
ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Parallel Computing xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

Parallel Computing 

journal homepage: www.elsevier.com/locate/parco 

Parallel selection on GPUs 

Tobias Ribizel a , Hartwig Anzt a , b , ∗

a Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany 
b Innovative Computing Lab, University of Tennessee, USA 

a r t i c l e i n f o 

Article history: 

Received 25 July 2019 

Revised 22 October 2019 

Accepted 5 November 2019 

Available online xxx 

Keywords: 

Parallel selection algorithm 

GPU 

Multiselection 

k th order statistics 

Approximate selection 

a b s t r a c t 

We present a novel parallel selection algorithm for GPUs capable of handling single rank selection (sin- 

gle selection) and multiple rank selection (multiselection). The algorithm requires no assumptions on the 

input data distribution, and has a much lower recursion depth compared to many state-of-the-art algo- 

rithms. We implement the algorithm for different GPU generations, always leveraging the respectively- 

available low-level communication features, and assess the performance on server-line hardware. The 

computational complexity of our SampleSelect algorithm is comparable to specialized algorithms designed 

for – and exploiting the characteristics of – “pleasant” data distributions. At the same time, as the pro- 

posed SampleSelect algorithm does not work on the actual element values but on the element ranks of 

the elements only, it is robust to the input data and can complete significantly faster for adversarial data 

distributions. We also address the use case of approximate selection by designing a variant that radically 

reduces the computational cost while preserving high approximation accuracy. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

q  

m  

o  

s  

t  

a  

t  

t  

I  

b  

s  

i  

s  

m  

c  

c  

g  

t  

a  

p  

t  

a  

m

s  

a  

a  

m  

m  

s  

a  

t  

t  

s  

a  

c  

n  

r  

c  

a  

t  

b  

i  

a  

h

0

. Introduction 

Selecting a single rank or multiple ranks of an unordered se-

uence of elements is an ubiquitous challenge that appears in

any problem settings, from quantile selection in order statistics

ver determining thresholds in approximation algorithms to top- k

election in information retrieval. Among the most popular solu-

ions to this problem is the heavily-used QuickSelect algorithm [1] ,

 partial-sorting variant of QuickSort [2] . The close relationship be-

ween these two algorithms is not a singularity, but characteris-

ic of the connection between selection and sorting algorithms.

n fact, many improvements of QuickSort and similar partitioning-

ased sorting algorithms can be directly transferred to the corre-

ponding selection algorithms, e.g., the deterministic pivot choice

mplemented using the Median of medians algorithm [3] , multiple

plitter elements in the SampleSort algorithm [4] , and an imple-

entation variant optimized for modern hardware architectures

alled Super-scalar sample sort [5] . With the rise of parallel ar-

hitectures, the development of effective selection and sorting al-

orithms is heavily guided by hardware-aware optimizations. The

raditional concepts employed for the parallelization of selection

nd sorting algorithms are primarily based on decomposing the in-

ut dataset. This approach based on splitting the workload across
∗ Corresponding author. 

E-mail addresses: hanzt@icl.utk.edu , hartwig.anzt@kit.edu (H. Anzt). 

b  

w  

a  

d  

ttps://doi.org/10.1016/j.parco.2019.102588 

167-8191/© 2019 Elsevier B.V. All rights reserved. 

Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
he parallel resources has proven to be efficient for multi-core

nd multi-node architectures embracing the multiple-instruction-

ultiple-data (MIMD) programming paradigm. Unfortunately, the 

ame strategies largely fail to work efficiently on modern manycore

rchitectures like GPUs. The primary reason is that these devices

re designed to operate in streaming mode, and that their perfor-

ance heavily suffers from instruction-branching, non-coalesced

emory access, and global communication or synchronization. As

treaming processors like GPUs are nowadays not only adopted by

 large fraction of the supercomputing facilities but also a cen-

ral ingredient of embedded devices powering the mobile market,

here exists a heavy demand for selection algorithms that are de-

igned to leverage the highly parallel execution model of GPUs by

voiding global synchronization and communication in favor of lo-

alized communication. In response to this demand, we propose a

ew parallel selection algorithm for GPUs that is capable of single

ank selection and multiple rank selection. With the goal of effi-

iently leveraging the compute power of modern GPUs, we follow

 bottom-up approach by starting with the GPU hardware charac-

eristics, and designing the selection algorithm out of algorithmic

uilding blocks that map well to the architecture-specific operat-

ng mode. Acknowledging CUDA’s asynchronous execution model,

nd using low-level communication features inherently supported

y hardware, the new selection algorithm proves to be competitive

ith other GPU-optimized selection algorithms that impose strong

ssumptions on the input data distribution, and superior to input-

ata independent state-of-the-art algorithms available in literature,
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
mailto:hanzt@icl.utk.edu
mailto:hartwig.anzt@kit.edu
https://doi.org/10.1016/j.parco.2019.102588
https://doi.org/10.1016/j.parco.2019.102588


2 T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

a  

t  

s  

T  

s  

I  

s  

o  

t  

d  

i  

t  

e  

e  

i  

d  

p  

t  √
 

s

2

 

t  

a  

r  

d  

m  

c  

l  

a  

e  

b  

i  

t  

t  

n  

i  

l  

m  

g  

I  

t

3

 

G  

r  

p  

s  

i

i  

v  

V  

b  

A  

e  

i  

g  

t  

a  
open source software, or vendor libraries. While we initially pro-

posed the SampleSelect in [6] , we here extend the functionality of

the basic algorithm to handle also multiple rank selection (multi-

selection). Multiselection is needed, for example, if data elements

within a specific range are of interest. Obviously, multiselection can

always be realized via consecutive invocation of single rank selec-

tion. However, our multiselection-ready SampleSelect algorithm is

much faster, introducing only moderate overhead when selecting

multiple ranks instead of a single rank. 

The rest of the paper is organized as follows. In Section 2 we

recall some basic concepts of selection algorithms and their par-

allelization potential. Section 3 lists efforts in parallelizing selec-

tion and multiselection algorithms. In Section 4 we present the

SampleSelect algorithm efficient in single and multiple rank se-

lection. We also provide details about how the SampleSelect algo-

rithm is realized in the CUDA programming model, and how the

low-level communication and synchronization features available in

the distinct GPU generations are incorporated. Section 5 presents

a comprehensive analysis of the effectiveness, efficiency, and per-

formance of the novel SampleSelect selection algorithm target-

ing both, single and multiple rank selection. We conclude in

Section 6 with a summary of the algorithm capabilities and its per-

formance evaluation. 

