
Leveraging PaRSEC Runtime Support to Tackle
Challenging 3D Data-Sparse Matrix Problems

Qinglei Cao1, Yu Pei1, Kadir Akbudak3, George Bosilca1,
Hatem Ltaief2, David Keyes2, and Jack Dongarra1

1Innovative Computing Laboratory, University of Tennessee, US
2King Abdullah University of Science and Technology, KSA

3ASELSAN Research Center, Turkey

Abstract—The task-based programming model associated with
dynamic runtime systems has gained popularity for challeng-
ing problems because of workload imbalance, heterogeneous
resources, or extreme concurrency. During the last decade, low-
rank matrix approximations, where the main idea consists of
exploiting data sparsity typically by compressing off-diagonal
tiles up to an application-specific accuracy threshold, have been
adopted to address the curse of dimensionality at extreme
scale. In this paper, we create a bridge between the runtime
and the linear algebra by communicating knowledge of the
data sparsity to the runtime. We design and implement this
synergistic approach with high user productivity in mind, in
the context of the PaRSEC runtime system and the HiCMA
numerical library. This requires to extend PaRSEC with new
features to integrate rank information into the dataflow so
that proper decisions can be taken at runtime. We focus on
the tile low-rank (TLR) Cholesky factorization for solving 3D
data-sparse covariance matrix problems arising in environmental
applications. In particular, we employ the 3D exponential model
of Mateŕn matrix kernel, which exhibits challenging nonuniform
high ranks in off-diagonal tiles. We first provide a dynamic data
structure management driven by a performance model to reduce
extra floating-point operations. Next, we optimize the memory
footprint of the application by relying on a dynamic memory
allocator, and supported by a rank-aware data distribution to
cope with the workload imbalance. Finally, we expose further
parallelism using kernel recursive formulations to shorten the
critical path. Our resulting high-performance implementation
outperforms existing data-sparse TLR Cholesky factorization
by up to 7-fold on a large-scale distributed-memory system,
while minimizing the memory footprint up to a 44-fold factor.
This multidisciplinary work highlights the need to empower
runtime systems beyond their original duty of task scheduling
for servicing next-generation low-rank matrix algebra libraries.

Index Terms—Low-rank matrix computations, Task-based
programming model, Dynamic runtime system, Asynchronous
executions and load balancing, High-performance computing,
User productivity, Environmental applications.

I. INTRODUCTION

The HPC community has enjoyed an order of magnitude
performance improvement every five years [1] thanks to
hardware innovations and technology scaling. At the dawn
of exascale, this means systems with tens of millions of
concurrent threads. This rapidly evolving hardware landscape
requires new software paradigms, and perhaps equivalently
important, advanced algorithmic responsibilities [2].

The coupling of task-based programming models with
dynamic runtime systems corresponds to one of the most

critical paradigm shifts embraced in order to replace the
traditional bulk synchronous parallel model in favor of the
asynchronous execution model [3]–[5]. This versatile software
solution has shown performance superiority by overlapping
expensive data movement with fine-grained computations and
ultimately achieving higher occupancy on the underlying hard-
ware architecture. Moreover, runtime systems are inherently
designed with the abstraction of the hardware complexity.
This latter feature enhances user-productivity and permits fast
code deployment on massively parallel systems. At the same
time, existing numerical methods have displayed limitations
in addressing big data problems, due to high algorithmic
complexity and large memory footprint. Low-rank matrix
approximations may overcome the curse of dimensionality [6].
The main idea consists of approximating off-diagonal tiles up
to an application-specific accuracy threshold and carrying out
the matrix algorithm on the newly obtained data structures.
This compression step may sacrifice numerical accuracy, so it
results in a tunable tradeoff. By exploiting the rank structure
naturally embedded in the data-sparse operator, lower com-
plexity may be obtained in storage, data motion, and arithmetic
operations, compared to traditional dense algorithms.

We propose a synergistic bridge between the runtime and
linear algebra communities in the context of dealing with
large-scale covariance matrices in geospatial statistics. We em-
ploy the HiCMA Tile Low-Rank (TLR) numerical library and
the PaRSEC dynamic runtime system to showcase the mutual
benefits of this approach. The objective is to propagate the rank
information to PaRSEC so that it can take proper runtime de-
cisions before HiCMA operates on the computational kernels.
In particular, we focus on the challenging exponential model
of Matérn matrix kernel for 3D environmental applications [7].
This model results in heterogeneous rank distribution with
high-rank tiles located outside of the diagonal tiles. We extend
PaRSEC with new functionality that takes into account the
rank information in the task dataflow: (1) a dynamic data struc-
ture management driven by a performance model to reduce
extra floating-point operations, (2) a dynamic memory allo-
cator to further optimize memory footprint, (3) a rank-aware
data distribution to cope with the workload imbalance, and
(4) a recursive formulation of computational kernels to expose
concurrency during the critical path. We use these features to
leverage the performance of the TLR Cholesky factorization at
the heart of the Maximum Likelihood Estimation (MLE) [8].

MLE is employed for estimating parameters and reaches very
high dimensions in 3D environmental applications.

The resulting TLR Cholesky from HiCMA powered by
PaRSEC (called PaRSEC-HiCMA-New) outperforms previ-
ous implementation (called PaRSEC-HiCMA-Prev) by up to
a 7-fold speedup on a large-scale distributed-memory system,
while minimizing the memory footprint up to a 44-fold factor.
We believe this multidisciplinary symbiosis is fundamental
to porting the next-generation of low-rank matrix algebra
libraries to exascale. This demands empowering runtime sys-
tems beyond their original duty of task scheduling.

The remainder of this paper is as follows. Section II presents
related work and lists our contributions. Section III provides
background information about covariance matrix problems for
3D environmental applications and describes how HiCMA and
PaRSEC synergistically solve them. In particular, Section IV
details the challenges carried by the 3D exponential kernels.
Section V introduces the PaRSEC dynamic data structure
management, assisted by a performance model, that requires
new numerical kernel developments in HiCMA, as explained
in Section VI. Section VII highlights the novel rank-aware
runtime optimizations integrated in PaRSEC. We report per-
formance results in Section VIII and conclude.

II. RELATED WORK

The richness of the recent literature on low-rank matrix
approximations is evidence of a compelling new approach
to big data scientific problems [9]. In particular, hierarchi-
cal matrices (H-matrices) [10]–[12] constitute a family of
clockwise low-rank matrix approximations used to reduce the
arithmetic complexity and the memory footprint. Depend-
ing on the data sparsity pattern of the operator, there exist
many H-matrix data compression formats for weak admissi-
bility (e.g., Hierarchically Semi-Separable (HSS) [13], [14],
Hierarchically Off-Diagonal Low-Rank (HODLR) [15]) and
strong/standard admissibility (e.g., H2-matrix [16], Block/Tile
Low-Rank (BLR / TLR) [2], [17]). Thanks to their inherent
recursive formulations, both compression formats may attain
linear arithmetic complexity and memory storage for some
matrix problems and operations [18]. Weak admissibility is
well suited for off-diagonal blocks exhibiting low ranks (e.g.,
typically 2D problems), while strong admissibility can still
maintain the lower complexity in the presence of off-diagonal
blocks with high ranks (e.g., typically exacerbated in 3D).

