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Accelerating Restarted GMRES with Mixed
Precision Arithmetic

Neil Lindquist, Piotr Luszczek, and Jack Dongarra, Fellow, IEEE

Abstract—The generalized minimum residual method (GMRES) is a commonly used iterative Krylov solver for sparse, non-symmetric
systems of linear equations. Like other iterative solvers, data movement dominates its run time. To improve this performance, we
propose running GMRES in reduced precision with key operations remaining in full precision. Additionally, we provide theoretical
results linking the convergence of finite precision GMRES with classical Gram-Schmidt with reorthogonalization and its infinite
precision counterpart which helps justify the convergence of this method to double-precision accuracy. We tested the mixed-precision
approach with a variety of matrices and preconditioners on a GPU-accelerated node. Excluding the ILU(0) preconditioner, we achieved
average speedups ranging from 8% to 61% relative to comparable double-precision implementations, with the simpler preconditioners
achieving the higher speedups.
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1 INTRODUCTION

THE generalized minimum residual method (GMRES) is
an iterative solver for sparse, non-symmetric systems

of linear equations [1]. Like most iterative solvers, GMRES
consists mostly of matrix-vector and vector-vector oper-
ators, resulting in a low computational intensity. Hence,
reducing data movement is necessary to improve perfor-
mance. Towards this end, we present an implementation of
GMRES using a mix of single- and double-precision that
is designed to achieve the same final accuracy as double-
precision GMRES while reducing data movement.

In short, GMRES constructs a basis for the Krylov sub-
space using Arnoldi’s procedure [2], then finds the solution
vector from that subspace that minimizes the 2-norm of the
resulting residual. One particularly useful modification to
GMRES is restarting, which is used to limit the memory us-
age and computational requirements of the growing Krylov
basis [3]. We focus on two schemes for orthogonalizing
the Krylov basis in the Arnoldi procedure, modified Gram-
Schmidt (MGS) and classical Gram-Schmidt with reorthog-
onalization (CGSR). The former is often used due to its
lower computational and data-access costs [4], while the
latter better retains orthogonality and can be implemented
using matrix-vector products [5]. For CGSR, we always
reorthogonalize once, which is sufficient to provide nu-
merically stability [6]. Additionally, we focused on a left-
preconditioned version of GMRES but expect the results
to hold for right-preconditioned versions too. Algorithm 1
shows the formulation of GMRES we used.

Based on our previous work, we focus on a specific
mixed-precision strategy that has been successful regarding
both accuracy and CPU performance [7]. This approach
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uses single precision everywhere except to compute the
residual and update the solution. Specifically, it uses double
precision for lines 3 and 25 in Alg. 1 and uses single preci-
sion for everything else. (I.e. computation done in double
precision is labeled with uhigh and computation done in
single precision is labeled with ulow). This requires a copy
of A in single precision, and two vector type conversions
per restart (zk and uk) but has the advantage of other-
wise using existing uniform-precision kernels. Our previous
work included experiments with the effects on convergence
when reducing various parts of GMRES and using different
restart strategies; those experiments guided the design of
our mixed-precision scheme. Herein, we extend the support
for this approach by providing stronger theoretical analysis
of the reduced precision inner solver and new experimental
results on a GPU-accelerated node with a variety of precon-
ditioners.

2 PREVIOUS WORK

The idea of using multiple precisions to improve perfor-
mance has been applied successfully to a variety of prob-
lems, particularly in recent years [8]. Furthermore, it is a
well-established method for improving the performance of
solving systems of linear equations, particularly for dense
linear systems [9], [10].

One approach to using multiple precisions in GMRES
is to store the preconditioner in reduced precision and
doing the rest of the computation in full precision [11].
The approximate nature of the preconditioner means that
reducing the floating-point precision has a limited reduction
in quality. One interesting variation of this is to precondition
a full-precision GMRES with a reduced-precision GMRES
(possibly with a preconditioner of its own) [12]. This is
similar to our approach, but we use iterative refinement as
the outer solver instead of GMRES.

There has recently been useful theoretical work for vary-
ing the working precision as the iteration progresses in a
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Algorithm 1 Restarted GMRES in mixed-precision with left
preconditioning [3]

1: A ∈ Rn×n, x0, b ∈ Rn, M−1 ≈ A−1
2: for k = 1, 2, . . . do
3: zk ← b−Axk (uhigh)
4: If ‖zk‖2 is small enough, stop (uhigh)
5: rk ←M−1zk (ulow)
6: β ← ‖rk‖2, s0 ← β (ulow)
7: v1 ← rk/β, V1 ← [v1] (ulow)
8: j ← 0
9: loop until the restart condition is met

10: j ← j + 1
11: w ←M−1Avj (ulow)
12: w, h1,j , . . . , hj,j ← orth(w, Vj) . MGS or CGSR
13: hj+1,j ← ‖w‖2 (ulow)
14: vj+1 ← w/hj+1,j (ulow)
15: Vj+1 ← [Vj ,vj+1] (ulow)
16: for i = 1, . . . , j − 1 do

17:

[
hi,j
hi+1,j

]
←
[
αi βi
−βi αi

]
×
[
hi,j
hi+1,j

]
(ulow)

18: end for
19:

[
αj

βj

]
← rotation matrix

([
hj,j
hj+1,j

])
(ulow)

20:

[
sj
sj+1

]
←
[
αj βj
−βj αj

]
×
[
sj
0

]
(ulow)

21:

[
hj,j
hj+1,j

]
←
[
αj βj
−βj αj

]
×
[
hj,j
hj+1,j

]
(ulow)