2. Selection 

For an input sequence (x 0 , . . . , x n −1 ) , the selection problem is

given by finding the element at position k in the sorted sequence

x i 0 ≤ · · · ≤ x i n −1 
, i.e., finding the k th-smallest element x i k of the se-

quence. In this setting, we also say that x i k has rank k . If the rank

of an element is not unique, i.e., because the element occurs mul-

tiple times in the sequence, we assign it the smallest rank. The

formulation can also be extended to the multiselection problem , i.e.,

given a sequence k 1 , . . . , k m 

of ranks, we want to find the elements

x i k j 
with these ranks. Multiselection is needed, for example, when

identifying elements in a range, or when computing quantiles in

statistical analysis. 

2.1. General framework 

The most popular algorithms for the selection problem are

all based on partial sorting : If we choose b + 1 so-called splitter

elements s i ( −∞ = s 0 ≤ · · · ≤ s b = ∞ ), we can partition the input

dataset into b buckets containing the element intervals [ s i , s i +1 ) .

An important consequence of this partitioning is that, aside from

the element values, we also partition their ranks in the sorted se-

quence: Let n i be the number of elements in the i th bucket, i.e.,

the number of elements from the input sequence contained in

[ s i , s i +1 ) . Then these elements have ranks in the interval [ r i , r i +1 ) ,

where r i = 

∑ i −1 
j=0 n j is the combined number of elements in all pre-

vious buckets. 

Based on this observation, we can formulate a general frame-

work for exact selection: After determining the element count for

each bucket, it suffices to recursively proceed only within the buck-

ets containing the target ranks. Specifically, for identifying the el-

ement of rank k ( k ∈ [ r i , r i +1 ) ) we proceed with searching for the

element with rank k − r i in this bucket. The algorithmic framework

for a bucket-based selection for single and multiple rank selec-

tion is given in Fig. 1 and visualized in Fig. 2 . Virtually all pop-

ular (multi-)selection algorithms are based on this approach of re-

cursive bucket selection. Note that for multiselection, we assume

the target ranks to be sorted, as every bucket then contains a con-

tiguous range of the target ranks which significantly simplifies the

recursion process. 
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
.2. Splitter selection 

The choice of splitters in a bucket-based selection algorithm has

 strong influence on the recursion depth, and thus the total run-

ime of the resulting algorithm. In the general case, the optimal

plitters separate the input elements in b buckets of equal size n / b .

his results in an algorithm that needs at most log b 
n 
B + 1 recur-

ive steps, where B is the base case size (lowest recursion level).

n the lowest recursion level, we sort the elements using bitonic

ort to return the elements with the desired ranks directly. With-

ut considering the computational overhead of choosing the split-

ers, their optimal values are the p i = i/b percentiles of the input

ataset. In practice, these can be approximated by the correspond-

ng percentiles of a sufficiently large random sample. In terms of

he relative element ranks, the average error introduced by consid-

ring only a small sample of size s of the complete dataset can be

stimated as follows: The relative ranks of the sampled elements,

.e., the ranks normalized to [0,1], are approximately uniformly

istributed: X 1 , . . . , X s ∼ U(0 , 1) and (assuming sampling with re-

lacement) independent. Thus, the sample percentiles are asymp-

otically normally distributed with mean p i and standard deviation
 

p i (1 − p i ) /s [7] . Consequently, we can modulate the sample size

 to control the imbalance between different bucket sizes. 

.3. Approximating the kth-smallest elements 

An important observation in the context of bucket-based selec-

ion algorithms is that the ranks of the splitter elements are avail-

ble once all elements have been grouped into their buckets: Their

anks equal the aforementioned partial sums r i . If the application

oes not require our exact ranks, but can work with an approxi-

ation like the k ± εth smallest element, the selection algorithm

an be modified to terminate before reaching the lowest recursion

evel. In this case, it is possible to approximate k th order statistic

s the splitter s i whose rank r i is closest to k . In terms of the el-

ment ranks, the error remains smaller than half the maximum

ucket size, and can thus effectively be controlled via modulat-

ng the number of buckets and the sample size. If the distribu-

ion of the input data is smooth, a small error in the element rank

ranslates to a small error in the element value. However, this is

ot true for the general case, as for non-smooth (i.e. clustered)

nput data, the induced element value error can grow arbitrarily

arge. Approximate selection is attractive for algorithms that favor

oderate inaccuracies over invoking expensive exact selection al-

orithms. For example, the recently developed parallel threshold

LU algorithm for GPUs (ParILUT [8] ) is interested in quickly ob-

aining approximate thresholds [9] . 

. Related work 

In the past, different strategies aiming at efficient selection on

PUs were explored. The first implementation of a selection algo-

ithm on GPUs was presented by Govindaraju et al. [10] for the

roblem of database operations. The proposed algorithm recur-

ively bisects the value range of the binary representation of the

nput data. A different approach was proposed by Beliakov [11] –

t is based on the reformulation of the median selection as a con-

ex optimization problem. Monroe et al. [12] published a Las-

egas algorithm for choosing two splitters that bound a small

ucket containing the k th-smallest element with high probability.

labi et al. [13] were the first to use a larger number of buck-

ts in their selection algorithm, either by uniformly splitting the

nput value range ( BucketSelect ), or based on the RadixSort al-

orithm ( RadixSelect ). Furthermore, significant advances in the

heoretical treatment of communication-minimal parallel selection

lgorithms as well as the practical implementation thereof on
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588


T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 3 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Fig. 1. High-level overview of a bucket-based selection algorithm: Selecting a single rank (left) and multiple ranks (right). 

Fig. 2. Visualization of bucket-based partial sorting: Single rank selection (left) and multiselection (right). 

d  

a

 

p  

m  

e  

t

 

k  

B  

f  

p  

r  

o  

m  

m  

o

4

4

 

q  

Q  

r  

s  

t  

i  

w  

v  

e  

p  

s  

i  

r

 

b  

o  

r  

m  

f  

t  

d  

m

4

 

e

istributed systems have been presented by Hübschle-Schneider

nd Sanders [14] . 

The (parallel) multiselection problem was studied in the PRAM

arallel programming model by Olariu and Wen [15] as well as in a

esh-connected setting by Shen [16] . Orthogonally to that, Kaligosi

t al. [17] provided a theoretical upper bound of the optimal run-

ime of multiselection algorithms in the sequential case. 

