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Abstract—In the age of big data, deep learning has emerged
as a powerful tool to extract insight and exploit its value, both
in industry and scientific applications. One common pattern
emerging in such applications is frequent checkpointing of the
state of the learning model during training, needed in a variety of
scenarios: analysis of intermediate states to explain features and
correlations with training data, exploration strategies involving
alternative models that share a common ancestor, knowledge
transfer, resilience, etc. However, with increasing size of the
learning models and popularity of distributed data-parallel
training approaches, simple checkpointing techniques used so far
face several limitations: low serialization performance, blocking
I/O, stragglers due to the fact that only a single process is
involved in checkpointing. This paper proposes a checkpointing
technique specifically designed to address the aforementioned
limitations, introducing efficient asynchronous techniques to hide
the overhead of serialization and I/O, and distribute the load over
all participating processes. Experiments with two deep learning
applications (CANDLE and ResNet) on a pre-Exascale HPC
platform (Theta) shows significant improvement over state-of-art,
both in terms of checkpointing duration and runtime overhead.

Index Terms—checkpointing; deep learning; fine-grain asyn-
chronous I/O; multi-level data persistence

I. INTRODUCTION

Deep learning applications are rapidly gaining traction both

in industry and scientific computing. A key driver for this trend

has been the unprecedented accumulation of big data, which

exposes plentiful learning opportunities thanks to its massive

size and variety. Unsurprisingly, there has been significant

interest to adopt deep learning at very large scale on super-

computing infrastructures in a wide range of scientific areas:

fusion energy science, computational fluid dynamics, lattice

quantum chromodynamics, virtual drug response prediction,

cancer research, etc.

To keep up with this trend, learning models are becoming

increasingly more complex and exhibit deeper structures,

prompting the need to employ more scalable training tech-

niques. Such techniques involve the evaluation of several neu-

ral network (NN) architectures and their configurations, several

potential data representations, and multiple workflows to train,

evaluate, and analyze results. In this context, checkpointing is

emerging as a key building block.

Traditionally, checkpointing has been used by HPC appli-

cations for defensive purposes, i.e., to survive failures that

happen frequently at large scale using fault tolerance strategies

based on checkpoint-restart. By capturing the state of learning

models at regular intervals, checkpoint-restart is also a viable

strategy in the context of deep learning for far more than

resilience. Indeed, beyond resilience, checkpoints of learning

models are increasingly being used for productive purposes:

taken at regular intervals during training, they provide rich

information about intermediate states. This facilitates further

analytics to understand the evolution of training (used NN

architecture optimization, configuration and evaluation), to

identify correlations between training data and weight updates,

and, in general, to explain why a model produces correct

results, which is considered one of the grand challenges of

deep learning.

Another particularly prominent use case for checkpointing

is in the context of transfer learning, which involves partial

training of a model, capturing its state and retraining/using it

in a different context. This can done either to avoid retraining

a model from scratch for a similar problem, or to design

new search strategies that explore many alternatives in parallel

starting from common ancestors. For example, a scientific use

case for these capabilities is found in the Cancer Deep Learn-

ing Environment (CANDLE) Benchmarks [1], a collection

of deep learning -based, cancer-relevant applications. These

include the analysis of drug response data, molecular dynamics

data, and clinical text data. An ongoing CANDLE study is the

analysis of training data, in which partially trained NN models

are duplicated and retrained on different data, potentially in a

recursive fashion.

Although emerging as a critical building block, checkpoint-

ing has seen relatively little attention in the deep learning

community. Current state-of-art approaches are rudimentary:

they work on single machines and involve single files that

emphasize portability over performance and scalability. On

the other hand, checkpointing has been studied in-depth in

the HPC community, where multi-level techniques that scale

on supercomputing infrastructures and leverage heterogeneous

storage are common. However, such techniques are not de-

signed to handle the specific I/O patterns and scalability

requirements that are involved in the checkpointing of deep

learning models, which means they cannot be simply used

as a drop-in replacement of the the rudimentary techniques.

This problem is further complicated by the increasing size of

the models and the complexity of training techniques, which
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aim for both horizontal scalability (e.g., synchronized data-

parallel training) and vertical scalability (e.g., fine-grain layer-

wise parallelism).

This paper aims to address the aforementioned challenges

by proposing a novel checkpointing framework for deep learn-

ing models that is designed from scratch to take advantage of

the I/O patterns and specific properties of synchronous data

parallel-training and layer-wise parallelism. In doing so, it acts

as a bridge to advanced techniques employed by state-of-art

multi-level HPC checkpointing approaches, thereby unlocking

the potential to scale on supercomputing infrastructures. We

summarize our contributions as follows:

• We introduce a series of design principles that enable

efficient fine-grain asynchronous checkpointing of deep

learning models. In particular, we emphasize the impor-

tance of combining lightweight serialization, sharding and

augmentation of the execution graph to asynchronously

mask the overhead of capturing weights from tensors

without using a separate execution context (Section IV).

• We show how to materialize these design principles in

practice as a transparent checkpointing solution on top of

the VeloC (Very Low Overhead Checkpoint-Restart) run-

time, which is a representative multi-level HPC solution.

