LU Factorization

with Integer
Arithmetic

Yaohung Mike Tsai
Piotr Luszczek

Jack Dongarra

Innovative Computing Laboratory
University of Tennessee Knoxville

SIAM Conference on Parallel Processing
for Scientific Computing (PP20)

February 12 - 15, 2020

| |

ICl !
> &

THE UNIVERSITY OF

INNOVATIVE ~ TENNESSEE

COMPUTING LABORATORY KNOXVILLE

https:/icl.utk. edu/

Motivation

Integer arithmetic is available on most hardware architectures. FPGA is usually more
capable in integer operations and might not have floating-point number arithmetic units.
New application-specific integrated circuits (ASICs) for deep learning inference are also
moving toward using mostly integer arithmetic in quantized neural networks. This
motivated this study to look at the fundamental numerical linear algebra operation:
Gaussian elimination (LU factorization) with partial pivoting using integer arithmetic to
solve linear system Ax=b. The goal is to have a low accuracy but fast solution and
factorization for later preconditioned iterative refinement in mixed precision algorithms.

Number Representations

Format Range Accuracy Sign bit | Exponent bits | Fraction bits (Mantissa)
Double Precision (FP&4) | 2e%98 1o 230 275 = g8 11 52
Single Precision (FP32) 1 to 3¢ PRI TO N 6 23 |
Half Precision (FP16) Bet to 65504 2°% = 0.0005 5 1
BFloat16 le®03e® | 2920004 | |EEEEE
INT32 2% 1o 2511 1/2]
INT16 -32768 to 32767 1/2

Related Mixed Precision Work

Haidar et al. [1] achieved 4x speed up by utilizing the half-precision tensor core from
NVIDIA Volta architecture for solving linear system. The matrix multiplication operation in
tensor core is accumulating in single precision so the result is better than pure half
precision in previous architectures. Carson and Higham [2,3] provided error analysis for
varying the precision in different part of the mixed precision algorithm as well as the
condition number of the input matrix A. Higham et al. [4] proposed a method to deal with
very limited range of half precision format (FP16).

HPL-Al Mixed Precision Benchmark

The HPL-Al benchmark seeks to highlight the emerging convergence of high-performance
computing (HPC) and artificial intelligence (Al) workloads. While traditional HPC focused
on simulation runs for modeling phenomena in physics, chemistry, biology, and so on, the
mathematical models that drive these computations require, for the most part, 64-bit
accuracy. On the other hand, the machine learning methods that fuel advances in Al
achieve desired results at 32-bit and even lower floating-point precision formats. This
lesser demand for accuracy fueled a resurgence of interest in new hardware platforms
that deliver a mix of unprecedented performance levels and energy savings to achieve the
classification and recognition fidelity afforded by higher-accuracy formats.

FIND OUT MORE AT
https://icl.bitbucket.io/hpl-ai/

REFERENCES

Fixed-point Representation

The basic idea is to scale down the numbers and use a fixed-point number
representation: i/2°?x2" where i is in 32-bit integer. The exponent won't change under
addition or multiplication so can be ignored. The addition under is form is simply integer
addition. Multiplication becomes: i/2%% x j/2%* = ixj/2% = (ixj/2%%)/2%2. The computation of
ixj/2% can be done by multiplying 32-bit integers and returning the high 32 bits in the 64
bits result. Note that this operation has native instruction support on modern CPU
instruction set architectures (1SAs) including x64 and ARM. Table 1 summarizes the
proposed fixed-point number representation.

Storage format i in 32 bits integer
Represented real number R{i) =i/2% x 20
Range 1—0.5,0.5)

~ U
i — int32{a x 2%?)

Conversion from double precision number o

Conversion to double precision number o . a + double(i) /2%
."'I.llll'i!ill:l!ll H“] + HIJJ - !.I__-E:q-_l + j .‘:!:1-_' = (i 4 _j| .‘:!1_1 - .ﬁ’[l L _j|
']] fid A2 - il
Multiplication iii) x Rij) =i/2 J'IU . (i % j)/2
[t x J_.-".’u]. 23 — RBli x 4/2%%)
(i) = R(3) = (/232 2 32 .
Division R(i)+ R(j) = (1/2*) + (/) =i+

(i +j x 2%)/2% = R(i + j x 2%)

Proposed Fixed-point Number Representation

Proposed Algorithm

Input: n by n matrix A in double precision.
Integer r for the range while normalizing A.
Declare identity matrix P as permutation matrix.
m +— max(A) x 2"; A+ A/m
Ajns — int32(A x 252)
fori=1...ndo

& Normalize A into [-277,277]
- Convert A into proposed fixed-point representation.
> Main loop over columns

6: pivot « (arg max |A;, i, i]|) +i — 1 e Find the pivot index.
T swap (Ajueli, :], Ajne[pivot, :]) > Swap rows.
R: swap (P[i,:], P[pivot, :])

0: a + int64(2%) /A[i, i > Find the scale with integer division.