While all these algorithms were designed to select only a single

 -smallest element or the top- k elements from a sequence, both

ucketSelect and RadixSelect can be extended in the framework

rom Fig. 1 to build an algorithm for multiselection. Unlike most

revious effort s designing selection routines f or GPUs, our algo-

ithm is purely comparison-based, i.e., we only use the relative

rder and ranks of elements to determine the k th-smallest ele-

ent(s). This especially means that the algorithm can operate on

ore complex data types like tuples with lexicographic order, with

nly minimal changes. 

. Implementation 

.1. Optimizing for memory bandwidth 

Any algorithm selecting a target rank from a non-ordered se-

uence needs to access each element at least once. The classical

uickSelect algorithm applied to a sequence of length n needs to
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
ead and write 2 n elements on average, using auxiliary storage of

ize n /2 if the input cannot be overwritten. As the sort- and selec-

ion algorithms are memory bound on GPU architectures (which

mplies that the data access volume correlates with the runtime),

e aim at developing an algorithm with a lower memory access

olume. The SampleSelect algorithm we propose requires on av-

rage (1 + ε) n element read- and write operations for a single in-

ut rank, with a small and configurable ε parameter and auxiliary

torage of size smaller n /4 in single precision arithmetic and n /8

n double precision arithmetic in terms of the input element size,

espectively. 

For multiselection, it is not possible to derive tight general

ounds, as complexity and storage requirements heavily depend

n the distribution of the target ranks. In particular, all target

anks being clustered results in complexity and storage require-

ents close to the single selection case, while both metrics grow

or uniformly distributed target ranks. Nevertheless, in comparison

o QuickSelect sorting the complete dataset, separating the input

ata into multiple buckets in SampleSelect results in traversing a

uch smaller area of the recursion tree. 

.2. SampleSelect 

At its core, our SampleSelect implementation consists of three

lementary kernels, whose pseudocode is also listed in Fig. 4 : 
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588


4 T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Fig. 3. Search tree based on bucket splitters s 1 , . . . , s 8 (left) and its implicit array 

storage order (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

e  

t  

i

4

 

s  

s  

b  

t  

g  

s  

i  

n  

s  

t  

w  

i  

t  

Q  

s

4

 

a  

p  

u  

o  

l  

l  

e  

t  

t  

e  

s

 

t  

t  

t  

e  

c  

o  

a  

n  

i  

t  

n

4

 

m  

s  

m  

t  

b  

b  

l  

e  

t

 

t  

e  
1. The sample kernel builds a sorted set of splitters. 

2. The count kernel traverses all data, and determines the size of

the distinct buckets. 

3. Using a bucket bitmask, the filter kernel extracts the ele-

ments of a single bucket (single rank selection) or a set of buck-

ets (multiple rank selection). 

Sample kernel To select a suitable splitter set for the follow-

ing steps, our sample kernel first reads a small sample of ele-

ments into shared memory and sorts them using a bitonic sorting

network [18] . From the resulting set, we pick the i / b percentiles

for i = 1 , . . . , b − 1 , and store them in global memory. These per-

centiles separate the input data into b roughly equal-sized buckets.

Count kernel The count kernel combines two important steps:

First, it identifies the target bucket an element belongs into. Then

it increments the shared counter for this bucket. The bucket index

could be identified using a binary search on the sorted splitter ar-

ray, but the involved index calculations would be complicated and

expensive. 

To alleviate this bottleneck, we decided to place the splitters

in a complete binary search tree that is implicitly stored in an ar-

ray, like suggested in [5] . The indexing of this array is based on an

approach often used in binary heaps: For a tree node at index i ,

its parent has index � i −1 
2 � and its children have the indexes 2 i + 1

and 2 i + 2 . To reduce the memory footprint necessary to identify

elements from a single bucket, we memoize the bucket index for

each element (called oracle ) in as few bits as possible. For efficient

processing on standard hardware, we use a single byte to store

each oracle, which limits the scope of this approach to at most

256 buckets. The indexing and search tree traversal are visualized

in Fig. 3 . 

Filter kernel The filter kernel scans over all oracles, loading

only the elements belonging to the bucket(s) containing the tar-

get rank, and then stores these elements. Writing the elements of

these buckets in contiguous fashion requires using shared counters

that hold the next unused index in the contiguous storage for each

bucket. 

4.3. Repeating elements 

Initially, the SampleSelect algorithm is designed for sequences

of pairwise different elements, each of them having a unique rank.

However, small modification introduced in [5] enable SampleSe-

lect to handle equal elements: In case identical splitters s a = . . . =
s e < s e +1 occur, the equal elements are sorted into the e th bucket

together with all elements smaller than s e +1 . Replacing s e by ˜ s e =
s e + ε enables to place identical elements in an equality bucket .

In case the target element(s) are contained in such an equality

bucket, the algorithm can terminate early by returning the corre-

sponding lower bound splitter. Without this modification, the al-

gorithm cannot be guaranteed to terminate, as a sequence of equal
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
lements would always be placed in the same bucket. Without

quality buckets however, we would not be able to determine that

his bucket only contains equal elements, which would lead to an

nfinite recursion. 

.4. Sorting small inputs 

Different stages of selection algorithms require the efficient

orting of small element sets. For this purpose, we implement a

imple bitonic sorting kernel [18] operating in shared memory. As

itonic sorting requires explicit synchronization, the kernel needs

o be restricted to a single thread block, as this is the largest thread

roup that is guaranteed to be scheduled on the same multiproces-

or (SM) and capable of leveraging shared memory operations. Our

mplementation is an extension of the bitonic sorting kernels with

 -to- m data binding introduced by Hou et al. [19] , using register

huffle operations to sort the data within a warp. As a trade-off be-

ween local performance and register pressure/maximal occupancy,

e store n = 4 local elements per thread. In the distinct algorithm

mplementations, the bitonic sorting implementation is used for

he splitter selection in SampleSelect , the pivot selection in the

uickSelect algorithm we implemented for performance compari-

on, and for the recursion base case in both algorithms. 

.5. Recursion 

As the recursion depth of our algorithms is not exactly known

-priori, and communication/synchronization between the host

rocessor and the GPU usually introduces significant latencies, we

se CUDA Dynamic Parallelism to keep the control flow completely

n the GPU (This feature allows GPU kernels to asynchronously

aunch new subsequent kernels). Acknowledging that all kernels

aunched from the CPU or a single thread block on the GPU will be

xecuted in the launch order, we are able to implement a simple

ail-recursion. For the purpose of this recursion, we introduce addi-

ional kernels that select the bucket(s) containing the k th-smallest

lement(s), and compute the kernel launch parameters for the sub-

equent recursion level. 

