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Abstract

The Fast Fourier Transform (FFT) is used in many applications such as molecular dynamics,
spectrum estimation, fast convolution and correlation, signal modulation, and many wireless
multimedia applications. FFTs are also heavily used in ECP applications, such as EXAALT,
Copa, ExaSky-HACC, ExaWind, WarpX, and many others. As these applications’ accuracy
and speed depend on the performance of the FFTs, we designed an FFT benchmark to mea-
sure performance and scalability of currently available FFT packages and present the results
from a pre-Exascale platform. Our benchmarking also stresses the overall capacity of system
interconnect; thus, it may be considered as an indicator of the bisection bandwidth, commu-
nication contention noise, and the software overheads in MPI collectives that are of interest
to many other ECP applications and libraries.

This FFT benchmarking project aims to show the strengths and weaknesses of multiple
FFT libraries and to indicate what can be done to improve their performance. In particular,
we believe that the benchmarking results could help design and implement a fast and robust
FFT library for 2D and 3D inputs, while targeting large-scale heterogeneous systems with
multicore processors and hardware accelerators that are a co-designed in tandem with ECP
applications. Our work involves studying and analyzing state-of-the-art FFT software both
from vendors and available as open-source codes to better understand their performance.
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Chapter 1

Background

The Fast Fourier Transform (FFT) is considered one of the top 10 algorithms of the 20th
century [1] and plays a key role within applications in a variety of fields ranging from elec-
tronics to molecular dynamics. In essence, the FFT of x, an m-dimensional vector of size
N ≡ N1 ×N2 ×·· ·×Nm, is denoted y = FFT (x) and defined as an m-dimensional vector
the same size as x by the following equations:

y(k1, k2, . . . , km) =
N1−1

∑
n1=0

N2−1

∑
n2=0

· · ·
Nm−1

∑
nm=0

x̄ · e−2πi
(
k1n1
N1

+ k2n2
N2

···+ kmnm
Nm

)
(1.1)

for 0 ≤ ki ≤Ni− 1, i = 1, . . . ,m, where x̄ = x(n1, . . . , nm).

From Eq. 1.1, we see that the FFT could be directly computed by a tensor product; how-
ever, this would costO(N ∑

m
i=1Ni). The advantage of the FFT is that the cost can be reduced

to O(N log2N ) operations by exploiting the structure of the tensor.

The parallel FFT is implemented by a sequence of 1D or 2D FFTs [2], which are com-
puted using efficient numerical libraries that are optimized for intra-node use. These include
open source FFTW [3] and vendor-supplied cuFFT [4], rocFFT [5], MKL [6], etc. Fig. 1.1
shows the simplified steps required to perform a 3D FFT that is typically used in molecular
dynamics applications [7, 8]. For some applications, the input data has a shape that is ready
to perform one-dimensional FFTs on pencils or two-dimensional FFTs on slabs, and these
do not require initial or final reshape operations. It was shown [9] that shaving one reshape
step can reduce the runtime by about 25%, since asymptotically the multi-dimensional FFT’s
runtime is dominated by the number of data reshape operations.

Communication bottlenecks in parallel algorithms—including in FFT—have been wors-
ening in the past decade, since the number of hardware threads in current and upcoming
multicore processors continues to grow dramatically with improvements in bandwidth and
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Input 3-D grid
Output 3-D grid

Slabs (1-D decomposition)

Pencils (2-D decomposition)

Bricks decomposition

Figure 1.1: The sequence of steps for computing the 3D FFT for different decomposition of the in-
put tensor. The pencil decomposition (green bars throughout) is the default option in most libraries.
Using slabs (red box at the top) saves an extra step of data reshape. The bricks decomposition (purple
translucent cubes) is supported by some libraries and could be beneficial on some platforms.

reduced latency [10]. For instance, the Summit supercomputer uses powerful nodes with
two IBM POWER9 processors and six NVIDIA Volta V100 GPUs, which are capable of
reaching 42 Tflop/s cumulatively in double precision. However, the interconnect between
the nodes is supported by a bandwidth of only 25 GB/s: a ratio of 2000 operations per byte
transferred. Another supercomputer from the top of the TOP500 list, the Sunway Taihu-
Light, has SW26010 processors with 260 cores, and 1 execution thread per core, with a uni-
directional bandwidth of 8 GB/s between nodes and 1 microsecond of latency [11].