While the theoretical lower bounds of these low-rank ap-
proximation schemes are attractive, replacing factors of prob-
lem dimension with factors of maximum block rank away
from the dense diagonal blocks, their deployment on massively
parallel systems has exposed their limitations, especially in
problems where maximum block rank is high. The recursive
formulations required to exploit low rank hinder the overall
performance due to a low hardware occupancy exacerbated by
the excessive synchronization. Flattening the recursion tree and
avoiding synchronizations in-between hierarchical steps can
mitigate this inefficiency. They highlight the impact of batch
executions on GPUs to increase the hardware occupancy [2],

[19], [20] for iterative solvers. They employ the HiCMA task-
based numerical library with the StarPU dynamic runtime
system [8], [21] for attenuating load imbalance effects on
distributed-memory systems in the context of TLR Cholesky
factorizations. Further performance improvement of HiCMA
has been obtained using the hybrid data distribution imple-
mented in the PaRSEC dynamic runtime system [22], [23].
TLR provides a particularly nice trade-off between optimality,
performance, and user productivity [24] since traditional dense
tile algorithms can be used.

Our contributions are as follows. We leverage the PaRSEC
support for data-sparse matrix computations by embedding
in the dataflow at runtime a new dynamic data structure
management driven by a performance model to reduce extra
floating-point operations. This requires to implement new
numerical kernels in HiCMA to enable the resulting TLR
Cholesky algorithm at scale. We develop a dynamic memory
allocator to further optimize memory footprint, breaking with
the traditional, rigid data descriptor from ScaLAPACK. We
then provide a rank-aware data distribution to better balance
the workload, and further expose concurrency to shorten the
critical path by integrating a recursive formulation of all dense
computational kernels. We demonstrate on a 3D exponential
matrix kernel that engenders high-rank heterogeneity, illus-
trating performance improvement of the TLR Cholesky on up
to 12 million spatial locations for the Maximum Likelihood
Estimation (MLE) when simulating large-scale environmental
applications.

III. BRIDGING THE GAP BETWEEN LINEAR ALGEBRA
AND RUNTIME COMMUNITIES

This section provides background information on a statisti-
cal model used for climate and weather prediction applications,
recalls the TLR Cholesky factorization in HiCMA, describes
the PaRSEC dynamic runtime system, and lays out the algo-
rithmic and software foundation roadmap for next-generation
computational linear algebra libraries.

A. Geospatial Statistics Application

Geospatial statistics applications are typically data-sparse
problems that can be modeled with the MLE-based iterative
optimization procedure as follows:

`(θ) = −n
2

log(2π)− 1

2
log |Σ(θ)| − 1

2
Z>Σ(θ)−1Z, (1)

where the covariance matrix Σ(θ) is symmetric and positive-
definite, containing the correlations between n geospatial
locations, Z represents the vector of measurements, and θ =
(θ1, θ2, θ3)> is the model parameter vector to optimize. The
objective is to calculate θ̂, which represents the MLE of θ in
Equation (1). The Matérn function defines each entry of Σ(θ):

C(r;θ) =
θ1

2θ3−1Γ(θ3)

(
r

θ2

)θ3

Kθ3

(
r

θ2

)
, (2)

where r = ‖s − s′‖ is the distance between any two spatial
locations and Kθ3 denotes the modified Bessel function of the
second kind of order θ3. The Matérn kernel is also used in
machine learning [25] and image processing [26].

As n increases, the cubic algorithmic complexity renders
solving the evaluation of MLE burdensome. Fortunately, co-
variance matrices are usually hierarchically low-rank and may
be sped up with low-rank matrix approximations.

B. The HiCMA Library

The HiCMA numerical library includes TLR matrix com-
putations that exploit the data sparsity of the covariance
matrix. HiCMA [2], [21] relies on STARS-H (https://github.
com/ecrc/stars-h) to generate the covariance matrix problem
and compress each off-diagonal tile up to an application-
dependent accuracy threshold. The dense representation trans-
lates into a tile-centric compressed representation that captures
the most significant singular values, i.e., the rank of the tile.
This compressed data structure is composed of two tall-and-
skinny matrices per tile, i.e., U and V of size b × k, with
b the tile size and k the rank. Since tiles may have different
ranks, HiCMA consolidates the rank heterogeneity by using
a unique maxrank to define a homogeneous data descriptor
at the cost of a higher memory footprint. HiCMA follows the
traditional Two-Dimensional Block Cyclic Data Distribution
(2DBCDD) from ScaLAPACK that requires uniform block
sizes. We set the upper limit for maxrank to b/2 to maintain
the competitiveness of low-rank matrix approximations over
dense matrix computations, as far as the memory footprint is
concerned. This situation may be suboptimal for two reasons.
The presence of a single high rank (e.g., k ∼ b/2) will
define the actual maxrank for all off-diagonal tiles, which
may jeopardize the benefits of TLR compression ratio. Further,
the presence of several high ranks may also increase the
overall arithmetic complexity. Therefore, the sensitivity to rank
distribution of the rigid data descriptor may hinder the overall
performance. Once the matrix is compressed, HiCMA can
then operate on the low-rank representation of the matrix.
It performs the standard matrix operations based on high-
performance kernel implementations specifically designed for
manipulating the underlying TLR data compression format.
HiCMA currently supports StarPU, OpenMP, and PaRSEC
runtime systems to orchestrate the task scheduling of matrix
computations.

C. The PaRSEC Runtime System

PaRSEC [27] is a task-based runtime for distributed het-
erogeneous architectures capable of dynamically unfolding de-
scription of a directed acyclic graph (DAG) of tasks on a set of
resources. PaRSEC tracks all data dependencies by efficiently
shepherding data between memory spaces (between nodes but
also between different memories on different devices) and
schedules tasks across heterogeneous resources. Starvation,
latency, overhead and heterogeneity are the four main barriers
on which PaRSEC focuses to overcome algorithm scalability
and efficiency. Domain Specific Language (DSL) is utilized
to allow domain experts to ignore the underlying complexity
of implementation, which relies on a dataflow model to create
dependencies between tasks and targets the expression of max-
imal parallelism. Parameterized Task Graph (PTG) [28] and

Dynamic Task Discovery (DTD) [29] are two representative
DSLs in PaRSEC. PTG, used in this paper, uses a concise,
parameterized, task-graph description known as Job Data Flow
(JDF) to represent dependencies between tasks. Collective
communications are fully supported in PTG to enhance appli-
cation developer productivity, which distinguishes PaRSEC in
task-based runtime systems. For instance, the collective com-
munication in StarPU is limited, assuming all dependencies
related to a collective communication need to be discovered
when that collective communication is performed [30].

D. A Renaissance in Computational Linear Algebra

We bridge the linear algebra and runtime communities using
a synergistic approach that combines knowledge expertise
of HiCMA and PaRSEC. This software solution permits not
only to alleviate performance bottlenecks but also to increase
productivity when dealing with large-scale applications on
distributed-memory systems. This is possible by bringing
awareness of the rank information right after the compression
to PaRSEC before HiCMA takes over. This critical insight
may not be useful when block sizes are identical, as in
traditional dense linear algebra (e.g., ScaLAPACK). However,
with low-rank matrix approximations, HiCMA can leverage
the PaRSEC support beyond the usual task scheduling to
additionally handle the impact of rank heterogeneity on the
process grid, the data distribution, the data movement, and
the load balancing. PaRSEC is able to abstract the hardware
complexity as well as the challenges in dealing with the
complex low-rank matrix algorithms. Numerical developers of
low-rank matrix algorithms can focus more on the optimality
of their sequential code before empowering runtime systems
on massively parallel systems. This separation of concerns is
enabling a Renaissance in computational linear algebra.