Specifically, for multiselection, we execute a binary search on

he input ranks for every bucket in parallel. This determines where

he splitter ranks are placed in the sorted rank sequence, and

hus determining which rank(s) can be found in which bucket. For

ach non-empty bucket, a multiselection kernel for the next re-

ursion level is invoked. Launching many sub-kernels simultane-

usly can result in substantial overhead. To mitigate this effect, for

 larger number of subcalls, we instead launch a combined ker-

el where each thread block processes the elements from a single

nput bucket from the previous recursion level. This has the addi-

ional advantage that we need no reduction and global synchro-

ization, as all counts are accumulated in shared memory. 

.6. Reference implementation: QUICKSELECT 

As a reference point in the performance evaluation, we imple-

ented a GPU version of the QuickSelect algorithm, and apply the

ame performance optimizations like for the SampleSelect imple-

entation. While SampleSelect chooses a large number of split-

ers and (conceptually) partitions the elements into the resulting

uckets, QuickSelect only chooses a single so-called pivot element

ased on which the input data is bi-partitioned. This difference

eads to simpler treatment of a single input element, but in gen-

ral requires more recursion levels and more data access opera-

ions than SampleSelect . 

As a basic building block, we implemented a branchless bipar-

ition kernel that realizes the selection by growing the array of el-

ments smaller than the pivot from the left and elements larger
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588


T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 5 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Fig. 4. Elementary kernels for SampleSelect (Pseudocode). 

Fig. 5. Branchless partitioning algorithm for QuickSelect (left) and warp-aggregation for bucket indexes (right). 

t  

n

4

 

p  

p  

c  

i  

m  

d⌊

4

 

i  

c  

p  

s  

o  

t  

k  

m  

g  

c

 

a  

c  

r

 

 

 

 

 

 

 

 

 

 

r  

c  

t  

c  

i  

t  

i  

o  

o  

a  

t  
han the pivot from the right. Pseudocode for the bipartition ker-

el is provided in Fig. 5 . 

.7. Reference implementation: BUCKETSELECT 

We also compare our SampleSelect implementation to the

reviously mentioned BucketSelect algorithm. In its core ap-

roach, it is identical to SampleSelect except for the splitter

hoice: Instead of using a larger sample, it only uses the max-

mum and minimum and derives the uniformly spaced splitters

in + i/ (b · (max − min )) , which allows us to derive the bucket in-

ex of an element x as 

x − min 

max − min 

· b 

⌋
. 

.8. Shared counters 

A core functionality of all aforementioned kernels is the atomic

ncrement of counters shared by a large thread group that pro-

esses the data in parallel. For this purpose, the CUDA language

rovides a set of atomic operations that can operate either on

hared or on global memory. However, operations on global mem-

ry usually require a large degree of synchronization (across all

hread blocks), and can thus quickly become detrimental to the

ernel performance. On the other hand, the much faster shared

emory atomics can only be used to synchronize within a sin-

le thread block, thus requiring additional reduction operations to

ombine the partial results to global counts. 
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
For both, the selection kernel and the bipartitioning kernel, the

tomic counters in global memory can be replaced with a hierar-

hy of atomics working on different memory levels. This can be

ealized by 

1. Executing the kernel (selection/bipartitioning) once, but only

accumulating the atomic operations for a single thread block

in a shared-memory counter and storing this block-local partial

sum. 

2. Computing a prefix sum (also sometimes referred to as exclu-

sive scan) over all block-local partial sums. These sums denote

the boundaries of memory areas each thread block will write

to, thus assigning an index range to each thread block. This op-

eration is denoted by reduce in the following descriptions. 

3. Executing the kernel (selection/bipartitioning) a second time,

this time using the index ranges computed by the previous step

to assign an unique index to each output element. 

The pseudocode in Fig. 4 shows how this process is incorpo-

ated into SampleSelect : The count kernel computes the bucket

ounts for the elements processed by each thread block. They are

hen stored in global memory, and a prefix sum of these partial

ounts is computed in the reduce kernel. Step 3 is incorporated

nto the filter kernel, in which the result of the atomic opera-

ion is the target index for the location where the current element

s stored. This is attractive as both kernels ( count and filter )
perate on the same element indexes, hence the prefix sums from

ne operation can be used in the next. The use of shared-memory

tomics in filter is comparable to the filtering approach in-

roduced in [20] , but differs in the sense that instead of storing
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588


6 T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

c

5

 

t  

r  

a  

i  

c  

e  

t  

c  

g

5

 

t  

w  

p  

d  

1  

l  

r  

r  

o

 

o  

t  

b  

a  

w  

b

 

s  

a  

e  

p  

p  

s

5

T  

c  

i  

e  

d  

t  

c  

w

 

t  

m  

t  

o  

f  

j  

a

5

 

a  
predicate bits as an intermediate step, it stores the bucket indexes

in the oracles. 

A consequence of using atomics is that the algorithm per-

formance can be impacted by atomic collisions. These collisions

occur if multiple threads issue atomic operations on the same

operand/memory location. While even for uniformly distributed

datasets there exists a significant chance for these collisions [21] ,

they are expected to occur frequently for “nasty” distributions con-

taining clusters. A mitigation strategy that reduces the number of

atomic collisions is warp-aggregation [22] . The idea is to use warp-

local communication to synchronize among the threads of a warp

(1 warp contains 32 threads), and issue only a single atomic oper-

ation for each atomic counter in a warp. While warp-aggregation

is usually used on global counters that get updated by each thread,

the same techniques can also be used in the histogram-like bucket

count operation, as demonstrated in Fig. 5 : For a fixed thread, the

loop computes a bitmask containing all threads of the warp that

increase the same bucket index (and would thus incur an atomic

collision). In the implementation of the bucket count kernel, the

mask computation can be overlapped with the searchtree traver-

sal, potentially hiding latencies from shared memory access. 

