Sl

Using Advanced Vector Extensions AVX-512

for MPl Reduction
Dong Zhong, George Bosilca, Qinglei Cao

Headline

As the scale of high-performance computing (HPC) systems continues to grow, researchers are devoted themselves to implore increasing levels of
parallelism to achieve optimal performance. Novel processors support wide vector extensions, vectorization becomes much more important to exploit the

potential peak performance of target architecture.

New processor architectures, such as, Intel introduced 512-bit extensions (AVX-512) to the 256-bit Advanced Vector Extensions (SIMD) instructions for x86
instruction set architecture (ISA). ARM's new Armv8-A architecture, introduce Scalable Vector Extension (SVE)- an optional separate architectural extension
with a new set of A64 instruction encodings, which enables even greater parallelisms.

In this paper, we propose new strategies by utilizing those instructions to improve the performance of MPI reduction operations. With these optimizations,
we not only provide a higher-parallelism for a single node, but also achieve a more efficient communication scheme of message exchanging. The resulting
efforts have been implemented in the context of OMPI. The evaluation of the resulting software stack under different scenarios with Skylake processor

demonstrates that the solution is at the same time generic and efficient.

AVX-512 instructions

AVX-512 instructions support 512-bit wide
SIMD registers (ZMMo-ZMM31). The lower
256-bits of the ZMM registers are aliased to the
respective 256-bit YMM registers and the lower
128-bit are aliased to the respective 128-bit
XMM registers.

511 256 255 128 127 0
P o mm oEe me Em Em Em Em E Ew Ew w '
i ZMMO YMMO XMMO
o o oo e e e
r ------------ -
i ZMMI1 YMMI XMMI
oo oo oo oo e e e e awow

e & ©
r ------------
I ZMM31 YMM3l XMM31
oo oo oo oo o e e e o }

Design and
implementation in OMPI

We implemented AVX512 this work in a set of
components in OMPI which is based on a
Modular Component Architecture that permits
easily extending or substituting the core
subsystem with new features.

As shown below, we added our AVX512
optimization work in a components to OMPI
architecture that implements all MPI reduction
operations with AVX512 vector reduction
instructions; to be noted, this component can be
extend out the scope of local reduction to
general mathematics and logic operations.

LG rpcomm I_Datatype I_

AVX-512 support check

Automatically detect the hardware information
to enable AVX-512 reduction feature or fallback
to basic module if it is not supported

CPUID.1H:ECX.OSXSAVE =17

{ Check feature flag J

Yes l OS provide processor

extended state management

[Check enable stateJ
l States
enabled

No
{Check AVX512 flag J—»[Base MPI reduction]
Yesl

AVX512
MPI reduction

Experimental evaluation

Experimented on a local cluster which is a
Intel(R) Xeon(R) Gold 6254 based server
running at 3.10 GHz.Our work is based upon
OMPI master branch, revision \#75a539. Each
experiment is repeated 30 times and we present
the average. For all experiment we use a single
node with one process, because our optimization
aims to improve the performance of local
reduction operation.

MPI Op: sum; MPI type: uint8
(Configured with optimized, Flushed cache)

| S NO AVX <
10-? - ~ =
| EE. AVX512
| B MEM CPY E—
0 —
Q 10—4‘-- i -?-
E 3 ==
2] i = i
P oo mm EE ==
p=
1079 4 ;
11k 4Yk 16k 6:1 k 2 5I6 k I}W

Buffer size (Bytes)

AVX-512 reduction

Reduction algorithm with avx512,256 and duff
device

Algorithm 1 AVX based reduction algorithm

lypes_per_step > Number of elements in vector
left_over > Number of elements waiting for reduction
count > Total number of elements for reduction operation
in_buf > Input buffer for reduction operation
inout_buf > Input and output buffer for reduction operation

1: procedure REDUCTIONOP(in_buf.inout_buf, count)
types_per_step = wvector_length(512) [/ (8 X

sizeof_type)

3 for k « types_per_step to count do

4 -mm3512_loadu_si512 from in_buf

S ~mm3512_loadu_si512 from inout_buf

6 ~mm312_reduction_op

J

8

Y

rJ

_mmS512_storeu_siS12 to inoutf_buf
if (left_over # 0) then
Update types_per_step >>=1

10- if (types_per_step < left_over) then
11: _mm256_loadu_si256 from in_buf

12: _mm256_loadu_si256 from inout_buf
13: _mm256_reduction_op

14: _mm256_storeu_si256 to inout_buf
15: if (left_over # 0) then

16: Duff device

We compare arithmetic SUM and logical BAND.
For the experiments we flushed cache to ensure
we are not reusing cache for fair comparison.
Results demonstrate that with AVX512-enabled
operation it is ~10x faster than element-wise
operation. We also compare MPI operation
together with memcpy which indicates the peak
memory bandwidth. MPI Op=(2 loads + 1 store +
computation), Memcpy = (1load + 1 store).

It shows even with computation included
AVX512 reduction operation achieves a similar
level of memory bandwidth as memcpy.

MPI| Op: band; MPI _type: uint8
(Configured with optimized, Flushed cache)

10-3 | EEEE NO_AVX ==
| m— AVX512 i
| SEER MEM_CPY -
Ja +
oS 1074 4 é —
E | s
: | -
= " g ==
B lo-.).i i é
o :
E==
107° + ;

1k 4k 16k 64k 256k 1M
Buffer size (Bytes)

l | l SPONSORED BY
—_ \)
THE UNIVERSITY OF GF W V.S DEPARTMENT OF | (Office of S \\) 1 NI\ g% N
INNOVATIVE TENNESSEE WENERGY scence \(\ d A’ A4
KNOXVILLE —

COMPUTING LABORATORY

National Nuclear Security Admlnlstratlon

EXASCAHALE COMPUTING PROJECT