IV. NEW CHALLENGES WITH 3D EXPONENTIAL KERNELS

In our examples, we set the variance parameter θ1 = 1.0,
the correlation parameter θ2 = 0.1, and the smoothness
parameter θ3 = 0.5. This setting reduces the Matérn ker-
nel from Equation 2 to the decaying 3D exponential kernel
C(r;θ) = exp(−r/0.1) (st-3D-exp). This matrix kernel
variant is suited to model medium correlations and rough
fields, e.g., estimating wind speed or temperature changes with
altitude. We use Morton ordering [31] for a good compression
ratio. Compared to previous works [22], [23], st-3D-exp
presents new challenges with higher ranks observed after
compression due to the medium correlation and the rough
field. The heat maps of Fig. 1 display the rank distribution for
off-diagonal tiles. In particular, the first two figures show the
initial rank distribution (i.e., after compression) and the final
rank distribution (i.e., after TLR Cholesky factorization) along
with the minimum, average and maximum rank (minrank,
avgrank and maxrank respectively). The last figure shows
the rank variations before and after the factorization. With the
zoom-in on tiles close to the diagonal, it is clear that the rank
heterogeneity is more pronounced with st-3D-exp than previ-
ously studied matrix kernels (see Fig.2 of [23]) and becomes

Min:18
Avg:52
Max:900

0
100
200
300
400
500
600
700
800
900

(a) Initial ranks.

Min:2
Avg:64
Max:1129

0

200

400

600

800

1000

(b) Final ranks.

Min:-25
Avg:+13
Max:+273

0

50

100

150

200

250

(c) Rank variations.

Fig. 1: Rank distributions for off-diagonal tiles with a matrix
size N = 1.08M and tile size b = 2700.

even higher after the factorization. From these figures, we track
the following ratios to control the overall arithmetic complex-
ity and memory footprint: ratio_maxrank = maxrank

b and
ratio_discrepancy = maxrank−avgrank

b , which are only
known at runtime after the compression step and need to be
escalated to the runtime for proper internal usage.

Fig. 2 (a) reports the time-to-solution (left y-axis) as well
as its ratio (right y-axis) of TLR GEMM to dense GEMM on a
single core. These kernels are the most time-consuming oper-
ations in TLR and dense Cholesky. TLR GEMM can be more
expensive than dense GEMM when the rank exceeds a threshold,
determined by the arithmetic complexities of TLR and dense
GEMMs. Also, the gap between TLR and dense GEMM widens
as rank continues to rise. The figure also annotates the kernel
performances in Gflops/s of TLR and dense GEMM. The TLR
GEMM performance falls in-between the regime of memory-
bound and compute-bound, achieving roughly 1/3 of dense
GEMM. TLR GEMM performance tapers off at both ends of rank.
When the rank is small, TLR GEMM is mostly memory-bound
with lower performance. As rank increases, it becomes more
compute-bound and achieves higher performance. However,
when the rank continues to grow, the expensive recompression
step in the TLR GEMM kernel dominates (see Section 8.1
of [32]), and the performance starts decreasing. Fig. 2 (b)
depicts the impact of tile size on the rank information, i.e.,
maxrank, avgrank and minrank, after compressing a
matrix of size N = 1.08M. As tile size increases, the overall
trend for rank goes down, which indicates a higher data
sparsity attained due to the medium correlation. At the same
time, a large tile size reduces the degree of parallelism,
while a small tile size leads to high ratio_maxrank and
ratio_discrepancy.

All in all, st-3D-exp creates a new level of productivity, per-

0 250 500 750 1000 1250
Rank

0

3

6

9

12

15

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

5 1822222120191817
16

16
15

15
13

48

TLR
Dense

10 1

101

103

Ra
tio

Time Ratio of Dense to TLR

(a) TLR GEMM vs dense GEMM.

1000 2000 3000 4000
Tile Size

10 2

10 1

Ra
tio

Maxrank
Avgrank
Minrank

(b) Ratio: rank to tile size.

Fig. 2: (a) Single-core dense and TLR GEMM performance
with b = 2700; the sustained performance (Gflop/s) is labeled
with blue for TLR and red for dense. (b) Ratio of maxrank,
avgrank and minrank to tile size with N = 1.08M.

Algorithm 1: Algorithm for BAND_SIZE auto-tuning.
Input : Matrix data descriptor

1 Generate the matrix with BAND_SIZE = 1
2 Globalize the rank distribution to all the processes
3 Set ID = 1 and initialize fluctuation
4 do
5 ID := ID + 1
6 ops dense = total TRSM and GEMM FLOPs of all tiles in

sub-diagonal with BAND_ID = ID if executing in dense
format

7 ops tlr = total TRSM and GEMM FLOPs of all tiles in
sub-diagonal with BAND_ID = ID if executing in low-rank
format

8 while ops dense < fluctuation× ops tlr;
Output: BAND_SIZE = ID − 1

formance, and scalability challenges for HiCMA that may only
be addressed by a versatile runtime support from PaRSEC, as
explained in the next subsequent sections.

V. DYNAMIC DATA STRUCTURE MANAGEMENT

A. The Necessity to Densify the Matrix Operator

As mentioned heretofore, a tile’s rank increases when ap-
proaching the diagonal, leading to a TLR GEMM operation more
expensive than dense GEMM for st-3D-exp. This may delay
the critical path (POTRF as well as the first TRSM and SYRK
for each panel factorization) and ultimately impact the overall
time to solution. The idea is to have PaRSEC dynamically
manage the flavor of the data structure at runtime. PaRSEC
detects these specific tiles with high ranks at runtime and
triggers only for those a rollback to the original dense format.
Fig. 3 (a) shows the symmetric tile matrix (only the lower
triangular part is referenced) with a mixture of TLR (blue) and
dense (red) data layouts. This BAND-DENSE-TLR Cholesky
factorization engenders a different work-flow compared to
the regular factorization, since it needs to take into account
the coexistence of both data formats during the data-flow
with new supportive computational kernels from HiCMA. This
densification process of the matrix operator eventually proves
superior in performance and is driven by a performance model
assisted by an auto-tuner.

B. Performance Model Based on BAND_SIZE Auto-Tuning

We introduce a performance model that acts as an auto-
tuner for identifying the BAND_SIZE parameter that controls

3

(a) Data layout view.

POTRF

TRSM SYRK

TRSM GEMM SYRK

TRSM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM GEMM GEMM SYRK

(1)

(2)

(4)

(3)

(5)

(6)

(b) Compute kernels.

POTRF

TRSM SYRK

TRSM GEMM SYRK

TRSM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM GEMM SYRK

SYRK

TRSM GEMM GEMM GEMM GEMM GEMM GEMM SYRK

(c) Data flow.
Fig. 3: Data layout view, numerical kernels and data-flow of
BAND-DENSE-TLR Cholesky with BAND_SIZE = 3. (a)
Red means dense tiles and blue means low-rank tiles. (b)
Unrolling the first panel factorization with colors representing
different kernels. (c) The red arrows show data-flow with dense
tiles while the purple arrows data-flow with low-rank tiles.

the number of sub-diagonals that are required to roll back
to dense formats. For instance, Fig. 3 (a) shows the main
tile diagonal with BAND_ID = 1 and highlights in yellow
the tile sub-diagonal with BAND_ID = 2. BAND_SIZE is
an inherent tunable parameter of the BAND-DENSE-TLR
Cholesky algorithm and may vary depending on the stud-
ied covariance matrix problems. Algorithm 1 presents the
performance model to minimize the total number of flops
by auto-tuning the BAND_SIZE parameter. Implemented in
PaRSEC, the tuning procedure selects a suitable BAND_SIZE
automatically, based on the initial rank distribution revealed
right after the matrix compression. An artificial distribution of
one-dimensional block-cyclic data distribution (1DBCDD) is
provided to evenly distribute all tiles in a sub-diagonal to all
processes, so that all resources are utilized to speed up the
progress. Once BAND_SIZE is calculated, the tiles in sub-
diagonals with BAND_ID < BAND_SIZE are translated back
to dense format in a transparent manner to users. Currently, we
do not support the case in which the ranks may grow or shrink
during the factorization, since it is hard to predict in advance.
However, one can imagine an adaptive online auto-tuning that
densifies or sparsifies the tiles on-demand, but this is beyond
the scope of this paper. This runtime auto-tuning procedure
enables PaRSEC to leverage HiCMA toward a wider coverage
of 3D data-sparse covariance matrix problems beyond st-3D-
exp studied herein.

