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Abstract. Efficiently processing sparse matrices is a central and
performance-critical part of many scientific simulation codes. Recogniz-
ing the adoption of manycore accelerators in HPC, we evaluate in this
paper the performance of the currently best sparse matrix-vector product
(SpMV) implementations on high-end GPUs from AMD and NVIDIA.
Specifically, we optimize SpMV kernels for the CSR, COO, ELL, and
HYB format taking the hardware characteristics of the latest GPU tech-
nologies into account. We compare for 2,800 test matrices the perfor-
mance of our kernels against AMD’s hipSPARSE library and NVIDIA’s
cuSPARSE library, and ultimately assess how the GPU technologies from
AMD and NVIDIA compare in terms of SpMV performance.

Keywords: Sparse matrix vector product (SpMV) · GPUs · AMD ·
NVIDIA

1 Introduction

The sparse matrix vector product (SpMV) is a heavily-used and performance-
critical operation in many scientific and industrial applications such as fluid
flow simulations, electrochemical analysis, or Google’s PageRank algorithm [11].
Operations including sparse matrices are typically memory bound on virtually
all modern processor technology. With an increasing number of high perfor-
mance computing (HPC) systems featuring GPU accelerators, there are sig-
nificant resources spent on finding the best way to store a sparse matrix and
optimize the SpMV kernel for different problems.

In this paper, we present and compare four SpMV strategies (COO, CSR,
ELL, and HYB) and their realization on AMD and NVIDIA GPUs. We further-
more assess the performance of each format for 2,800 test matrices on high-end
GPUs from AMD and NVIDIA. We also derive performance profiles to inves-
tigate how well the distinct kernels generalize. All considered SpMV kernels
are integrated into the Ginkgo open-source library1, a modern C++ library
designed for the iterative solution of sparse linear systems, and we demonstrate

1 https://ginkgo-project.github.io.
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that these kernels often outperform their counterparts available in the AMD
hipSPARSE and the NVIDIA cuSPARSE vendor libraries.

Given the long list of efforts covering the design and evaluation of SpMV
kernels on manycore processors, see [2,7] for a recent and comprehensive overview
of SpMV research, we highlight that this work contains the following novel
contributions:

– We develop new SpMV kernels for COO, CSR, ELL and HYB that are
optimized for AMD and NVIDIA GPUs and outperform existing implementa-
tions. In particular, we propose algorithmic improvements and tuning param-
eters to enable performance portability.

– We evaluate the performance of the new kernels against SpMV kernels avail-
able in AMD’s hipSPARSE library and NVIDIA’s cuSPARSE library.

– Using the 2,800 test matrices from the Suite Sparse Matrix Collection, we
derive performance profiles to assess how well the distinct kernels generalize.

– We compare the SpMV performance limits of high-end GPUs from AMD and
NVIDIA.

– Up to our knowledge, Ginkgo is the first open-source sparse linear alge-
bra library based on C++ that features multiple SpMV kernels suitable for
irregular matrices with back ends for both, AMD’s and NVIDIA’s GPUs.

– We ensure full result reproducibility by making all kernels publicly available
as part of the Ginkgo library, and archiving the performance results in a
public repository2.

Before providing more details about the sparse matrix formats and the pro-
cessing strategy of the related SpMV routines in Sect. 3, we recall some basics
about sparse matrix formats in Sect. 2. In Sect. 3.4, we combine several basic
matrix storage formats into the so-called “hybrid” format (HYB) that splits the
matrix into parts to exploit the performance niches of various basic formats.
In a comprehensive evaluation in Sect. 4, we first compare the performance of
Ginkgo’s SpMV functionality with the SpMV kernels available in NVIDIA’s
cuSPARSE library and AMD’s hipSPARSE library, then derive performance pro-
files to characterize all kernels with respect to specialization and generalization,
and finally compare the SpMV performance of AMD’s RadeonVII GPU with
NVIDIA’s V100 GPU. We conclude in Sect. 5 with a summary of the observations.

2 Review of Sparse Matrix Formats

For matrices where most elements are zero, which is typical for, e.g., finite ele-
ment discretizations or network representations, storing all values explicitly is
expensive in terms of memory and computational effort. In response, sparse
matrix formats reduce the memory footprint and the computational effort by
focusing on the nonzero matrix values [3]. In some cases, additionally storing
some zero elements can improve memory access and data-parallel processing [4].