4.9. Tuning parameters 

The SampleSelect and QuickSelect implementations feature

several tuning parameters and configuration options for hardware-

aware and problem-specific optimizations: Work distribution The

launch parameters, i.e., the number of thread blocks and threads

per block can have a significant impact on the overall performance

of a kernel. Sample size A larger sample used to select the bucket

splitters generally improves the splitter quality. In consequence, it

may decrease the variation in runtime or approximation error due

to imbalances between the bucket sizes. However, it also increases

the splitter-selection overhead, and can (if the sample size exceeds

the shared memory size) require a more complex splitter-selection

kernel. Number of buckets A larger number of buckets increases

the accuracy of a single recursion level, and therewith decreases

the recursion depth of SampleSelect . However, it also increases

the amount of shared memory needed to store the partial bucket

for the count kernel, and increases the overhead of the reduction

operation when using shared memory atomics. Unrolling If data

traversal is unrolled for a single thread, the compiler is able to

reorder instructions from consecutive iterations such that memory

access latencies can be reduced. However, unrolling generally in-

creases the register pressure of the kernel, potentially reducing the

occupancy per streaming multiprocessor (SM). Atomics The per-

formance characteristics of global and shared memory atomics are

very architecture-dependent. Furthermore, the warp-aggregation

alleviating the performance impact of atomic collisions occurring

for “nasty” distributions introduces some overhead for the general

case. Base case The input size at which the algorithm switches to

resort a simple sorting-based selection kernel potentially impacts

the overall execution time. However, as the input size decreases

exponentially with the recursion depth, we consider the impact

negligible. 

4.10. Kernel fusion 

Aside from its stand-alone form, the SampleSelect kernel is

amenable to kernel fusion [23] if not only the k th-smallest element

is required, but, for example, all elements from a contiguous rank

range or all elements larger than the k th-smallest element are of

interest (the latter is often denoted as top- k selection). This can

be achieved by modifying the filter kernel such that it copies

not only elements from the target bucket, but also from all buckets

which are contained in the desired rank range. As the splitters are
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
rdered, the recursion still needs to descend only into the buckets

ontaining the delimiters of the rank range. 

. Experiments 

In the experimental evaluation of the SampleSelect implemen-

ation, we assess its performance for different parameter configu-

ations in comparison to the QuickSelect implementation, as well

s a BucketSelect [13] implementation we developed for compar-

son by replacing the element classification in SampleSelect . We

onsider two GPU architectures belonging to distinct compute gen-

rations, and a set of input datasets varying in size and value dis-

ribution. For full experiment reproducibility, we make the source

ode and all benchmark data available at https://github.com/upsj/

pu _ selection under the permissive GNU GPLv3 license. 

.1. Input data 

As the SampleSelect algorithm is sensitive only to the dis-

ribution of the element ranks, not the actual numeric values,

e consider datasets generated as uniform distribution across a

re-defined set of distinct values. Specifically, we generate input

atasets with sizes from n = 2 16 to 2 28 elements, containing d =
 , 16 , 128 , 1024 and n distinct values. Using datasets with d < n al-

ows us to evaluate the performance impact of repeating elements

esulting in atomic collisions. For each dataset, we chose the target

anks randomly out of a uniform distribution to simulate a variety

f different workloads for single selection. 

For the multiselection, we evaluate two different distributions

f input ranks: uniform contains 32 ranks evenly distributed over

he dataset range, which corresponds to a worst-case input for

oth, QuickSelect and SampleSelect , as each rank is contained in

 different bucket. clustered contains the log 2 n ranks 2 i < n ,

hich is close to a best case for both selection algorithms, as most

uckets can be discarded early. 

To account for variations introduced by the random target rank

election, we run each experiment on 10 distinct input datasets

nd report the average data along with the standard deviation. We

nsure correctness of the SampleSelect implementation by com-

aring the results to a reference solution based on the sorted in-

ut data computed using the std::sort algorithm from the C++

tandard library. 

.2. Hardware environment 

We run experimental analysis on two different GPU models –

he Tesla K20Xm and the Tesla V100. Their basic performance

haracteristics are listed in Table 1 . The kernels are compiled us-

ng the CUDA 10.1 compiler with code generation for the high-

st compute capability enabled. To minimize the impact of ran-

om noise, we measure the execution time for each kernel 10

imes using the CUDA Runtime API ( cudaEventRecord and

udaEventElapsedTime ), and report the average results along

ith the variation. 

QuickSelect , BucketSelect and SampleSelect are all linear-

ime algorithms for a fixed number of input ranks. As performance

etric, we consider the “throughput” which derives as ratio be-

ween the dataset cardinality (not accounting for the distribution

f the values) and the algorithm runtime. To reflect stochastic ef-

ects incurred by considering different input datasets and hardware

itter, we always consider 10 different input datasets and report the

rithmetic mean along with the standard deviation. 

.3. Parameter tuning 

As elaborated, SampleSelect features a list of parameters

menable to hardware-specific tuning. In Fig. 6 we analyze the
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://github.com/upsj/gpu_selection
https://doi.org/10.1016/j.parco.2019.102588


T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 7 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Fig. 6. Parameter tuning benchmarks (single precision). Based on preliminary experiments [6] , we only visualize the performance using global memory atomics on the 

K20Xm and shared memory atomics on the V100, as these are the fastest configurations on the respective platform. 

Table 1 

Key characteristics of the high-end NVIDIA GPUs. 

The Half (HP) Performance of the V100 is for the 8 

Tensor cores. The sustained memory bandwidth is 

measured using the bandwidth test shipping with 

the CUDA SDK. 

K20Xm V100 

Architecture Kepler Volta 

DP Performance 1.2 TFLOPs 7 TFLOPs 

SP Performance 3.5 TFLOPs 14 TFLOPs 

HP Performance – 112 TFLOPs 

SMs 13 80 

Operating Freq. 0.75 GHz 1.53 GHz 

Mem. Capacity 5 GB 16 GB 

Mem. Bandwidth 208 GB/s 900 GB/s 

Sustained BW 146 GB/s 742 GB/s 

L2 Cache Size 1.5 MB 6 MB 

L1 Cache Size 64 KB 128 KB 

e  

t  

i  

f  

t  

p  

u  

c  

c  

G

5

 

t  

s  

l  

c  

 

n  

m

“  

m

s  

d  

g  

v  

t  

f  

b  

l  

a  

o  

i  

s  

t  

f  

o  

o  

s  

a  

P  

b  

G  

c  

c  

S  

f  

n  

b  

B  

t  

a  

s  
ffect of different parameter choices on the overall performance of

he single selection algorithm implementations [6] . We notice that

n particular on the older K20 architecture, the SampleSelect per-

ormance benefits from maximizing the number of buckets (within

he limits of what a thread block allows for). At the same time, the

erformance of the SampleSelect implementation remains mostly

naffected by the loop unrolling depth. The number of threads ac-

umulated in a block (for a fixed number of buckets) should be

hosen as large as possible on the K20 architecture, while the V100

PU favors smaller thread blocks. 

