
ECP 4th Annual Meeting, February 2020 This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-801849

Extreme-scale Scientific Software
Development Kit (xSDK) for ECP

xSDK Vision xSDK Community Policies

xSDK Packages and Releases

xSDK4ECP Project Overview

Project Scope
Enable seamless combined use of diverse,
independently developed software packages
as needed by ECP apps
• Coordinated use of on-node resources
• Integrated execution
• Coordinated & sustainable documentation,

testing, packaging, distribution

https://xsdk.info: Building the foundation of a highly effective
extreme-scale scientific software ecosystem.

The vision of the xSDK is to

provide infrastructure for and

interoperability of a collection of

related and complementary

software elements—developed
by diverse, independent teams

throughout the high-performance

computing (HPC) community—

that provide the building blocks,

tools, models, processes, and
related artifacts for rapid and

efficient development of high-

quality applications.

https://xsdk.info/policies: Addressing challenges in interoperability &

sustainability of software developed by diverse, independent teams.

xSDK compatible package: Must satisfy mandatory xSDK policies:

• M1. Support xSDK community GNU Autoconf or CMake options.

• M2. Provide a comprehensive test suite.

• M3. Employ user-provided MPI communicator.

• M4. Give best effort at portability to common platforms.
• M5. Provide a documented, reliable way to contact the development team.

• M6. Respect system resources and settings made by other previously called packages.

• M7. Come with an OSI-approved, permissive open source license.

• M8. Provide a runtime API to return the current version number of the software.

• M9. Use a limited and well-defined symbol, macro, library, and include file name space.
• M10. Provide an accessible repository (not necessarily publicly available).

• M11. Have no hardwired print or IO statements.

• M12. Allow installing, building, and linking against an outside copy of external software.

• M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.

• M14. Be buildable using 64 bit pointers. 32 bit is optional.
• M15. All xSDK compatibility changes should be sustainable.

• M16. The package must support production-quality installation compatible with the xSDK

install tool and xSDK metapackage.

Also specify recommended policies: Currently encouraged but not required:
• R1. Have a public repository.

• R2. Possible to run test suite under valgrind in order to test for memory corruption issues.

• R3. Adopt and document consistent system for error conditions/exceptions.
• R4. Free all system resources it has acquired as soon as they are no longer needed.

• R5. Provide a mechanism to export ordered list of library dependencies.

• R6. Each package should document the versions of packages with which it can work and on

which it depends.

• R7. Have README, SUPPORT, LICENSE, and CHANGELOG files in top directory.

xSDK member package: Must be an xSDK-compatible package, and it uses or

can be used by another package in the xSDK, and the connecting interface is

regularly tested for regressions.

Motivation: Next-generation scientific simulations require combined

use of independent packages

• Installing multiple independent software packages is tedious and error prone
• Need consistency of compiler (+version, options), 3rd-party packages, etc.

• Namespace and version conflicts make simultaneous build/link of packages difficult

• Multilayer interoperability among packages requires careful design and sustainable coordination

Document on node-level resource management activities within the

ECP

Impact
• Improve access & sustainability of math

libraries for ECP

• Lay groundwork for addressing broader issues
in software interoperability and performance
portability

Impact
• Document xSDK library status of on-node capabilities, new developments on node-level

resource management and its potential impact on xSDK libraries.
• Inform greater ECP community.

We welcome feedback.
What policies make sense

for your software?

History and Plans
• Began in ASCR/BER partnership, IDEAS project

(Sept 2014), needed for BER multiscale,

multiphysics surface-subsurface hydrology

models
• Work toward regular xSDK releases with

increased formality of release process.

• Collaboration with broader SDK efforts in ECP

Approach
• Develop community policies and

interoperability layers among xSDK
component packages

• Determine xSDK sustainability strategy
for ECP

• Work with ECP applications to motivate
and test xSDK

https://xsdk.info/ecp: Addressing xSDK challenges for exascale.

https://xsdk.info/packages: Enabling ECP applications to readily
access many of the most popular HPC math libraries.

Original xSDK math libraries:
hypre, PETSc, SuperLU, Trilinos

Added Dec 2017: MAGMA, MFEM,
SUNDIALS

Added Dec 2018: AMReX, deal.II, DTK,
Omega_h, PHIST, PLASMA, PUMI,
SLEPc, STRUMPACK, TASMANIAN

Added Nov 2019: ButterflyPACK, Ginkgo,
libEnsemble, preCICE

Spack/Git Workflow
• Packages

• Follow the standard workflow for a Spack package

• Submit pull requests with the “xSDK” label

• Provide package candidate and final xSDK release
tags

• xSDK Meta-package

• Depends on xSDK member packages: “spack
install xsdk”

• Maintain shared Spack branch for release
coordination

xSDK-0.5.0
released Nov 2019

Tested on key platforms at ALCF, NERSC, and
OLCF, also Linux and Mac OS X

Full version of community policies available on Github:
https://github.com/xsdk-project/xsdk-community-policies

New or revised polices can now be proposed with pull requests on Github

(https://github.com/xsdk-project/xsdk-community-policies/blob/master/process-for-

new-or-revised-policies.md).

Autotuning Parameter Selection for ECP Applications

Objective
Develop autotuning software that learns
optimal parameter selection.
• Enable ECP math libraries and apps to run

efficiently on exascale machines.
• New autotuning methods will advance the

state of the art in performance optimization
research.

Accomplishments
GPTune: https://github.com/xiaoyeli/GPTune

• Easy integration - Easy to use Python interface

• Collaborated with Y-TUNE team - Developed a

common interface so users can access both tuners

and others easily in the same code.

• Applied GPTune for parameter search for

ScaLAPACK QR & SVD, hypre, and SuperLU

Survey programming models and
runtime libraries (PMR) projects
on status and plans for node-level
resource management and other
issues that impact mathematical
libraries.

Status of CUDA and OpenMP capabilities of 25 math libraries

Production ready with unit testing Production ready without unit testing Experimental No support
Survey status and plans
of on-node (and
internode) parallel
computing capabilities for
individual xSDK libraries
and prospective
additions.

Green: Yes, may have some

limitations.

Yellow: Under development.

Orange: Unclear, needs

evaluations.

Red: No.

Interoperability between PMR frameworks

GPTune finds better parameters in 42
(84%) and 47 (94%) cases compared to
OpenTuner and HyBandSter, resp.,
for ScaLAPACK QR.

• 128 nodes Edison, 50 tasks (1< m=n < 20000), 4 parameters
(mb, nb, #MPIs, #Threads)