2 https://github.com/ginkgo-project/ginkgo-data/tree/2020 isc.

https://github.com/ginkgo-project/ginkgo-data/tree/2020_isc
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(max row nz ·m) · sizeof(index)
(max row nz ·m) · sizeof(value)nnz · sizeof(value)

(m+ 1) · sizeof(index)
nnz · sizeof(index)2 · nnz · sizeof(index)

nnz · sizeof(value)m · n · sizeof(value)

Fig. 1. Different storage formats for a sparse matrix of dimension m×n containing nz

nonzeros along with the memory consumption [6].

While there exists a long and still expanding list of sparse matrix formats (some
of them tailored towards specific problems), we illustrate some of the most com-
mon basic formats (DENSE, COO, CSR, ELL) in Fig. 1.

The optimization of the SpMV kernel for manycore GPUs remains a topic
of major interest [5,9,12]. Many of the most recent algorithm developments
increase the efficiency by using prefix-sum computations [13] and intra-warp
communication [10] on modern manycore hardware.

3 Sparse Matrix Vector Kernel Designs

We realize all SpMV kernels in the vendors’ native languages: CUDA for
NVIDIA GPUs and HIP for AMD GPUs. Given the different hardware char-
acteristics, see Table 1, we optimize kernel parameters like group size for the
distinct architectures. More relevant, for the CSR, ELL, and HYB kernels, we
modify the SpMV execution strategy for the AMD architecture from the strat-
egy that was previously realized for NVIDIA architectures [2].

3.1 Balancing COO SpMV Kernel

Flegar et al. [6] introduced a load-balancing COO SpMV based on the idea
of parallelizing across the nonzeros of a sparse matrix. This way, all threads
have the same workload, and coalesced access to the column indexes and the
values of the sparse matrix is enabled. At the same time, parallelizing across
nonzeros requires the use of atomicAdd operations to avoid race conditions, see
Algorithm 1.

Flegar et al. [6] also introduced an “oversubscribing” parameter ω that con-
trols the number of threads allocated to each physical core. When increasing the
oversubscribing, we have more active threads to hide the latency of data access
and atomicAdds [1]. At the same time, it increases the number of atomicAdds
invocations and the overhead of context switching. Using an experimental assess-
ment on all of the 2,800 matrices from the Suite Sparse Matrix Collection, Flegar
et al. [6] identifies oversubscribing parameters ωNVIDIA that draw a good balance
between these aspects. Similarly to Flegar et al. [6], we use experiments to iden-
tify good choices ωAMD for AMD architectures by considering oversubscribing
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Algorithm 1. Load-balancing COO kernel algorithm.
1: Get ind = index of the first element to be processed by this thread
2: Get current row = rowidx[ind].
3: Compute the first value c = A[ind] × x[colidx[ind]]
4: for i = 0 .. nz per warp; i+ = warpsize do
5: Compute next row, row index of the next element to be processed
6: if any thread in the warp’s next row != current row or it is the final iteration

then
7: Compute the segmented scan according to current row.
8: if first thread in segment then
9: atomicAdd c on output vector by the first entry of each segment

10: end if
11: Reinitialize c = 0
12: end if
13: Get the next index ind
14: Compute c+ = A[ind] × x[colidx[ind]]
15: Update current row to next row
16: end for

parameters ω = 2k(0 ≤ k ≤ 7). In the Ginkgo library and our experiments, we
use the setting

ωNVIDIA =

⎧
⎪⎨

⎪⎩

8 (nz < 2 · 105),
32 (2 · 105 ≤ nz < 2 · 106),
128 (2 · 106 ≤ nz)

ωAMD =

⎧
⎪⎨

⎪⎩

2 (nz < 105),
8 (105 ≤ nz < 107).
32 (107 ≤ nz)