.4. Performance comparison for single selection 

In Fig. 7 we present the performance analysis from [6] assessing

he algorithm throughput for different input sizes to compare the

hared-memory variants and global-memory variants of QuickSe-

ect , BucketSelect and SampleSelect for single rank selection. For

ompleteness, we consider both single and double precision inputs.
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
A central observation is that the overall performance win-

er is architecture-specific. On the older K20Xm GPU, the imple-

entations based on global-memory-communication (“sample-g”, 

bucket-g” and “quick-g”) are generally faster than their shared-

emory counterparts (“sample-s”, “bucket-s” and “quick-s”, re- 

pectively). Independent of the precision format, the performance

ifferences are significant in particular for the QuickSelect al-

orithm. On the other hand, the newer V100 GPU heavily fa-

ors the variants based on shared-memory communication. There,

he shared-memory variant of SampleSelect is more than 10x

aster than the global-memory variant, while the performance gap

etween the QuickSelect implementations is much smaller. For

arger input datasets, SampleSelect outperforms QuickSelect by

 small margin on the K20Xm, but is more than twice faster

n the V100. The performance gap increases for double precision

nputs where the SampleSelect almost matches its single preci-

ion throughput. As the atomics always operate on 32bit integers,

his suggests that the atomic operations expose the bottleneck

or the SampleSelect implementation, whereas the performance

f the QuickSelect algorithm is primarily limited by the mem-

ry bandwidth. While randomness effects challenge a comprehen-

ive roofline analysis, we estimate the SampleSelect algorithm to

chieve about one third of the peak bandwidth of the V100 GPU.

erformance trends indicate that even higher efficiency values may

e attainable for larger input datasets (that practically exceed the

PUs’ main memory capacity). Despite the data distribution being

lose-to-optimal for the BucketSelect algorithm, the performance

omparison reveals that BucketSelect barely outperforms Sample-

elect for single precision input on the K20Xm, and it is inferior

or all other configurations. This, again, indicates that the bottle-

eck in these algorithms not being the element classification itself,

ut the histogram-like bucket counting operation. Furthermore, as

ucketSelect was previously reported to be the fastest GPU selec-

ion algorithm for uniform input data [10–13] , our SampleSelect

lgorithm is competitive to BucketSelect even in the best-case-

etting. Moreover, as SampleSelect operates on the element ranks
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588


8 T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Fig. 7. Comparison of different single selection algorithms (left and middle) on the K20Xm and V100 GPUs and the impact of repeating elements on atomic collisions and 

warp-aggregation (right). sample, bucket and quick denote SampleSelect , BucketSelect and QuickSelect , respectively. The suffixes -g and -s denote kernels using shared- 

memory and global-memory atomics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

k  

l  

t  

n  

o  

e  

t  

n  

r  

t  

c  

r  

i

5

 

m  

a  

N  

a  

s  

fi  

i  

g  

o  

s  

p  

2  

b  

t  

p  

S  
only, its performance remains mostly unaffected from adversarial

input datasets. 

5.5. Data distribution and intra-warp communication 

On the right-hand side of Fig. 7 , we assess the influence of

the data distribution, in particular the impact of collisions result-

ing from element repetition [6] . The distinct communication strate-

gies differ in the effectiveness to mitigate the effects: On the older

K20Xm GPU, atomic collisions have a large impact on the run-

time of both, shared-memory as well as global-memory atomics.

This impact can be avoided by using the aforementioned warp-

aggregation technique for histogram calculations, while incurring

only a small performance penalty for the general case. The fast

shared-memory atomics (initially introduced with the Maxwell ar-

chitecture [24] ) make warp-aggregation unnecessary on the V100

GPU. 

5.6. Runtime breakdown 

In Fig. 8 , we visualize for the different kernels the run-

time breakdown of a single recursion level of SampleSelect and

QuickSelect on the V100 and K20Xm GPUs with the respec-

tively fastest configuration (global-memory atomics on K20m and

shared-memory atomics on V100). We observe that the record-

ing of oracles (“count with write”) introduces only negligible over-

head to the runtime of the sample and count kernels of Sample-

Select , as we can see in the two middle green bars. Opposed to

that, the reduction for shared-memory atomics becomes more ex-

pensive. The reason behind is that in addition to the total bucket

counts, also the partial sums need to be stored, as those are used

by the following filter kernel. The count kernel of QuickSelect

completes much faster, as it only compares the elements against a

single pivot element and updates two atomic counters. At the same
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
ime, the filter kernel is much slower than the corresponding

ernel for single selection in SampleSelect , which can likely be

inked to the larger memory footprint of the elements compared

o their oracles. The runtime for the multiselection filter ker-

el of SampleSelect included in Fig. 8 reflects a setting where 128

f the 256 buckets are extracted. Even though the total amount of

lements being written to main memory is only half compared to

he QuickSelect kernel, the cost of the multiselection filter ker-

el is much higher. The reason behind is that the element writes

equire random access and use multiple atomic counters to keep

rack of the next free index for each bucket. However, the lower

ost of a QuickSelect kernel comes at the cost of a much deeper

ecursion hierarchy, and hence a much higher number of kernel

nvocations. 

.7. Multiselection 

Fig. 9 shows the performance of the multiselection imple-

entations of QuickSelect and SampleSelect on the clustered
nd uniform input datasets, with the RadixSort algorithm from

VIDIA’s CUB library [25] as a baseline. We consider both single

nd double precision arithmetic. For brevity, we limit the analy-

is on the distinct hardware architectures to the algorithm con-

gurations that performed best in the single selection case. This

s the shared-memory atomics variant on the V100 GPU and the

lobal-memory atomics variant on the K20m GPU. Independent

f hardware architecture and precision, the clustered multi-

election is faster than the uniform multiselection for large in-

uts and SampleSelect outperforms QuickSelect by more than

 × . This reflects the fact that clustered target ranks require less

uckets to be extracted in the recursion levels. On the K20m GPU,

he clustered target ranks result in about 35% higher through-

ut compared to uniformly distributed target ranks for Sample-

elect . On the V100, SampleSelect reaches a roughly 25% larger
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588


T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 9 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Fig. 8. Runtime breakdown for the elementary kernels with n = 2 24 (single precision) using global-memory atomics on a K20Xm (left) and shared-memory atomics on a 

V100 GPU (right). The kernels are (from left to right): bipartitioning for QuickSelect (bipartition), counting the number of elements for SampleSelect (count w.o. write), 

counting and extracting the elements from a single bucket (count w. write), counting and copying the elements from every second bucket (count w. write multi). 

