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Call for Short (5 slides or less) Presentations for the
BDEC2 Workshop in Kobe Japan

Last year’s BDEC Report highlighted two momentous trends: The first is the transformation in
scientific methods brought on by the ongoing revolution in machine learning. The second is the explosive
proliferation of data generators spreading out across the “digital continuum,” from cloud and HPC data
centers to major new instruments, sensor networks and cyber-physical systems in the vast “data
periphery.” With these trends in view, the goal of the BDEC2 workshop series, and the collateral
activities of its working groups, is to help develop a plan for a new, shared, advanced cyberinfrastructure
platform (ACP) that can support future-looking applications in science and engineering. The previous
Bloomington meeting began the process of ensuring that the BDEC2 platform design will be firmly
rooted in the requirements that future applications are likely to exhibit.

The upcoming Kobe meeting will focus on the design of the ACP, so the profile of that design will
need to reflect the nature of those application requirements. More specifically, we aim to develop a draft
of a reference architecture for a future ACP, i.e., a “... design pattern that indicates how an abstract set of
mechanisms and relationships realizes a predetermined set of requirements,” and which thereby guides
the realization of actual systems based on that pattern.

An initial draft the architecture document is available (http://bit.ly/bdec2-pf-draft), but it is still very
much a work in process and will continue to be updated as meeting approaches. Of course, comments and
suggestions are welcome. The primary objective of the Kobe meeting will be to catalyze a dialogue
among participants in which that skeleton design becomes more well defined, addressing the common,
basic mechanisms (i.e., services, protocols, software building blocks) that can be composed and used to
meet a diverse set of application requirements.

Accordingly, we invite workshop participants to submit presentations of no more than 5 slides
addressing either the base level components/services/software building blocks or the most basic
application requirements/patterns that future ACP must or should support. Here are a few examples of
such services and/or application patterns include the following:

1. Raw provisioning or containers of server cloud resources, so communities can pick their own
stack,

2. The high volume distribution of files from a single network location to multiple destinations
distributed throughout the network within a limited period of time but without a requirement of
extremely low latency or skew.

3. A high quality Content Delivery Network (CDN), as in 2, but with the ability to process data
anywhere along the branches of the tree.

4. The application of a partially ordered graph consisting of in-situ data transformation and
movement operations to data stored at multiple locations distributed throughout the network.

5. Aggregation/merger of a set of data items from a distributed set of sources distributed throughout
the network to a single network location with the application of compression of a global reduction
function across the set.

6. An object store with “DropBox” like functionality for data publishing.

7. Automated resource management and arbitration.

v



The organizers will review and categorize the submissions and will select presentations for short
talks based upon relevance of submissions, strategic vision and expertise. However, all presentations
submitted will be published online with the other products of the workshop. These short presentations are
due by February. 14 and should be sent to Terry Moore (tmoore@icl.utk.edu ). If you have any
questions, please contact BDEC2 workshop organizers: Jack Dongarra ( dongarra@icl.utk.edu ), Pete
Beckman (beckman@mcs.anl.gov ), Geoffrey Fox ( gcf@indiana.edu ), and Dan Reed
(dan.reed@utah.edu ).
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Workflow environments
in Fog-to-cloud
infrastructures
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PyCOMPSs/COMPSs programming model

* Task-based programming model...
e ...But also a workflow orchestrator system

* Tasks can be serial tasks, multi-threaded (OpenMP tasks), or parallel tasks (MPI, multi-node)

* Provides a programming environment for the convergence of HPC and HDA

Computing infrastructure
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dataClay platform

Distributed storage platform based on objects (including methods)

* Supports Java and Python applications

e Persistent and volatile data
* Local and remote data

* Code is linked to data
* Exploits data locality

Integrated with
PyCOMPSs/COMPSs through
a storage interface

[( Cenlro Nacional de Suparcompulacion

A single data model to manage transparently:

Fully integrated with the OO programming model

USER-LEVEL SYSTEM-LEVEL
dClayTool d S AOH \
Rl <7, et o

Metadata

5=

Logic module

CRUD requests

Execution requests

N backends

Storage and execution



COMPSs in a fog-to-cloud architecture

Decentralized approach
mF2C

Lower layer: low processing, data generation e

Middle layer: fog devices, some processing, workflow orchestration fog-to-fog

(\FOQN

O

Cloud layer

High layer: cloud, high processing, global control, fog-to-cloud

Fog layer

Internet of Things




Agent-based approach s

* Runtime deployed as a microservice in an agent e

* Agents are independent, can act as master or worker in an application execution,
agents interact between them

* Set of resources in the execution of an application is configurable
* Can be local to an agent or remote in other agents

» dataClay provides data transparently regardless of its location

* Including data recovery when fog nodes disappear
 All data stored in dataClay

* Federation of Agent A Agent B
dataClay instances

* COMPSs syntax T . R
unchanged

“ Supercomputing
_
Ceniro Nacional die Suparcompulacion

1




Objectives of research

* Programming interfaces:
* Explore graphical or higher-level interfaces to describe the workflows

 How to better integrate the compute and data flows
* Integrate metadata, enable data traceability

* Better integration with machine learning programming
* Initial experimentation with TensorFlow and PyTorch

* Development of dislib, a PyCOMPSs based machine learning distributed
library

* Support for interactivity, steering

* Add more intelligence to the runtime
* Using machine learning techniques
e Taking into account performance aspects, resilience and energy efficiency
* Modelling and metrics

Barcelona

Supercomputing

Center

Ceniro Nacional de Suparcompulacitn



Considering a Clean Slate

(or “Why Go Commando?”)

Micah Beck
University of Tennessee, Knoxville



Fundamental goal: Achieve portability across
The Continuum

e How do we do it?

" Enable extreme abstractness in specification (Not
native code only)

= Allow as many choices as possible within the
common model (leases vs. indefinite duration)

" Allow very weak assumptions (best effort)
= Work at the lowest level possible (local )



What does a clean slate mean? Virtualization.

* Defining a service architecture that need not (but can) incorporate
existing interfaces without modification. Customizable as needed.