22: end loop
23: H ← {hi,`}1≤i,`≤j , s← [s1, . . . sj ]

T

24: uk ← VjH
−1s (ulow)

25: xk+1 ← xk + uk (uhigh)
26: end for

27: procedure MGS(w, Vj)
28: [v1, . . . ,vj ]← Vj
29: for i = 1, 2, . . . , j do
30: hi,j ← w · vi (ulow)
31: w ← w − hi,jvi (ulow)
32: end for
33: return w, h1,j , . . . , hj,j
34: end procedure

35: procedure CGSR(w, Vj)
36: h← Vj

Tw (ulow)
37: w ← w − Vjh (ulow)
38: g ← Vj

Tw (ulow)
39: w ← w − Vjg (ulow)
40: [h0,j , . . . , hj,j ]

T ← h+ g (ulow)
41: return w, h1,j , . . . , hj,j
42: end procedure

non-restarted GMRES [13]. Notably, part of this work shows
that computing the Arnoldi process in finite-precision al-
lows GMRES to converge at approximately the same rate
as GMRES computed exactly until an accuracy related to
round-off error is reached. Our theoretical results in Sec. 3
are based on some of these ideas. There exists further
theoretical work on reducing the accuracy of just the matrix
vector products in GMRES and other Krylov solvers as the
number of inner iterations progresses [14], [15], [16]. These
approaches may avoid the need to restart, unlike our work;
however, they increase the complexity of implementation
and achieving high accuracy may require estimating the
smallest singular value.

For restarted GMRES, there have been a few works in-
volving using multiple precisions in the GMRES algorithm.
The first is using mixed-precision iterative refinement where
the inner solver is a single-precision GMRES [17], [18]. This
approach is similar to what we tested; however, that work
tests only limited configurations of GMRES and matrices.
The second approach is to store just the Krylov basis in
reduced precision, which was tested with both floating- and
fixed-point formats and 32- and 16-bits per value [19]. It was
successful in providing a speedup with the 32-bit floating-
point version providing the best median speedup at 1.4
times. However, the scheme, as described, requires custom,
high-performance, mixed-precision kernels, which increases
the cost of implementation due to the limited availability of
existing mixed-precision routines.

One final work with GMRES is the use of integer arith-
metic [20]. While integer GMRES did not involve a reduc-
tion in data movement, it does show GMRES achieving
a full-precision solution with limited iteration overhead
when the solver uses an alternative data format. Relatedly,
there has been work to use data compression techniques in
flexible GMRES, although only for the non-orthogonalized
Krylov vectors [21].

Mixed precision approaches have also been used for
other iterative solvers. Like GMRES, mixed precision ap-
proaches include a reduced precision preconditioner [22],
[23] and using a reduced precision solver inside iterative re-
finement [17]. However, with Krylov methods, iterative re-
finement discards the subspace at each restart; so, the strat-
egy of “reliable updates” has been proposed, which retains
information about the Krylov subspace across restarts [24],
[25]. Finally, there has been some exploration of the use of
alternate data representations, such as data compression, in
iterative solvers [26], [27], [28].

3 NUMERICAL PROPERTIES OF MIXED PRECISION
GMRES

It is important to understand the effects of reductions in
precision on the accuracy of the final solutions. Note that
restarted GMRES is equivalent to iterative refinement using
a non-restarted GMRES as the inner solver, which provides
a powerful tool for recovering accuracy. This equivalence
can be seen by noting that lines 5 through 24 in Alg. 1 are
equivalent to a non-restarted GMRES with an initial guess
of xk and the remaining form iterative refinement of the
non-restarted GMRES.
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First, consider the parts of the solver that must remain
in full precision. Notably, the linear system being solved,
Ax = b, must be stored in full precision. In general, reduc-
tions in the accuracy of A and b directly change the problem
being solved and can introduce a backward error on the
order of the reduced precision. If x is stored in reduced
precision, a similar forward error will be introduced. As an
extension of this, adding the updates from the inner solve
to x must be done in full precision, to ensure x remains
in full precision. Finally, the residual r = b − Ax must be
computed in full precision, otherwise errors smaller than
the reduced precision accuracy cannot be corrected.

Next, consider the effects of reducing precision in the
computation of the error correction. For stationary iterative
refinement, it is well-known that the error correction can
be computed in reduced precision while still achieving
a full precision final solution [9]. For GMRES, the the-
ory is less developed. Note that single-precision GMRES
is backwards stable to single precision [29], [30]. Then,
mixed-precision iterative refinement can use this GMRES to
compute a double-precision backwards-stable solution [31].
Thus, the approach should be backwards-stable to full-
precision. However, this analysis ignores the possibility
of restarting before a single-precision accurate solution is
achieved which is a significant issue in practice due to the
increasing memory cost of GMRES.

Recent work has shown that MGS-GMRES converges at
approximately the same rate whether the Arnoldi process
is computed in finite precision or exactly until the relative
residual is below a roundoff-dependent threshold [13]. Un-
fortunately, it is difficult to turn this into a useful general-
purpose bound. Towards this end, we provide the following
theorem for CGSR-GMRES which takes advantage of the
better orthogonality of CGSR to describe the accuracy of
the finite precision solution relative to the exact precision
one [5].