3.2 CSR SpMV Kernel

The most basic CSR SpMV kernel (basic CSR) assigns only one thread to
each row, which results in notoriously low occupancy of GPU. In Algorithm2,
we assign a “subwarp” (multiple threads) to each row, and use warp reduction
mechanisms to accumulate the partial results before writing to the output vector.
This classical CSR assigning multiple threads to each row is inspired by the
performance improvement of the ELL SpMV in [2]. We adjust the number of
threads assigned to each row to the maximum number of nonzeros in a row. We
select

subwarp size = 2k(0 ≤ k ≤ 5 (NVIDIA) or 6 (AMD))

as the closest number smaller or equal to the maximum number of nonzeros in
a row, i.e.

subwarp size = max
{
2t ≤ max row nnz|t ∈ Z, 0 ≤ t ≤ log2(device warpsize)

}

In Fig. 5 in Sect. 4, we visualize the performance improvements obtained from
assigning multiple threads to each row and observe that the basic CSR SpMV
is not always slower. In particular for very unbalanced matrices, assigning the
same parallel resources to each row turns out to be inefficient. In response, we
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Algorithm 2. Ginkgo’s classical CSR kernel.
1: Get row = the row index
2: Compute subrow = the step size to next row
3: Get step size = the step size to next element of value.
4: Initialize value c = 0
5: for row = row .. #rows, row+ = subrow do
6: for idx = row ptr[row] .. row ptr[row + 1], idx+ = step size do
7: Compute c = val[idx] ∗ b[col[idx]]
8: end for
9: Perform warp reduction of c on the warp

10: if thread 0 in subwarp then
11: Write c to the output vector
12: end if
13: end for

design a load-balancing CSRI which follows the strategy of the COO SpMV
described in Sect. 3.1 to balance the workload across the compute resources. For
an automatic strategy selection in Algorithm 3, we define two variables nnz limit
and row len limit to control the kernel selection on NVIDIA and AMD GPUs.
nnz limit reflects the limit of total nonzero count, and row len limit reflects
the limit of the maximum number of stored elements in a row. For AMD GPUs,
nnz limit is 108 and row len limit is 768. For NVIDIA GPUs, nnz limit is 106

and row len limit is 1024.

Algorithm 3. Ginkgo’s CSR strategy.
1: Compute max row nnz = the maximal number of stored element per rows.
2: if #nnz > nnz limit or max row nnz > row len limit then
3: Use load-balance CSR Kernel
4: else
5: Use classical CSR Kernel
6: end if

3.3 ELL SpMV Kernel

In [2], the authors demonstrated that the ELL SpMV kernel can be acceler-
ated by assigning multiple threads to each row, and using an “early stopping”
strategy to terminate thread blocks early if they reach the padding part of the
ELL format. Porting this strategy to AMD architectures, we discovered that the
non-coalesced global memory access possible when assigning multiple threads to
the rows of the ELL matrix stored in column-major format can result in low
performance. The reason behind this is that the strategy in [2] uses threads of
the same group to handle one row, which results in adjacent threads always read-
ing matrix elements that are m (matrix size or stride) memory locations apart.
To overcome this problem, we rearrange the memory access by assigning the
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threads of the same group to handle one column like the classical ELL kernel,
but assigning several groups to each row to increase GPU usage. Because the
threads handling the elements of a row may be of the same thread block but are
no longer part of the same warp, we can not use warp reduction for the partial
sums but need to invoke atomicAdds on shared memory. Figure 2 visualizes the
different memory access strategies.

In our experiments, we set the “group size” to multiple of 32 for both AMD
and NVIDIA architectures. The group size is the number of contiguous ele-
ment read by thread block, and the num group is the number of thread in
the thread block accessing the same row. We use block size = 512 in ELL
kernel. To make the “group size” is the multiple of 32, we set the max of
num group = block size/min group size = 512/32 = 16. We visualize in
Fig. 8 the improvement of the new ELL SpMV kernel over the kernel previ-
ously employed [2].