Fig. 9. Comparison of different multiselection algorithms using global-memory atomics on the K20Xm and shared-memory atomics on the V100 GPUs. sample and quick and 

sort denote SampleSelect , QuickSelect and RadixSort , respectively. The suffixes -clustered and -uniform denote clustered and uniform input ranks. 

t  

t  

p  

r  

p  

i  

p  

f  

a  

l  

i  

fi  

p  

a  

t  

w  

w  

r  

R  

t  

r  

m  

t

5

 

s  

s  

s  

o  

t  

t  

O  

i  

w  
hroughput for clustered ranks. If we compare to the single selec-

ion setting on the K20m architecture, the multiselection through-

ut of SampleSelect decreases to about 80% for the clustered
anks and about 60% for the uniform ranks. On the V100, the

erformance difference to the single selection case is more signif-

cant. For the clustered target ranks, the multiselection Sam-

leSelect reaches roughly 60% of the single selection throughput,

or uniform target ranks the multiselection SampleSelect reaches

bout 50% of the single selection throughput. RadixSort reaches

ess than half of the total throughput of SampleSelect for larger

nputs, but still manages to outperform QuickSelect in some con-

gurations for single-precision inputs on both GPUs. For double

recision, the throughput of RadixSort drops much faster than

ll other algorithms, most likely due to its larger dependency on

he element size and increased memory footprint. For a scenario

here we increase the number of (uniformly distributed) ranks

e want to select from the input, Fig. 9 additionally shows the

untime of SampleSelect and QuickSelect in comparison to the
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
adixSort baseline: SampleSelect is faster than RadixSort for up

o 128 ranks, while QuickSelect is dominated by the sorting algo-

ithm much earlier. These results indicate that the SampleSelect

ultiselection performance could be improved by a better fine-

uning for smaller input sizes. 

.8. Approximate selection 

Many problem settings do not require an accurate selection re-

ult, but can accept an element close to the target rank. For this

etting, we reduce the SampleSelect algorithm to a single recur-

ion level. This “approximate SampleSelect ” algorithm computes

nly the bucket counts, and selects the splitter that is closest to

he target rank. Thus, we are not limited by the 256 bucket-limit

hat is imposed by the oracle storage (explained in Section 4 ).

bviously, this introduces some approximation error, while rad-

cally reducing the computational (and memory) cost. In Fig. 10

e visualize the throughput performance (y-axis) and relative
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1016/j.parco.2019.102588


10 T. Ribizel and H. Anzt / Parallel Computing xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: PARCO [m5G; November 27, 2019;9:21 ] 

Fig. 10. Error–throughput plot for n = 2 28 (single precision) and different bucket 

counts (128, 256, 512, 1024) as well as the exact SampleSelect baseline using 

shared-memory atomics on a V100 GPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

o  

w  

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

s/ 
[  

 

 

[

approximation error in terms of the element rank (x-axis) for both

the (exact) SampleSelect implementation and the inexact Sam-

pleSelect variant [6] . The problem setting uses 2 28 uniformly-

distributed single precision values, the approximate SampleSelect

algorithm (red triangles) is evaluated for configurations using 128,

256, 512, and 1024 buckets. Obviously, the accuracy decreases for

smaller bucket counts, and for using only 64 buckets, the rel-

ative approximation error grows up to almost 1%. At the same

time, this variant executes almost three times faster than the ex-

act Sample-Select (blue circle). For larger bucket counts, the ac-

curacy increases, and when using 1024 buckets, 50% runtime sav-

ings come at the price of an average relative approximation error

smaller than 0.1%. An important observation in this context is that

the performance impact of a larger bucket count is relatively small,

while the error has a large variability based on the random sample

choice. In consequence, for approximate selection it is advisable to

always push the bucket count to the hardware-supported limit (i.e.

b ≤ 1024 on older NVIDIA GPUs). 

6. Conclusion 

We have proposed a new parallel selection algorithm for GPUs

that is capable of handling single rank selection and multiple

rank selection. The SampleSelect algorithm is based on a partial

selection strategy using a set of splitters for partitioning the input

dataset, and employs low-level synchronization mechanism to

preserve much of the asynchronous execution mode of modern

GPUs. In comparison to state-of-the-art GPU implementations

that impose strong assumptions on the input data distribution,

SampleSelect is competitive in runtime while being immune to

the effects of unpleasant data distributions. SampleSelect strongly

outperforms the standard QuickSelect algorithm for both, single

and multiple selection on the GPU. We also propose an approx-

imate SampleSelect variant that terminates before reaching the

lowest recursion level. Despite introducing moderate approxima-

tion errors, approximate SampleSelect is interesting for algorithms

requiring the quick approximation of target elements. 

Declaration of Competing Interest 

The authors declare that they do not have any financial or non-

financial conflict of interests. 
Please cite this article as: T. Ribizel and H. Anzt, Parallel selection o

102588 
cknowledgments 

This work was supported by the “Impuls und Vernetzungsfond”

f the Helmholtz Association under grant VH-NG-1241. The authors

ould like to thank the anonymous reviewers for their construc-

ive comments. 

eferences 

[1] C.A.R. Hoare, Algorithm 65: find, Commun. ACM 4 (7) (1961) 321–322, doi: 10.
1145/366622.366647 . 

[2] C.A.R. Hoare, Quicksort, Comput. J. 5 (1) (1962) 10–16, doi: 10.1093/comjnl/5.1.

10 . 
[3] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, R.E. Tarjan, Time bounds for selec-

tion, J. Comput. Syst. Sci. 7 (4) (1973) 448–461, doi: 10.1016/S0 022-0 0 0 0(73)
80033-9 . 

[4] W.D. Frazer, A.C. McKellar, Samplesort: a sampling approach to minimal stor-
age tree sorting, J. ACM 17 (3) (1970) 496–507, doi: 10.1145/321592.321600 . 

[5] P. Sanders, S. Winkel, Super scalar sample sort, in: Algorithms – ESA 2004,
2004, pp. 784–796, doi: 10.1007/978- 3- 540- 30140- 0 _ 69 . 

[6] T. Ribizel, H. Anzt, Approximate and exact selection on GPUs, in: 2019

IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2019, pp. 471–478, doi: 10.1109/IPDPSW.2019.0 0 088 . 

[7] F. Mosteller, On some useful “inefficient” statistics, Ann. Math. Stat. 17 (4)
(1946) 377–408, doi: 10.1214/aoms/1177730881 . 