To this end, we introduce an architecture (Section IV-B)

and present a reference implementation (Section IV-C).

• We evaluate our approach in a series of experiments

conducted on Theta, one of the pre-Exascale systems

hosted at Argonne National Laboratory. We use two deep

learning applications: one is a popular benchmark used in

the machine learning community (ResNet-50), the other

is a real-life cancer deep learning research framework

(CANDLE). Compared with state-of-art approaches, our

proposal shows significantly better scalability and an

order of magnitude less checkpointing overhead. (Sec-

tion V).

II. RELATED WORK

Multi-level checkpoint-restart is a popular approach to lever-

age multiple storage levels in the context of HPC checkpoint-

ing. Works representative of this approach include (SCR) [2]

and FTI) [3], which introduce support for local storage, partner

replication, erasure coding (XOR and Reed-Solomon [4])

and finally external storage (parallel file systems). Recent

efforts such as VELOC can take advantage of heterogeneous

storage for each level and introduce advanced asynchronous

techniques that leverage synergies between the levels [5] and

predictions of application behavior to mitigate interference [6].

Exploiting local storage as a write cache layer to flush the

application data to external storage asynchronously has been

proposed before in the context of node-level aggregation of

I/O from multiple cores [7], or I/O forwarding [8]. However,

such efforts use a single level of caching, placing the em-

phasis on the aggregation. Other efforts such as [9] focus on

smart ordering of asynchronous flushes from memory to local

storage, which eliminate the need for blocking writes and are

complementary to our approach.

Regarding the issue of I/O and storage for deep learning,

both the HPC and deep learning communities have, so far,

dedicated most efforts to access large training datasets effi-

ciently [10], [11], [12], [13], while leaving the problem of

optimized checkpointing of learning models largely ignored.

TensorFlow checkpoints model to files in its SavedModel for-

mat,1 or in HDF5 files through Keras.2 Pytorch uses Python’s

Pickle module to serialize its model into files.3 These file-

based methods, while simple and adapted to training on a

single machine, are becoming a bottleneck when scaling to

a large number of compute nodes.

In ensemble model training [14], [15] and in hyperparameter

search workflows [16], [17], we can expect each node to

periodically checkpoint the neural network it trains, leading to

I/O pressure in the order of typical scientific HPC applications

that rely on a file-per-process approach. Hence improving

model storage will become more critical. One step in the

direction of improving model checkpoint is the CANDLE

Model Cache [18], which proposes to use DataSpaces [19]

as a distributed, remotely accessible cache instead of the

parallel file system. The authors however do not rely on

sharding neural network nor on asynchronous I/O to improve

performance. Such a caching service is orthogonal to our own

work and could be used in conjunction with it.

Compression is another technique that can be used to reduce

the overhead of checkpointing by reducing the size of the

models. To this end, lossy compression methods are partic-

ularly promising and have been designed specifically for deep

neural networks. DeepSZ [20] determines appropriate error

bounds for each of the neural network layers and assesses the

loss of inference accuracy due to compressed layers. Weights

quantization [21], [22] is another technique that reduces the

precision of network parameters to gain space. Another class

of data reduction techniques based on de-duplication of identi-

cal content across groups of processes [23] may be promising

for deep learning models, especially if relaxed to look for

similar instead of identical content. Once again, these data

reduction techniques can be used to complement our own

work.

To summarize, state-of-art checkpointing used by the deep

learning community is rudimentary, while state-of-art check-

pointing used by the HPC community is not designed to

address the I/O patterns and scalability challenges emerging in

modern deep learning applications, which limits their applica-

bility. Our approach aims to fill this gap, taking advantage of

such patterns to deliver high performance and scalability. To

our best knowledge, we are the first to explore this problem
in-depth.

III. BACKGROUND

Deep learning (DL) algorithms are a class of machine

learning algorithms that are based on complex neural networks

with a large number of layers (hence called deep). They

1https://www.tensorflow.org/guide/saved model
2https://www.tensorflow.org/guide/keras/save and serialize
3https://pytorch.org/tutorials/beginner/saving loading models.html
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have have been successfully applied in a wide range of

tasks: image recognition, machine translation, forecasting [6].

Such algorithms have increasingly gained attention in high

performance computing as a complement to simulations (e.g.,

identify regions of interest, select promising initial conditions,

etc.).

DL algorithms primarily use gradient descent to update the

weights, an iterative technique that works as follows. First,

the forward propagation step, where a training sample is used

as the input of first layer of the neural network to compute

its output, which is then propagated layer by layer, until a

prediction of the result is obtained at the last layer. Then, the

difference (gradients) between the predicted and actual result

(“ground truth”) is used to update the weights layer by layer

up to the first layer. This step is called back-propagation. The

goal is to converge to a minimum that is representative of all

training samples and acts as an interpolation function for the

whole problem. An important type of gradient descent is mini-

batch gradient descent, where multiple training samples are

used in the forward pass and the resulting average gradients is

used for back-propagation. This speeds up the training process,

both because fewer iterations are needed, and because there

are fewer abrupt changes to the descent due to biased samples,

which reduces the noise of finding the best direction to take.