Consequently, the increasing gap between compute and communication capabilities in
current supercomputers makes many algorithms communication-bound. When this hap-
pens, algorithm performance drastically decreases compared to the machine’s peak capabil-
ities. Therefore, it is critical to develop algorithms capable of dealing with such a drastic
communication-computation imbalance, as well as create an ecosystem of integrated tun-
ing techniques for improved communication. Such approaches are crucial in general and
are paramount for the FFTs, where communication could take more than 95% of their total
running time on GPU-accelerated machines [9, 12].

Upcoming Exascale systems are expected to continue with hybrid CPU-GPU design
with increased stress on GPU usage. A major issue with parallel FFT implementations for
such systems is that they quickly become communication-bound due to the excess of com-
pute capacity concentrated in the GPU hardware accelerators. Indeed, theoretical analysis of
hybrid Exascale systems shows that the FFT computation itself would take only a small frac-
tion of the total runtime, while the communication between the distributed nodes would be
the main bottleneck where most of the runtime is spent [13].

Several authors reported the impact of multi-process communication on distributed FFT
performance [12, 14, 15, 16] using both binary and collective Message Passing Interface (MPI)
communication schemes that are used in majority of modern numerical libraries. At the im-
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Table 1.1: Single-device and shared-memory FFT libraries.

Library Programming License Developer GPU 2D&3D Strided
Name Language Support Support data

cuFFT C NVIDIA ® NVIDIA yes yes yes
ESSL C++ IBM ® IBM no yes yes
FFTE Fortran Permissive U. Tsukuba/RIKEN yes yes yes
FFTPACK Fortran BSD-3-Clause NCAR no no no
FFTS C MIT U. Waikato no no no
FFTW C GPL-2.0 MIT no yes yes
FFTX C BSD-3-Clause LBNL/Sandia yes yes yes
KFR C++ GPL-2.0 KFR no no yes
KISS C++ BSD-3-Clause Sandia no yes yes
oneMKL C Intel® SSL Intel yes yes yes
rocM C++ MIT AMD yes yes yes
VkFFT C++ MPL-2.0 D. Tolmachev yes yes yes

plementation level, current efforts among the hybrid CPU-GPU FFT libraries rely on default
routines like CUDA-aware MPI, and benchmarks of these libraries have shown far-from-
peak performance along with the topology issues that hinder scalability [17]. Specialized MPI
implementations for accelerators—like the NCCL library from NVIDIA that currently pro-
vides some collective routines [18]—are still at the early stages and continue to evolve. This
motivated the development of specialized communication frameworks and custom routines
for faster data exchange for parallel FFTs [12, 19, 20].

1.1 Single-device and shared-memory FFT libraries

Within a single node, efficient FFT implementations are available to compute multidimen-
sional FFTs. One of the most widely used libraries is FFTW [3], which has been tuned to
perform well on a number of CPU architectures (no GPU support). Vendor libraries for
this purpose have also been highly optimized, such is the case with MKL (Intel) [6] and ESSL
(IBM) [21] for CPUs, and rocFFT (AMD) [5] and cuFFT (NVIDIA) [4] for GPUs. Recent
alternatives include Intel’s FFT kernels within the OneAPI library, Vulkan FFT (VkFFT)
and KFR. Within the ECP community, there is an effort for the optimization of single-node
FFT computations, using FFTX [22] and Spiral [23]. Most of the previous Single-device li-
braries have been extended to distributed memory versions—some by the original developers
and others by different authors.

Tuning has been successfully performed for single-core and shared-memory implemen-
tations (e.g., FFTW [3] allows the FFT_MEASURE_FLAG option to be passed to the plan cre-
ation function to select the best available configuration of parameters and resources). Simi-
larly, the vendor libraries mentioned above also offer tuning tailored to their specific systems.
More recent developments are looking for intra-node optimization, such is the case for the
FFTX Exascale project [22] and Spiral [23]. Table 1.1 shows the main single-device FFT
backends from vendors and open-source. Single-device libraries are very important for paral-
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lel FFTs, since the latter rely on the former for the computation of the local low-dimensional
FFTs: either 1D or 2D.

1.2 Distributed FFT libraries

In Table 1.2 we present a list of currently available state-of-the-art distributed FFT libraries
and their main features.

1.2.1 CPU-based libraries

Many 3-D parallel libraries started as extensions of the CPU-based single-node libraries listed
in the previous section. For instance, FFTW is a CPU-only library that supports MPI via slab
decomposition; however, it has limited scalability and is limited to a small number of nodes,
given the small size of the 3-D FFT. Below, we briefly describe some of these libraries.

Table 1.2: Feature comparison of state-of-the-art distributed FFT libraries.