* Not being bound by the conventions and rules of current shared
infrastructure

* Freedom to design for maximum utility to scientific communities
» Examples of virtualization for commonality: POSIX, SRB, Java, PVM/MPI

* “Let’s not recreate what already exists” is ambiguous:
Which differences do we take into account in “already exists”?

It depends on what the meaning of “is the same as” is.
(with apologies to Bill Clinton)



Designing a common interface

* Model important functionality.

* Only include features needed by most of the
community.

* Avoid vendor lock-in.
* Keep it simple, generic and limited!

* Put existing products (e.g., containers, AWS, etc.)
under the hood (i.e., use as implementation tools)

10
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The Hourglass Theorem
diversity of application functionality

e ————————

Applications and services

reduced
functionality

‘ Spanning « weaker
Layer specification

Hardware/technology substrate

(storage/buffer, processing, communication resources) more
‘ ‘ possible
‘ ; ; ; implemen-
le-QYSf{'_U Of IWPLQW-QH{'G'HOHS tations

(2gacy current Future
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Toward an
Advanced Cyberinfrastructure Platform

February, 2019
F. Bodin
BEXDCIZ Scientific Director
http://exdci.eu
AQMO Coordinator
http://aqmo.irisa.fr



BDEC Related )
Background Activities
5 4

« EXDCI-2 Think Tank AQ MO
e Air Quality & MObility CEF-Project

New users / applications
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Sensor Data from Bus

Use of ML to get measurement context
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AQMO Technical Background

 Massive heterogeneity in compute, network and
storage resources

— At the technical level
— At the governance level multi-owner, multi-tenant

* Sensors, weather, topology and simulation data
— Accumulation over time
— Edge and HPC computing in the same workflow

* Multiple kinds of networks (LoRa, 4G, WLAN)
— Some connectivity can be intermittent



What Have We Learn So Far%

Federation of private and public infrastructures

— Need to increase permeability of supercomputing systems
to facilitate data injection

— Currently to many one-to-one agreements
Need a formulation of a vision for a future service-
oriented architecture framework

— For HPC compute and other compute services as well as
storage and other data services

— Basis for expressing applications as complex workflows
Archiving data is under-estimated (une patate chaude)
— BOKE€ / petabytes / years (T AWS)
The main issue is political

— Many infrastructures in silos cannot be federated without a
strong political will (and funding)
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How to Go Forward

Requires a kind of meta governance with APIs for
— Enrolling facilities
— Monitoring & logging & debugging
— Billing capacities

Need convincing security & privacy solution

— Needed for a future service-oriented architecture
framework

Common metadata and data management rules
— What are the common meta-data ecosystem-wide?
— One focus should be “when can we erase a data set?”
High connectivity

— To allow exploiting complementarities between
infrastructures
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Multi-Hybrid Accelerated Computing
GPU + FPGA = ?

Taisuke Boku
Deputy Director, HPC Group Leader

Center for Computational Sciences
University of Tsukuba

:”F;—
BDEC2@Kobe 2019/02/21 Center for Computational Sciences, Univ. of Tsukuba

@ :57 :



IGPU+ FPGA -> Compete or Collaborate ? 1

= GPU for
= Up to 7P, 14P or 28P FLOPS for DP, SP or HP
= Bulk computation with large degree of constant parallelism (big SIMD)
= Non-frequent communication
= Regular computation without exception
= High bandwidth demand to memory

= FPGA for
= 10PFLOPS for SP, but reconfigurable for any bit size
= Low~medium spatial parallelism but high pipelined parallelism (gate level)
= High performance direct network ~ 100Gbps x 4
= Simultaneous computation on any branch, everything is pipelined
= Medium bandwidth on memory -> HBM2 soon

= Multi-physics, partially serial (to be bottleneck) apps require both

=

- BDEC2@Kobe 2019/02/21 Center for Computational Sciences, Univ. of Tsukuba



NLarge scale logic elements and high speed ext. link on FPGA

4 porst of
100Gbps
opt. link
(QSFP28)

Nallatech 520N with Intel Stratix10 (H-Tile)
with 2M LEs, 240Mb memory + 16 Gbyte DDR memory

3 SC18 BoF on FPGA 2018/11/14 @

Center for Computational .



Multi-Hybrid Accelerated Computing in CCS, U. Tsukuba *

invoke GPU/FPGA kernsls
data transfer via PCle

invoked from FPGA)

AiS: Accelerator in Switch

« FPGA can work both for collective or specialized >
computation and communication = '| — . _ communication -1
in unified manner > QSFP28 interconnect

« GPU/CPU can request
application-specific
communication to FPGA

=) SC18 BoF on FPGA 2018/11/14 Center for Computational



OpenCL-ready modules to support apps. =

OpenCL-ready GPU-FPGA DMA on PCle

CoE: Channel over Ethernet
OpenCL-ready FPGA direct link driver

sender code on FPGA1

__kernel void sender(__global float* restrict x, int n) {
for (int 1 =@; 1 < n; i++) {

YA I S
lur\ite_channel_intel(netwark_cut, V)i =

}
}

receiver code on FPGA2

__kernel void receiver(__global float* restrict x, int n) {

AITr= v

for PR - LI P I P e
|Flaa1: V= read_channel_intel(networlc_in);::
}

Throughput Benchmark Result

—8— OpenCL Direct
351 —¥— Via InfiniBand

Bandwidth [Gbps]
a
=]
I

=T, . .
10’ 10 10° 10" 10° 10
Data Size [B]

5 BDEC2@Kobe

17 1Eak
GA
FPGA—G 20 0.60
PU

2019/02/21
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Bandwidth [GB/s]
w £

n

__kernel void fpga_dma(__global float *restrict fpga_mem,
const ulong gpu_memadr,
const uint id_and_len)

1

1

1

1

1

1

1

| cldesc_t desc;

| // DMA transfer GPU -> FPGA

! desc.src = gpu_memadr;

| desc.dst = (ulong)(&fpga_mem[@]);

1 desc.id_and_len = id_and_len;

| write_channel_intel(fpga_dma, desc);

| ulong status = read_channel_intel(dma_stat);
1
1

 ==via CPU (FPGA + GPU) =S=yia CPU (FPGA — GPL)
 ===FPGA-GPU DMA (FPGA « GPU) =S=FPGA-GPU DMA (FPGA —+ GPU)