VI. NEW KERNEL IMPLEMENTATIONS IN HICMA

Densifying the matrix operator requires the implementation
of new computational kernels in HiCMA. Fig. 3 (b) distin-
guishes six tile regions that group kernels with the same data
layout property. With the combination of regions ((1) - (6)) and
kernels (POTRF, TRSM, SYRK and GEMM), there are ten types
of different kernels involved codenamed as “(region)-kernel”.
Each kernel is briefly described below.
• (1)-POTRF: Cholesky factorization of a diagonal (lower triangular) tile

as in LAPACKE.
• (1)-TRSM: dense triangular solve as in CBLAS.
• (4)-TRSM: low-rank triangular solve as in HCORE DTRSM [32].
• (1)-SYRK: dense symmetric rank-k update as in CBLAS.
• (3)-SYRK: low-rank symmetric rank-k update as in

HCORE DSYRK [32].
• (1)-GEMM: dense matrix-matrix multiplication as in CBLAS

C = C −A×BT .
• (2)-GEMM: modified dense matrix-matrix multiplication,

C = C − UA × V T
A ×BT .

• (3)-GEMM: modified dense matrix-matrix multiplication,
C = C − UA × V T

A × VB × UT
B .

• (5)-GEMM: modified low-rank matrix-matrix multiplication,
UC × V T

C = UC × V T
C − UA × V T

A ×BT .
• (6)-GEMM: low-rank matrix-matrix multiplication as in

HCORE DGEMM [32] UC×V T
C = UC×V T

C −UA×V T
A ×VB×UT

B .

Compared to the previous HiCMA’s kernels [32], three new
kernels (in bold) have been implemented to handle the work-
flow of BAND-DENSE-TLR. The arithmetic complexities of
all kernels are reported in Table I. The kernel group (1) with
O(b3) complexity is the most expensive and usually operate
on dense tiles close to the diagonal. The other remaining kernel
groups have lower complexity and run on compressed tiles.

TABLE I: Arithmetic complexity of all kernels.

ID (Group)-Name Complexity

0 (1)-POTRF 1
3
× b3

1 (1)-TRSM b3

2 (4)-TRSM b2 × k
3 (1)-SYRK b3

4 (3)-SYRK 2× b2 × k + 4× b× k2

5 (1)-GEMM 2× b3

6 (2)-GEMM 4× b2 × k
7 (3)-GEMM 2× b2 × k + 4× b× k2

8 (5)-GEMM 34× b× k2 + 157× k3

9 (6)-GEMM 36× b× k2 + 157× k3

VII. NOVEL RANK-AWARE OPTIMIZATIONS IN PARSEC

A. Dataflow Runtime Adaptation

We classify the resulting dataflow into two categories:
LOCAL (connecting tasks on the same process, including
SYRK → SYRK, SYRK → POTRF, GEMM → GEMM and
GEMM → TRSM) and REMOTE (connecting tasks on different
processes, including POTRF → TRSM, TRSM → SYRK and
TRSM→ GEMM). Only the REMOTE dataflow can post commu-
nications. Fig. 3 (c) depicts REMOTE dataflow within a panel
factorization, including three broadcast communications—
POTRF to TRSM, TRSM to GEMM in a row, and TRSM to
GEMM in a column, and one peer-to-peer communication—
TRSM to SYRK. This figure highlights the broadcast from
POTRF to TRSM and two kinds of broadcasts from TRSM to
GEMM with arrows of different colors representing different
types of data encapsulated in dataflow—red meaning dense
data while purple low-rank data. The dynamic data structure
that supports BAND-DENSE-TLR pressures the runtime to
accommodate data motion with heterogeneous data layout.

Fig. 4 shows the BAND-DENSE-TLR algorithm by high-
lighting the first three panel factorization steps with NT = 8
(the number of tiles in a dimension) and BAND_SIZE = 3.
Different colors represent kernel regions or completion, similar
to Fig. 3. Tiles with bold yellow boundaries are included
in the critical path for that panel factorization, assuming the
critical path spans distance 1 in the dataflow dependencies. It
is worth noting that the type of kernels using a specific tile will
change across successive iterations; for instance, (3)-GEMM,
(2)-GEMM, and (1)-GEMM are successively called on the
tile with index (m,n) = (4, 3) for the first three iterations.

POTRF

TRSM SYRK

TRSM GEMM SYRK

TRSM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM GEMM SYRK

SYRK

TRSM GEMM GEMM GEMM GEMM GEMM GEMM SYRK

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

(a) Panel factorization
of the 1st iteration.

POTRF

TRSM SYRK

TRSM GEMM SYRK

TRSM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM GEMM SYRK

SYRK

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

(b) Panel factorization
of the 2nd iteration.

POTRF

TRSM SYRK

TRSM GEMM SYRK

TRSM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM GEMM SYRK

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

(c) Panel factorization
of the 3rd iteration.

Fig. 4: BAND-DENSE-TLR Cholesky algorithm; colors rep-
resent different tile regions with white labeling the completed
task; the numbers are tiles’ row and column index.

This represents one example of the levels of complexity that
PaRSEC abstracts from HiCMA’s TLR algorithms.

B. Dynamic Memory Designation

As mentioned above, st-3D-exp shows properties of high
ratio_maxrank, high ratio_discrepancy, and rank
variations during the Cholesky factorization, even when the
BAND-DENSE-TLR feature is in use. If the memory is stati-
cally allocated based on the pre-defined maxrank parameter
(see Section III-B), it will (1) limit the problem size that can
be solved on a specific set of computational resources, and
(2) restrict the tile size used to expose parallelism. Indeed, as
indicated in Sections III-B and IV, there is an inverse rela-
tionship between the accuracy of the low rank representation
and the tile size used, in the sense that the maxrank of
a tile increases as the tile size decreases, problem that can
further be exacerbated by the possible rank growth during the
factorization. The PaRSEC runtime system provides users a
flexible way to designate the input data for a task, but also the
data the task will propagate to its successors. This capability
allows the user code to precisely allocate the needed memory
and then injected back into the runtime to serve its purpose.
PaRSEC-HiCMA-New takes advantage of this capability

in two distinct ways. First, during the initialization, the matrix
is allocated based on the initial rank according to the required
accuracy threshold using temporary memory from a reusable
memory pool provided by the PaRSEC runtime. Once the
matrix is generated, the actual rank of each tile becomes
known, and the exact amount of memory necessary for each
tile can be allocated and associated with the corresponding
constructs in the runtime system. Second, during the factor-
ization itself, the rank of the tiles might change. To adapt
to this change, the low-rank GEMM kernels, (5)-GEMM and
(6)-GEMM, are split into two stages clearly delimited by the
recompression operation. The first stage consists of operations
until recompression and the second stage consists of the
remaining operations after recompression. As a result, the
memory for each tile can be not only reallocated but also re-
associated with the runtime system between these two stages
if rank growth occurs as a result of re-compression. This
simple but extremely useful feature is one of the most critical
differences between the PaRSEC runtime and other task-based
runtime, and is one of the key components that allowed our
approach to scale to unprecedented problem sizes.