Theorem 1. Let χj and χ(e)
j be the solutions computed by j

iterations of finite precision GMRES and exact GMRES, respec-
tively, without restarting. Let b be the right-hand side vector.
Suppose u < 10−3 and c4(n, j)uκ(AVj) < 1 for a particular
c4(n, j) ∈ O(n2j3) with Vj being the computed Krylov basis.
Let δ+ = (1 +

√
u)1/2 and δ− = (1−

√
u)1/2. Then,

‖b−Aχj‖2 ≤ δ2+δ−2− ‖b−Aχ
(e)
j ‖2

+ 9δ+uj‖A‖2‖χj‖2
+ δ2+δ

−1
− γpj

1/2‖A‖F ‖χ(W )
j ‖2

+ δ+δ
−1
− c1(n, j)u‖A‖F ‖χ(W )

j ‖2

+
c1(n, j)u‖A‖2‖χj‖2
δ− − γjj1/2δ+

+
j1/2δ+‖A‖F ‖χj‖2
δ− − γjj1/2δ+

×
(
γp + γj

+ (γj + 9ujγj + 9uj1/2)

× δ+δ−1− (2 + γp)

)
.

where c1(n, j) ∈ O(nj) and χ(W )
j is the solution computed by

j iterations of a particular weighted-GMRES.

The polynomials c1(n, j) and c4(n, j) are the same as
those in Giraud et al.’s error analysis of CGSR [6]. The proof
is provided in the appendix. Note that χj and χ

(e)
J are

equivalent to uk from Alg. 1 when the restart condition is
met after j inner iterations.

When u = 2−24, ‖χ(e)
j ‖ ≈ ‖χj‖ ≈ ‖χ(W )

j ‖, j3/2u � 1,
and p3/2u� 1, this can be simplified to

‖b−Aχj‖2
‖A‖F ‖χj‖2 + ‖b‖2

. 1.1
‖b−Aχ(e)

j ‖2
‖A‖F ‖χ(e)

j ‖2 + ‖b‖2
+ (4j3/2 + 30j + 3pj1/2 + 3c1(n, j))u.

In other words, finite precision CGSR-GMRES converges at
effectively the same rate as its exact counterpart until an
error of approximately (4j3/2 + 30j + 3pj1/2 + 3c1(n, j))u
is reached. This implies that for restarted GMRES, if full
precision GMRES can converge, then reduced precision
GMRES should either converge similarly or satisfy the
backward error threshold. In the latter case, the backward
stability of iterative refinement will result in a backward
stable solution [31]. In the former cases, we expect similar
behavior, but differences in vector directions may reduce
effectiveness when the solver restarts.

It should be noted that the low-order polynomials c1
and c4 can quickly become onerous for realistically sized
matrices. Fortunately, the bounds provided by this theorem
are much worse than will occur in practice. First, they
assume round-off error will always accumulate without
cancellation. However, the recent work on probabilistic error
bounds for dot-products has shown that a relative error
of about u

√
n holds with probability close to 1, compared

the formal worst-case bound of un [32]. Second, the error
bounds assume that the dot product summation is done
sequentially. However, GPU accelerated systems distribute
the work across many threads which helps reduce the
accumulation of errors [33].

4 IMPLEMENTATION CONSIDERATIONS

Periodic restarting is a key component in obtaining full
precision accuracy in this approach as it relies on iterative re-
finement. For many problems, both the memory constraints
and the increasing computational load will force the solver
to restart before the accuracy of the inner solver is achieved.
However, for some problems, GMRES can produce a full
precision solution in relatively few iterations; in these cases,
waiting to restart until after a fixed number of inner itera-
tions will result in a stalled improvement when the round-
off error has overwhelmed any meaningful contributions
to the computed solution. We have previously discussed
and tested various restart strategies [7]. In that work, we
found that an effective restart strategy was to initiate the
first restart when the residual approximation improves by
a factor of 10−6, then initiate subsequent restarts after the
same number of inner iterations.
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TABLE 1
Properties of the matrices tested without a preconditioner. †Condition estimator reached 200 000 iterations before the LSQR convergence criteria.

Condition RHS
Matrix Rows Nonzeros Lower Bound Provided

af_0_k101 5.0× 105 1.8× 107 5.5× 105 † yes
af_shell9 5.0× 105 1.8× 107 1.2× 106 † yes
apache2 7.2× 105 4.8× 106 3.0× 106 † no

atmosmodj 1.3× 106 8.8× 106 6.4× 103 yes
BenElechi1 2.5× 105 1.3× 107 1.3× 106 † yes

bone010 9.9× 105 4.8× 107 1.6× 106 † no
Bump_2911 2.9× 106 1.3× 108 7.5× 106 † no

cage13 4.5× 105 7.5× 106 1.1× 101 no
cage14 1.5× 106 2.7× 107 9.6× 100 no

crankseg_1 5.3× 104 1.1× 107 1.4× 107 † no
CurlCurl_2 8.1× 105 8.9× 106 4.1× 105 † no
CurlCurl_4 2.4× 106 2.7× 107 3.4× 105 † no
ecology2 1.0× 106 5.0× 106 3.2× 107 † no

F1 3.4× 105 2.7× 107 7.1× 105 † yes
FEM_3D_thermal2 1.5× 105 3.5× 106 2.5× 103 no