Library Programming License Developer CPU GPU Real-to Layout
Name Language Backend Backend Complex Slab/Brick
AccFFT C++ GPL-2.0 GA Tech. FFTW cuFFT yes no / no
2DECOMP NAG-2011 NAG FFTW yes yes/no&FFT Fortran ESSL
Cluster FFT Fortran Intel® SSL Intel MKL oneMKL no no / no

FFTW
CRAFFT Fortran check with Cray ACML yes no / nodeveloper SPIRAL

U. TsukubaFFTE Fortran Permissive RIKEN FFTE cuFFT yes yes/no

C++ Sandia
FFTW

FFTMPI BSD-3-Clause KISS no no / yes
MKL

FFTW C GPL-2.0 MIT FFTW yes no / no

UTK FFTW cuFFT
heFFTe C++ BSD-3-Clause MKL rocM yes yes / yes

oneMKL
RTWH FFTWnb3dFFT Fortran GPL-2.0 Aachen ESSL yes no/no

P3DFFT++ C++ BSD-3-Clause UCSD FFTW yes no/noESSL
ETH cuFFTSpFFT C++ BSD-3-Clause Zürich FFTW rocM yes yes/no

SWFFT C++ BSD-3-Clause Argonne FFTW no no/yesNatl. Lab
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2Decomp&FFT

2Decomp&FFTis written in Fortran by N. Li and S. Laizet [24] in the context of the Open
Petascale Libraries. The execution relies on a 2D pencil decomposition of the data, and then
makes a heavy use of MPI Alltoall(v) routines. 2Decomp&FFTsupports different backends
such as ACML, FFTE, FFTW, and MKL.

The latest version of 2Decomp&FFT, 1.5, was release in 2012. Minor modifications
are required in order to be able to compile it on today’s systems. The code offers an auto-
tuning routine that aims to find the most efficient processor grid. In its last release, authors
mentioned a prototype development of a GPU version by performing single-device FFTs via
cuFFT.

FFTMPI

This library was introduced in [8] for efficiently computing three dimensional FFTs, en-
countered in the simulation of long-range interactions within the LAMMPS [7] library, and
currently within the EXALLT-ECP project.

FFTW

FFTW was one of the first distributed MPI implementations of parallel FFT computations [3].
Authors performed this using slab decompositions. This, however, limits its scalability to a
small number of nodes.

nb3dFFT

This library was introduced by Göbbert et al. [25]. The latest version is from 2015 and only
supports real-to-complex transforms. These capabilities make it a good candidate for appli-
cations in digital signals and pattern recognition.

P3DFFT Family of Libraries

Parallel Three-Dimensional Fast Fourier Transforms, or P3DFFT [26], implement three di-
mensional variants of FFT. The libraries, written mainly by Dmitry Pekurovsky at the San
Diego Supercomputer Center (SDSC) at the University of California San Diego (UCSD),
use 2D, or pencil, decomposition [27] which overcomes an important limitation to scalabil-
ity inherent in the FFT implementations that use 1D, also known as slab, decomposition. For
this kind of decomposition, the number of individual cores that run P3DFFT can be as large
as n2, where n is the linear problem size. The authors claim this decomposition approach
can scale up to 219 = 524,288 cores.
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P3DFFT is written in Fortran 90 and optimized primarily for parallel FFT performance.
It uses MPI for inter-processor communication in a distributed memory setting. P3DFFT
version 2.7.5 and above allow the user to enable multithreading as an option in order to
leverage the CPU-GPU model of parallelism with the combination of MPI and OpenMP.
For cross-language interoperability, P3DFFT features a C/C++ interface with examples in
both Fortran and C available with the source code distribution. An Autoconf-generated
configuration script provides the installation options for the user. The P3DFFT package
requires a single-device FFT library, and the code includes API calls to FFTW and IBM’s
ESSL.

P3DFFT++ is the next generation implementation of P3DFFT, and its versioning starts
with 3.0. This new library extends the interface of the original P3DFFT to allow a wider
range of usage scenarios. New choices for defining custom data layouts beyond the originally
predefined 2D pencil blocks are provided to the user. As the name suggests, P3DFFT++
is written in C++ and it includes both C and Fortran interface bindings. For distributed
memory parallelism it uses MPI. Table 1.3 compares the functionality of P3DFFT version
2.7.6 with P3DFFT++ version 3.1.1. One important difference between these two versions
is the lack of complex-to-complex transform in the early P3DFFT versions. Therefore, in the
experiments for complex transforms presented in §2.4, we only use P3DFFT++. In order to
support non-power-of-two number of MPI ranks, we used the Git commit 2f2d70d that fixes
a limitation in the released version 3.1.1 of P3DFFT++.

