis function.

A small value decreases the correlation strength while a large

value increases it. Finding the optimal shape parameter is a

difficult problem, and many researches choose its value by

(a) 16 nodes on Shaheen II. (b) 64 nodes on Fugaku.

Fig. 4: Impact of the shape parameter on matrix density and

time-to-solution when looking at: (1) initial density (after com-

pression) and final density (after Cholesky), (2) with and with-

out DAG trimming optimizations, and (3) labeled max_rank.

Matrix size/tile size: (a) 4.49M/2390 (b) 2.99M/2440.

trial and error [36]. We investigate in Fig. 4 the effect of this

shape parameter on the compressed RBF operator’s density and
the TLR Cholesky performance. We vary the shape parameter
from O(10−4) to O(10−2), producing a compressed matrix with
a more sparse to a more dense data structure. From Fig. 4,

we can see the matrix density increases between compression

and TLR Cholesky, as the shape parameter rises due to fill-in
occurring during factorization. The labeled ranks get higher

with the shape parameter increase, but then eventually decrease

since correlations because more scattered across the domain.

All in all, the shape parameter has a direct influence on

the algorithmic complexity and the elapsed time. Moreover,

we notice that the curves with and without DAG trimming

converge for large shape parameters. As the shape parameter

increases, the number of null tiles eventually decreases, which

makes DAG trimming procedure obsolete. This highlights the

effectiveness of the matrix analysis in Algorithm 1 used for

DAG trimming optimizations. For the remaining experiments,

we choose the shape parameter 3.7 × 10−4, which translates

into considering half of the minimum distance between the

mesh nodes, as mentioned in section IV-C.

C. Understanding the Impact of Tile Size
Tile size is a crucial parameter in tile algorithms, trad-

ing off task granularity, compute intensity and concurrency.

The literature covers its importance to TLR matrix compu-

tations [10], [13]. The authors in [13] propose a model to

calculate the approximate optimal tile size by assuming a

first-order approximation—–the sequential part (the critical

path in the algorithm) at distance one overlapping with the

parallel part (everything outside the critical path). Because of

matrix sparsity and lower task granularity which emphasizes

the importance of communication and runtime overheads, this

assumption does not hold for the RBF application. Therefore,
we follow the strategy in [10] to tune the tile size b in

practice using b = O(√N) (with N the matrix size), which

theoretically provides a minimal operation count by for TLR
matrix computations [37]. This trade-off is pictured by a time-

to-solution curve following a bell shape. Fig. 5 demonstrates

this pattern on the two platforms and analyzes the reasons

behind it by showing the time taken by the critical path and the
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(a) 16 nodes on Shaheen II. (b) 64 nodes on Fugaku.

Fig. 5: Impact of the tile size. Left y-axis: time-to-solution of

TLR Cholesky and the critical path; right y-axis: the number
of tasks. Matrix size: (a) 4.49M (b) 2.99M.

number of tasks. Indeed, when the tile size is large, the critical

path plays a more significant role because the tiles on the

matrix diagonal with full dense data structure account for most

of the flops. As the tile size decreases, the number of flops in

the critical path decreases, while the amount of computation

outside the critical path increases. Therefore, after passing the

sweet point where the critical path is balanced by the off-

diagonal workloads, the number of tasks continues to increase

while their granularity decreases. This leads to a situation

where the cost of tasks outside the critical path dominates

and eventually exacerbates all overheads of dealing with tasks

in the runtime. Auto-tuning the tile size with a model is an

important aspect but beyonds the scope of the paper. For this

paper’s needs it is enough to find, even experimentally, a

reasonable value representing a local minima based on the

strategy above. We apply this strategy for the rest of the

experiments unless specified.

D. Impact of DAG Trimming Optimization
Fig. 6 (left) evaluates the impact of DAG trimming up

to 512 Shaheen II nodes with matrix size up to 11.95M.

Trimming the DAG always has a net positive impact, with the

overhead of the trimming being always significantly smaller

than the reduction in runtime overheads. As expected, the

benefit is correlated to both the problem size and the number

Fig. 6: Effect of DAG trimming optimization on elapsed

time (left). Effect of null tile analysis in Algorithm 1 (right)

on memory (left y-axis) and on elapsed time in percentage

overhead (right y-axis) on 64 Shaheen II nodes.