Gradient descent is a computationally expensive technique.

The explosion of available training data and the need to solve

more complex problems have led to the introduction of deeper

structures with more layers (e.g., complex residual networks

that can be built with 1000+ layers, such as ResNet [24]).

Therefore, gradient descent became not only more expensive to

run because it needs to process more batches, but also because

each batch itself is now more expensive to process. To solve

this problem, distributed DL algorithms have been developed,

capable of scaling horizontally on multiple compute nodes.

Fig. 1: Synchronous data-parallel training.

The most widely used such technique is synchronous data-
parallel training. It leverages the idea of creating replicas

of the learning model on multiple nodes and training each

replica in parallel with a different batch. We denote as rank
a process responsible for training an individual replica (which

is the usual terminology in high performance computing).

Fig. 2: An example of tensor fusion obtained from the Horovod

timeline for the CANDLE-NT3 benchmark.

Forward propagation can be done in an embarrassingly parallel

fashion. However, during back-propagation, the weights are

not updated with the local gradients, but with global average

gradients computed across all ranks using all-reduce opera-

tions. This process is illustrated in Figure 1.

DL algorithms take advantage of multi-core and hybrid

architectures (e.g., CPUs + GPUs) to parallelize the gradient

computation and weight updates. Specifically, once a rank

has finished computing the local gradients for a layer, it

immediately proceeds to compute the local gradients of the

previous layer. At the same time, it waits for all other ranks to

finish computing their local gradients for the same layer, then

updates the weights based on the average gradients obtained

using all-reduce. This is called layer-wise parallelism. An

example is depicted in Figure 3 as a DAG (directed acyclic

graph): the local gradient of each layer is a dependency for

both the previous layer and the rest of the operations (all-

reduce and weight updates; for now the reader can ignore shard

extraction, which will be explained later). Once the local gra-

dients are computed, both paths in the DAG can be executed in

parallel. Over time, several runtimes that implement such ideas

have become popular, such as Tensorflow [25], Caffe [26] and

Torch [27].

The combination of synchronous data-parallel training and

layer-wise parallelism has proven especially popular and many

deep learning approaches have introduced support for them:

Distributed Tensorflow, Distributed Torch, etc. Some of these

runtimes can use MPI as the underlying communication layer

that provides an optimized all-reduce implementation, which is

a natural fit for supercomputing architectures. A particular im-

plementation, Horovod [28], has gained significant traction in

production because it can leverage MPI to take advantage of an

optimized all-reduce implementation for high-end networking

infrastructures, while integrating seamlessly with the Python

ecosystem and the high-level machine learning libraries (such

as Keras [29]) that emphasize ease of use and convenience.

However, reconciling MPI with layer-wise parallelism is

non-trivial, because MPI was not designed to support multiple

parallel all-reduce operations that need to operate with poten-

tially small data sizes from within the same rank. Therefore,

optimizations such as tensor fusion have emerged that adopt a

producer-consumer model: all-reduce from individual tensors
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are collected in a buffer while a separate thread continu-

ously runs MPI all-reduce, combining (“fusing” together) the

buffered all-reduce that have accumulated since the last MPI

all-reduce call into a single new call to be executed next. An

example is depicted in Figure 2.

It must be noted that the combination of layer-wise paral-

lelism and synchronous data-parallel training, although intro-

ducing significant complexity, also opens new opportunities,

which form the core of this work and will be discussed next.

Also, note that checkpointing is a broad primitive in the

context of deep learning: it is a basic building block for many

productive scenarios (as discussed in Section I), which are in

addition to fault tolerance. Therefore, in this paper we assume

the need to checkpoint frequently (potentially more often than

the optimal checkpoint interval needed to survive failures),

which simultaneously satisfies both aspects.

IV. SYSTEM DESIGN

This section introduces the design principles, architecture

and implementation of our approach.

A. Design principles

Our proposal is based on the following general design

principles:

a) Asynchronous multi-level checkpointing: We pro-

pose a multi-level approach that combines “lightweight” per-

sistence strategies (involving local storage of neighboring

nodes to perform replication and erasure coding) with “heavy”

persistence strategies (flushing to external storage such as a

parallel file system). Using this approach, checkpoints are

preserved in a reliable fashion for the duration of a job and

beyond. A key goal is to block the training for as little

as possible during checkpointing. To this end, we introduce

an asynchronous approach that captures a local copy of the

learning model, while applying both the lightweight and heavy

persistence strategies in the background, while the training

continues running. These background operations can run with

low priority to avoid negative impact on the application due to

interference. A key challenge that differentiates this approach

from traditional HPC multi-level checkpointing is the fact

that local copies can be expensive. We address this challenge

below.