C. Hybrid Data Distribution

The discrepancy between dense on-band tiles and com-
pressed off-band tiles can be expressed using 3 types of met-
rics: memory, computation and communication. (1) Memory:
memory needed for off-band tiles is proportional to their rank,
and they require 2bk elements, while on-band tiles require
b2 elements. (2) Computation: after rolling tiles with high
rank back into the dense format according to the arithmetic
complexity from Table I, ranks of the remaining compressed
tiles are more than an order of magnitude smaller than the tile
size. Thus, according to Table I, kernels operating on dense

2
2 3
5 3 4
8 6 7 5
2 0 1 2 6
5 3 4 5 3 7

7
1
4
7
1
4

1
6
0
3
6
0
3

3
0

(a)

2
3 3
4 4 4
8 5 5 5
2 0 6 6 6
5 3 4 7 7 7

2
3
4
7
1
4

1
2
0
3
6
0
3

1
0

(b)

2 3 4 8 6 7
3 4 5 0 1

4 5 6 4
5 6 7

6 7
7

2 3 4 5 3 41
2 0 1 2 0 110

(c)
Fig. 5: Hybrid data distribution suitable for
BAND-DENSE-TLR Cholesky and the corresponding
process ID. (a) as used in PaRSEC-HiCMA-Prev with
BAND_SIZE = 1; (b) for lower triangular matrix and (c) for
upper triangular matrix, both with BAND_SIZE = 3.

tiles have a higher computational cost than the corresponding
kernels on compressed tiles. (3) Communication: tasks oper-
ating on on-band tiles send dense data (b2 elements) while
those operating on off-band tiles send compressed data (2bk
elements) (see Fig. 3 (c)).
PaRSEC-HiCMA-Prev [22] introduces the concept of

“band distribution” that superposes two intertwined 2DBCDD
using different process grids, but restrict its usage to a band
of size 1 as shown in Fig. 5 (a), where only the diagonal
tiles are dense and evenly distributed across all processes in
a 1DBCDD. In BAND-DENSE-TLR algorithm, BAND_SIZE
can be different of 1 but remains relatively small compared to
NT (demonstrated in Section VIII), hence tiles on-band (not
only diagonal) need to be evenly distributed across all pro-
cesses to address any imbalance issues described hereinbefore.
We propose to adapt this “band distribution” to the problem
type as shown in Fig. 5 (b) for the lower triangular matrix
and Fig. 5 (c) for the upper triangular matrix. Distribution on
the band could be seen as a modified 1DBCDD: row-based
(tiles on-band in a row mapped to the same process) for the
lower triangular matrix, and column-based (tiles on-band in a
column mapped to the same process) for the upper triangular
matrix. The main reasons behind such a choice are twofold:
a well balanced panel factorization because dense TRSMs in
the panel factorization are distributed to different processes
and can therefore be executed in parallel, and the reduction
of communications on the critical path because kernels on the
tiles on the same row are mostly sequential and the distribution
chosen here remove the need for communications between
these kernels.

D. Recursive Numerical Kernels

Tasks on and near the critical path are important because
they affect the time to solution by impacting the discov-
ery of the next panel factorization, i.e., the lookahead. In
BAND-DENSE-TLR Cholesky, we can consider that the entire
band, composed only by dense tiles, (red region in Fig. 4),
and therefore performing only traditional dense Level-3 BLAS
kernels is our critical path at distance BAND_SIZE. Therefore,
these tasks need to be promoted and executed as quickly as
possible, to enable all available parallelism in the off-band
part. Moreover, speeding them up will reduce the waiting
time by minimizing the potential starvation—particularly at the

end of the execution where the opportunities for parallelism
are less. PaRSEC-HiCMA-Prev [22] utilizes the concept of
“nested computing” to expedite POTRF execution by recur-
sively dividing the local computations on large dense tiles
into smaller kernels. The direct outcome is more parallelism,
that can then be exploited if computational resources are
available. In PaRSEC-HiCMA-New, we extend this idea, not
only targeting POTRF but instead applying to all kernels in
region (1) of Fig. 3 (b) including (1)-POTRF, (1)-TRSM,
(1)-SYRK and (1)-GEMM. As a result, all dense kernels
close to the critical path can potentially be sped up, such that
the discovery of the next panel factorization is expedited with
the possibility of increasing utilization of hardware resources.

VIII. PERFORMANCE RESULTS AND ANALYSIS

A. Environment Settings

The experiments are conducted on Shaheen II at KAUST,
a Cray XC40 system with 6,174 compute nodes, each of
which has two 16-core Intel Haswell CPUs running at 2.30
GHz and 128 GB of DDR4 main memory. Intel compiler
suite 19.0.5.281 with sequential Math Kernel Library (MKL)
version 2019.5 for optimized BLAS and LAPACK kernels is
deployed. Numerical backward errors have been consistently
validated against the application accuracy threshold to ensure
correctness. We compress off-band tiles and retain their most
significant singular values (and associated vectors) above the
accuracy threshold of 10−8 (except in Section VIII-G), which
ultimately yields an absolute numerical error of order 10−9

in the solution of the linear system in Equation 1 to make
it consistent as in [22]. This 10−9 tolerance is sufficient
to satisfy the prediction accuracy requirements of the 3D
climate and weather prediction applications, as described
in [8]. We employ the “band distribution” and a 2DBCDD
for tiles off-band with a process grid P × Q (as square as
possible) where P ≤ Q. We use the same BAND_SIZE
for BAND-DENSE-TLR algorithm and “band distribution”.
Calculations and communications are performed in double-
precision floating-point arithmetic. We run our experiments at
least three times; and since no major performance variability
has been noticed, the minimum time to solution is reported.

B. Impact of BAND_SIZE Auto-Tuning

The BAND_SIZE parameter for BAND-DENSE-TLR algo-
rithm is automatically tuned, in a process totally transparent
to the user. The autotuning process includes (1) generating
matrix with BAND_SIZE = 1, (2) BAND_SIZE auto-tuning,
and (3) matrix regeneration for tiles within a band with the
tuned BAND_SIZE. Fig. 6 evaluates the entire process of
BAND_SIZE auto-tuning on two settings N = 1.08M and
N = 2.16M.
• Fig. 6 (a) shows changes in time-to-solution and Fig. 6

(b) the corresponding total flops while varying the
BAND_SIZE, and both with b = 2400. The rectangle boxes
are range with fluctuation ∈ [0.67, 1] (see Algorithm 1).
We choose to use the minimum value of this range in
the remaining experiments because of (1) flops increase in

0 1 2 3 4 5 6 7 8 9 1011121314
Band Size

0

1000

2000

3000

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

64 Nodes, 1080000
128 Nodes, 2160000

(a) Time to Solution.

1.57X

1.53X

(b) Total flops.

2 3 4 5 6 7 8 9 10 11
Band ID

1014

1015

1016

1017

Fl
op

s

820 561 543 406 368 420 260 196
814 463 430 360 349 596 402 229 219 201

1080000 TLR
1080000 Dense

2160000 TLR
2160000 Dense

(c) Flops per sub-diagonal.

1.08M 2.16M 3.24M 4.32M 5.40M 6.48M 7.56M 8.64M
Matrix Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

17 16 10 8 7 8 7 5

BAND_SIZE Auto-Tuning
Matrix Re-Generation

(d) Evaluation on 512 nodes.
Fig. 6: Evaluation of BAND_SIZE auto-tuning.

