
18

Communication Avoiding LU with
Tournament Pivoting in SLATE
Rabab Alomairy
Mark Gates
Sebastien Cayrols
Dalal Sukkari
Kadir Akbudak
Asim YarKhan
Paul Bagwell
Jack Dongarra

Innovative Computing Laboratory

January 19, 2022

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

This research used Shaheen-II from King Abdullah University of Science and Technology (KAUST). It
used as well resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Revision Notes
01-2022 first publication

@techreport{rabab2022slate-calu,

author={Rabab Alomairy and Mark Gates and Sebastien Cayrols and Dalal Sukkari

and Kadir Akbudak and Asim YarKhan and Paul Bagwell and Jack Dongarra},

title={Communication Avoiding {LU} with Tournament Pivoting in {SLATE}, {SWAN} No. 18},

institution={Innovative Computing Laboratory, University of Tennessee},

year={2022},

month={11},

number={ICL-UT-22-01},

note={revision 01-2022},

url={https://www.icl.utk.edu/publications/swan-018},

}

2

Contents

List of Figures i

List of Tables i

1 Introduction 1

2 Communication Avoiding LU Factorization Algorithm 1
2.1 Overview . 1
2.2 Implementation Details . 1
2.3 CALU Algorithm in SLATE . 2

3 Performance Results 7

References 9

List of Figures

1 Panel Factorization of CALU. 2
2 CALU numerical kernels and the involved inter-communication. The highlighted tiles

presents the working set of each row, where red color denotes input tiles and black
color denotes input/output tiles. 3

3 Performance of LU variant in SLATE on 16 nodes of Shaheen-II. 7
4 Strong scaling results on Shaheen-II. 8
5 Overhead of CALU panel factorization of 80k matrix size and 320 tile size on 16 nodes

of Shaheen-II. 8
6 Performance of LU tntpiv and LU RBT on Summit. 9
7 CALU based on local and global tree reduction. 10

List of Algorithms

2.1 Panel factorization, getrf tntpiv and lower trsm computational routines 4
2.2 Trailing Lookahead update, upper trsm and gemm and computational routines 5
2.3 Trailing update of the remaining matrix, upper trsm and gemm and computational

routines . 6

List of Tables

i

2 Communication Avoiding LU . . .

1 Introduction

SLATE (So�ware for Linear Algebra Targeting Exascale) 1 is being developed as part of the
Exascale Computing Project (ECP) 2, which is a joint project of the U.S. Department of Energy’s
O�ce of Science and National Nuclear Security Administration (NNSA). The objective of
SLATE is to provide distributed, GPU-accelerated dense linear algebra capabilities to the US
Department of Energy and to the high-performance computing (HPC) community at large.

This report discusses the implementation of communication avoiding LU algorithm in SLATE.
It is based on tournament pivoting strategy, that is shown to be stable in practice.

2 Communication Avoiding LU Factorization Algorithm

2.1 Overview

Since the cost of data communication has signi�cantly outpaced the costs of calculations
on current and future architectures, we are motivated to use algorithms that communicate
as little as possible at the expense of doing more computation, or storing redundant data.
Therefore, we extend the current implementation of the LU factorization in SLATE using
the tournament pivoting strategy designed by Grigori et al [1]. It is called Communication-
Avoiding LU factorization (CALU) and it has been proven to be stable in practice [2]. The main
idea of CALU is to reduce the number of messages exchanged during the panel factorization
by performing redundant arithmetic operations. The main di�erence between CALU and
classical LU (i.e partial pivoting LU) lies in the panel factorization. In LU, the processors need
to synchronize for each column of the panel, while in CALU processors need to synchronize
only for each column block of the panel.

2.2 Implementation Details

The panel factorization using CALU is illustrated in Fig. 1. The algorithm presented in this
report bears some similarities to Communication-Avoiding QR (CAQR) described in [3]. CALU
divides the panel into tiles of size b and distributes those tiles following block cyclic distribution.
First, each processor performs standard LU on its local tiles (equivalent of the LAPACK getrf

routine) to identify in parallel pivot rows, applies the resulting permutation vector on the
original local tiles, then keeps the �rst b rows of its permuted local blocks as the pivot candidates
for the next level in the computation. This step is represented by the dash arrows in 1. The next
step applies a binary tree reduction of the pairwise reductions of the permuted rows, where the
pivot candidates are placed one on top another at each node of the tree. Then, LU with partial
pivoting is applied again as in the �rst step. The obtained pivot vector is applied to the original
merged tiles and the pivot candidates are chosen for the next level of the reduction. At the end
of the reduction step, the good pivot candidate are moved on to the top of the panel with L and

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1

http://icl.utk.edu/slate/
https://www.exascaleproject.org

2 Communication Avoiding LU . . . 2.3 CALU Algorithm in SLATE

Figure 1: Panel Factorization of CALU.