Table 1.3: Comparison of functionality of P3DFFT v.2.7.6 with P3DFFT++ v.3.1.1.

Feature P3DFFT 2.x P3DFFT++

Support for real-to-complex and complex-to-real FFT Yes Yes
Support for complex-to-complex FFT No Yes
Sine and cosine transforms 1D only Yes
Pruned transforms Yes No
In-place and out-of-place Yes Yes
Multiple grids No Yes
Hybrid MPI/OpenMP Yes No

SWFFT

This library was first introduced [28] as part of the cosmology project HACC [29]. SWFFT
aims to provide efficient and scalable parallel FFTs for inputs distributed between MPI ranks
on a 3D Cartesian communicator, and it uses the pencil-decomposition approach.

SWFFT does not work for arbitrary grid sizes and number of MPI processors, however.
Still, SWFFT is one of the very few libraries that supports brick decomposition, see Figure 1.1.
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1.2.2 CPU-GPU libraries

There are only a few CPU-GPU FFT implementations today. The developments are gen-
erally based on efforts to minimize the communication impact. For instance, the slab ap-
proach [30] is one of the first heterogeneous codes for large FFT computation on GPUs.
Its optimizations and tuning techniques focus on reducing tensor transposition cost by ex-
ploiting the Infiniband interconnection using the IBverbs library, which limits its portability
to Infiniband-based systems. Further improvements to scalability have been presented in the
FFTE library [31], which supports pencil decomposition and includes several optimizations,
although with limited features and limited communication improvements. FFTE relies on
the commercial PGI compiler, which may also limit its usage.

AccFFT

Introduced in [14], this library was developed in an effort to overlap computation and col-
lective communication by reducing the Peripheral Component Interconnect Express (PCIe)
overhead, getting considerable speedups and good scalability for large, real-to-complex trans-
forms using NVIDIA K20 GPUs.

CRAFFT

The CRay Adaptive FFT (CRAFFT) [32] is a proprietary interface to FFT functionality
in Cray Scientific Libraries suite available since at least 2008 as part of Cray’s Programming
Environment on the supported hardware starting with the XT and continuing on the XC
series of supercomputing machines [33]. This library supports serial and parallel, single-and
double-precision, Fortran and C routines that compute the discrete Fourier transform in
one, two, or three dimensions. Similarly to heFFTe, CRAFFT does support many backends
and allows automatic and dynamic selection of the fastest FFT kernel.

FFTE

The Fastest Fourier Transform from the East (FFTE) was first introduced in [31], and it is
one of the very few CPU-GPU libraries under continuous development [16]. Its latest ver-
sion, 7.0, includes a wide range of optimizations and provides GPU support only via PGI
compiler.

One issue with FFTE is its lack of support for arbitrary grid sizes and number of MPI
processors. This restriction requires that the number of MPI processes evenly divide each
dimension of the computation grids.
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HeFFTe

Among all libraries studied in this report, heFFTe supports the most single-device backends
and enables parallel FFT computations on AMD, Intel, and NVIDIA GPUs. The heFFTe
library was first introduced in recent years [34, 35, 9] and is an open-source implementation
that is a part of the Exascale Computing Project. The heFFTe library aims to be highly scal-
able and has shown linear scaling for large node-counts [9]. As shown in Table 1.2, heFFTe
includes several features missing by other state-of-the-art libraries.
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Chapter 2

Experimental Results

In this chapter, we summarize the results obtained using the testing programs supplied by
the eight parallel FFT libraries described in the previous chapter.

2.1 Benchmark setup

Table 2.1 shows the versions and the testing programs supplied by the libraries used for the
experiments in this report. For each of these libraries, we used the parallel FFT testing code
on either CPUs, GPUs, or both as they were provided in the released version or from the
repository for the respective libraries. This testing strategy uses library-specific testers, which
are likely to favorably expose performance benefits of the particular implementation. At the
same time, it creates a potential for unfair comparison due to the different timing regimes
of varying approaches to providing unified time measurement across nodes, such as taking
average, median, or maximum of timer readings between parallel nodes. Separately built exe-
cutables for testing may link-in slightly different dependent modules despite our best efforts
to limit the build environment to the same minimum set of available settings shown in Ta-
ble 2.2. The estimation of computed error would likely be different across the tester codes
resulting in inconsistent error reporting and correctness validation. We foresee addressing
some of these issues in our planned development of a unified testing harness as part of the
future work detailed in Chapter 4.