TRSM and SYRK near the critical path if rolling back the tiles
to dense format, (2) rank variations during factorization, and
(3) significance of dense-band dominating time-to-solution
(demonstrated in Section VIII-F). It is clearly visible in these
figures that each case has a sweet spot in terms of time-to-
solution and the corresponding flops, and that the predicted
BAND_SIZE is close to the optimal.

• Fig. 6 (c) demonstrates the process of Algorithm 1 with
fluctuation = 1 by comparing the flops of each sub-
diagonal in dense and TLR format. Annotations in this figure
are the maxrank for the corresponding sub-diagonal, for
the two matrix sizes we investigated (red for N = 1.08M and
blue for N = 2.16M). For the TLR format, the flops of a sub-
diagonal decrease as BAND_ID increases mainly because of
the reduction in maxrank, but also due to the reduction of
the number of tiles in the sub-diagonal and therefore the
number of operations on these tiles. This second reduction
is also true for the dense format; successive sub-diagonals
have a monotonically decreasing number of tiles and thus
marginally less flops.

• Fig. 6 (d) shows the time-to-solution of the BAND_SIZE
auto-tuning process and the cost of the matrix regeneration
after BAND_SIZE tuning for the experiments on 512 nodes.
The corresponding tuned BAND_SIZE is marked at the top
of the figure. Based on these results it is clear that the time
of BAND_SIZE auto-tuning process, as well as the neces-
sary time for the matrix regeneration are negligible when
compared to the cost of the entire Cholesky factorization.

C. Suitable Tile Size Selection

Tile size is also a critical parameter for tile-based algorithm,
trading off between performance per task and concurrency
between tasks. A more in depth analysis of the perfor-
mance/concurrency tradeoff for regular problems (where the
cost of all tasks is similar) can be found in [33] for multiple
runtime systems. For TLR Cholesky, [23] proposed a model to
calculate the approximate optimal tile size with the assuming
a first-order approximation — the serial part (the critical path
in the algorithm) at distance one overlapping with the parallel

1000 2000 3000 4000 5000 6000
Tile Size

350

400

450

500

550

600
Ti

m
e-

to
-s

ol
ut

io
n

(s
ec

on
d) 64 Nodes, 1080000

750

1000

1250

1500

1750

2000

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

256 Nodes, 2160000

(a) Time to solution.

1000 2000 3000 4000 5000 6000
Tile Size

4

6

8

10

12

14

Ba
nd

 S
ize

64 Nodes, 1080000
256 Nodes, 2160000

(b) Corresponding band size.
Fig. 7: Effect of tile size.

part (everything outside the critical path). This assumption
does not hold for the st-3D-exp application because of the
higher ranks in the matrix but also due to the dense operations
in the band. Putting aside the dense band part, [17] proposed
that the minimal operations count could be attained by a TLR
matrix computation when b = O(

√
N), we can use as a

rough starting point. Fig. 7 (a) present two experiments, the
time-to-solution for a TLR factorizations using different tile
sizes on 64 nodes with a N = 1.08M (left y-axis) and 256
nodes with a N = 2.16M (right y-axis). The estimated value
computed using [17], around 1039 for the red line and 1469
for the blue, are reasonably good estimates as a starting point.
Fig. 7 (b) displays the corresponding auto-tuned BAND_SIZE
which decreases as tile size increases. This can be explained
from observation in Fig. 2 (b) that as tile size increases,
the ratio_maxrank decreases, thus reducing the need to
convert compressed tiles into dense tiles. In fact a suitable tile
size depends on many factors, the data and the algorithm, the
compute capabilities of the computing resources, the network
performance and capabilities, matrix size, etc. Proposing a
model to predict the optimal tile size for a complicated hybrid
BAND-DENSE-TLR algorithm is outside the scope of this
paper. However, for the scope of our study it is enough to
conduct the experiments starting from a tile size (such as the
one proposed in [17]), and stopping when the time-to-solution
trend changes, basically finding a local minima.

D. Impact of Dynamic Memory Designation

PaRSEC-HiCMA-New can allocate the exact memory
amount for each tile based on the actual rank during factoriza-
tion to remove the restriction imposed by the statically prede-
fined maxrank in PaRSEC-HiCMA-Prev. Fig. 8 evaluates
this feature for a case running on 512 nodes.

The left figure displays the memory reduction between
allocating each compressed tile as 2 × maxrank × b
in PaRSEC-HiCMA-Prev and as 2 × k × b + r in

9X

13X
19X 25X 33X 32X 38X 44X

Fig. 8: Memory usage evaluation. Left, memory reduction on
512 nodes; right, analysis of memory allocation and GEMM.

TABLE II: Performance comparisons.

No. of
Nodes

Matrix
Size

PaRSEC
-HiCMA-prev

(seconds)

Band-
dense

(seconds)

Recursive
Kernels

(seconds)

Total
Speedup

64 1080000 1933.53 446.51 368.44 5.24X
128 1080000 1579.57 361.57 236.51 6.68X
256 1080000 1526.75 352.81 210.25 7.26X
512 1080000 1477.96 316.13 195.74 7.55X
256 2160000 3221.70 774.97 614.44 5.24X
512 2160000 3289.91 632.48 520.05 6.32X
512 3240000 5868.97 1536.10 1009.31 5.81X

0.0 0.2 0.4 0.6 0.8 1.0
Panel Position in Matrix

0

1000

2000

3000

Ti
m

el
in

e
(s

ec
on

d) PaRSEC-HiCMA-Prev
PaRSEC-HiCMA-New

(a) N = 1.08M on 64 nodes.

0.0 0.2 0.4 0.6 0.8 1.0
Panel Position in Matrix

0

1000

2000

3000

4000

Ti
m

el
in

e
(s

ec
on

d) PaRSEC-HiCMA-Prev
PaRSEC-HiCMA-New

(b) N = 2.16M on 256 nodes.
Fig. 9: Panel release time; x-axis is the panel position in matrix
which is panel ID/NT.

PaRSEC-HiCMA-New with r the reallocation to the mini-
mum size as needed during the factorization. The memory
saved increases with the matrix size, up to 44X for this setting.

The right figure simulates the effect of memory reallocation
in GEMM with b = 4500. It compares the time of a TLR GEMM
with the cost of a memory allocation for the amount of 2×k×b
(left y-axis) and the corresponding ratio (right y-axis) with
variant k ∈ [13, 1079] (the actual minrank and maxrank of
off-band tiles from this experiment on 512 nodes). The time
for memory allocation is consistently more than two orders of
magnitude cheaper than a TLR GEMM, and only TLR GEMMs
with rank growing need to reallocate memory.