G3_circuit 1.6× 106 7.7× 106 6.0× 106 † no
hood 2.2× 105 9.9× 106 3.8× 105 † no

language 4.0× 105 1.2× 106 5.9× 102 no
marine1 4.0× 105 6.2× 106 3.8× 105 † yes
mc2depi 5.3× 105 2.1× 106 1.3× 1014 no
ns3Da 2.0× 104 1.7× 106 5.6× 102 yes

parabolic_fem 5.3× 105 3.7× 106 2.1× 105 † yes
poisson3Db 8.6× 104 2.4× 106 2.6× 103 yes

pwtk 2.2× 105 1.2× 107 6.9× 105 † no
rajat31 4.7× 106 2.0× 107 4.0× 106 no
stomach 2.1× 105 3.0× 106 2.9× 101 no

t2em 9.2× 105 4.6× 106 2.2× 105 † no
thermal2 1.2× 106 8.6× 106 1.5× 106 † yes

tmt_unsym 9.2× 105 4.6× 106 2.3× 108 † no
torso2 1.2× 105 1.0× 106 2.0× 101 no
torso3 2.6× 105 4.4× 106 9.5× 101 no

venkat01 6.2× 104 1.7× 106 1.3× 105 † yes

Total memory usage is an important constraint, partic-
ularly when considering the smaller memory sizes of GPU
accelerators. Consider GMRES implemented for matrices in
compressed sparse row (CSR) format and restarting after, at
most,m inner iterations. The matrix entries, right-hand side,
and solution take combined 12nnz+O(n) bytes. The double-
precision GMRES requires an additional 8nm+O(n+m2)
bytes. Instead, the mixed precision variant requires an addi-
tional 4nnz + 4nm + O(n + m2) bytes. For problems with
many nonzeros per row relative to m, the mixed-precision
approach will require a larger total allocation, which may be
onerous on memory-constrained systems. Storing the low-
order and high-order bytes separately would circumvent
this issue [34]. Regardless of matrix storage, the mixed-
precision approach always has a smaller increase in alloca-
tion for an increase in m. On some large problems, this may
allow for a larger basis and, thus, take better advantage of
superlinear convergence in GMRES [35].

5 EXPERIMENTAL RESULTS

To test the performance of our approach on GPUs, we
implemented a restarted GMRES using the Kokkos per-
formance portability library [36] and NVIDIA’s cuBLAS
and cuSPARSE libraries. Kokkos was chosen for ease of
use and is not expected to perform significantly different
from a CUDA implementation. To limit expensive memory
transfers between CPU and GPU, all computation is done

on the GPU and only the high level control flow is done on
the CPU.

Various matrices in CSR format from the SuiteSparse
collection with more than a million nonzero elements were
tested [37]. Furthermore, we only used matrices that con-
verged with fewer than 300 restarts for a given configura-
tion. If a file ending with _b was provided by SuiteSparse,
the first column was used as the right-hand side. For other
matrices, the right-hand side was computed from a solution
where each element was randomly selected from the uni-
form range [0, 1). The matrices tested are shown in Table 1.
In addition to structural properties, the table contains lower
bounds of the condition numbers of these matrices, com-
puted by testing forward error vectors of LSQR [38]. Many
of the poorly conditioned matrices reached the iteration
limit before LSQR’s convergence criteria, so they may have
significantly worse conditioning than these lower bounds
imply.

We tested the effectiveness of the mixed-precision ap-
proach for a variety of preconditioners. First is the identity
matrix to test unpreconditioned GMRES. While in practice
some form of preconditioner is almost always used, not
using a preconditioner makes it easier to compute condition
numbers. Second is a scalar Jacobi preconditioner. This is
a diagonal matrix where each element is the inverse of the
corresponding diagonal element of A to provide a measure
of row scaling. Third is an incomplete LU factorization
without fill in (ILU(0)). This is a powerful preconditioner
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formed through Gaussian Elimination, except only entries
that are nonzero in A are computed. However, the sparse
triangular solves needed to apply the factorization cannot
be parallelized to efficiently use a GPU. So, fourth, we
test ILU(0), except with the triangular solves replaced with
Jacobi iterations [39], [40]. Because we are focusing on how
well the mixed-precision approach works for different types
of preconditioners, we test each preconditioner in isolation
and do not compare them. Furthermore, each precondi-
tioner is computed in double precision, then converted to
the appropriate precision to limit differences caused by
preconditioner differences. In addition to testing double-
precision GMRES and the proposed mixed-precision GM-
RES, we also tested a completely single-precision implemen-
tation and reducing the precision of just the preconditioner.
In order to use existing uniform-precision kernels, the input
and output of the preconditioner are converted to single
precision.

Each test was run to reach a backward error of

‖b−Ax‖2
‖A‖F ‖x‖2 + ‖b‖2

≤ 10−10.

Any test requiring more than 300 restarts was considered
a failure, with the tested matrices chosen to all succeed
using the double-precision implementation. At most 100
inner iterations were run before restarting, with three restart
strategies tested:

1) just the inner-iteration count,
2) the residual approximation improving by a factor of

10−10, and
3) the residual approximation improving by a factor of

10−6 for the first restart and the same number of
inner iterations after that.

Note that mixed precision was only tested with the third
strategy to prevent the choice of restart strategy from inap-
propriately benefiting it. For each configuration we ran the
code three times, plotting the median, with error bars for the
minimum and maximum. Run times include constructing
the preconditioner and any type conversions. The restart
strategy with the smallest median was plotted. Speedups
were computed as the inverse of the geometric mean of the
normalized mixed-precision times.

Our implementation is available at bitbucket.org/icl/
mixed-precision-gmres under the tag TPDS. We used
Kokkos 3.1.01, CUDA 10.2.89, MKL 2019.3.199, and GCC
7.3.0. Code was run on a machine with a single NVIDIA
V100 GPU and two Haswell 10-core Intel(R) Xeon(R) CPU
E5-2650 v3 @ 2.30GHz processors. Each CPU core has a
32 KiB L1 instruction cache, a 32 KiB L1 data cache, and
a 256 KiB L2 cache. Each processor has a single 25 MiB
L3 cache, and the entire node has 32 GiB of memory. The
V100 card has 80 streaming multiprocessors, a 128 KiB L1
cache for each multiprocessor, a 6 MiB shared L2 cache, and
a 16 GiB memory.