16 256 4096 65536 1048576

Size [Bytes]



I ARGOT code: radiation transfer simulation =

Radiation from

Radiation from spot SHole 227 Snot4 spatially distributed
light source (ARGOT light source (ART
method) _' method)

*% >

: .' -~ -
AiS: Accelerator in Switch & ( ‘)

GPU - i o>

<

Center for Computational Sciences, Univ. of Tsukuba ,




Mesh calculation speed in ART method (early universe simulation)  *

1400
1200

1000 /"’ -

800 y -8-CPU(140)
600 £ -e-CPU(28C)
400 / -*—-PIOO(Xll
200 K | KC‘Q‘ e

0

Better
Performance [M mesh/s]
N\

(16,16,16) (32,32,32) (64,64,64) (128,128,128)
mesh size




Block diagram of Albireo and Deneb node

25

SINGLE
NODE
(with FPGA)

Network switch
(100Gbps x2)

direct network
(100Gbps x4)

Network switch
(100Gbps x2)

PCle network (switch)

direct network
(100Gbps x4)

SINGLE
NODE
(w/o FPGA)

Network switch
(100Gbps x2)

PClIe network (switch)

Network switch
(100Gbps x2)

PClIe network (switch)

Albireo (w/ FPGA)

Deneb (w/o FPGA)




Two types of interconnection network =

Inter-FPGA direct network InfiniBand HDR100/200 network for parallel processing
(only for Albireo nodess) communication and shared file system access from all nodes

IB HDR100/200 Network (100Gbps x4/node)

v

Il qm il
comp.

comp hode

node

J
\—Y—J y 3
! Inter-FPGA torus network

Deneb nodes Albireo nodes

64 of FPGAs on Albireo nodes (2 For all computation nodes (Albireo and Deneb) are connected by
FPGAS/node) are connected by 8x8 full-bisection Fat Tree network with 4 channels of InfiniBand
2D torus network without switch HDR100 (combined to HDR200 switch) for parallel processing

communication such as MPI, and also used to access to Lustre
shared file system.



IAppIications and Collaborations 7

= Multi-physics simulation
= Astrophysics
= Climate (high density LES in City level)
= Particle physics (low latency collective comm.)

s Al
= GPU (of course) + FPGA

= Collaboration
= OpenACC for GPU and FPGA: with ORNL (J. Vetter)
= FPGA for HPC: with ANL (F. Cappello)
= FPGA direct-link and router: R-CCS (K. Sano)
= GPU/FPGA cloud simulation: AIST/U-Tokyo (T. Kudoh)

- <

BDEC2@Kobe 2019/02/21 Center for Computational Sciences, Univ. of Tsukuba




Lossy compression for a new, shared, advanced A N

: Argonne
cyberinfrastructure platform (ACP) i
Pete s diagram Al Everywhere: Linking Edge Computing to HPC
of ACP:
(1ame 3pezy) Ins}mrréeims Hy?;r:gﬂﬁcgm Powerful Edge computing and deep learning
o . Parallel Edge with feedback for continuous
g !‘.‘_ 2 ‘ Computing improvement
3 = & 1 .£ ) HPC
«» Power ~ iy An d - :
§ _ aaion (eco-cangr?i;%?ing] ﬁ Getn Reduced, mﬁressed data I e ..‘::"'-'::'-.’3“'. N
o . "'w I"‘ ® ‘ ; -"" 5 New inference (models & code)
i 2@ e
T ks e e

+ many ECP Applications including EXAFEL: ~x10 compression with minimal distortion

We will need to deal with lossy scientific data:
Good news: we start to have a good understanding of how to perform lossy compression

The other good news for CS researchers: a lot of research is needed.

Franck Cappello, Argonne National Laboratory



Compression is at the core o

Between edge and Cloud: T
* Push and Pull modes  ®WebiData (20.8% , 14.4% )

“U =P VoD (22.3% . 14.8% )

e ® |nternet Video (47.4% , 67.1%
Exabytes ;

PULL mOde (mOStly) per Month

CISCO statistics: . . . I I
* Annual global IP traffic: 2.3 ZB (10721) in 2020 .

« |P video traffic will be 82 percent of all IP traffic e e B ;e a6

>>80% of the IP traffic will be lossy compressed! ] ]
Lossy compression for music,

V|deo photos, images
is very well understood

PUSH mode (mostly)

Facebook data: * We know how to compress (image,
e Stores more than 240 billion photos (all of than is compressed) sound properties)
* Users uploading 350 million new photos every single day e We know very well Human

* Data center deploys 7 petabytes of storage every month. perception > error tolerance

* Error tolerance valid for all of us



Not as simple in scientific domains :

Each dataset, simulation, instruments, sensor network is different

We need different lossy compression algorithms
Not trivial at all to understand the effect of distortion from lossy compression

We need compression error assessment methods, tools and metrics to understand the nature of

compression error (Trust)
All applications (that we know) ask to respect user set point wise error bounds

Raw dataset Lossy Error properties
properties Compression specification

Data produced ) Data accuracy
oysensors/ Y AT O requred o
applications Compact analysis/computation

data model
Cosmology simulation <72 0 CR ~10 (~3b: I Results validation
Trillions of Particles - (~3bits/value) at 3kpc absolute error bound
N ) 103 error bound —
Cinema:EXplorer o o st vosonroos B o | jrl—|_\_|_L
T AT 1 1AT T/ ? .
1\ - 2 0] 1
: g ] b
3103—; 1
. L
'"§" == original T_
Li e SZ__abs:0.003 LL
10

II‘“;‘A}I T |1l|l;-((§12 T Ill“i‘(‘.l} T Illli;-ldld T T

Figures from HACC team Fioures from Cbhench (ECP EXASKY) FoF Halo Mass




Example of compression workflow  |Riiligkel
ECP EXAFEL: Contextof LOLS| e =

and injector in 1%

Liquid Jet

-Instrument produces 2D images:
-1 LCLS-II area detector: 250GB/s

., KB Mirrors
-With today technology: ~x1000s disks. L P,
-Data is unsigned integers (RAW, T