E. Comparison with State-of-the-Art

We compare the performance of PaRSEC-HiCMA-New
against state-of-the-art PaRSEC-HiCMA-Prev for the st-3D-
exp application. Due to the different memory allocation strate-
gies in the 2 libraries, we compared up to the largest problem
size that could be executed with PaRSEC-HiCMA-Prev
on 512 nodes with 128 GB of memory per node. For in-
stance, PaRSEC-HiCMA-Prev could factorize matrix sizes
up to 3.24M on 512 nodes (see Figure 8) because of the
memory limit per node 128 GB. Table II lists the per-
formance traits for these matrix sizes. “Band-dense” shows
the effect of BAND-DENSE-TLR algorithm and “hybrid
distribution” with only (1)-POTRF recursive as that in
PaRSEC-HiCMA-Prev, and “Recursive kernels” describes
the impact of the recursive support for all numerical kernels.
The major performance improvement comes from “Band-
dense” because of (1) flops reduction as shown in Fig. 6 (b)
about 1.5X; (2) more balanced work-flows due to “hybrid
distribution”; (3) improved parallelism exposed to runtime
system due to smaller tile size BAND-DENSE-TLR algorithm
can support(see Section VII-B). “Recursive kernels” further
improves performance by shortening the critical path, which
improves concurrency and expedites discovery of panel re-
lease. To highlight this part Fig. 9 indicates the relative release

102

103

104
Ti

m
e-

to
-s

ol
ut

io
n

(s
ec

on
d) Time No_TLR_GEMM

Time All_kernels

1.0
8M

2.1
6M

3.2
4M

4.3
2M

5.4
0M

6.4
8M

7.5
6M

8.6
4M

Matrix Size

0.0

0.5

1.0

1.5

Ra
tio

0.89 0.94 0.83 0.70 0.62 0.67 0.57 0.54
0.10 0.07 0.06 0.05 0.07 0.06 0.08 0.05

Time-to-solution Flop

1014

1015

1016

1017

1018

Fl
op

Flop No_TLR_GEMM
Flop All_kernels

Fig. 10: Performance evalua-
tion on 512 nodes.

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Process ID

0

500

1000

1500

2000

2500

3000

3500

4000

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

Busy Time Idle Time

Fig. 11: Performance evalua-
tion on 16 nodes.

1.08M 2.16M 3.24M 4.32M 5.40M 6.48M 7.56M 8.64M 9.72M 10.80M 11.88M
Matrix Size

102

103

104

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

16 Nodes
32 Nodes
64 Nodes
128 Nodes

256 Nodes
512 Nodes
1024 Nodes
2048 Nodes

Fig. 12: Performance on Shaheen II.

time of each panel factorization for the two experiments
in Table II. Each panel is released significantly earlier in
PaRSEC-HiCMA-New than PaRSEC-HiCMA-Prev mostly
because of the recursive dense GEMMs with more balanced
work-flow instead of expensive TLR GEMMs close to the band
which delay the panel release with accumulative effect.

F. Performance Evaluation at Scale

We first highlight how close the current performance is from
the performance of the critical path as described above. Fig. 10
compares the time to solution on 512 nodes for different matrix
sizes of the entire Cholesky factorization (All_kernels)
compared with only the cost of the factorization on the dense
part plus the panel (or the entire Cholesky factorization except
for all low rank updates, No_TLR_GEMM), which is equivalent
to the critical path at distance BAND_SIZE. The red lines indi-
cate time to solution while the blue lines mean flops. Although
only a tiny fraction of flops, No_TLR_GEMM contributes to
most time-to-solution, because closer to the diagonal, and thus
closer to the critical path, there is less available parallelism
at each step. The time-to-solution ratio drops as matrix size
increases, because (1) BAND_SIZE, which is a tiny fraction
of NT, decreases inversely proportional with the matrix size,
as highlighted in Fig. 6 (d); (2) the number of tiles on-band
is O(NT) while O(NT2) tiles off-band exist.

Then, we measure the system usage by displaying the CPU’s
busy time and idle time of each process for N = 2.16M
on 16 nodes (processes), as shown in Figure 11. Load im-
balance may happen among single-process nodes due to the
static 2DBCDD, the irregular rank distribution and the rank
variations (see Figure 1) for off-band tiles. However, there is
little imbalance among threads in a process, roughly achieving
more than 90% CPU occupancy on average. In addition, the
performance achieves 4.88 Tflop/s, which is about 1/3 of the
sustained Linpack performance on 16 nodes Shaheen II, i.e.,
14.32 Tflop/s. TLR Cholesky is not purely compute-bound,
since most flops comes from TLR GEMMs (see Fig. 10). TLR
GEMM attains about one-third of the performance of a regular
dense GEMM on a single core (see Fig. 2 (a)).

1.0
8M

2.1
6M

3.2
4M

4.3
2M

5.4
0M

6.4
8M

7.5
6M

8.6
4M

Matrix Size

102

103

104

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

10 7

10 5

10 3

1.0
8M

2.1
6M

3.2
4M

4.3
2M

5.4
0M

6.4
8M

7.5
6M

8.6
4M

Matrix Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra
tio

: M
ax

ra
nk

 to
 T

ile
 S

ize

10 8
7

4 4
4

4 45
4

3 2 2 2 2 2
1 1 1 1 1 1 1 1

10 7

10 5

10 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Band Size

102

Ti
m

e-
to

-s
ol

ut
io

n
(s

ec
on

d)

10 7

10 5

10 3

Fig. 13: Evaluation of accuracy thresholds on 512 nodes.

Finally, Fig. 12 describes a large scale performance evalua-
tion with up to 2048 nodes and matrix size 11.88M ×11.88M
The performance of each matrix size shows the strong scalabil-
ity, and the graph for each node depicts weak scalability. The
strong scaling improves as the matrix size increases, thanks
to the high degree of parallelism. It is worth noting that
we are still far away from the hardware memory capacity.
For instance, the memory footprint needed per node for the
maximal matrix size on 512 nodes (i.e., 8.64M) is 9.31 GB
before factorization and 12.33 GB after factorization (see
Fig. 8 (a)), which is still far from the 128 GB memory capacity
on the system. The dynamic memory designation may enable
solving even large problem sizes for the same node budget.

G. Evaluation of Different Accuracy Thresholds

Time to solution is not the only metric of interest for TLR
factorizations, it is also crucial to be able to provide the
accuracy expected by the target science domain. In Fig. 13,
we evaluate our algorithm from the standpoint of the accuracy
threshold, its impact on the band size and the time to solution.
First, it is important to notice that the accuracy has a direct
impact on the initial rank of the compressed tiles, a lower
accuracy provide a faster decay of the ranks in the sub-
diagonals. These 3 additional accuracy threshold (10−7, 10−5

and 10−3) are complementary to the analysis above for 10−9.
• Fig. 13 (a) analyzes BAND_SIZE auto-tuning for three

accuracy thresholds alike that for accuracy 10−9 shown in
Section VIII-B. The rectangular boxes are the same range
fluctuation ∈ [0.67, 1] as before, and there is only one
point within this range for accuracies 10−5 and 10−3.

• The ratio_maxrank in Fig. 13 (b) shows a rapid descent
with the increase in matrix size, and with the decrease in
accuracy. The autotuned band size tend to vary little and
stabilize quickly. BAND_SIZE = 1 is always selected for
accuracy 10−3 because of the large rank discrepancy for
tiles on- and off- diagonal, similar to 2D applications.

• Finally the time to solution depicted in Fig. 13 (c) is
consistent with the initial k and the expected flops.

All in all, these results show the efficiency and scalability
of PaRSEC-HiCMA-New for TLR Cholesky factorization, as
well as its capability of delivering faster the results with the
expected accuracy.

IX. CONCLUSION AND FUTURE WORK

This paper demonstrates how a synergistic approach be-
tween HiCMA and PaRSEC based on a separation of concerns

can improve the productivity, performance, and scalability of
the challenging 3D exponential matrix kernel in the context
of environmental applications. By propagating the rank in-
formation to PaRSEC runtime, proper rank-aware runtime
decisions are made for dynamic data structure adaptation,
memory footprint optimizations, and data distribution. Us-
ing recursive formulations on tasks belonging to the critical
path, we further expose concurrency to PaRSEC in order
to shorten the makespan. Our resulting high-performance
BAND-DENSE-TLR Cholesky outperforms previous imple-
mentations of data-sparse Cholesky factorization by up to
7-fold on a large-scale distributed-memory system, while
minimizing the memory footprint up to a factor of 44-fold.
For future work, we would like to provide dynamic load
balancing between nodes to further mitigate the idle time.
A more generic approach to BAND-DENSE-TLR will be to
change the data structure on a tile-basis instead of a band-
basis to capture tiles with high ranks located far away from the
diagonal. Moreover, we would like to accelerate the tasks on
the critical path using GPU hardware accelerators and combine
it with mixed-precision algorithms.