The performance experiments were performed using the Summit supercomputer at Oak
Ridge National Laboratory. This is a hybrid supercomputer, featuring both CPUs and GPUs,
and was ranked number two on the TOP500 lists since June 2020 until of June 2021 as of
this writing. The machine is ideal to achieve our FFT benchmarking goals, and we follow
with the description of the experimental setup.
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Table 2.1: FFT Libraries for benchmarking tests. All libraries were tested using their released versions
with the exception of P3DFFT++ that used Git commit 2f2d70d to fix issues related to the non-power-
of-2 MPI process counts.

Library Version CPU GPU
Name Test Test

AccFFT 2.0 no yes
2Decomp&FFT 1.5.847 yes no
FFTE 7.0 no yes
FFTW 3.3.8 yes no
FFTMPI 1.0 yes no
heFFTe 2.0 yes yes
SWFFT 1.0 yes no
P3DFFT 2.7.9 yes no
P3DFFT++ 2f2d70d yes no

Experiments with the Cray/HPE CRAFFT and Intel Cluster FFT libraries were not per-
formed for this report since their portability is limited to specific hardware platforms with
vendor-specific software stacks. The former (Cray Adaptive FFT routines) is included with
the Cray/HPE LibSci library of scientific software for their XT, XE, and XK systems. The
latter is included with the Intel oneAPI Math Kernel Library and is available only for the In-
tel 64 and Intel Many Integrated Core architectures. In the case of SpFFT, we do not provide
experiments since this library targets sparse data, and it would not be possible to compare its
performance with respect to the other libraries. For building the libraries from Table 2.1, we
used the compiler and dependencies described in Table 2.2.

Table 2.2: Software versions used for the experiments in this report.

Software Module Version Used in Tests

CUDA 10.1.243
FFTW 3.3.8
GNU compilers 6.4.0
Spectrum MPI 10.3.1.2-20200121
CMake 3.11.3

2.2 Computational resources

Our experiments were performed using up to 1,024 Summit nodes, out of a total of 4,608.
As shown in Figure 2.1, each node consists of two sockets, each composed of a 22-core IBM
POWER9 CPU and 3 NVIDIA Volta V100 GPUs. The 6 GPU accelerators provide a theo-
retical double-precision capability of approximately 46.8 TFlop/s.
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Within the same socket, computing units have access to NVIDIA NVLink interconnects
with a theoretical bandwidth of 50 GB/s (100 GB/s bi-directional). Inter-node connection
is limited to 25 GB/s (in each direction).
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Figure 2.1: Architecture of Summit nodes: computing units and network connections.

2.3 Experimental setup

We perform a strong scalability experiment to benchmark the eight libraries described in Ta-
ble 2.1. For this, we consider:

• A 3-D transform of size 10243, using double-precision complex random input.

• Unless otherwise specified, the input and output are in pencil shape. Schematically,
this means the input and output are those enclosed with the dashed rectangle in Figure
2.2.

Figure 2.2: Phases for the computation of a 3-D FFT with pencil decomposition. From brick-shaped
input to brick-shaped output.
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• For all libraries we use the pencil decomposition, with the exception of FFTW, which
internally uses the slab decomposition, see Figure 1.1.

• We report the average of ten consecutive executions of forward and backward trans-
forms.

• We employ the test drivers provided by the library developers, see Table 2.2, with the
exception of FFTW, for which we implemented a tester. If tuning is set by default, we
disable this option for a fair comparison among all libraries.

• If no time is shown for a given node-count, it means the library had a runtime issue,
which is related to insufficient memory to handle the input data in most cases.

• For CPU-based libraries, we use 40 MPI processes per node, 1 per IBM POWER9
core, 20 per socket, see Figure 2.1. Since FFTE and SWFFT only allow a number of
processes divisible by the FFT size, we also add an experiment using 32 MPI processes
per node.

• For GPU-based libraries, we use 6 MPI processes per node, 1 per NVIDIA V100 GPU,
3 per socket, see Figure 2.1. Since FFTE only allows a number of processes divisible by
the FFT size, then we also add an experiment using 4 MPI processes per node, 2 per
socket.
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2.4 CPU-based libraries

For our first experiment, we compare six CPU libraries going from pencil-shaped input to
pencil-shaped output. Figure 2.3 shows the strong scalability results using 40 MPI processes
per node.
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Figure 2.3: Strong scalability for a 3-D FFT of size 10243 using 40 MPI processes per node, 1 per IBM
POWER9 core, 20 per socket. Using 2 reshapes (transpositions) per FFT direction.