U factors of the current panel. The resulting pivot rows are di�erent than the one produced by
the standard LU factorization of LAPACK and ScaLAPACK.

The steps of the algorithm are illustrated on Fig. 2. A�er obtaining a good pivot of the cur-
rent panel, the algorithm proceeds to update the trailing submatrix, which which involves: (1)
applying row swaps (LASWAP), (2) upper/lower triangular solve (TRSM), (3) matrix-matrix mul-
tiplication (GEMM). This require the following communication: (1) “horizontal” broadcasting
of the panel to the right, (2) “vertical” exchanges of the rows being swapped, and (3) “vertical”
broadcasting of the top row or tiles down the matrix.

2.3 CALU Algorithm in SLATE

CALU algorithm is very similar to classical LU algorithm in SLATE. Algorithm in 2.1, 2.2,
2.3 shows the computational routines within #omp pragma task. Algorithm starts iterating
over those tasks until it reaches the number of tiles. It consists of four computational kernels
i.e., GETRF TNTPIV (CALU factorization), TRSM (triangular solve), GEMM (general matrix
multiply) and LASWAP (row swaps). Moreover, CALU applies same optimization as LU such us
lookahead, internal blocking, and cache reuse,

2

2 Communication Avoiding LU . . . 2.3 CALU Algorithm in SLATE

Figure 2: CALU numerical kernels and the involved inter-communication. The highlighted tiles
presents the working set of each row, where red color denotes input tiles and black color denotes
input/output tiles.

3

2 Communication Avoiding LU . . . 2.3 CALU Algorithm in SLATE

Algorithm 2.1 Panel factorization, getrf tntpiv and lower trsm computational routines

1// panel factorization

2#pragma omp task depend(inout:column[k])

3{

4auto Apanel = Awork.sub(k, A_mt -1, k, k);

5Apanel.insertLocalTiles ();

6// factor A(k:mt -1, k)

7internal :: getrf_tntpiv <Target ::HostTask >(

8A.sub(k, A_mt -1, k, k), std::move(Apanel), diag_len ,

9ib, pivots.at(k), max_panel_threads , priority_one);

10// root broadcasts the pivot to all ranks.

11MPI_Bcast(pivots.at(k).data(),

12sizeof(Pivot)* pivots.at(k).size(),

13MPI_BYTE , A.tileRank(k, k), A.mpiComm ());

14// swap rows in A(k+1:A_mt -1, k)

15int tag_k = k;

16internal :: permuteRows <target >(

17Direction ::Forward , A.sub(k, A_mt -1, k, k),

18pivots.at(k),target_layout , priority_one , tag_k , queue_0);

19

20internal ::copy <Target ::HostTask >(Apanel.sub(0, 0, 0, 0),

21A.sub(k, k, k, k));

22// broadcast panel

23BcastList bcast_list_A;

24bcast_list_A.push_back ({k, k, {A.sub(k+1, A_mt -1, k, k),

25A.sub(k, k, k+1, A_nt -1)}});

26A.template listBcast <target >(bcast_list_A ,

27host_layout , tag_k , life_factor_one , is_shared);

28

29Apanel.clear ();

30}

31//lower trsm

32#pragma omp task depend(inout:column[k]) depend(inout:listBcastMT_token)

33{

34auto Akk = A.sub(k, k, k, k);

35auto Tkk = TriangularMatrix <scalar_t >(Uplo::Upper ,

36Diag::NonUnit , Akk);

37

38internal ::trsm <target >(

39Side::Right ,

40scalar_t (1.0) , std::move(Tkk),

41A.sub(k+1, A_mt -1, k, k),

42priority_one , Layout ::ColMajor , queue_0);

43// bcast the tiles of the panel to the right hand side

44BcastListTag bcast_list;

45for (int64_t i = k+1; i < A_mt; ++i) {

46const int64_t tag = i;

47bcast_list.push_back ({i, k, {A.sub(i, i, k+1, A_nt -1)}, tag});

48}

49A.template listBcastMT <target >(

50bcast_list , Layout ::ColMajor , life_factor_one , is_shared);

51}

4

2 Communication Avoiding LU . . . 2.3 CALU Algorithm in SLATE

Algorithm 2.2 Trailing Lookahead update, upper trsm and gemm and computational routines