Calibrated), in HDF5 format
-Goal: CR of 10 with error bound

Diffraction before destruction
Number of pulses/sec: 120
Millions of diffraction patterns from crystals

T.O. Raubenheimer for the LCLS-II Collaboration, SLAC,
Menlo Park, CA 94025, USA
6th International Particle Accelerator Conference, VA, USA,

rtic This “ring” is the water drop
2015, JACoW Publishing

- True Co-Design (algorithm, hardware) Quality/error assessment
| JPEG not good: does not
o (per hutch) Dat?hgz%{?jfiﬂmm (shared.. 1 for NEH) (shared by all respect point wise error bound

100 PB

"§
5
0

No compression

Compression with SZ 2.0:

SE is a Selenium atom. A critical step in Se-SAD
-Ratio: 4 crystallography is to locate these selenium

3
A
L e
Ll B

5

i .
— . O !
- - -Speed 120 MB/s/core =
| % - &
" . R — g Needed:
ol Hodes . F_ 6 5 o
— . o] _ G -Ratio: 10 :
; | = -Speed 500 MB/s/core %
1 MHz acquisition’ f;c;gzig:‘m howe? | 25GBis g s
250 GB/s  Data written in HDF5 format



Why does it matter for advanced cyberinfrastructure platform?

Use cases from 6 ECP applications and more
(HACC, LCLS2, GAMESS, NWCHEM, EXAALT, Urban):

-Reduction of storage footprint

-Reduction of I/0, communication time/energy

-Faster execution state preservation/copy

-Reduction of memory footprint (run larger problems)
-Computation acceleration though re-computation avoiding

-Reducing streaming intensity (instruments) [T — T e ——r

Research questions: i @ ; s ot
o . @ o HPC
* Lossy compression when Al in the loop? ‘G e, ;‘ﬁx
* Al for lossy compression? Y Wk T R
e Lossy compression algorithms for different apps = == == e e
* Faster lossy compression/decompression algorithms
* Lossy compression assessment tools
e Multilevel/progressive decompression: e.g. for feature search
* More...



Scientific Data Reduction Benchmarks (SDRBench)

Scope and objectives

e A community repository providing reference scientific datasets, compressors
(lossless and lossy), and error analysis tools

e Significance: Improve the methodology in the domain by providing reference
information for scientific data

compressor users and developers

Opened on lly 122018} (30 0 g|le: SDRBench

reference source of info
main lossy and lossless compressors

Project accomplishment

* Collection of representative datasets from ECP and other applications via direct
communication with application developers and users

* Storage of the datasets on the Petrel server at Argonne with Terabytes of
storage capacity

* Fast access to the datasets using Globus and GridFTP

* Access open to public

(0 & https://sdrbench.github.io

comment ¥ 12015 Prairie Ave, .. # [Ql Société Générale - ... (@ portail SSL

Scientific Data Reduction Benchmarks

This site has been established as part of the ECP CODAR project.

This site provides reference scientific datasets, data reduction techniques, error
trics, error controls and error 1t tools for users and developers of
scientific data reduction techniques.

Impartant: when publishing results from one or more datasets presented in this
webpage, make sure fo:

» If the purpose is comp 1P s listed in this
page, make sure to contact the P thors to get the correct
compressor configuration according to each dataset and each

comparison metrics

= Reference: Scientific Data Reduction Benchmarks (authors are the
contributors/maintainers), hitps://sdrbench.github.io/ and

= Acknowledge the source of the dataset you used and the DOE
NNSA ECP project and the ECP CODAR project.

= Check the condifion of publications (some dataset sources request

prior check)
Data sets:
Name Type Format Size Link
(data)
CESM-ATM Climate 79 fields, 2D, 1.47 Dataset
Source: simulation 1800 x 3600, GB Metadata
Mark Taylor (SNL) single precision,
binary
EXAALT Molecular 6 fields: 60 MB  Dataset
Source: dynamics X Y2 VX VY VE, Metadata
EAASLY (nan simulation Each field stored
This dataset has been
approved for uniimited _ separalely,
reloase by Los Alamos Single precision,
National Laboralory and has Binary, Little-
been assigned LA-
UR-18-25670. endian
EXAFEL Images from the 2D, 51 MB Dataset
Source: LCLS Single precision Metadata
LCLS instrument ~ HDFS5 and binary
HACC Cosmology: 1snapshot:6 19GB  Dataset
msgg?:-wn particle fields Metadata
simulation KYZ VR NYVZ)
otiizien Eachfieldstored g ~ Dataset
separately, Metadata
Single precision,
Binary, Little-
endian
NYX Cosmology: 6 fields, 3D, 27GB Dataset
 Saurce: Adaptive mesh 512 x 512 x 512 Metadata
Lukic ot al. methods: hydrody . Single precision,
medium, quasars: absorption + N-body Binary, Little-
fines, large-scaie stucture of  cosmological endian

wniverse’, jounal of Monthiy N .
Notices of Royal Astronomicst  Simulation
j - PR



Industrial Materials

Design — An Exemplar for
BDEC

Dr. Alok Choudhary
Henry and Isabel Dever Professor
EECS and Kellogg School of Management
Northwestern University

Scanning Electron Microscope

Science relationships of cause and effect

Engineering relationships of goals and means

A. Agrawal and A. Choudhary, “Perspective: Materials informatics
and big data: Realization of the “fourth paradigm” of science in
materials science, APL Materials, 4, 053208 (2016),



mailto:choudhar@eecs.northwestern.edu
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Problem definition

e I
L 1 S / a
Samples —> i Molding Fi. riast Property2
cooling deform treatment
. A o D

Models 1- 6 - ~N - e .