First, the results when no preconditioner is used are
shown in Fig. 1. The average speedups for the mixed-
precision approach were 18 % for MGS and 61 % for CGSR.
Furthermore, it provided a speedup for most of the tested
matrices and with CGSR almost doubled the performance
on many of the matrices. It only reduced performance

for atmosmodj using MGS and language. The single-
precision implementation only satisfied the target accuracy
on 16 of the 23 problems; for these problems, it had average
speedups of 0 % and 35 %, respectively. The total number of
inner iterations was mostly consistent between the double-
and mixed-precision implementations, as is shown in Ta-
ble 2, with the single-precision implementations needing
similar or more iterations. The most notable exception is
rajat31, which converged in significantly fewer iterations
with the mixed- and single-precision implementations, con-
tributing to its much higher speedups. We have been unable
to determine the source of this behavior; we speculate
that the floating-point error happens to perturb the Krylov
subspace to better contain the solution. For language, the
baseline implementation converged after 29 iterations with-
out restarting, whereas the mixed-precision implementation
restarted once after 29 iterations for a total of 58 iterations.
Of the matrices with provided right-hand sides, atmosmodj
had a significant increase in the number of iterations, but
mixed-precision was still able to achieve a speedup with
CGSR; thermal2 also had an increase in iterations for MGS,
but still performed on par with the baseline. For the ma-
trices with comparable iteration counts, many can achieve
approximately a 2× speedup with CGSR; however, some
only obtained modest speedups. These reduced speedups
correlate with the matrices with a high number of nonzeros
per row relative to the size of the basis; thus, transferring
the column-index array of the matrix will have a larger
influence on the runtime. As per Table 1, even matrices with
condition larger than the inverse of single-precision unit
roundoff could be solved more efficiently with the mixed-
precision approach; although, this may depend on the right-
hand side. Finally, the matrices with right-hand sides from
the SuiteSparse collection overall behaved similar to those
with generated right-hand sides.

Second are the results for a scalar Jacobi preconditioner,
shown in Fig. 2. The average speedups for the mixed-
precision implementation were 12 % and 50 % for MGS
and CGSR, respectively. The single-precision preconditioner
outperformed the double-precision implementation in some
cases. However, it failed on mc2depi for CGSR and pro-
vided an average slowdown of 8 % for both orthogonal-
ization schemes on the successful matrices. The single-
precision implementation failed to satisfy the target accu-
racy in 11 of the 30 problems; the remaining problems
had average speedups of −8 % (i.e., a slowdown) and
23 %, respectively. For MGS, there were five matrices where
the mixed-precision implementation failed to outperform
double precision. For CGSR, mixed-precision outperformed
double-precision for all matrices except language. The
total number of inner iterations for a matrix was mostly
consistent between the tested configurations, as is shown in
Table 3, with language again taking twice the iterations
and pwtk taking fewer iterations with MGS compared to
CGSR. Like the non-preconditioned results, better speedups
were achieved on matrices that had a small number of
nonzeros per row relative to the size of the basis, which
relates to the costs of matrix-vector products compared to
orthogonalization.

Third are the results for an ILU(0) preconditioner, shown
in Fig. 3. The average speedup for mixed-precision was
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Fig. 1. Relative performance of unpreconditioned GMRES with MGS (top) or CGSR (bottom).

TABLE 2
Inner Iteration counts for unpreconditioned GMRES.

Double Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR

apache2 21 400 21 400 21 500 21 500 29 200 29 300
atmosmodj 200 200 300 300 300 300

cage13 30 30 30 30 45 45
cage14 30 30 30 30 30 30

crankseg_1 6 300 6 200 6 300 6 300 7 300 5 900
CurlCurl_2 9 900 9 900 9 900 9 900 12 300 12 300
CurlCurl_4 21 100 21 100 21 100 21 100 26 400 26 400

ecology2 900 900 900 900 1 800 1 800
F1 29 200 29 200 29 200 29 200 - -

FEM_3D_thermal2 300 300 300 300 - -
G3_circuit 28 200 28 200 27 500 28 200 29 200 -
language 29 29 58 58 145 87
mc2depi 10 400 10 200 12 100 12 900 19 500 19 500
ns3Da 1 400 1 400 1 400 1 400 - -

parabolic_fem 3 500 3 500 3 500 3 500 4 100 4 100
poisson3Db 300 300 300 300 - -

rajat31 4 000 4 000 2 900 2 000 1 700 2 500
stomach 300 300 300 300 300 300

t2em 4 800 4 800 4 800 4 800 5 100 5 100
thermal2 21 100 28 500 25 600 28 500 - -

tmt_unsym 500 500 500 500 500 500
torso2 80 80 80 80 - -
torso3 200 200 200 200 300 300
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Fig. 2. Relative performance of GMRES with a scalar Jacobi preconditioner and MGS (top) or CGSR (bottom).

TABLE 3
Inner Iteration counts for GMRES preconditioned with Jacobi.