[8] H. Anzt, T. Ribizel, G. Flegar, E. Chow, J. Dongarra, ParILUT - a parallel threshold
ILU for GPUs, in: 2019 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2019, pp. 231–241, doi: 10.1109/IPDPS.2019.0 0 033 . 

[9] H. Anzt, E. Chow, J. Dongarra, ParILUT—a new parallel threshold ILU fac-
torization, SIAM J. Scientif. Comput. 40 (4) (2018) C503–C519, doi: 10.1137/

16M1079506 . 
[10] N.K. Govindaraju, B. Lloyd, W. Wang, M. Lin, D. Manocha, Fast computa-

tion of database operations using graphics processors, in: Proceedings of the
2004&nbsp;ACM SIGMOD International Conference on Management of Data,

in: SIGMOD ’04, 2004, pp. 215–226, doi: 10.1145/10 07568.10 07594 . 

[11] G. Beliakov, Parallel calculation of the median and order statistics on gpus with
application to robust regression, 2011. 

[12] L. Monroe, J. Wendelberger, S. Michalak, Randomized selection on the GPU, in:
Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics,

in: HPG ’11, 2011, pp. 89–98, doi: 10.1145/2018323.2018338 . 
[13] T. Alabi, J.D. Blanchard, B. Gordon, R. Steinbach, Fast K -selection algorithms for

graphics processing units, J. Exp. Algorithmics 17 (2012), doi: 10.1145/2133803.

2345676 . 4.2:4.1–4.2:4.29 
[14] L. Hübschle-Schneider, P. Sanders, Communication efficient algorithms for top-

k selection problems, in: 2016&nbsp;IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2016, pp. 659–668, doi: 10.1109/IPDPS.2016.45 . 

[15] S. Olariu, Z. Wen, An efficient parallel algorithm for multiselection, Parallel
Comput. 17 (6) (1991) 689–693, doi: 10.1016/S0167- 8191(05)80059- 6 . 

[16] Hong Shen, Efficient parallel algorithms for selection and multiselection on

mesh-connected computers, in: Proceedings 13th International Parallel Pro-
cessing Symposium and 10th Symposium on Parallel and Distributed Process-

ing. IPPS/SPDP 1999, 1999, pp. 426–430, doi: 10.1109/IPPS.1999.760511 . 
[17] K. Kaligosi, K. Mehlhorn, J.I. Munro, P. Sanders, Towards optimal multiple se-

lection, in: L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi, M. Yung (Eds.),
Automata, Languages and Programming, Lecture Notes in Computer Science,

2005, pp. 103–114, doi: 10.1007/11523468 _ 9 . 

[18] K.E. Batcher, Sorting networks and their applications, in: Proceedings of
the April 30–May 2, 1968, Spring Joint Computer Conference, in: AFIPS ’68

(Spring), 1968, pp. 307–314, doi: 10.1145/146 8075.146 8121 . 
[19] K. Hou, W. Liu, H. Wang, W.-c. Feng, Fast segmented sort on GPUs, in: Proceed-

ings of the International Conference on Supercomputing, in: ICS ’17, ACM, 2017,
pp. 12:1–12:10, doi: 10.1145/3079079.3079105 . Event-place: Chicago, Illinois 

[20] D. Bakunas-Milanowski, V. Rego, J. Sang, C. Yu, A fast parallel selection algo-
rithm on GPUs, in: 2015 International Conference on Computational Science

and Computational Intelligence (CSCI), 2015, pp. 609–614, doi: 10.1109/CSCI.

2015.132 . 
[21] F.H. Mathis, A generalized birthday problem, SIAM Rev. 33 (2) (1991) 265–270,

doi: 10.1137/1033051 . 
22] A. Adinets, Optimized filtering with warp-aggregated atomics. URL https://

devblogs.nvidia.com/cuda- pro- tip- optimized- filtering- warp- aggregated- atomic
23] J. Aliaga, J. Pérez, E.S. Quintana-Orti, Systematic fusion of cuda kernels for iter-

ative sparse linear system solvers, in: Euro-Par 2015: Parallel Processing, 2015,

pp. 675–686, doi: 10.1007/978- 3- 662- 48096- 0 _ 52 . 
[24] N. Sakharnykh, Fast histograms using shared atomics on Maxwell. URL https://

devblogs.nvidia.com/gpu- pro- tip- fast-histograms- using- shared- atomics- 
maxwell/ 

25] D. Merrill, NVIDIA Research, CUB library. URL https://nvlabs.github.io/cub/ 
n GPUs, Parallel Computing, https://doi.org/10.1016/j.parco.2019. 

https://doi.org/10.1145/366622.366647
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1145/321592.321600
https://doi.org/10.1007/978-3-540-30140-0_69
https://doi.org/10.1109/IPDPSW.2019.00088
https://doi.org/10.1214/aoms/1177730881
https://doi.org/10.1109/IPDPS.2019.00033
https://doi.org/10.1137/16M1079506
https://doi.org/10.1145/1007568.1007594
https://doi.org/10.1145/2018323.2018338
https://doi.org/10.1145/2133803.2345676
https://doi.org/10.1109/IPDPS.2016.45
https://doi.org/10.1016/S0167-8191(05)80059-6
https://doi.org/10.1109/IPPS.1999.760511
https://doi.org/10.1007/11523468_9
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/3079079.3079105
https://doi.org/10.1109/CSCI.2015.132
https://doi.org/10.1137/1033051
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://doi.org/10.1007/978-3-662-48096-0_52
https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://nvlabs.github.io/cub/
https://doi.org/10.1016/j.parco.2019.102588

	Parallel selection on GPUs
	1 Introduction
	2 Selection
	2.1 General framework
	2.2 Splitter selection
	2.3 Approximating the kth-smallest elements

	3 Related work
	4 Implementation
	4.1 Optimizing for memory bandwidth
	4.2 SampleSelect
	4.3 Repeating elements
	4.4 Sorting small inputs
	4.5 Recursion
	4.6 Reference implementation: QuickSelect
	4.7 Reference implementation: BucketSelect
	4.8 Shared counters
	4.9 Tuning parameters
	4.10 Kernel fusion

	5 Experiments
	5.1 Input data
	5.2 Hardware environment
	5.3 Parameter tuning
	5.4 Performance comparison for single selection
	5.5 Data distribution and intra-warp communication
	5.6 Runtime breakdown
	5.7 Multiselection
	5.8 Approximate selection

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