Algorithm 4. Ginkgo’s ELL SpMV kernel.
1: Initialize Value c = 0
2: Compute row = the row idx
3: Compute y = the start index of row
4: Compute step size = the step size to next element
5: Initialize shared memory data
6: for idx = y .. max row nnz, idx+ = step size do
7: Compute ind = index of this element in the ELL format
8: if A(row, colidx[ind]) is padding then
9: break

10: end if
11: Perform local operation c+ = A(row, colidx[ind]) ∗ x[colidx[ind]]
12: end for
13: Perform atomicAdd c to data[threadIdx.x]
14: if thread 0 in group then
15: atomicAdd data[threadIdx.x] on the output vector
16: end if

In Algorithm 4, we present the ELL SpMV kernel implemented in Ginkgo
for SIMD architectures like GPUs. The number of groups assigned to a row
is computed via Algorithm 5. Generally, the number of the group is increased
with the number of nonzero elements accumulated in a single row. However,
if num group = 16, multiple thread block may be assigned to the same row,
see line 8 in Algorithm 5. This strategy aims at increasing the occupancy of the
GPU multiprocessors when targeting short-and-wide matrices that accumulate
many elements in few rows. After the group is determined, the start index for
a specific thread is computed in lines 2 in Algorithm 4 with the step size which
is same as the total number of threads accessing the same row. The threads
process the data with the loop in lines 6–12. This kernel still uses the early
stopping in lines 8–10 introduced in [2]. After completion of the matrix vector
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Algorithm 5. Ginkgo’s automatic ELL kernel configuration.
1: Initialize num group = 1
2: Initialize nblock per row = 1
3: Compute ell ncols = maximum number of non zero elements per row
4: Get nwarps = total number of warps available on the GPU
5: if ell ncols / nrows > 1e − 2 then
6: Compute num group = min(16, 2ceil(log2(ell ncols)))
7: if num group == 16 then
8: Compute nblock per row = max(min(ell ncols/16, nwarps/nrows), 1)
9: end if

10: end if

multiplication step, the partial sums accumulated in thread-local variables are
reduced (line 13) and added to the output vector in global memory, see line 15.
Even though this operation requires an atomic operation as multiple groups
(part of distinct thread blocks) may operate on the same row, the chance of
atomic collisions is small due to the previous reduction in line 13.

Fig. 2. Comparison of the memory access for different ELL SpMV kernels.

3.4 Hybrid Matrix Formats and Optimal Matrix Splitting

Ginkgo’s hybrid (“HYB”) format splits the matrix into two parts and stores the
regular part in the ELL format and the irregular part in the COO format. Flegar
et al. [6] demonstrated that Ginkgo’s COO SpMV achieves good performance
for irregular matrices on NVIDIA architectures, and the results in Sect. 4 confirm
that Ginkgo’s COO SpMV performs well also on AMD architectures. How the
HYB format partitions a matrix into the ELL and the COO part impacts the
memory requirements and performance. Anzt et al. [2] derived strategies basing
the partitioning on the nonzeros-per-row distribution of the matrix. We modify
this strategy by adding a condition based on the ratio between the maximum
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nonzeros-per-row and the number of rows. For R being the set of the nonzeros-
per-row values, we define the function QR and FR:

QR(x) := min {t ∈ N | x < FR(t)} , FR(t) :=
|{r ∈ R | r ≤ t}|

|R| .

We recall that Anzt et al. [2] introduced hybrid{n} which takes the nonzeros
of the row at the n%-quantile in the ascending ordering of the nonzero-per-row
values, QR(n%). A variant denoted with “hybridminstorage” selects

n% =
⌊

#rows × sizeof(index)
sizeof(value) + 2 × sizeof(index)

+ 1
⌋

according to the (bit-)size of the value and index arrays, i.e. hybridminstorage
is hybrid25 when storing the values in 64-bit doubles and the indexes in 32-bit
integers [2]. In this paper, we enhance the hybrid{n} partitioning from Anzt
et al. [2] by enforcing the limitation that the maximum nonzero-per-row of the
ELL part can at most be #rows ∗ 0.0001. We consider the resulting strategy
“hybridlimit{n}” and select hybridlimit33 (label “HYB”) as our default strategy
according to the performance evaluation in Fig. 11 in Sect. 4.

4 Experimental Performance Assessment

4.1 Experiment Setup

In this paper, we consider NVIDIA’s V100 (SXM2 16 GB) GPU with support
for compute capability 7.0 [14] and AMD’s RadeonVII with compute capability
gfx906. See Table 1 for some hardware specifications [16]. We note that the AMD
RadeonVII is not a server-line GPU, but provides the same memory bandwidth
as the AMD HPC GPU MI50, and thus should be comparable for memory
bound operations such as the SpMV kernels. We use the major programming
ecosystems for the distinct architectures - CUDA for NVIDIA GPUs and HIP
for AMD GPUs. CUDA GPU kernels were compiled using CUDA version 9.2,
and HIP GPU kernels were compiled using HIP version 2.8.19361.