Imagel | Image2
(SEM) Propertyl (SEM)

» Prediction of properties of samples under certain processing conditions
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» Two image modes: COMPO, SEI
» Two targets: powder, as bulk or

forge Image data

» eight positions: C00, C10, C20,
C23, LOO, L10, L20, L23

» maghnifications: x200, x1000 and

¥ - x30000

T Prediction
16
Prediction

Some Leve

folder file name machine |mode target position (fig.) magnification
@ @ "
T160223-068 SEM SE owder N1 CIOSS sectfonf part of length x2000
O re I C I O n T160223-069 COMPO cross section/ part of length x2000 Sodal
T160223-070 SEM SE powder N2 CIOSS moﬂ part of length x2000
T160223 T160223-071 COMPO cross section/ part of length %2000
T160223-072 SEM SE powiler 13 Cross scclfonf part of length %2000
® T160223-073 COMPO cross section/ part of length %2000
i osition
T160223-074 SEM SE icivides N CIOSS sectfonf part of length x2000 p
T160223-075 COMPO cross section/ part of length %2000
. B150831-08-C-00-x30k-01 SEM COMPO As i '
16 B150831-08-C-00-x30k-02 SE cross section/ C-00 x30000
= = . - - -l
Prediction B150831-08-C-00-x30k-03 SEM COMPO Axforge .
n l I m e r I C a B150831-08-C-00-x30k-04 SE cross section/ C-00 x30000
1
B150831-08-C-00-x200-01 SEM COMPO oy v . PPN v i
B150831-08-C-00-x200-02 SE cross section/ C-00 %200 :
1
B150831-08-C-00-x1000-01 SEM COMPO s B ' :
B150831-08-C-00-x1000-02 SE cross section/ C-00 x1000 i
B150831-08-C-10-x30k-01 SEM COMPO o fonm '
B150831-08-C-10-x30k-02 SE cross section/ C-10 x30000
B150831-08-C-10-x30k-03 COMPO
SEM As forge
B150831-08-C-10-x30k-04 SE " cross section/ C-10 x30000
B150831-08-C-10-x200-01 SEM COMPO o .
B150831-08-C-10-x200-02 SE cross section/ C-10 %200
B150831-08-C-10-x1000-01 SEM COMPO - '
B150831-08-C-10-x1000-02 SE cross section/ C-10 =x1000
B150831 |B150831-08-C-20-x30k-01 COMPO
SEM As forge . 1
B150831-08-C-20-x30k-02 SE cross section/ C-20 x30000
1
B150831-08-C-20-x30k-03 SEM COMPO At . proparty :
B150831-08-C-20-x30k-04 SE cross section/ C-20 x30000 measurement eria .
1
B150831-08-C-20-x200-01 SEM COMPO RAsifinge . :
B150831-08-C-20-x200-02 SE cross section/ C-20 %200
B150831-08-C-20-x1000-01 SEM COMPO P .
g B150831-08-C-20-x1000-02 SE cross section/ C-20 x1000
T T T T T T T B150831-08--00-x200-01 SEM COMPO P
115 120 125 130 135 140 145 B150831-08-.-00-x200-02 SE e cross section/ L-00 x200
Pradiction B150831-084-10-x200-01 COMPO
SEM As forge ;
B150831-08-L-10-x200-02 SE cross section/ L-10 %200
B150831-08-.-20-x200-01 SEM COMPO i Fg .
B150831-084-20-x200-02 SE cross section/ L-20 %200
B150831-08-1-23-x200-01 SEM COMPO - .
B150831-08-1-23-x200-02 SE cross section/ L-23 %200
or later same with abave
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Deep (transter) learning 4 h

g - ' Pre-trained VGG16 |
Preprocessing (truncated

r \ network)

SR

Input Image

|
f \

(None, 224, 224, 3) Convolution2D
) = 1
* | Convolution2D i an | -- : prm—
':.;a . ’ . Convolution2D : Extract semantic Train a 9rad|ent
@ | Convolution2D : e ITRgE veuions PCA - boosting
> | J kConvqutlonZD | from VGG 16 regressor
0 [ — , \
\“ MaxPooling2D ) MaxPooIingZD/ l
\ / \ J
(None, 112, 112, 64)'—‘ l——»(None, 14,14, 512) K Y,
'y N ( \ \cross
% | Convolution2D Convolution2D validation
(8] _ / \ J
0 ¢ 3 / \
': Convolution2D Convolution2D
\ J
: - o
0 ( ‘ '
\U MaxPooling2D ) Convolution2D
(None, 56, 56, 128) ’—l ! MaxPooline2D | | __ __ \ » 25 principal components (PC) are used after PCA
p \ . it j Pre-trained  The summation of explained variance of the selected
Preprocessing VGG16 (truncated PCs is about 90%

Convolution2D ) (None, 25,088) | network)

.

Extract semantic Train a gradient

: Concatenate .
image vectors - PCA - together - boosting

from VGG16 regressor

cross validation

Convolution2D

\ J

Flatten

Convolution2D Dense

\-

Dense

MaxPooling2D

~

/ Conv Block #3 \

(None, 28, 28, 256

—

Dense

Fully-Connected Classifier

:
il

i

B |BEEIEIEEIE LR IS B E\E R EE

Gopalakrishnan, Kasthurirangan, et al. "Deep Convolutional Neural Networks

with transfer learning for computer vision-based data-driven pavement distress
detection.” Construction and Building Materials 157 (2017): 322-330.

Combined Model




Observations and Impact

> Workflow

» Complex

» Many teams

» Each needs expertise, resources and access

» Involves Experiments, simulations, Instruments and ML

»Cost Implications (savings)

» E.g., 2 out of 8 image orientations have predictive value => significant reduction in
(1) SEMs (2) people time, (3) sample materials => More explorations faster

» Fewer and relevant experiments

» Avoid higher-end processing steps for not-so-promising candidates

*  Only most important locations/magnifications for SEM

» Millions of $$$ or Billions of Yen savings

»Discovery and Design acceleration
* |dentify and explore the most promising materials
» Discover the high performing materials faster



Converged Software
Platform for Data Analytics
and Extreme-Scale
Computing

Carlos Costa

Data-Centric Solutions (DCS)
IBM T.J. Watson Research Center, NY USA

chcost@us.ibm.com /

T IBM Research
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Emerging Intelligent Discovery Workflows IBM Research

Machine Learning

A

! Simulation and real-
i world data for

platform decisions i training
i
1

Extraction f de Ctiqn _and
of features | Large-scale simulation classification,
for training | . inference for

Surrogate models,
execution and

Traditional HPC Big Data Analytics

Simulation-centric e missing data Data-centric
Steering in high- !
dimensional

parameter space; |

in-situ processing |

cs-based
regularization

T
e g
=
]

=
5
- P

= Emerging workflows impose a paradigm shift from simulation-centric
to data-centric discovery

= In-situ analytics and machine leaming for simulation steering and
generation of surrogate models becoming key pieces to enable
next-gen workflows

= e.9., 3 out 6 2018 Gordon Bell finalists had some sort of e
simulation+ML/DL+analytics hybrid workflow Wiah-qualhy segmentation rsuits peodced by desp laring oo climats

datasets.