Fig. 7: Incremental effect of the optimizations on Shaheen
II.

of compute resources used. This shows that the performance

superiority comes directly from the removal of tasks and data

dependencies no longer required. This reduces the cost of

runtime scheduling and orchestration between the participating

processes. Regarding the overheads of Algorithm 1, Fig. 6

(right) demonstrates both time and memory footprint for the

trimming analysis are negligible. The subsequent graphs show

performance results when DAG trimming is on.

E. Incremental Effect of Proposed Runtime Optimizations
Fig. 7 details the impact of the two proposed optimizations

on the time-to-solution up to 512 nodes and up to 11.95M

matrix size. Reducing communication in the critical path using

a band distribution (Section VII-A) shows a positive impact

in Fig. 7 (top) with speedup up to 1.60×. When additionally

balancing the workload using the rank-aware diamond-shaped

data distribution (Section VII-B), we score further perfor-

mance improvement in Fig. 7 (bottom) attaining up to 1.55×.
From Fig. 7 (top), we can see the impact of the communication

reduction increases with the number of processes. Indeed, the

most communication intensive parts of the Cholesky factoriza-

tion are the row and column broadcast operations, as described

in Section VII-B. These broadcast operations span across a

similar number of processes but the row broadcast moving

a low-rank tile has a lesser impact on performance than the

column broadcast where a dense, diagonal tile is propagated.

The new affinity in the critical path reduces the participants in

the column broadcast, and thus reduce its impact. This is even

more pronounced when the number of processes increases. By

the same token, the additional benefit of load balancing using

the diamond-shaped data distribution increases with the matrix

sizes and the number of processes. The behavior for small

matrices is slightly different since there may not be enough

work to feed all processing units.

F. Performance Analysis
Performance comparison. As shown hereinbefore, shape

parameter has effect on the compressed RBF operator’s density
and therefore the TLR Cholesky performance (demonstrated in
Fig. 1 and Fig. 4). First, we compare HiCMA-PaRSEC against
Lorapo [9] with variable shape parameters about different

matrix sizes on 512 nodes Shaheen II, as detailed in Fig. 8.
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Fig. 8: Comparison with state-of-the-art of different shape

parameters about four different matrix sizes on 512 nodes

Shaheen II.

HiCMA-PaRSEC beats Lorapo in all scenarios, from a very

sparse matrix (small shape parameter, e.g., 1.0 × 10−4) to a

quite dense matrix (large shape parameter, e.g., 5.0 × 10−2).
Then, while fixing the shape parameter to 3.7 × 1.0−4 (see

Section VIII-B), Fig. 9 and Fig. 10 depict the comparison of

HiCMA-PaRSEC against Lorapo on more broad settings—up to

11.95M matrix size and 512 nodes on two clusters, Shaheen
II and Fugaku, respectively—including the detailed time-to-

solution and the corresponding speedups. On both systems,

HiCMA-PaRSEC consistently outperforms Lorapo: with up

to 6.8× speedup and maintaining a steady 6× speedup for

matrices larger than 5.97M on Shaheen II; on Fugaku, with
up to 9.1× speedup and achieving more than 4× speedup for

all matrices. Our generic HiCMA-PaRSEC software bundle is
the first approach to efficiently deal with a mixture of data

structure on distributed-memory systems, characterized by the

challenges of RBF applications, as described in Sections V.

Time Breakdown. Fig. 11 compares the time breakdown of
TLR Cholesky of HiCMA-PaRSEC against Lorapo along with
matrix compression. HiCMA-PaRSEC reduces the factorization
by such a significant factor, that the compression of the initial

matrix from dense to TLR becomes the most expensive part,
hinting at a possible future work on how to generate the matrix

directly in compressed format [38].

Fig. 9: Comparison with state-of-the-art on Shaheen II.

Fig. 10: Comparison with state-of-the-art on Fugaku.

Different Accuracy Thresholds. To further highlight the

versatility of our framework, Fig. 12 evaluates HiCMA-PaRSEC
against Lorapo, using various accuracy thresholds on 512

nodes Shaheen II. As we increase the accuracy threshold

from 10−5, to 10−7 and to 10−9, the elapsed time increases

since we capture more information on each tile resulting in

higher ranks. HiCMA-PaRSEC shows significant performance
superiority against Lorapo regardless of the accuracy thresh-
old. HiCMA-PaRSEC improves even further the relative per-

formance between accuracy thresholds compared to Lorapo,
thanks to the communication reduction in the critical path and

the diamond-shaped data distribution for load balancing.