52

53// update lookahead column(s), high priority

54for (int64_t j = k+1; j < k+1+ lookahead && j < A_nt; ++j) {

55#pragma omp task depend(in:column[k]) \

56depend(inout:column[j]) \

57{

58int tag_j = j;

59internal :: permuteRows <target >(

60Direction ::Forward , A.sub(k, A_mt -1, j, j),

61pivots.at(k), target_layout , priority_one ,

62tag_j , j-k+1);

63

64auto Akk = A.sub(k, k, k, k);

65auto Tkk = TriangularMatrix <scalar_t >(Uplo::Lower ,

66Diag::Unit , Akk);

67

68// solve A(k, k) A(k, j) = A(k, j)

69internal ::trsm <target >(

70Side::Left ,

71scalar_t (1.0) , std::move(Tkk),

72A.sub(k, k, j, j), priority_one ,

73Layout ::ColMajor , j-k+1);

74// send A(k, j) across column A(k+1:mt -1, j)

75A.tileBcast(k, j, A.sub(k+1, A_mt -1, j, j),

76Layout ::ColMajor , tag_j);

77// A(k+1:mt -1, j) -= A(k+1:mt -1, k) * A(k, j)

78internal ::gemm <target >(

79scalar_t (-1.0), A.sub(k+1, A_mt -1, k, k),

80A.sub(k, k, j, j),

81scalar_t (1.0) , A.sub(k+1, A_mt -1, j, j),

82host_layout , priority_one , j-k+1);

83}

84}

85

86// pivot to the left

87if (k > 0) {

88#pragma omp task depend(in:column[k]) \

89depend(inout:column [0]) \

90depend(inout:column[k-1])

91{

92// swap rows in A(k:mt -1, 0:k-1)

93int tag = k;

94internal :: permuteRows <Target ::HostTask >(

95Direction ::Forward , A.sub(k, A_mt -1, 0, k-1),

96pivots.at(k), host_layout , priority_zero ,

97tag , queue_0);

98}

99}

5

2 Communication Avoiding LU . . . 2.3 CALU Algorithm in SLATE

Algorithm2.3Trailing update of the remainingmatrix, upper trsm and gemm and computational
routines

100

101// update trailing submatrix , normal priority

102if (k+1+ lookahead < A_nt) {

103#pragma omp task depend(in:column[k]) \

104depend(inout:column[k+1+ lookahead]) \

105depend(inout:listBcastMT_token) \

106depend(inout:column[A_nt -1])

107{

108// swap rows in A(k:mt -1, kl+1:nt -1)

109int tag_kl1 = k+1+ lookahead;

110internal :: permuteRows <target >(

111Direction ::Forward , A.sub(k, A_mt -1, k+1+ lookahead , A_nt -1),

112pivots.at(k), target_layout , priority_zero , tag_kl1 , queue_1);

113

114auto Akk = A.sub(k, k, k, k);

115auto Tkk = TriangularMatrix <scalar_t >(Uplo::Lower ,

116Diag::Unit , Akk);

117

118// solve A(k, k) A(k, kl+1:nt -1) = A(k, kl+1:nt -1)

119internal ::trsm <target >(

120Side::Left ,

121scalar_t (1.0) , std::move(Tkk),

122A.sub(k, k, k+1+ lookahead , A_nt -1),

123priority_zero , Layout ::ColMajor , queue_1);

124

125// send A(k, kl+1:A_nt -1) across A(k+1:mt -1, kl+1:nt -1)

126BcastListTag bcast_list;

127for (int64_t j = k+1+ lookahead; j < A_nt; ++j) {

128// send A(k, j) across column A(k+1:mt -1, j)

129// tag must be distinct from sending left panel

130const int64_t tag = j + A_mt;

131bcast_list.push_back ({k, j,

132{A.sub(k+1, A_mt -1, j, j)}, tag});

133}

134

135A.template listBcastMT <target >(

136bcast_list , Layout :: ColMajor);

137

138// A(k+1:mt -1, kl+1:nt -1) -= A(k+1:mt -1, k) * A(k, kl+1:nt -1)

139internal ::gemm <target >(

140scalar_t (-1.0), A.sub(k+1, A_mt -1, k, k),

141A.sub(k, k, k+1+ lookahead , A_nt -1),

142scalar_t (1.0) , A.sub(k+1, A_mt -1, k+1+ lookahead , A_nt -1),

143host_layout , priority_zero , queue_1);

144}

145}

6

3 Performance Results

102400 153600 204800 256000 307200
Problem Size

6

7

8

9

10

11

12

13

Pe
rfo

rm
an

ce
 (T

FL
OP

/s
)

LU no piv
LU tntpiv
LU RBT
LU PP

Figure 3: Performance of LU variant in SLATE on 16 nodes of Shaheen-II.