= Challenge in deploying and integrating disjoint software platforms
and enabling efficient data flow

© 2019 IBM Corporation Page 2


https://bit.ly/2X42Vur

Challenges in a Converged Software Platform

Big Data and Machine

Bifurcated software
development
paradigms,

Simulation Code

performance and
scaling expectations

Higher expectation
for interactive
exploration support

Distinct scheduling
(stateless vs state full),
deployment and

Charm++, ...
DSL
MPI/OpenMP System Monitoring

N S Eon. Numerical Libraries

orchestration
requirements and
strategies

Disjoint data
management
approaches and lack of
a unified data flow
model

Distinct I/O and
computation patterns
with different storage
and computing models

Containers (Singularity,
Shifter, ...)

Batch Scheduler

(SLURM, LSF, Flux, ...)

Learning

Spark

IBIVLResearch

Libraries

(Spark ML, GraphX, ...)

DFS + Local Node

Storage In-situ processing

GPU, accelerators, ...

Support for transparent
cloud bursting and
edge computing

© 2019 IBM Corporation

Page 3

on-prem (x86, POWER, ARM, RISC-V, ...

public/private cloud

Object Storage Local Node Storage
.

System Monitoring

Cloud Services

Middleware

System Software

and management

Storage and
computing

Hardware
platform



Our approach for a Converged Software Platform

IBM Research
42

Workflows

Genomics

Financial

Oil & Gas

Analytics

ML/DL Training and Inference

Big Data Analytics

Modeling and Simulation

IBM Data Broker

High Performance S/W Stack

API Broker '

IBM Cloud Private -

\/
kube-batchd
K8s batch schedule

Data Broker I/F

Bare-metal node Object store Docker Registry

Infrastructure management : laaS

POWER, x86 clusters, Z + GPU NVMe, 100GbE/IB, Spectrum Scale

Page 4

© 2019 IBM Corporation



Unified Data flow with Data Broker IBM Research

#MOOSE MFSLLYWS; public cloud,
il 5 — Modeling and devices
cdeling an - . "
Simulation slrﬂuja-tloﬂ QD
OpenVFOAM §

H_ on-prem

MLIDL & [iion

Broker

§

x 5 : _Ii'_{_"'___
Visualization Yy +ab t.e. au

Application

Visualization {ns
”’ParaView VMJ:),.,.,,,M
Client APl (C/Python)
Files 1/0 Data Broker
= Longer latency = Shared storage framework for data and
= Less granularity message exchange
Sockets =  Simple API to access persistent or volatile
» Longer latency storage through distributed tuple-based S Erookoep ISR L
» Multiple sockets per application global namespaces | '
= Discovery for new apps is complicated = Data Broker can be accelerated via H/W : m -IBM'
support L Backend Runtime

= Discovery of apps via Data Broker
Q https://github.com/IBM/data-broker

© 2019 IBM Corporation Page 5



Hybrld Workflows at Extreme Scale

/

Knowledge Discovery - LLNL’s SparkPlug

) ) Data mining and
St knowledge discovery:
application treatment plans
topic modeling

MLlib J§ GraphX
Streamingll (machine | (graph)
learning)

Spoﬂ‘(?

. = Spark-based toolbox for big data machine learning at scale

= Distributions, estimators, combinators, graphical model
templates, samplers

. = Allows complex models to utilize application specific
| understanding

. = Demonstrated extreme-scale topic modeling (Latent Dirichlet
Allocation) on LLNL'’s Sierra

= Significantly better scaling and performance with optimized

software stack
.\\‘_
© 2019 IBM Corporation Page 6

LLNL/IBM collaboration

Precision Medicine - LLNL’s Splash Workflow

W Manager | \ / —
T Plux |

= Multiscale framework to simulate the bending of Lipid Cell
membrane

* |mpacts how molecules enter the cell and key for designing
targeted drugs for RAS-initiated cancer

» The WorkFlow (WF) Manager connects two scales: Dynamic
Density Functional Theory (DDFT) and coarse grain (CG)

= DDFT simulation are decomposed into patches, and the WF
Manager feeds them to the machine learning (ML) infrastructure,
which maintains a priority queue of candidate patches

= WF Manager picks top candidates and uses the Flux resource
manager to start new CG simulations

= Data transfer and messaging is handled through the DataBroker
(DBR), a fast, system-wide key-value store

= Runs natively on LLNL's Sierra

= Containerization effort to run on IBM ICp

IBM Research
44




USCVlterb1
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Improving Workflow Management
Systems

Ewa Deelman, Ph.D.
University of Southern California,
Information Sciences Institute
Big Data and Exascale Computing 2
February 2019, Kobe

http://deelman.isi.edu



Visit ORNL News Events Careers Find People Retirees & Staff Index n
¥ OAK RIDGE

-National Laboratory ABOUT US - USER FACILITIES = SCIENCE AND DISCOVERY '4&)UR PEOPLE -

Scientist (@ Instrument SRt Sk el

Advanced Materials

Neutrons, simulation analysis of tRNA-nanodiamond combeo could transform N
Neutron Science

drug delivery design principles

* Need for real time feedback to manage experiment

e A
§ Equlibrate
ol Stage
-4 ;
: Reduced Analysis &
Ratw ?(?:?2 | Acquisition | Tra[r)}stlafted Reduction || Data: e.g. || Simulation || Analysis: PDF,
up to a3 Powder === MD simulation,
events per Gigabytes : .
Diffraction etc.
second to Terabytes Pattern
= Coherent Incoherent
Feedback guiding changes to the experiment setup
mANTiD
. J