Acknowledgments. For computer time, this research used
Shaheen II supercomputer hosted at the Supercomputing Lab-
oratory at KAUST.

REFERENCES

[1] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon”, “The Top500
List,” June 2020, http://www.top500.org.

[2] D. E. Keyes, H. Ltaief, and G. Turkiyyah, “Hierarchical Algorithms on
Hierarchical Architectures,” in Proceedings of the Platform for Advanced
Scientific Computing Conference, 2020, pp. 1–11.

[3] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects,” in
Journal of Physics: Conference Series, vol. 180, no. 1, 2009, p. 012037.

[4] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, P. Luszczek, A. YarKhan,
and J. Dongarra, “Flexible Development of Dense Linear Algebra Algo-
rithms on Massively Parallel Architectures with DPLASMA,” in 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, May 2011, pp. 1432–1441.

[5] “The chameleon project,” https://gitlab.inria.fr/solverstack/chameleon,
January 2017.

[6] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-
rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36,
no. 1, pp. 53–78, 2013.

[7] M. S. Handcock and M. L. Stein, “A Bayesian Analysis of Kriging,”
Technometrics, vol. 35, pp. 403–410, 1993.

[8] S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton, and D. E. Keyes,
“Parallel Approximation of the Maximum Likelihood Estimation for
the Prediction of Large-Scale Geostatistics Simulations,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER), 2018.

[9] S. Börm, L. Grasedyck, and W. Hackbusch, “Introduction to hierarchical
matrices with applications,” Engineering Analysis with Boundary Ele-
ments, vol. 27, no. 5, pp. 405 – 422, 2003.

[10] S. Goreinov, E. Tyrtyshnikov, and A. Y. Yeremin, “Matrix-free iterative
solution strategies for large dense linear systems,” Numerical Linear
Algebra with Applications, vol. 4, no. 4, pp. 273–294, 1997.

[11] W. Hackbusch, “A sparse matrix arithmetic based on H-matrices. Part
I: Introduction to H-matrices,” Computing, vol. 62, pp. 89–108, 1999.

[12] R. Kriemann, “H-LU factorization on many-core systems,” Comput. Vis.
Sci., vol. 16, no. 3, p. 105–117, Jun. 2013.

[13] E. Corona, P.-G. Martinsson, and D. Zorin, “An O(N) direct solver for
integral equations on the plane,” Applied and Computational Harmonic
Analysis, vol. 38, no. 2, pp. 284–317, 2015.

[14] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, “A distributed-memory
package for dense hierarchically semi-separable matrix computations
using randomization,” ACM Transactions on Mathematical Software
(TOMS), vol. 42, no. 4, p. 27, 2016.

[15] S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg,
and M. O’Neil, “Fast direct methods for Gaussian processes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 38,
no. 2, pp. 252–265, 2015.

[16] S. Börm, Efficient numerical methods for non-local operators: H2-
matrix compression, algorithms and analysis. European Mathematical
Society, 2010, vol. 14.

[17] T. Mary, “Block Low-Rank Multifrontal Solvers: Complexity, Perfor-
mance, and Scalability,” Ph.D. dissertation, Paul Sabatier University,
Toulouse, France, November 2017.

[18] W. Hackbusch, “Survey on the Technique of Hierarchical Matrices,”
Vietnam Journal of Mathematics, vol. 4, p. 71–101, 2016.

[19] W. H. Boukaram, G. Turkiyyah, H. Ltaief, and D. E. Keyes, “Batched
QR and SVD Algorithms on GPUs with Applications in Hierarchical
Matrix Compression,” Parallel Computing, vol. 74, p. 19–33, 2018.

[20] A. Charara, D. Keyes, and H. Ltaief, “Tile Low-Rank GEMM Using
Batched Operations on GPUs,” in Euro-Par 2018: Parallel Processing,
M. Aldinucci, L. Padovani, and M. Torquati, Eds. Springer, 2018.

[21] K. Akbudak, H. Ltaief, A. Mikhalev, A. Charara, A. Esposito, and
D. Keyes, “Exploiting data sparsity for large-scale matrix computations,”
in European Conference on Parallel Processing. Springer, 2018.

[22] Q. Cao, Y. Pei, K. Akbudak, A. Mikhalev, G. Bosilca, H. Ltaief,
D. Keyes, and J. Dongarra, “Extreme-scale Task-based Cholesky Factor-
ization Toward Climate and Weather Prediction Applications,” in Pro-
ceedings of the Platform for Advanced Scientific Computing Conference,
2020, pp. 1–11.

[23] Q. Cao, Y. Pei, T. Herault, K. Akbudak, A. Mikhalev, G. Bosilca,
H. Ltaief, D. Keyes, and J. Dongarra, “Performance Analysis of
Tile Low-Rank Cholesky Factorization Using PaRSEC Instrumentation
Tools,” in 2019 IEEE/ACM International Workshop on Programming
and Performance Visualization Tools (ProTools) at SC19. IEEE, 2019.

[24] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. A. Mary, “Bridging
the Gap Between Flat and Hierarchical Low-Rank Matrix Formats:
The Multilevel Block Low-Rank Format,” SIAM Journal on Scientific
Computing, vol. 41, no. 3, pp. A1414–A1442, 2019.

[25] M. G. Genton, “Classes of kernels for machine learning: a statistics
perspective,” J. Mach. Learn. Res., vol. 2, p. 299–312, Mar. 2002.

[26] H. He and W. Siu, “Single image super-resolution using gaussian process
regression,” in CVPR 2011, 2011, pp. 449–456.

[27] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. Don-
garra, “PaRSEC: A Programming Paradigm Exploiting Heterogeneity
for Enhancing Scalability,” Computing in Science and Engineering,
vol. 99, p. 1, 2013.

[28] A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra,
“PTG: An Abstraction for Unhindered Parallelism,” in 2014 Fourth
International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, 2014, pp. 21–30.

[29] R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic Task Dis-
covery in PaRSEC: A Data-flow Task-based Runtime,” in Proceedings
of the 8th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems, ser. ScalA ’17. ACM, 2017.

[30] A. Denis, E. Jeannot, P. Swartvagher, and S. Thibault, “Using dynamic
broadcasts to improve task-based runtime performances,” in European
Conference on Parallel Processing. Springer, 2020, pp. 443–457.

[31] G. Morton, A Computer Oriented Geodetic Data Base and a New Tech-
nique in File Sequencing. International Business Machines Company,
New York, 1966.

[32] K. Akbudak, H. Ltaief, A. Mikhalev, and D. Keyes, “Tile Low Rank
Cholesky Factorization for Climate/Weather Modeling Applications on
Manycore Architectures,” in 32nd International Conference on High
Performance, Frankfurt, Germany. Springer International Publishing,
2017, pp. 22–40.

[33] E. Slaughter, W. Wu, Y. Fu, L. Brandenburg, N. Garcia, W. Kautz,
E. Marx, K. S. Morris, W. Lee, Q. Cao, G. Bosilca, S. Mirchandaney,
S. Treichler, P. S. McCormick, and A. Aiken, “Task bench: A parame-
terized benchmark for evaluating parallel runtime performance,” arXiv
preprint arXiv:1908.05790, 2019.