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR

af_0_k101 18 200 14 300 16 800 14 900 19 800 12 700 - -
af_shell9 21 000 20 500 22 700 23 600 27 600 28 400 - -
apache2 11 700 11 700 10 400 10 900 9 800 8 500 16 700 17 200

atmosmodj 200 200 300 300 300 300 300 300
bone010 14 600 19 000 19 100 21 500 25 600 28 200 - -

Bump_2911 3 500 3 500 4 100 3 900 4 100 4 100 16 400 16 600
cage13 22 19 22 22 22 22 33 33
cage14 22 22 22 19 22 22 22 22

crankseg_1 800 800 800 800 800 800 1 300 1 200
CurlCurl_2 1 500 1 500 1 500 1 500 1 500 1 500 1 500 1 500
CurlCurl_4 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900
ecology2 800 800 800 800 800 800 1 600 1 600

F1 3 600 3 600 3 300 3 600 3 600 3 800 - -
FEM_3D_thermal2 60 60 60 60 60 60 - -

G3_circuit 1 100 1 100 1 100 1 100 1 100 1 100 1 200 1 200
hood 3 900 3 900 4 100 4 100 4 100 4 000 - -

language 29 29 58 58 58 58 145 87
mc2depi 11 000 10 600 13 200 - 12 600 12 200 - -
ns3Da 14 300 14 400 14 800 14 600 15 000 14 900 - -

parabolic_fem 3 600 3 600 3 700 3 700 3 700 3 700 4 400 4 400
poisson3Db 400 400 400 400 400 400 - -

pwtk 13 500 18 400 15 700 16 600 17 700 20 200 - -
rajat31 600 600 700 700 700 700 700 800
stomach 130 100 130 100 130 130 130 130

t2em 4 800 4 800 4 800 4 800 4 800 4 800 5 100 5 100
thermal2 21 400 25 300 25 400 25 500 22 700 25 500 29 800 -

tmt_unsym 500 500 500 500 500 500 500 500
torso2 56 47 56 56 56 56 - -
torso3 134 100 100 100 134 134 134 134

venkat01 96 96 96 96 96 96 96 96
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Fig. 3. Relative performance of CGSR GMRES with an ILU(0) preconditioner and MGS (top) or CGSR (bottom).

TABLE 4
Inner Iteration counts for GMRES preconditioned with ILU(0).

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR

af_0_k101 4 500 4 400 5 500 7 700 5 200 6 600 7 700 7 800
af_shell9 2 200 2 200 2 200 2 200 2 400 2 500 - -

apache2 600 600 600 600 800 800 700 700
atmosmodj 82 82 82 82 200 164 200 164

BenElechi1 3 900 4 300 4 600 4 500 4 200 4 500 - -
bone010 1 200 1 200 1 200 1 200 1 200 1 200 2 200 4 700
cage13 7 7 8 8 8 8 12 12
cage14 7 7 7 7 8 8 8 8

crankseg_1 200 200 200 200 200 200 400 300
CurlCurl_2 600 600 600 600 600 600 700 700
CurlCurl_4 1 400 1 400 1 400 1 400 1 400 1 400 1 700 1 700
ecology2 200 200 200 200 200 200 300 300

F1 1 000 1 000 1 000 1 000 1 000 1 000 - -
FEM_3D_thermal2 10 10 12 12 12 12 - -

G3_circuit 200 200 200 200 300 300 300 300
language 9 9 14 14 14 14 28 42
marine1 300 300 300 300 300 300 300 300
mc2depi 1 700 1 700 1 600 1 600 1 700 1 700 1 800 1 700

ns3Da 200 200 200 200 200 200 - -
parabolic_fem 800 800 800 800 800 800 900 900

poisson3Db 100 100 174 174 174 174 - -
rajat31 10 10 9 9 18 18 18 18
stomach 17 17 18 18 20 18 20 18

t2em 600 600 600 600 600 600 600 600
thermal2 4 800 5 100 5 100 5 100 5 200 5 100 5 700 5 700
tmt_unsym 200 200 200 200 200 200 200 200

torso2 11 11 12 12 12 12 - -
torso3 35 35 48 48 48 48 48 48

venkat01 12 12 12 12 12 12 12 12
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Fig. 4. Relative performance of CGSR GMRES with an ILU(0) preconditioner using five Jacobi iterations for triangular solves and MGS (top) or
CGSR (bottom).

TABLE 5
Inner Iteration counts for GMRES preconditioned using ILU(0) with five Jacobi iterations for triangular solves.

Double Preconditioner Mixed Single
Matrix MGS CGSR MGS CGSR MGS CGSR MGS CGSR

cage13 7 7 8 8 8 8 12 12
cage14 7 7 8 8 8 8 8 8

language 9 9 14 14 14 14 21 35
ns3Da 200 200 200 200 200 200 - -

parabolic_fem 800 800 800 800 800 800 900 900
poisson3Db 100 100 174 174 174 174 - -

stomach 21 21 22 22 22 22 22 22
t2em 800 800 800 800 800 800 800 800

thermal2 5 100 5 100 5 000 5 100 5 100 5 100 5 700 5 800
tmt_unsym 200 200 200 200 200 200 200 200

torso2 11 11 12 12 12 12 - -
torso3 48 48 64 64 64 64 64 64

venkat01 16 16 16 16 16 16 16 16

−9 % and −7 % for MGS and CGSR, respectively (i.e.,
a slowdown). For the single-precision preconditioner, the
speedups were −8 % and −9 % instead. There are a few
factors that we attribute the lack of improvement to. The
single-precision implementation failed to produce an accu-
rate enough solution to 7 of the problems; the remaining
problems had average speedups of −11 % and −10 %, re-
spectively. First, both sparse triangular solves have limited
parallelism for the GPU to exploit, particularly when there
are few nonzeros per row; this results in the GPU bandwidth
being underutilized and limited benefit by reducing the
size of the data. Furthermore, the poor performance of the
triangular solves causes them to make up a large part of the
performance. Second, the factorization is done in double-
precision for both implementations, making it a fixed cost in
the performance. Third, because of the effectiveness of the
preconditioner, a high percentage of matrices can be solved
without restarting in double-precision; however, the mixed-
precision implementation must always restart at least once.
These restarts incur overhead by computing the solution
update and new residual, and reduce the rate of conver-
gence for some matrices, increasing the iteration count, by
discarding information on the old Krylov subspace and
interfering with GMRES’s superlinear convergence [35].
Table 4 shows the relevant iteration counts and that the
baseline can converge without restarting for 11 out of the