Next in Figure 2.4, we compare heFFTe and FFTMPI using 4 reshapes, see Figure 2.2.
These libraries, and SWFFT, are the only ones that have this option enabled by default on
their test drivers. Refer to Figure 2.6 for a comparison of these three libraries.

19



1.0E-2

1.0E-1

1.0E+0

1.0E+1

1 2 4 8 16 32 64 128 256 5121,024

Ti
m

e 
(s

)

Number of Summit Nodes

FFTMPI

heFFTe

Figure 2.4: Strong scalability for a 3-D FFT of size 10243 using 40 MPI processes per node, 1 per IBM
POWER9 core, 20 per socket. Using 4 reshapes (transpositions) per FFT direction.

Figures 2.3 and 2.4 show that some libraries halt linear scaling when using a large number
of cores. This may be due to implementation issues or communication management.

Next, Figures 2.5 and 2.6 show results using only 32 cores by node, since libraries such
as FFTE and SWFFT are size-constrained, meaning that they only work for certain pairs of
FFT-size and number of processes.
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Figure 2.5: Strong scalability for a 3-D FFT of size 10243 using 32 MPI processes per node, 1 per IBM
POWER9 core, 16 per socket. Using 2 reshapes (transpositions) per FFT direction.

In Figure 2.6, we use brick-shaped input and output for analyzing FFTMPI, heFFTe,
and SWFFT libraries, using 4 tensor transpositions per FFT, see Figure 2.2.
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Figure 2.6: Strong scalability for a 3-D FFT of size 10243 using 32 MPI processes per node, 1 per IBM
POWER9 core, 16 per socket. Using 4 reshapes (transpositions) per FFT direction.
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2.5 GPU-based libraries

AccFFT, FFTE, and heFFTe are among the very few libraries that have GPU support. In
Figures 2.7 and 2.8, we show a comparison between these three, using cuFFT as their 1-D
backend. For heFFTe, we show two communication options: Point-to-Point (p2p) and All-
to-All (a2a). We observe that tuning communication can have a considerable impact on per-
formance. In Figure 2.7, we used only 4 out of the 6 available GPUs per node, due to FFTE
restrictions. Some of the libraries were unable to perform the transform at the lower range of
node counts due their required working buffer allocation and the limited size of the GPUs’
main memory.
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Figure 2.7: Strong scalability for GPU libraries using 4 NVIDIA V100 GPUs per node, 2 per socket.
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Chapter 3

Profiling and Tuning Considerations

3.1 Tuning FFT Libraries for Improved Performance

Most of the FFT libraries tested in this report are configurable. They accept a number of
parameters that change their behavior to better fit the application needs and adapt to the
underlying platform, including the hardware as well as the software stack. As an example
use of this interface, we show the effect of the two-dimensional process grid shape px×py on
the performance of the P3DFFT++ library in Figure 3.1. For easier analysis, we divided the
figure into the top part with the number of rows in the MPI process grid that are a power-
of-two: px = 2ℓ for ℓ ∈ {1,2, . . . ,13}; and the bottom part with non-power-of-2 row counts:
px = 5× 2ℓ for ℓ ∈ {1,2, . . . ,13}, respectively. The figure clearly indicates the need to select
the appropriate process grid to ensure scalability. Specifically, the grids that do not scale are
either short-and-wide or tall-and-narrow. At the same time, the grid shapes that scale well
resemble a square to the extent possible according to the prime factors of the total number
of the MPI ranks: px/py ≈ 1. This informed our experimental runs, which attempted to use
the optimal settings of each library to the best of our knowledge.

3.2 Communication bottleneck

All distributed libraries discussed in Chapter 1 have to deal with the communication-bound
nature of the FFT parallel algorithm. To efficiently tackle the communication cost when
scaling multidimensional FFT operations, sophisticated technologies were brought forward
from different domains to optimize the costly all-to-all communication. Leveraging specific
characteristics of network offloading is a non-blocking all-to-all scheme [27]. As a response
to the increase in system hierarchy and complexity, [36] proposed a hierarchical all-to-all
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approach composed of multiple local Gather and Scatter operations. In a similar context,
event-driven techniques were utilized to implement a collective framework to morph collec-
tive schemes among hierarchical, heterogeneous systems [37].
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Figure 3.2: Breakdown of running time of 3D FFT from P3DFFT++ for different number of Summit
nodes for in-situ (top) and ex-situ (bottom) transform.