b) Hidden complexity of heterogeneous storage: Stor-

age is becoming heterogeneous both at node-local (multiple

types of volatile and persistent memory, SSDs, etc.) and

external level (burst buffers, key-value stores, parallel file

systems). Many users are simply unaware of the various types

of storage available on the nodes where they need to run data-

parallel training. When they are aware of them, most do not

fully understand the performance characteristics. Even for the

minority of users that are both aware of heterogeneous storage

and understand their performance characteristics, leveraging

heterogeneous storage is problematic because state-of-art ap-

proaches were not designed to take advantage of them: most

are limited to single destinations (e.g., a single file on a

parallel file system). To address this problem, we propose

a transparent solution that automatically detects, mixes and

matches heterogeneous storage using vendor-specific APIs

when available for optimal performance. This is done in close

coordination with asynchronous multi-level checkpointing, in-

troducing awareness of fine-grain I/O operations and optimal

flushing strategies based on producer-consumer strategies that

rely on performance modeling [5].

c) Efficient serialization on local storage: Even when

advanced asynchronous techniques are employed for multi-

level checkpointing, serialization to local storage can still

incur significant overhead. This is due to the fact that the

models can have deep structures that involve many layers

and tensors and it is non-trivial to collect and consolidate

the necessary information. Despite this challenge, state-of-art

approaches often trade off performance for portability, using

self-descriptive formats for model checkpoints (e.g., HDF5)

that are expensive to produce. We argue in favor of lightweight

serialization approaches that prioritize performance. This is

based on the assumption that for the frequent checkpointing

scenarios we target in this paper, it is sufficient to capture

the weights of the model alone, because the structure of the

model changes less frequently and therefore can be captured

in a separate checkpoint on a per-need basis. Based on this

idea, we make use of a compact binary format that leaves out

unnecessary details (e.g. labels of tensors) and minimizes the

necessary I/O operations required to assemble a checkpoint.

d) Sharding for data-parallel training: Synchronous

data parallel training approaches use the same gradients to

update the weights of each layer. Therefore, at the end of

each iteration (when it is safe to checkpoint the model), there

will be identical replicas of each layer available on the nodes

where the ranks are running. We exploit this property to further

reduce the I/O overhead of serialization to local storage as

follows: We slice each layer into a number of shards equal

to the number of ranks, then each rank writes a different

shard to local storage. Since the local storage is not shared,

this effectively distributes the I/O workload in a scalable

fashion across all ranks. Note that we decided to slice each

layer independently instead of grouping all layers together and

then slicing the resulting checkpoint. Although the latter may

reduce the required I/O operations (i.e., write a single large

shard instead of many smaller shards) it is also limiting with

respect to further optimizations, which is why we chose the

former. Such optimizations will be discussed next.

e) Asynchronous shard extraction during back-
propagation: Modern machine learning frameworks are com-

posed of multiple layers of low-level and high-level libraries

that offer a trade-off between convenience and simplicity

vs. high-performance and fine-tuning. High-level libraries are

often implemented in high level languages (e.g. Python) and

do not have direct access to the data structures of low-level

libraries. Therefore, there are restrictions in terms of when and

how it is possible to access such low-level data structures. For

example, Tensorflow requires high-level libraries like Keras to

create a separate graph execution context in order to extract

the value of tensors as high-level Python data structures (e.g.,
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Fig. 3: Example of fine-grain sharding during back-

propagation, including the pipeline between the shards.

numpy arrays). This can introduce high overhead by itself,

even before being able to perform sharding and lightweight

serialization. To address this challenge, we leverage the obser-

vation that during back-propagation, weight updates for higher

layers run in parallel with the gradient calculation and all-

reduce synchronization of the lower layers. Thus, we propose

to augment the execution graph by introducing an additional

slicing operation immediately after the weight updates in each

layer. An example of how this works is depicted in Figure 3,

where each computation of the local gradients activates the

previous layer, while in parallel advancing towards the weight

updates and sharing. Using this approach overlaps the access

to the tensors and the slicing with the rest of the operations

in the same execution context, which both avoids the need

to create a separate execution context and takes advantage of

fine-grain asynchronous parallelization opportunities.

B. Architecture

We adopt the design principles introduced in Section IV-A

into the architecture depicted in Figure 4.

It consists of three major components: VELOC, a low

overhead runtime specifically designed for scalable, high-

performance asynchronous multi-level checkpointing for HPC

applications [5], a checkpointing module responsible to cap-

ture tensors to local storage and a bindings library that

interfaces the checkpointing module with VELOC. Both the

checkpointing module and the bindings library are new com-

ponents written from scratch and integrated with VELOC.

Fig. 4: Architecture of our proposal based on the VELOC

(Very Low Overhead Checkpoint-Restart) runtime.

The checkpointing module encapsulates the main contribu-

tion of this work and exposes the ability to capture the weights

of the learning model by means of a Keras callback, which

needs to be added to the list of callbacks supplied to the

model.fit method, responsible to run the training process. From

the user perspective, this is the only action needed to activate

checkpointing support. All optimizations related to efficient

serialization of the weights, sharding and augmentation of the

execution graph for asynchronous extraction of shards are the

responsibility of the checkpointing module.

The library providing Python bindings is a thin intermediate

layer specifically optimized to efficiently pass numpy arrays,

the main data structures used in Python to represent the content

of tensors, to the VELOC client, which is responsible for

exposing a memory-oriented API to save contiguous regions

as a checkpoint into the local storage.