Table 1. Specifications of the V100 SXM2 16GB and the RadeonVII [16].

Warpsize Bandwidth FP64 performance L1 cache L2 cache

V100 32 897GB/s 7.834 TFLOPS 128KB 6 MB

RadeonVII 64 1024GB/s 3.360 TFLOPS 16KB 4 MB

The performance evaluation covers more than 2,800 test matrices of the Suite
Sparse Matrix Collection [15]. Some matrices contain dense rows, which makes
the conversion to the ELL format virtually impossible. We ignore those matrices
in the performance evaluation of the ELL SpMV kernel.
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All experiments are performed in IEEE double precision arithmetic, and the
GFLOP/s rates are computed under the assumption that the number of flops
is always 2nz, where nz is the number of nonzeros of the test matrix (ignoring
padding).

4.2 COO SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 3. Performance of Ginkgo’s and vendors’ COO SpMV

(a) V100 (b) RadeonVII

Fig. 4. Releative performance of Ginkgo’s and vendors’ COO SpMV (Color figure
online)

We first evaluate the performance of the load-balancing COO SpMV ker-
nel. In Fig. 3a, we compare against cuSPARSE’s COO kernel (cusparseD-
hybmv with CUSPARSE HYB PARTITION USER and threshold of 0), in Fig. 3b,
we compare against hipSPARSE’s COO kernel (hipsparseDhybmv with
HIPSPARSE HYB PARTITION USER and threshold of 0). Each dot reflects one test
matrix from the Suite Sparse collection. The x-axis is the nonzero count of the
matrix, and the y-axis is the performance in GFLOP/s. In Fig. 4, we present
the speedup of Ginkgo’s SpMV over cuSPARSE’s COO implementation and
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hipSPARSE’s COO implementation, respectively. Red dots reflect test matrices
where Ginkgo outperforms the vendor library, green dots reflect cases where the
vendor library is faster. Despite the fact that the irregularity of a matrix heavily
impacts the SpMV kernels’ efficiency, we can observe that Ginkgo’s COO
SpMV achieves much higher performance than both NVIDIA’s and AMD’s
COO kernels in most cases. Overall, Ginkgo achieves an average speedup of
about 2.5x over cuSPARSE’s COO SpMV and an average speedup of about
1.5x over hipSPARSE COO SpMV.

4.3 CSR SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 5. Performance improvement of (current) classical CSR SpMV and (previous)
basic CSR SpMV.

In the CSR SpMV performance analysis, we first demonstrate the improvement
of assigning multiple threads to each row (classical CSR) over the implementa-
tion assigning only one thread to each row (basic CSR) see Fig. 5 for the CUDA
and AMD backend, respectively. For a few matrices with many nonzeros, the
basic CSR is 5x–10x faster than the classical CSR. To overcome this problem,
we use Algorithm 3 in Ginkgo that chooses the load-balancing CSRI algorithm
for problems with large nonzero counts.

Next, we compare the performance of the Ginkgo CSR SpMV (that auto-
matically interfaces to either the load-balancing CSRI kernel or the classical
CSR, see Sect. 3.2) with the vendors’ CSR SpMV. Anzt et al. [2] identified the
cusp csr kernel (cusparseDcsrmv) as the overall performance winner among the
different NVIDIA CSR implementations. For the AMD CSR SpMV kernel, we
use the CSR kernel (hipsparseDcsrmv) provided in hipSPARSE. For complete-
ness, we mention that the rocSPARSE library (outside the HIP ecosystem) con-
tains a CSR kernel that renders better SpMV performance for irregular matrices
on AMD GPUs. We refrain from considering it as we want to stay within the
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(a) V100 (b) RadeonVII

Fig. 6. Performance of Ginkgo’s and vendors’ CSR SpMV

(a) V100 (b) RadeonVII

Fig. 7. Relative performance of Ginkgo’s and vendors’ CSR SpMV

HIP ecosystem, which is anticipated to serve as primary dissemination tool for
AMD’s sparse linear algebra technology.