24



On the other hand, to address the increased availability of accelerator units, collective
operations specifically designed for interconnection between GPUs (NVLink), like NCCL
[18], and re-routing strategies [38] have emerged with promises to maximize bandwidth us-
age. A node-wise visible communication pattern was investigated to optimize All-Gather and
All-Reduce [39] collective operations by leveraging notified communication within a shared
window. In [20], an application-targeting parallel FFT algorithm with GPU support was
developed, they employed a hierarchical communication framework leveraging the power of
MPI and OpenMPI for fast data movement and showed specific optimizations on Summit.

We can understand the bottlenecks by experimentally tracing the specific library kernels
during the FFT execution and identifying the most time consuming portion. Unsurpris-
ingly, the libraries described in this report spend an increasing portion of their runtime in
data communication as the number of computing elements increases. In Figure 3.2, we
present the execution profile of running the P3DFFT++ library on Summit for in-place (top)
and out-of-place (bottom) transforms. This figure, clearly shows how communication time
increasingly dominates when increasing the node-count.

3.3 The Effects of MPI Communication Bottlenecks
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Figure 3.3: Comparison of achievable bandwidth from two-node exchange via MPI Send, using of
MVAPICH, SpectrumMPI and OpenMPI-UCX on Summit.

In order to substantively mitigate the communication bottlenecks observed in Section 3.2,
we performed additional experiments that show that further tuning of MPI parameters and
topology settings can further help to get faster completion of the communication tasks, es-
pecially at the small scale runs and limited number of resources.

For instance, in Figure 3.3, we show a comparison of the bandwidth available through
a number of MPI libraries on Summit. Our experiments reveal that in practical setting one
can achieve as much as 23.5 GB/s throughput for inter-node communication, out of the 25
GB/s theoretically available from the InfiniBand Dual Port EDR interconnect. We can also
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see that by using MVAPICH we can get faster exchange rates than with Spectrum MPI for
small message sizes.

In general, a combination of parameters’ tuning, see Section 3.1, and network settings’
tuning improves the performance of the FFT libraries studied in this report.
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Chapter 4

Conclusions

In this report, we benchmark a number of parallel FFT libraries on CPUs and GPUs, and
used them to analyze the performance of several FFT libraries on a large scale system with
hybrid CPU-GPU hardware. We present a comparison of the experimental results from
single-device and from distributed memory implementations that are available in the tested
state-of-the-art FFT libraries. Furthermore, we evaluated performance for the strong scaling
regime of the computations of the complex-to-complex 3D transform of size 10243 on up
to 1,024 Summit nodes. These runs used either CPU-only setting with up to 40,960 IBM
POWER9 physical cores or mixed CPU-GPU setting with up to 6,144 NVIDIA Volta V100
GPUs.

For this benchmarking report, we used the testing driver implementations for 3D com-
plex transforms provided by the respective libraries with the exception of FFTW, for which
we had to create a custom test driver to complete our set of results. These benchmarking test
drivers allowed each library to choose its optimal settings, such as the best processor grids that
were available given the number of computational units such as CPUs or GPUs. They also
allow the library to optimally set the affinity given the arrangement of computing elements
within the processor sockets, NUMA islands, and nodes. We used the average runtimes of
ten consecutive executions which allowed us to use them for comparisons, performance anal-
ysis, and extraction of various conclusions. The following observations stand out:

Scaling on CPU-based vs. GPU-based architectures. The strong scaling efficiency1 is about
the same for CPU-based and GPU-based nodes using the same interconnect network,
i.e., CPUs vs. GPUs on Summit. For the FFT benchmark on Summit the efficiency is
about 30% for up to 512 nodes.

1We use the standard definition of efficiency as the fastest time across all libraries on one node over N times the
best time for N nodes: e = t1

N×tN
× 100%.
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Timing on CPU-based vs. GPU-based architectures. The GPUs’ high compute perfor-
mance and memory bandwidth tend to make the local FFT computations and data
reshuffles insignificant (only about 5% or less of the total time) compared to the total
execution time (95% or more time is spent in MPI communication). This makes the
GPU runs on Summit about 2× faster than the CPU runs for the same number of
nodes used.

Strong scaling limitations. For the 1,0243 FFT results on Summit, the strong scaling lim-
itations begin to affect the timings for 1,024 node runs. All libraries cease to scale at this
point with some experience scaling issues even earlier. For CPU-only runs, the best ex-
ecution time gets down to about 0.02 seconds and, for GPU-only runs, to about 0.01
seconds.

FFT library features. Many of the multidimensional FFT libraries are specialized and de-
veloped ad hoc for particular applications. This makes it challenging to create a uni-
form and fair benchmark for all of them. For instance, it was necessary to increase the
number of tests to cover all libraries. Nevertheless, not all node configurations were
possible to test and there are some missing points in the scalability graphs due to run-
time errors arising from algorithmic limitations. The heFFTe library tends to provide
the most complete support for the benchmarked features, stemming partially from
its design goals to recognize and implement as many as possible features needed for
different ECP applications in a single library.