The VELOC engine is responsible for running the module

pipeline. The default modules perform post-processing on the

local checkpoints, which includes both collaborative resilience

(e.g. replication and erasure coding using partner compute

nodes) and optimized transfer support to heterogeneous ex-

ternal storage (e.g. parallel file systems, burst buffers, key-

value stores, etc.) using vendor APIs (where applicable). This

is where the assembly of the shards is happening to construct

a full checkpoint on external storage.

Two modes of operation are supported by VELOC: syn-
chronous and asynchronous. In the synchronous mode, the

client and the engine are linked together using a trivial control

plane in the same front-end library used by the application.

Both the local checkpointing and the post-processing are

blocking operations. In the asynchronous mode, the engine

instance is created only once per node and lives in a separate

active back-end. All clients connect to the same active back-

end using a configurable control plane that is based on shared-

memory or RPC libraries. In this mode, the clients do not need

to wait for the engine to finish and can resume the application

immediately after the local checkpoints were written and the

engine was notified about their existence. For the purpose of
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this work, we use the asynchronous mode.

C. Implementation

We implemented the checkpointing module on top of Ten-

sorflow 2.0, which includes an optimized version of Keras

tightly integrated with it. In this context, we aim for two design

goals. First, we expose an API that is compatible with the

existing checkpointing mechanism in Keras, which enables

users to perform minimal changes to the code to integrate

our approach, therefore aligning to the overall design goal of

Keras, i.e. provide ease of use and convenience at high level.

Second, we isolate the modifications necessary to augment

the execution graph into Keras, which means our approach

works out of the box with an existing binary distribution of

Tensorflow. This is a very important aspect, because many

vendors adapt Tensorflow for their machines by integrating it

with custom low-level libraries (e.g. Intel MKL), making it

challenging if not impossible to modify, recompile and fine-

tune Tensorflow.

To achieve these goals, we adopt the following strategy.

In terms of API, we provide a Python class that extends

the Keras callback interface and overrides the on batch begin
and on batch end methods. This class can be configured to

checkpoint every K iterations, simply ignoring the batch events

when it is not time to checkpoint. Otherwise, at the beginning

of a batch after which a checkpoint is needed, it sets a boolean

tensor to True. This will activate the sharding embedded into

the execution graph, which otherwise is inactive. Then, after

the batch was completed, it uses the VELOC Python bindings

to checkpoint the tensor shards, resets the boolean tensor to

False and returns control to the main loop of model.fit. The

user simply needs to invoke model.fit with this class added to

the list of callbacks.

To augment the execution graph, we intercepted the

apply gradients method of the the base optimizer class of

Keras (keras.optimizer v2.OptimizerV2). This method is re-

sponsible for building the execution graph for the weight

updates, into which we injected additional sharding code that

conditionally activates based on the boolean tensor defined

in the callback. The sharding itself is implemented in an

optimized fashion using Tensorflow’s own slice operator. Since

tensors can be multi-dimensional and slicing requires a single

dimension, we choose the largest dimension. This ensures the

best load balancing. Note that all overhead of calculating the

largest dimension and adding slice operations is performed

only once during initialization when the execution graph is

built.

The Python bindings were implemented using ctypes, which

facilitates easy integration with C and C++ external libraries.

It takes advantage of the fact that numpy arrays are internally

represented as contiguous memory regions, which enables it

to avoid any extra copies when calling the VELOC API.

We integrated the bindings with VELOC v.1.2, which has

a modular design that enables the user to configure which

plugins to activate that implement multi-level strategies. For

the purpose of this work, we activated only the transfer

module that is responsible for optimized background flushes

to external storage.

V. EVALUATION

A. Experimental Setup

Our experiments were performed on Theta, a 11.69

petaflops pre-Exascale Cray XC40 system based on the

second-generation KNL Intel Xeon Phi 7230 SKU. The system

is equipped with 4392 nodes, each containing a 64 core pro-

cessor (256 hardware threads) with 16 GB of high-bandwidth

in-package memory (MCDRAM, 300-450 GB/s), 192 GB of

main memory (DDR4 RAM, 20 GB/s), and a 128 GB SSD

(700 MB/s). The interconnect topology is based on Dragonfly

with a total bisection bandwidth of 7.2 TB/sec.

For the purpose of this work, we configured KNL to

run in caching mode, which means the MCDRAM acts as

a cache (implemented in hardware) for the main memory.

This is the recommended configuration for deep learning

applications, since memory bandwidth has an important impact

on performance. The file-system used as local storage is

ext4, which is deployed on top of the SSD. The external

storage is provided by a Lustre parallel file system deployment

(aggregated bandwidth 250 GB/s), which is mounted using

POSIX.

In terms of deep learning software, we use Horovod v.0.18.1

and Tensorflow v.2.0. Note that Tensorflow v.2.0 comes with

its own optimized Keras library, which we use for our

experiments. Furthermore, all these libraries are compiled

with optimized support for the KNL architecture by taking

advantage of Intel’s Math Kernel Library (MKL) and Intel’s

own Python distribution. Our modifications to Tensorflow are

contained within Keras and concern Python code exclusively.