3 Performance Results

Figs. 3 shows performance of four di�erent variant of LU factorization in SLATE: (1) LU no
pivoting (LU nopiv) which workwell for speci�c classes ofmatrices, such as diagonally dominant
matrices and totally nonnegative matrice, (2) CALU (LU tntpiv) which is based on tournament
pivoting, (3) LU based on Recursive Butter�y Transformation RBF (LU RBT) [4], and (4) LU with
partial pivoting (LU PP) [5]. The performance is reported in double precision using 16 nodes
of Shaheen-II, Cray XC40 with Dual-Socket 16-core Intel Haswell System. We can notice that
CALU and RBT behave similarly and they outperform LU with partial pivoting. CALU achieves
1.16x speedup compared to partial pivoting.

To farther asses performance of the implementation, Figs. 4 shows the results when scaling
number of node. We can see that for small number of nodes CALU and LU partial pivoting
deliver similar performance, However, as we add more node we can notice that communication
avoiding LU outperform partial pivoting LU.

Figs. 6 shows the performance of LU tntpiv and LU PP on 8 nodes of Summit each with 6
GPUs. LU PP outperforms LU tntpiv for dominant randommatrices because the reduction step
overhead in the panel factorization, which is not nessasray in the type of matrices. However, for
completely randommatrices, CALU achieves 1.15x speedup compared to LU partial pivoting.

The critical component of the CALU factorization is the step of factorizing the panel. We assess
performance of this step by showing the overhead of the �rst phase where each node is doing
the �rst LU for its local tiles. And the tree reduction phase. Figs. 5 shows that 42% of time is spent
in this �rst phase and 39% on tree reduction and the remaining 19% of the panel factorization is
spent for di�erent auxiliary SLATE functions such as copy, and tileGetForWriting routines.

7

3 Performance Results

4 8 16 32 64
Nodes

2

4

6

8

10

12
Pe

rfo
rm

an
ce

 (T
FL

OP
/s

)
Matrix Size:80Kx80K, Tile Size: 320x320

LU tntpiv LU PP

Figure 4: Strong scaling results on Shaheen-II.

Figure 5: Overhead of CALU panel factorization of 80k matrix size and 320 tile size on 16 nodes of
Shaheen-II.

8

References References

5120 51200 102400 153600 204800 256000
Problem Size

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce
 (T

FL
OP

/s
)

LU PP dominant random
LU tntpiv dominant random
LU tntpiv random
LU PP random

Figure 6: Performance of LU tntpiv and LU RBT on Summit.

This pie chart shows that there is a room for improvements. As future work, we propose to
do local tree reduction within each node using OpenMP thread, followed be the global tree
reduction, as shown in 7.

References

[1] Laura Grigori, James W Demmel, and Hua Xiang. Communication Avoiding Gaussian
Elimination. In SC’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pages
1–12. IEEE, 2008.

[2] Laura Grigori, James WDemmel, and Hua Xiang. CALU: a Communication Optimal LU
Factorization Algorithm. SIAM Journal on Matrix Analysis and Applications, 32(4):1317–1350,
2011.

[3] Jakub Kurzak, Mark Gates, Ali Charara, Asim YarKhan, and Jack Dongarra. Least Squares
Solvers for Distributed-MemoryMachines with GPU Accelerators. In Proceedings of the ACM
International Conference on Supercomputing, pages 117–126, 2019.

[4] Neil Lindquist, Piotr Luszczek, and JackDongarra. Replacing pivoting in distributed gaussian
elimination with randomized techniques. In 2020 IEEE/ACM 11thWorkshop onLatest Advances
in Scalable Algorithms for Large-Scale Systems (ScalA), pages 35–43. IEEE, 2020.

[5] Jakub Kurzak, MarkGates, Ali Charara, Asim YarKhan, Ichitaro Yamazaki, and JackDongarra.
Linear Systems Solvers for Distributed-Memory Machines with GPU Accelerators. In
European Conference on Parallel Processing, pages 495–506. Springer, 2019.

9

References References

Figure 7: CALU based on local and global tree reduction.

10

	List of Figures
	List of Tables
	Introduction
	Communication Avoiding LU Factorization Algorithm
	Overview
	Implementation Details
	CALU Algorithm in SLATE

	Performance Results
	References