A Pegasus workflow was developed that showed that nanodiamonds can enhance the

dynamics of tRNA
It compared SNS neutron scattering data with MD simulations by calculating the

epsilon that best matches experimental data
Ran on a Cray XE6 at NERSC using 400,000 CPU hours, and generated 3TB of data.

http://deelman.isi.edu




USC Viterbi

47 School of F Engineerin
i

3
Infermation Sciences Institute

Ultimate WMS Resource Provisioning

e “%<"  provision

) needed resources

J7.
- ” = \_’._,
query for task 7 / _
resoLfCe needs/ ,/ Predict uyorkﬂow
. N7 / behavior on
Furthering ; / .= =~ A /——s-——resources
& g

Workflow

(@] M

Automation

Performance Modeling N

\
1\ Performance Modeling
% & Simulation

.-

Workflow Execution Workflow Monitoring
& Infrastructure Monitoring PANORANA

http://deelman.isi.edu
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Infermation Sciences Institute

Network Provisioning

* We predicted completion times of current and future workflow tasks and start times
for data staging under different scenarios to provision appropriate compute &
network resources

* We developed mechanisms to arbitrate and prioritize data flows from competing
workflows b¥ leveraging advanced network provisioning technologies like a virtual
Software Defined Exchange (SDX)

ExoGENI Slice with Virtual SDX + HTCondor Pools + Data Site

—— Software Defined Exchanges (SDX)
L ey Meeting point of networks to exchange traffic,
securely and with QoS, using SDN protocols

“\ d'{.
2ol e . i
~r)  Site 1 ~~_  Virtualized x
p— # ~ £
) i . H
) - % 4 n
‘ -~ SDX i 2
e o
5 g
. 4

Tl mUL® T Virtual SDX
=l Virtual overlay acting as SDX without persistent

physical location

/' Controller__»---="

e LIRS
Rt TR .

ExoGENI virtual SDX can modify compute, network,
storage to support changing demands of SDX

http://deelman.isi.edu



‘ Pegasus WMS \

workflow database
REST API

49

>

workflow
logs

Data
Collection:
Architecture
Overview

1

network logs

o data transfer
service

»|  pegasus-monitord

Workflow-level
analysis for anomalies
& failures

workflow events

workflow performance data
network and transfer data

performance data
CPU, /0, etc.
! L

workflow |
events

Transfer Sub-System Infrastructure and

Monitoring Tools

transfer
request

transfer |
anster logs Computational Resource

data storage and
visualization

time series
database



USC Viterbi

5 O School of Engineering
Infrmation Sciences Instituse

Visualization: Time Series Data of Workflow Performance

Cumulative Time Spent in Average CPU Utilization

Job Characteristicc o :
User and System Execution .

Time (s)

84

Job Makespan (s)

@ stime @ utime

Bytes Read and Written Number of Compute Threads

LAt

Steps (s)

Megabytes
# Threads

()
@ bytes read @ bytes written

http://deelman.isi.edu




Workflow Performance Analysis: Anomaly Detection

J
E | o
: Workflow-level metrics Unsupervised Learning Model Online Classification
0 00 Unlabeled data —_— ) —ii of workflows into high failure
Feature vector per workflow ChIEN Qmahg oo, ) classes based on learned clusters

i Supervised Learning Model h

Task Naive Bayes, k-NN,
Job- or task-level metrics performance —® Logistic Regression, ANN Online Classification
Labeled data —_— data Classifier Model —» | of tasks using trained classifier to
detect anomalies and bottlenecks

Feature vector per job/task

Task metadata, » Decision tree based
provenance Classifier Model
\data (categorical)

OOO

* Multivariate techniques, particularly Machine Learning (ML) algorithms provide the
appropriate theoretical foundation.
* Apply ML algorithms in a top-down approach.

. (1) Use workflow-level performance analysis to predict overall behavior of running workflow
by clustering statistically similar workflows. . (2 ) Job/task-level analysis is triggered to detect

faults and bottlenecks using task-level metrics.

http://deelman.isi.edu
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EDGE COMPUTING APPLICATIONS [aleellg )

NICOLA FERRIER

Senior Computer Scientist
Mathematics and Computer Science Division

Argonne National Laboratory, USA

Exploring the needs of three “edge computing” applications for a new, shared,
advanced cyberinfrastructure platform &<

- Manufacturing
- Scientific image data pipelines
- Urban sensing platforms

BDEC2 Workshop, Kobe Japan, February 2019



Edge Computing for Manufacturing:

Example manufacturing process: Flame Spray Pyrolysis

53

Frequency
Tinabile Doubling Optics
Dye Laser
Light Sheet
. Opncs
Pumping
Laser
Band-pass v

Filter

UV Camera Intensified | 1
Lens Camera |

+ Use data collected to date to develop ML/DL models
» Relate process parameters to output measures
» Particle size analyzer, flame color, flame volume,
optical emission spectrometer, Laser PLIF
* Optimize process

@eNERSY EEEEEES \With J Libera & S. Chaudhuri, Materials Engineering Research Facility, ANf‘rgﬁﬁﬂS& 2




~20 parameters:

« Composition

+ Gas flow rates

. Temperature Process control/feedback

« Nozzle geometry active learning

/

HPC or Cloud

Develop machine learning
surrogate model(s)

(I] 012 Ui4 Ujﬁ 0:8 ]
Thermo-chemical
Models

Collect data Bayesian Neural

Characterize product, e.g.
particle size distributions

@ ENERGY NS Argonne &

NATIONAL LABORATORY




Processmg pipeline for EM brain data .