In Fig. 6, we compare the Ginkgo CSR SpMV with the cusparseDcsrmv
CSR kernel available in NVIDIA’s cuSPARSE library and the hipsparseDcsrmv
CSR kernel available in AMD’s hipSPARSE library, respectively. In the relative
performance analysis, Fig. 7, we use the ratio max(row nz)

num rows for the x-axis as this is
the parameter used in Ginkgo’s CSR SpMV to decide which CSR algorithm
is selected. Ginkgo CSR achieves significant speedups for large x-values (up to
900x speedup on V100 and 700x speedup on RadeonVII). At the same time,
there are a few cases where the Ginkgo CSR SpMV is slower than the library
implementations (up to 20x slowdown on V100 and 5x slowdown on RadeonVII).
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4.4 ELL SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 8. Relative performance of Ginkgo’s current ELL SpMV against the previous
one

First, we investigate the performance improvement we obtain by changing the
memory access strategy for the ELL SpMV kernel, see Sect. 3. Interestingly,
moving to the new ELL SpMV algorithm does not render noteworthy perfor-
mance improvements on NVIDIA’s V100 GPU, as can be seen in Fig. 8a. At the
same time, the performance improvements are significant for AMD’s RadeonVII,
as shown in Fig. 8b. In the new ELL SpMV algorithm, we improve the global
memory access at the cost of atomicAdd operations on shared memory (which
are more expensive than warp reductions). In consequence, the current ELL
SpMV is not always faster than the previous ELL SpMV.

(a) V100 (b) RadeonVII

Fig. 9. Performance of Ginkgo’s and vendors’ ELL SpMV (Color figure online)
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(a) V100 (b) RadeonVII

Fig. 10. Relative performance of Ginkgo’s and vendors’ ELL SpMV

In Fig. 9, we compare Ginkgo’s ELL SpMV kernel against cuSPARSE cus-
parseDhybmv with CUSPARSE HYB PARTITION MAX ELL kernel and hipSPARSE
hipsparseDhybmv with HIPSPARSE HYB PARTITION MAX ELL kernel, respec-
tively. hipSPARSE ELL employs a limitation not to process matrices that have
more than #nnz−1

#rows + 1 elements in a row. Thus, we have much fewer data
points for the hipSPARSE ELL SpMV (the blue points in Fig. 9b). In Fig. 10,
Ginkgo’s ELL is faster than their counterparts available in the vendors libraries
if the ratio max(row nz)

num rows > 10−2. For the other cases, Ginkgo and the vendor
libraries are comparable in their ELL SpMV performance.

4.5 HYB SpMV Performance Analysis

(a) V100 (b) RadeonVII

Fig. 11. Performance profile comparing the different Ginkgo HYB splitting strategies
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Before comparing against the vendor implementations, we investigate the perfor-
mance of our HYB SpMV kernel for different partitioning strategies denoted by
hybrid{n}, hybridlimit{n}, and hybridminstorage (which is same as hybrid25)
as introduced in Sect. 3.4. We use a performance profile [8] on all Suite Sparse
matrices to compare the strategies with respect to specialization and general-
ization. Using a performance profile allows to identify the test problem share
(y-axis) for a maximum acceptable slowdown compared to the fastest algo-
rithm (x-axis). In Fig. 11, we visualize the performance profiles for the V100
and RadeonVII architectures. Although the hybrid strategy (which corresponds
to hybridlimit33) does not win in terms of specialization (maximum slowdown of
1), we favor this strategy since it provides the best generality: when considering
a maximum acceptable slowdown factor of less than 1.75, this format wins in
terms of problem share.

(a) V100 (b) RadeonVII

Fig. 12. Performance of Ginkgo’s and vendors’ HYB SpMV

(a) V100 (b) RadeonVII

Fig. 13. Relative performance of Ginkgo’s and vendors’ HYB SpMV

In Fig. 12, we see that Ginkgo’s HYB SpMV achieves similar peak per-
formances like cuSPARSE’s cusparseDhybmv HYB SpMV and hipSPARSE’s
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hipsparseDhybmv HYB SpMV, but Ginkgo has much higher performance aver-
ages than cuSPARSE or hipSPARSE. Figure 13a and Fig. 13b visualize the HYB
SpMV performance relative to the vendor libraries, and we identify significant
speedups for most problems and moderate slowdowns for a few cases.