10 ,—’lr,,,[i:n, v'] — ;}-Arm[..lf:r:,f'] & Seale the column.

11: Ain[i + 1, i + 1oin] = Ag[i + 1iny i+ Lin] — A [i + 1in, 4] % Aje[i, i + 1in] /2%

12: = Integer rank-1 update with a division using integer shift.
13: end for

14: L « lower triangular part of double(A) /2% with unit diagonal.

15: [/ « upper triangular part of double(A)/2* including diagonal.

16: Return: P, L, U as the result of factorization such that P(A/m) = LU

Proposed LU Factorization with Integer Arithmetic

The input and output matrices of this algorithm are still in double precision to be
comparable with the reference factorization from LAPACK. The input integer r determines
how many bits we are actually using (32-r) while converting A into 32-bit integer. Because
the matrix would grow during the factorization and we do not dynamically scale, it might
hit the range and overflow at some point. To avoid it, we first scale the matrix into [-27, 27].
The higher r is, the more room we will have from the range. But less accurate the input
matrix would be after being converted into int32,

The computation inside the loop is mainly 32-bit integer arithmetic. Line 9 requires 64-bit
integer division but only once per column. The scaling at line 10 will remain in int32
range because the pivot has larger magnitude then other elements in the column. The
update in line 11 is 32-bit integer multiply but we only need the high 32 bits in 64 bits
result. Other than mentioned lines, the algorithm mimics the standard LU factorization
with partial pivoting. Partial pivoting also controls the growth rate to be at most 2.
Otherwise the overflow could happen easily.

[1] Haidar, A., Tomov, 5., Dongarra, J., & Higham, N. J. (2018, November), Harnessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers. In SC18: International Conference for High

Performance Computing, Networking, Storage and Analysis (pp. 603-613). IEEE.

[2] Carson, E., & Higham, N. J. (2017). A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems. SIAM Journal on Scientific Computing, 39(6), A2834-A2856.

[3] Carson, E., & Higham, N. J. (2018). Accelerating the solution of linear systems by iterative refinement in three precisions. SIAM Journal on Scientific Computing, 40(2), AB17-AB47.

[4] Higham, M. J., Pranesh, 5., & Zounon, M. (2019). Squeezing a matrix into half precision, with an application to solving linear systems. SIAM Journal on Scientific Computing, 47(4), A2536-A2551.

Numerical Results

1-|::|5 [T T T 1 T 1 T T

inf
—
=
=

107 .
| single
double
r=4
=5
10-11} =f

r=7

T 8

r=

;'/f’ r=10

=15 1 1 L 4 1 1 1 L L
10
100 200 300 400 500 600 f00 8200 900 1000

Square matrix size

Unscaled backward error |Ax-b|

The figure shows the unscaled backward error |Ax-b|_, vs. input matrix size. The algorithm
is implemented in MATLAB R2018b. Each element of the matrix is generated from uniform
random distribution: uniform(-1,1). The results from single and double precision LU
factorization are also reported as reference. While r=7, overflow occurs and the algorithm
failed. The higher r is, the smaller range input matrix A will be normalized into. There will
be more room from overflowing so it could work with larger matrix. However, the
backward error grows with r since the input is truncated more. Nevertheless, when r=10 it
is still using 32-10=22 bits and the result is still better than single precision which is using
23 mantissa bits.

Conclusion and Future Work

We have demonstrated that it is feasible to use 32-bit integer arithmetic perform LU
factorization with partial pivoting and achieve better accuracy than single precision. The
main issue for this approach is the possibility of overflow during factorization. To tackle
the problem, we would like to continue the research on following directions:

* Dynamically scale the column during factorization. While finding the pivot, if it's too
close to overflow, we can further scale down the column and remaining unfactored
matrix. It can also be done in paneled factorization and do the check once for each
panel.

e Other representation formats. There are other less common number representation like
blocked floating-point numbers. Although they might not have native hardware support,
they could fit our need better in the algorithm.

e Error analysis. We would like to perform error analysis to have a better understand
about behavior of algorithm and incorporate the findings to improve the algorithm.

¢ Smaller datatype including int16 and int8. The goal of this project is to find a fast
solver using smaller datatype. The computational complexity of factorization is O(n®)
while the later iterative refinement is O(n?). So the factorization is critical to overall
performance of mixed-precision solver. Shorter datatype might give us another chance
for speedup while the desired accuracy can still be obtained with preconditioned
GMRES or other refinement schemes.

=E(CP

This research was supported by the Exascale Computing Project (17-5C-20-5C), a collaborative effort of the U.S.

Department of Energy Office of Science and the National Nuclear Security Administration, under prime contract
#DE-ACO5-000R22725, and UT Battelle subaward #4000152412