29 matrices.
Finally, are the results for an ILU(0) preconditioner with

five Jacobi iterations for triangular solves, shown in Fig. 4.
The speedup was 8 % and 13 % for MGS and CGSR, respec-
tively. Additionally, the single-precision preconditioner was
able to achieve some improvement overall, with speedups of
3 % and 4 %, respectively. The single-precision implementa-
tion failed to produce an accurate enough solution to 3 of the
problems; the remaining problems had average speedups
of 4 % and 4 %, respectively. Note that while the triangular
solves have been improved, the other factors limiting the
improvement of the regular ILU(0) preconditioner remain.
Table 5 shows the iteration counts and that the baseline only
needed to restart on 5 of the 13 matrices.

While testing the performance, we discovered that us-
ing CGSR provides better performance in GPU-accelerated
GMRES compared to MGS, despite the extra orthogonaliza-
tion. However, results showing this performance difference
do not appear in literature, outside of a few assertions
that CGSR is better for GPU-accelerated systems [19], [41].
The overall speedup is higher for simpler preconditioners
and the mixed-precision implementation, as shown in Ta-
ble 6. Recall that MGS requires j dot-products alternated
with j vector additions for the jth inner iteration while
CGSR merely requires four matrix-vector products. Thus,
CGSR launches significantly fewer kernels which reduces
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TABLE 6
Average speedup of CGSR-GMRES versus MGS-GMRES for various

configurations.

Double Mixed Single
Preconditioner Speedup Speedup Speedup

Identity 36% 87% 181%
Jacobi 34% 79% 116%
ILU(0) 4% 7% 4%

ILU(0) with Jacobi 8% 13% 4%

overhead; furthermore, high GPU utilization is easier to
obtain with larger kernels than smaller ones. The better
speedup for mixed- and single-precision implementations
likely comes from reductions in the cost of the kernel’s
execution making the kernel launches more costly relative
to the total time. Similarly, when GMRES uses a cheaper
preconditioner, it spends a higher percentage of its run-
time doing the orthogonalization which results in a better
speedup for switching from MGS to CGSR.

6 CONCLUSION

Like previous works with similar uses of precision [7],
[18], [19], [20], our mixed-precision implementation never
required more than twice the total inner iterations than the
double-precision implementation, and usually much less
than twice the total inner iterations when many restarts
are needed. This reinforces the ideas provided by Sec. 3.
Furthermore, looking at the matrices tested without a pre-
conditioner, as listed in Table 1, none of the matrices satisfy
n2u < 1, let alone O(n2j3)uκ(AVj) < 1. So, c4(n, j) from
Thm. 1 can likely be significantly improved, which corre-
lates with the analysis of the types of dot-product bounds
used.

Between the theoretical results in Sec. 3 and the ex-
perimental results in Sec. 5, there is strong evidence that
this mixed-precision approach for GMRES retains double-
precision accuracy. Performance improvement was less
clear cut, with the ILU(0) preconditioner seeing a slow-
down. However, tests with GPU-friendly preconditioners
and baselines that restarted consistently showed speedups,
especially with CGSR orthogonalization.

There are three main future directions for this work. The
first direction is to understand the performance of mixed-
precision GMRES on multi-GPU and distributed systems.
These systems are important for solving problems too large
to be solved effectively or even fit on a single compute
unit. However, they have additional communication costs
to coordinate and exchange data. The second direction is to
investigate the use of alternative data representations. 16-
bit floating-point formats are one possibility but reduce the
accuracy by half compared to single precision. However, al-
ternative techniques, such as compression, may allow using
less than 32-bits per value without significantly reducing
accuracy. Furthermore, it may be possible to reduce the
memory needed for matrix indices. The third direction is
to extend these ideas to other formulations of GMRES and
other Krylov methods. One particularly important class
of GMRES variants are the communication avoiding and
pipelined algorithms, which try to reduce communication
overheads when running on distributed systems.

APPENDIX
PROOF OF THEOREM 1
Let · denote values computed by finite precision GMRES
and ·(e) denote values computed by exact GMRES. Because
of, e.g., Line 3 in Alg. 1, we can assume the initial guess is
0 ∈ Rn without loss of generality.

We start with Arnoldi’s procedure, as described by
Lines 6–15 of Alg. 1. In finite precision, it produces Vj+1,
Hj such that

AVj + Ej = Vj+1Hj and Vj+1
T
Vj+1 = I − F. (1)

Note that

Ej = [E1v1, E2v2, . . . , Ejvj ] + ∆H

where |Ei| ≤ γp|A| for i = 1, . . . , j, p is the maximum
number of nonzeros in any row of A [33], ‖∆H‖2 ≤
c1(n, j)u‖A‖2, and c1(n, j) ∈ O(nj3/2) [6, (25)]. So,

‖Ej‖2 ≤ γp‖|A|‖2‖|Vj |‖2 + c1(n, j)u‖A‖2.