Therefore, our approach takes full advantage of the aforemen-

tioned optimizations.

B. Methodology

Our work focuses on scenarios where the state of the

learning model needs to be checkpointed with high frequency

during the training. In this context, the critical state that

changes between batch updates are the weights of the layers,

which are the focus of our experiments. We assume the rest

of the parameters (architecture of the model, training config-

uration, state of the optimizer) are checkpointed separately as

needed.

We compare the following approaches throughout our eval-

uation.

Keras-Default: This is the default checkpointing ap-

proach available in Keras. Specifically, the user has to register

a callback with the model, which is used during the training

to signal when a step and/or epoch was completed (which is a

safe moment to checkpoint). In the callback, the weights of the

model are saved using model.save weights(ckpt file), which

uses the HDF5 library to serialize the weights in the specified

file. Since the weights of all model replicas are synchronized

at the end of each batch, only one rank needs to save the

weights (we choose by convention rank 0). This operation is
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blocking and causes rank 0 to lag behind in the next batch,

which ultimately causes and overall performance overhead due

to synchronization.

VELOC-Single: This approach is similar with

Keras−Default, except for the fact that it relies on

model.get weights() to obtain the list of all weights as

numpy arrays, which are then serialized in bulk on the

local storage using the VeloC Python bindings. Again, this

is a blocking operation that happens on a single rank.

However, unlike the case of Keras−Default, the serialized

weights are flushed to external storage (Lustre parallel file

system) asynchronously in the background while the training

continues.

VELOC-Sharded: This approach adds sharding on top of

the VELOC−Single approach. Specifically, each rank obtains

the list of weights as numpy arrays and then extracts for

each array a slice corresponding to its index. The size of the

slice is the total size of the array divided by the number of

ranks. Then, each rank independently serializes the slices of

all arrays using the VeloC Python bindings. Each rank flushes

the serialized slices to external storage in the background.

VELOC-Opt: This is the optimized approach that hides

the overhead of extracting and slicing numpy arrays from ten-

sors by embedding these operations directly into the execution

graph of Tensorflow. In this case, the only blocking operation

on all ranks is the serialization of the slices using the VeloC

Python bindings. Same as in the case of VELOC−Sharded,

each rank flushes the serialized slices to external storage in

the background.

These approaches are compared based on the following

metrics.

Blocking Phase: This metric corresponds to the duration

of all blocking operations performed during the checkpointing

callback that is invoked on batch completion. In the case of

Keras−Default, it includes all overheads associated with ex-

tracting numpy arrays from tensors, serialization into the HDF5

format and writes to external storage. For VELOC−Single and

VELOC−Sharded it includes all overheads associated with

extracting numpy arrays from tensors, slicing and serialization

using the VeloC Python bindings (writes to external storage are

asynchronous). For VELOC−Opt, it includes just the overhead

of serialization using the VeloC Python bindings (everything

else is performed asynchronously). It is calculated as the

average of all checkpoints performed by all ranks. This metric

is important because it exposes how much time an individual

rank loses on the average if it is involved in checkpointing.

It directly impacts scenarios where training is stopped after

checkpointing to use the model in a different context.

Preparation Phase: This metric applies to

VELOC−Single and VELOC−Sharded. It measures the

overhead of extracting numpy arrays from tensors and, in

the case of VELOC−Sharded, performing the slicing. It is

calculated as the average of all checkpoints performed by

all ranks. This metric is important because it emphasizes the

overhead of post-processing tensors outside of the execution

graph in a blocking fashion, which translates to a direct

increase of the duration of the blocking phase for the two

approaches.

Runtime Overhead: This metric evaluates the runtime

overhead caused by checkpointing for the whole group. In

the case of VELOC−Sharded and VELOC−Opt, all ranks are

checkpointing and therefore a slowdown is experienced by

the whole group during the same iteration. In the case of

Keras−Default and VELOC−Single, only rank 0 is checkpoint-

ing while the rest move on to the next iteration. Therefore, rank

0 lags behind in the next iteration, causing a slowdown for

the whole group there. Therefore, to ensure a fair comparison,

we measure this slowdown by calculating the average of all

iterations where a checkpoint is taken and the corresponding

iterations that are immediately following, from which we

subtract the baseline (average duration of iterations without

checkpointing). This metric is important because it exposes the

end-impact when the training is continued after checkpointing,

including the interference caused by asynchronous operations.

C. Applications

We study two representative deep learning applications,

each of which can benefit from checkpointing in a variety

of scenarios, as outlined in Section I.

1) CANDLE NT3: CANDLE [14] (Cancer Distributed

Learning Environment) is a project that aims to combine

the power Exascale computing with deep learning to address

a series of loosely connected problems in cancer research.

Each such problem is driven by a series of benchmarks. One

such direction (Pilot 1) aims to predict drug response based

on molecular features of tumor cells and drug descriptors.

In this context, we study on NT3 [1], which consists of a

1D convolutional network for classifying tissue, expressed as

gene sequences, as normal or tumorous. This type of network

follows the classic architecture of convolutional models with

multiple 1D convolutional layers interleaved with pooling

layers followed by final dense layers. The optimizer used by

NT3 is SGD (stochastic gradient descent). The training data

size for this benchmark is ≈ 600 MB, which includes 1120

training samples. We adapted NT3 for data-parallel training

by introducing a partitioning scheme that evenly distributes

the training data to the ranks and a new distributed optimizer

based on Horovod.