Ranking of the FFT libraries. The strong scaling behavior is similar for all libraries in
general. For CPU-based runs, FFTW ceases to strong-scale the earliest past 32 nodes,
followed by AccFFT (past 128 nodes; although performance-wise AccFFT has reached
best timing among the other libraries by this point), followed by P3DFFT, 2Decomp&FFT,
SWFFT, heFFTe, and FFTMPI. For GPU-based runs the scaling order is FFTE, Ac-
cFFT, and heFFTe. Performance-wise, for CPU-based runs there are two groups –
the best performing ones are AccFFT, heFFTe, FFTMPI, FFTE, SWFFT, and 2De-
comp&FFT. The second group is 2 to 3× slower with P3DFFT and FFTW. For GPU-
based runs, the best time is achieved by heFFTe, followed closely by AccFFT, and
FFTE is about 2× slower. In general, we find the performance differences to increase
in the strong scaling limit (1,024 nodes).

Furthermore, we observed that there are tuning parameters that can significantly influ-
ence the scaling of the tested libraries. In particular, the shape of the two-dimensional de-
composition of the MPI ranks in the distributed setting is a very important tuning param-
eter for performance and scalability. For example, scalability may be seriously harmed if the
non-square process grids are used.

We have also presented a discussion on how the well-known communication bottleneck
on distributed 3D-FFT codes affects scalability. Execution profile analysis shows that most of
the state-of-the-art libraries have optimized local computations in such a way that the overall
performance is now strongly linked to the performance of communication. For communi-
cation the libraries rely on routines such as MPI Alltoallv, that may not be always well opti-
mized to take advantage of the network architecture. We also evaluated the effect of tuning
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the grid of processors and the effect of the MPI library selection, showing that performance
can be improved.

From our study and experiments of over a dozen FFT libraries, we comprehended the di-
versity of parameters, their issues on scaling their performance, and potential improvements
that can accelerate the FFT computation and, in consequence, benefit applications. For in-
stance, some libraries such as FFTE and SWFFT, have limitations on the FFT size that they
can manage. Others, like FFTMPI, do not support real-to-complex transforms. This high-
lights the critical need to have a harness software that can help compare libraries not only
from the runtime perspective, but also from accuracy, energy consumption, and scalability
perspectives for different data structures and precisions. The development of such a harness
will also impact current FFT efforts, by providing potential improvements from a deep anal-
ysis of the runtime breakdown, overlap of communication and computation, bottlenecks,
and feedback on what other libraries do on their implementations.

The current work will be extended to the creation of a benchmark harness that defines
more rigorously the benchmark, simplifies, and automates the process of running, collecting,
and analyzing results. Reports will be created for upcoming pre- and exascale machines and
the results compared and analyzed.
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Appendix

Software projects referenced in the report:

CUDA Compute Unified Device Architecture; a parallel computing platform produced by
NVIDIA Inc.

EXAALT Exascale Atomistic capability for Accuracy, Length, and Time; a molecular dy-
namics simulation platform

ExaSky-HACC Software extending the HACC cosmological simulation code to run on
Exascale computing systems

ExaWind A predictive simulation of wind farm energy production physics

HACC Hardware/Hybrid Accelerated Cosmology Code

heFFTe Highly Efficient FFTs for Exascale

WarpX Application for Exascale Modeling of Advanced Particle Accelerators

Terminology employed in this report:

Co-design A form of participatory design which seeks to actively involve all stakeholders to
collaborate on a solution (e.g., application/library development teams, end-users, and
hardware vendors)

CoPA Co-design center for Particle Applications

ECP The US Department of Energy’s Exascale Computing Project

FFT The Fast Fourier Transform is an important algorithm widely used in supercomputing
applications

InfiniBand A high-performance computer networking standard widely used in supercom-
puters

30



MPI Message Passing Interface; a message passing standard implemented by libraries for
process communication across parallel computer systems

Node The component of a distributed memory parallel computer system which hosts a
number of CPUs and GPUs with a shared memory

Pencil/Slab/Brick decomposition A method of distributing data in a multi-dimensional
FFT algorithm for the purposes of parallelizing the computation across multiple com-
pute nodes

PGI compiler An optimized software compiler suite published by the Portland Group Inc.
and now owned by NVIDIA Inc

Tuning The process of experimentally optimizing the parameters of an algorithm for a spe-
cific hardware architecture
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