By the assumption on the conditioning, ‖F‖2 ≤
√
u [6,

Thm. 2, (32), and (38)]. So, there exists a symmetric pos-
itive definite matrix W such that Vj+1

T
WVj+1 = I and

κ(W ) ≤ (1 +
√
u)/(1−

√
u) [13, Lemma 2]. Thus,√

1−
√
u ≤ σ1(Vj+1) ≤ σ1(Vj)

≤ σj(Vj) ≤ σj+1(Vj+1) ≤
√

1 +
√
u

and

‖Hj‖2 ≤
(√

1+
√
u

1−
√
u

(1 + γp) + c1(n, j)u

)
‖A‖F .

The final computed solution is χj = Vj+1yj + δχ with
|δχ| ≤ γj |Vj ||yj | [33]. Then,

‖yj‖2 ≤
(√

1−
√
u− γjj1/2

√
1 +
√
u

)−1
‖χj‖2

and
‖b−Aχj‖2 ≤ ‖b−AVjyj‖2 + ‖Aδχ‖2.

By (1),

‖b−AVjyj‖2 = ‖Vj+1(βe1 −Hjyj)‖2 + ‖Ejyj‖2.

Thus,

‖Vj+1(βe1 −Hjyj)‖2

=
√

1 +
√
u‖βe1 −Hjyj‖2.

Next, consider the least squares problem solved by
lines 16–24 in Alg. 1. Let Gi and Gi be the computed and
exact Givens rotation matrices to eliminate the subdiagonal
elements in rows i = 2, . . . , j + 1 of Hj , and let R and
R be the resulting computed and exact triangular matrices.
Furthermore, let Q be the product of rotation matrices, and
let q and q be the computed and exact values of QTβe1.
Thus, ‖R − R‖2 ≤ 9uj‖Hj‖2 and ‖q − q‖2 ≤ 9ujβ [33,
Lemmas 19.8, 3.6, and 3.4]. So,

‖βe1 −Hjyj‖2 ≤ ‖q −Ryj‖2
+ 9ujβ + ‖(R−R)yj‖2
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Then, yj satisfies

(R+ ∆R)yj = q[1 : j]

where |∆R| ≤ γj |R|. So,

‖q −Ryj‖2 =

∥∥∥∥[ ∆Ryj
q[j + 1]

]∥∥∥∥
2

≤ ‖∆Ryj‖2 + |q[j + 1]|
= min

y
(‖βe1 −Hjy‖2)

+ 9ujβ + γj‖|R|‖2‖yj‖2

Additionally,

‖|R|‖2 ≤ (j1/2 + 9j3/2u)‖Hj‖2
Next, we bound this minimization. Note that for any

y ∈ Rj

‖βe1 −Hjy‖2 = ‖W 1/2Vj+1(βe1 −Hjy)‖2
≤
√

1
1−
√
u
‖b− Vj+1Hjy‖2 ( [13, (35)])

≤
√

1
1−
√
u

(
‖b−AVjy‖2 + ‖Ej‖2‖y‖2

)
.

Additionally,∥∥∥∥arg min
y

(‖b−AVjy‖2 + ‖Ej‖2‖y‖2)

∥∥∥∥
2

≤
∥∥∥∥arg min

y
(‖b−AVjy‖2)

∥∥∥∥
2

≤
√

1 +
√
u‖χ(W )

j ‖2

where χ(W )
j is the solution computed exactly by j iterations

of W -GMRES. So,

min
y

(‖b−AVjy‖2 + ‖Ej‖2‖y‖2)

≤ min
y

(‖b−AVjy‖2) +
√

1 +
√
u‖Ej‖‖χ(W )

j ‖

Because exact W -GMRES computes miny(‖b−AVjy‖2),

min
y
‖b−AVjy‖2 ≤

√
1+
√
u

1−
√
u
‖b−Aχ(e)

j ‖2.

Finally, combining the preceding inequalities gives

‖b−Aχj‖2 ≤ 1+
√
u

1−
√
u
‖b−Aχ(e)

j ‖2

+ 9uj
√

1 +
√
u‖A‖2‖χj‖2

+

√
1+
√
u

1−
√
u
‖A‖F ‖χ(W )

j ‖2

×
(
γp

√
j(1 +

√
u) + c1(n, j)u

)
+

c1(n, j)u‖A‖2‖χj‖2√
1−
√
u− γjj1/2

√
1 +
√
u

+
j1/2

√
1 +
√
u‖A‖F ‖χj‖2√

1−
√
u− γjj1/2

√
1 +
√
u

×
(
γp + γj

+ (γj + 9ujγj + 9uj1/2)

×
√

1+
√
u

1−
√
u

(2 + γp)

)
.
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J. L. Träff, S. Hunold, and F. Versaci, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 650–661.

[40] E. Chow, H. Anzt, J. Scott, and J. Dongarra, “Using Jacobi it-
erations and blocking for solving sparse triangular systems in
incomplete factorization preconditioning,” Journal of Parallel and
Distributed Computing, vol. 119, pp. 219–230, Sep. 2018.

[41] J. Dubois, C. Calvin, and S. Petiton, “Performance and numeri-
cal accuracy evaluation of heterogeneous multicore systems for
Krylov orthogonal basis computation,” in High Performance Com-
puting for Computational Science – VECPAR 2010, ser. Lecture Notes
in Computer Science, J. M. L. M. Palma, M. Daydé, O. Marques,
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