2) ResNet-50: is a deep neural network where the layers

learn residual functions with reference to the input layers,

instead of learning unreferenced functions. This allows ResNet

to train extremely deep neural networks with 150+ layers,

which was difficult prior to its introduction due to the problem

of vanishing gradients [24]. Thanks to this breakthrough,

ResNet became a highly popular image classification bench-

mark especially in a simpler form that uses 50 layers. We

study this form, called ResNet-50. A data parallel implemen-

tation is shipped together with Horovod as an example [30].

The optimizer used by this implementation is also SGD. As

training data, we use the ImageNet dataset [31], which is ≈
200 MB large and includes 100,000 samples. The training set

of each worker is randomly sampled from the training data.
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D. Results

We focus our study on the weak scalability of data-parallel

training for each of the approaches introduced in Section V-B.

In this case, the batch size remains constant as the number of

ranks increases, which means more training data is processed

with each iteration. This is the most popular data-parallel

training scenario.

TABLE I: Application parameters

Application Batch size Ckpt tensors Ckpt size
CANDLE-NT3 20 9 600 MB

ResNet-50 32 27 100 MB

We run a single Horovod rank per node. Each rank runs

a Tensorflow instance that was configured to use two intra-

threads (used to parallelize single operations internally) and

128 inter-threads (used to parallelize independent operations

in the graph). These are the optimal settings for the Theta

pre-Exascale machine according to previous findings [32]. The

application parameters are listed in Table I. We include both

the number of tensors holding the weights to be checkpointed

and their total size.

TABLE II: Application performance: average duration of

iterations

Application 1 node 2 nodes 4 nodes 8 nodes
CANDLE-NT3 2.7s 2.8s 4.2s 5.1s

ResNet-50 4.79s 5.12s 5.29s 5.35s

Table II lists the average duration of the iterations without

any checkpointing as the number of nodes increases from one

up to eight. This is used as a baseline. Note that there is

a significant increase in the average duration as the number

of nodes increases, which is explained by increasingly larger

synchronization overhead introduced by frequent all-reduce

operations.

For the purpose of this work, we take a checkpoint every

15 iterations, which amounts to a total of 8 checkpoints for

CANDLE−NT3 and 5 checkpoints for ResNet−50. The metrics

introduced in Section V-B are averages of these checkpoints.

The results for CANDLE−NT3 are depicted in Figure 5. As

can be observed, the preparation phase for VELOC−Single
and VELOC−Sharded has a significant overhead, which is

almost half of the duration of an iteration when using a single

rank. As can be observed, this overhead is close for both

approaches. Therefore, we conclude that the dominating factor

of the preparation phase is the conversion from tensors to

numpy arrays, which requires an invocation of the Tensorflow

backend and costly initialization of Python data structures.

The additional slicing performed by VELOC−Sharded on the

numpy arrays seems to introduce negligible overhead, which

can be explained by the fact that the model consists of few

tensors of large size, therefore few slicing operations are

needed. Furthermore, the preparation phase remains relatively

constant regardless of the number of nodes, which is expected

given the negligible overhead of slicing (which is the only

operation that depends on the number of nodes).

Figure 5b depicts the duration of the blocking phase for

each of the approaches. For a single node, VELOC−Single and

VELOC−Sharded are identical, because no slicing is possible.

Interesting to note though is how close these approaches are

to Keras−Default, which flushes the checkpoint directly to

external storage in HDF5 format. This can be explained by

the long preparation phase, which negates the benefits of

fast writes to local storage, therefore negating the benefits of

multi-level asynchronous flushing. This effect is clearly visible

when comparing with VELOC−Opt, which does not have a

preparation phase and therefore only needs to block while

writing to local storage. As the number of nodes increases,

the results begin to show a different trend. Keras−Default is

exhibiting an increasingly higher overhead, as the flushing to

external storage shares the network bandwidth with other ranks

that moved on to the next iteration. This effect is not visible

for VELOC−Single, as it uses local storage during the blocking

phase. As expected, VELOC−Sharded becomes increasingly

faster with increasing number of nodes, because each rank

needs to write an increasingly smaller amount of data to local

storage. The same trend is visible for VELOC−Opt, but at

much faster rate: for 8 nodes, it becomes 3.8x faster than

VELOC−Sharded, 10.6x faster than VELOC−Single and 11.1x

faster than Keras−Default.
A comparison of the runtime overhead (Figure 5c) reveals