G. Roofline Algorithmic Model
A better way to estimate how far an algorithm is from the

optimum is to compare it with a known theoretical bound

and see how much room for improvement remains. As de-

scribed in Section IV-B the critical path in Cholesky includes

the computational kernels without communication, under the

assumption that with enough compute resources everything

outside of the critical path would be totally hidden behind

the sequential operations in the critical path. This critical path

ignores communications, leading to a rather optimistic bound.
We use it as our roofline algorithmic model. In order to make

the critical path similar on a given matrix size for all settings,

the tile size is constant in this section, i.e., 4880, which is in

the range of empirically tuned tile size during experiments.

HiCMA-PaRSEC always achieves more than 70% efficiency for

the matrix sizes up to 11.95M on Shaheen II. The remaining

Fig. 11: Time breakdown on

512 Shaheen II nodes.
Fig. 12: Time Vs Accuracy on

512 Shaheen II nodes.
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Fig. 13: Performance improvement trace and efficiency on

512 nodes Fugaku. The labeled numbers are the incremental
speedup or the ratio of the critical path.

30% includes runtime overheads, communication costs, and

off-band computational kernels, which can not be hidden by

the sequential critical path.

We now apply our incremental performance optimiza-

tions on Fugaku. Fig. 13 depicts the time-to-solution of

HiCMA-PaRSEC, the impact of the different optimizations and
the critical path, augmented with the achieved efficiency,

i.e., the ratio of the critical path to HiCMA-PaRSEC, on 512

nodes Fugaku with multiple matrix sizes. We see remark-

able reductions in time-to-solution for each of the proposed

optimizations, resulting in a complete solution significantly

faster than the state-of-the-art Lorapo. We achieve 75.4%
efficiency compared to the optimistic bound defined above.

But getting closer to the time taken by the critical path is

also an indication that our implementation may run out of

concurrency. This situation can already be detected in Fig. 9

when a lower scalability is achieved as the number of nodes

increases. For those problem sizes that do not benefit any

more from adding more resources, the idea is to switch from

dense to sparse direct solver to expose even more parallelism.

In fact, PaRSEC provides support of sparse direct solver in

PaStiX [39], but research on sparse direct solver powered with
low-rank approximation is still limited to shared-memory [37],

[40].

H. Performance Evaluation at Extreme Scale
To study the scalability at extreme scale, we push our

solution to matrices and number of processors more akin to

Fig. 14: Extreme scale performance on Shaheen II.

the desired norms in the target science domain, and present in

Fig. 14 results with matrix sizes up to 52.57M and the number

of nodes up to 2048. Each matrix size can be considered as a

strong scaling experiment, and each number of nodes as a weak

scaling one. It must be noted that matrix size of 52.57M cannot

routinely be used in the literature of TLR matrix computations.
HiCMA-PaRSEC can factorize such matrix size in 36 minutes.
This represents a leap forward in TLR matrix approximation for
supporting extreme-scale 3D unstructured mesh deformations.

All in all, these results show the efficiency and scalability of

our generic HiCMA-PaRSEC software bundle, while delivering
results with the expected accuracy.

IX. Conclusion and Future Work

This paper demonstrates the efficiency and scalability of

HiCMA-PaRSEC, a framework solving challenging 3D data-

sparse RBF problems using TLR approximation. The challenge
resides in the RBF matrix operator that is initially dense

during generation, then rank structured after compression, and

possibly leading toward sparse. HiCMA-PaRSEC can support

these various data layouts within a single matrix factorization.

By exploiting the matrix sparsity resulting from the TLR
compression of a formally dense matrix, the DAG of tasks of

a Cholesky factorization is dynamically trimmed to eliminate

unnecessary tasks and their data dependencies operating on

zero-tiles that are no longer required. The remaining kernel

execution space is automatically remapped to a novel rank-

aware diamond-shaped distribution space to tackle the work

imbalance. The change in execution pattern is completely

hidden from the end users, but delivers a significant per-

formance boost. These optimizations enhance the scalability

of HiCMA-PaRSEC at extreme-scale and permit to efficiently

support RBF application at unprecedented matrix sizes.
As future work, we intend to improve the matrix compres-

sion which, as a result of the optimizations presented here,

became the most expensive part of the algorithms. In par-

ticular, we plan to generate the matrix directly in compressed

format [38], without having to generate the full dense structure.
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