4.6 All SpMV Performance Profile Analysis

Fig. 14. Performance profile comparing multiple SpMV kernels on V100.

In Fig. 14, we use the performance profile to assess the specialization and gen-
eralization of all matrix formats we consider. In Fig. 14, Ginkgo’s CSR is the
fastest for about 30% of the test cases, and Ginkgo’s HYB is the winner in
terms of generality (if the acceptable slowdown factor is larger than 1.0625).
Very similarly, in Fig. 15, Ginkgo’s CSR is the fastest kernel for roughly 30%
of the test cases, and Ginkgo’s HYB is the generalization-winner if the accept-
able slowdown factor is larger than 1.375. We note that the hipSPARSE ELL
stays at a low problem ratio as it employs a limitation to not process matrices
that have more than #nnz−1

#rows + 1 elements in a row.
We already noticed in the analysis comparing Ginkgo’s different SpMV ker-

nels to the vendor libraries that AMD’s hipSPARSE library generally features
much better-engineered kernels than NVIDIA’s cuSPARSE library. In conse-
quence, also the performance profiles of AMD’s SpMV kernels are much closer
to Ginkgo’s SpMV kernel profiles than NVIDIA’s SpMV kernel profiles.
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Fig. 15. Performance profile comparing multiple SpMV kernels on Radeon VII.

4.7 RadeonVII vs V100 SpMV Performance Analysis

We finally compare the SpMV performance limits of RadeonVII and V100 in
Fig. 16. We consider both Ginkgo’s back ends for the two architectures, and
the SpMV kernels available in the vendor libraries (labeled “Sparselib”).

In most cases, the V100 is faster than RadeonVII, but the speedup factors
are moderate, with an average around 2x. RadeonVII shows better performance
for matrices that contain many nonzeros. The higher memory bandwidth of the
RadeonVII might be a reason for these performance advantages, but as there
are typically many factors (such as context switch, warp size, the number of
multiprocessors, etc.) affecting the performance of SpMV kernels, identifying
the origin of the performance results is difficult.

While NVIDIA’s V100 outperforms AMD’s RadeonVII in most tests, we
acknowledge that the price for a V100 (16 GB SXM2) is currently more than an
order of magnitude higher than for a RadeonVII3

3 In December 2019, the list price for NVIDIA’s V100 (16 GB SXM2) is US$ 10,664.-,
the list price for AMD’s RadeonVII is US$ 699.-.
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(a) Ginkgo Coo (b) Ginkgo Csr (c) Ginkgo Ell

(d) Ginkgo Hybrid (e) Sparselib Coo

(f) Sparselib Csr (g) Sparselib Ell (h) Sparselib Hybrid

Fig. 16. Comparison of the SpMV kernel implementations of hipSPARSE on Radeon-
VII and cuSPARSE on V100

5 Summary and Outlook

In this paper, we have presented a comprehensive evaluation of SpMV kernels
for AMD and NVIDIA GPUs, including routines for the CSR, COO, ELL, and
HYB format. We have optimized all kernels for the latest GPU architectures
from both vendors, including new algorithmic developments and parameter tun-
ing. All kernels are part of the Ginkgo open source library, and typically outper-
form their counterparts available in the vendor libraries NVIDIA cuSPARSE and
AMD hipSPARSE. We accompany te kernel release with a performance database
and a web tool that allows investigating the performance characteristics interac-
tively. We also conducted an extensive SpMV performance comparison on both
AMD RadeonVII and NVIDIA V100 hardware. We show that despite NVIDIA’s
V100 providing better performance for many cases, AMD’s RadeonVII with the
hipSPARSE library is able to compete against NVIDIA’s V100 in particular for
matrices with a high number of non zero elements. In addition, we note that
due to the price discrepancy between the two hardware (AMD’s RadeonVII is
roughly 6.6% of the price of an NVIDIA’s V100), the AMD hardware provides
a much better performance-per-dollar ratio. This may indicate that after a long
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period of NVIDIA dominating the HPC GPU market, AMD steps up to recover
a serious competitor position.
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