similar overall trends for an increasing number of nodes but

with notable differences. In the case of Keras−Default, the

increasingly higher blocking phase does not cause a higher

runtime overhead, which can be explained by the fact that

more nodes have higher synchronization overhead, which

masks some of the lag of the checkpointing rank. This effect is

visible for VELOC−Single as well and even more pronounced

due to the fact that its blocking phase is relatively constant. For

VELOC−Sharded, the runtime overhead looks very similar to

the blocking phase, which is due to the fact that all ranks

are checkpointing and therefore there are no laggers. This

is true for VELOC−Opt as well, but in this case, the extra

operations running in the execution graph during checkpoint-

ing to avoid the preparation phase lead to a slightly higher

runtime overhead when compared with the corresponding

blocking phase. Even with this extra overhead, for 8 nodes,

VELOC−Opt is 2.5x faster than VELOC−Sharded, 6.2x faster

than VELOC−Single and 6.5x faster than Keras−Default.
The results for Resnet−50 are depicted in Figure 6. Just

like in the case of CANDLE−NT3, the preparation phase for

VELOC−Single and VELOC−Sharded (Figure 6a) shows sig-

nificant overhead for both approaches. However, the overhead

for VELOC−Sharded is much higher because there are many

tensors of small size, which means many slicing operations

need to be performed on fewer bytes, therefore introducing

an non-negligible overhead on top of the conversion from

tensors to numpy arrays. This also has an impact on the

scalability of the preparation phase, with slicing becoming

slightly cheaper as the number of nodes increases (which is

expected given that it involves fewer bytes with increasing

number of nodes). On the other hand, the preparation phase
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Fig. 6: ResNet-50: Checkpointing scalability

for VELOC−Single remains relatively constant just like in the

case of CANDLE−NT3.

The blocking phase, depicted in Figure 6b, exhibits sig-

nificant differences between Keras−Default and the rest

of the approaches, even for a single node. In this case,

VELOC−Opt is 2.2x faster than VELOC−Sharded, 1.5x faster

than VELOC−Single and 4.7x faster than Keras−Default. This

can be explained by the fact that Keras−Default writes to

the parallel file system using many small I/O operations,

which is sub-optimal. On the other hand, the rest of the

approaches write to local storage, which can handle smaller

I/O operations better. As the number of nodes increases, the

blocking phase for Keras−Default and VELOC−Single remains

constant, as expected. In the case of VELOC−Sharded, the

blocking phase slowly decreases up to the point where it is

close to the preparation phase, which already happens at 4

nodes and shows limited scalability potential. The opposite is

true for VELOC−Opt: not only does its blocking phase start

lower than the rest of the approaches, but the gap is also

increasing with the number of nodes, hinting at much better

scalability. For 8 nodes, its blocking phase is 7x faster than

VELOC−Sharded, 7.4x faster than VELOC−Single, 22x faster

than Keras−Default.

The runtime overhead (depicted in Figure 6c), follows

a similar pattern with the blocking phase. Specifically, the

high blocking overhead of Keras−Default is reflected in the

runtime overhead as well, leading to a situation where the

other approaches are two times faster for most configurations.

For a single node, just like in the case of CANDLE−NT3,

VELOC−Opt has higher overhead than VELOC−Single due to

the extra operations running in the execution graph. With in-

creasing number of nodes, Keras−Default experiences slightly

lower runtime overhead due to higher all-reduce synchroniza-

tion overhead, while the overhead of VELOC−Single remains

relatively constant. Interesting to note is that VELOC−Single
is close to VELOC−Sharded, which emphasizes the poor

performance of sharding for many tensors of small sizes.

Both VELOC−Sharded and VELOC−Opt experience a visible

reduction in runtime overhead. However, this reduction is

much sharper for VELOC−Opt, which is 5.15x faster than

Keras−Default, 2.2x faster than VELOC−Single and 2.3x faster

than VELOC−Sharded for 8 nodes.

Overall, we conclude that the combination of our proposed

techniques give VELOC−Opt a large performance and scalabil-

ity advantage over the other approaches, both for the blocking

phase and the runtime overhead.

VI. CONCLUSIONS

This paper introduced an approach specifically optimized

for frequent checkpointing of deep learning models subject

to synchronous data-parallel training and optimized to take

advantage of layer-wise parallelism. Despite the fact that

frequent checkpointing is an increasingly important building

block in a broad range of deep learning scenarios, state-of-

art checkpointing approaches are rudimentary and lack high-

performance and scalability considerations.

To address this gap, we contributed with several novel

ideas, including lightweight serialization, sharding and aug-

mentation of the execution graph to asynchronously mask

the overhead of capturing weights from tensors without using

a separate execution context. These ideas facilitate efficient

serialization into contiguous byte arrays, which be used by
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multi-level checkpointing approaches to persist the state of

learning models in a resilient fashion. The combination of

these techniques has shown major improvements for real-

life deep learning applications, both in terms of reducing the

blocking overhead (at least 10x) and runtime overhead (at least

5x) when compared with state-of-art. For users, this has an

important impact because it carries benefits regardless whether

the training needs to continue after taking a checkpoint or not.

Encouraged by these promising results, in future work we

plan to explore more trade-offs that emerge in the context of

synchronous data parallel training and layer-wise parallelism.

One promising direction is gaining direct access to the memory

regions used by the tensors, which enables zero-copy on

one hand, but introduces the need to maintain consistency of

checkpoints by ensuring tensors are not changed while being

checkpointed. In this regard our previous work [9] introduces

several ideas we can start from.
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