Data Acquisition Stack Montage Data Alignment Data Storage

Tile|Data

Trammg Set d
S R— N Fijigznto
mMSEM Merged Slice ——

____________—__ M a i n m
Storage ~—_[FloodFill
o Network

Kubernetes :
s Networ|
Cluster Training

e

T

Rendered Segmentation = Segmented Data Hisinan Tiferattion Nisnual Annotation

”

Data Assessment Visualization

s

1
-

Data Alignment Network Training and Inference

@ENERSY LS \With N. Kasthuri and P. Littlewood, Uchicago & ANL Argonne &



Sensors WAGGLE PLATFORM VISION

Software |
Defined \‘b Powerful Edge computing and deep
Radios Parallel Edge learning with feedback for
‘ ' Cameras Computing continuous improvement
\ i ‘ &P | | Semantc HPC/Cloud
Hyperspectral . Output

Imaging ‘

Reduced, Compressed data

—waas  Microfluidic

Seneps New inference (program code)
Actuators —_—
4 Servos 5
Artificial Intelligence De‘?l_p Learning
Dynamlc Deep Learning Inference raining
adaptation

@ENERGY LRI With P. Beckman, R. Sankaran & C. Catlett, ANL Argonne @ s

aaaaaaaaaaaaaaaaa



Edge Computing

Applications
« Manufacturing
 Scientific [image] pipelines
« Smart cities
« Transportation
e Health
« Social implication
« Smart homes/buildings

neve Nati Labaor:
(@) ENERGY (U5t

57

Some Platform Requirements
Automated resource management

Flexibility
Joint optimization of
communication and computation

Often low latency needed
Process and clock synchronization
Edge computing updates:

Data required for training ML
New models/inference for novel
data, sensors or device
placement

llllll
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National Institute of . 4
Advanced Industrial Science 4
and Technology Institute of Mathematics for |ndus|’ry . Al Bridging Cloud Infrastructure

AIST

Kyushu University

Current and future plans with ABCI
- Al Bridging Cloud Infrastructure -

Katsuki Fujisawa

Director, AlST-Tokyo Tech Real World Big-Data Computation
Open Innovation Laboratory (RWBC-OIL)

Professor, Institute of Mathematics for Industry, Kyushu University

February 20-21, 2019
BDEC2 Kobe

OLOGY (AIST)

NATIONAL INSTITUTE OF A



ABCI: The World’s First Large-Scale
Open Al Infrastructure

CRRKY SDAIST

®. A BC| Al Bridging Cloud Infrastructure

m World Top-Level compute and data process
capability

= Open, Public, and Dedicated infrastructure
for Al & Big Data Algorithms, Software, and
Applications

= Open Innovation Platform to accelerate joint
academic-industry R&D for Al

Peak Performance:
550 PFlops (FP16)
37 PFlops (FP64)
Effective Performance:
19.88 PFlops (#7 in TOP500)
14.423 GFlops/W (#4 in GREEN500)
Power Usage: < 2.3 MW
Average PUE: < 1.1 (Estimated)



AIST

= ABCI High-Performance Computlng System

(0.550 EFlops(FP16), 37.2 PFlops(FP64)
' 19.88 PFlops(Peak), Ranked #5 Top500 June 2018 | System

Ranked #7 Top500 Nov. 2018 / Rack ~ (32Racks)
(17 Chassis) NERRN,

\,

Node Chassis

| TR
(2 Compute Nodes) !

Compute Node
Chips (4GPUs, 2CPUs) - -
cPUcy =1
y B
: ' i ) R PRIMERGY | Mt =l | 1088 Compute Nodes
B Yeon PRIMERGY CX400 M4 4352 GPUs

Tesla V100 Skylake-SP  cx2570 M4 B
GPU: CPU:

7.8 TFlops(FP64) 1.53 TFlops(FP64) 34.2 TFlops(FP64) 68.5 PFlops(FP64)  1.16 PFlops(FP64)  37.2 PFlops(FP64)
125 TFlops(FP16) 3.07 TFlops(FP32) 506 TFlops(FP16) 1.01 PFlops(FP16)  17.2 PFlops(FP16)  0.55 EFlops(FP16)

~3.72 TB/s MEM BW ~131TB/s MEM BW ~4.19 PB/s MEM BW
NVIDIA Tesla V100 384 GiB MEM
(16GB SMX2) 500 ébps NW BW Full Bisection BW within Rack  1/3 of Oversubscription BW
70kW Max 2.3MW

1.6TB NVMe SSD



Seamless and Simultaneous Parallel Development )
based on ABCI: Al Bridging Cloud Infrastructure

* The world’s first large-scale Open Al Infrastructure
— Open, Public, and Dedicated infrastructure for Al & Big Data Algorithms, Software, and Applications

— Open Innovation Platform to accelerate joint academic-industry R&D for Al, international
collaborations are also welcome

Mﬁ&m@. f@_b %/Oj Own Company

and Technology i\iRC TokyoTech vt ct Mathemacs for ey & Cloud System

d%&ﬁ‘?! )

-_ - i
Universities -t
Research Institutes i

Real Big & Complexed Data
Panasonic SONY.

g Algorithm & Software

f "
==

Feedback <=
& Review Autonomous
‘ -u"::;" cars

omies | Open Innovation Platform for Al R&D




CPS(cyber Physical system) and Industrial Applications 62

- > Real World | > Cyber World > Real World m

Data acquisition Optimizing on Q ABCI Feedback / Realization

Al Bridging Claud Infrasiructure

Information Clustering Evaluate website’s performance
Access log -

? ' N ("!1
Y AHOO!

JAPAN

Colombia opens World Cup with damaging loss to

People / Objects Visualize People Flow
Control People Flow

Graph Analysis
Multiple Object
Tracking

Camera
Sensor

TOYOTA

SUMITOMO
ELECTRIC




4D Geospatial In ormatlon System + CPS Mobility Optimization Engine

Real objects an events - Dynamic 3D map 7
PhyS|caI i s L Cyber Mmmm”‘:,n‘?:’sﬁm@’ N<7 9 4
. e : S I e o g
el —— 4D (Position + time)
s e Geospatial Information
o R Positioning + 333% [/
D at a— " Opﬁmf'zeods ;;‘?oﬁgbased on - KnOWIGdge +
g, imulati d big dat lysis — .
Smistom and 2 22 2 i e Wearable Devices VR + AR

(Imagery + Point) AD-GIS | Position(3D) + time

CPS Mobility Optimization Engine + » New Generation Personal_ Navngatlon System

Real World Cyber Space Real World

. 0 O] i orid Dptim [ o edback ont eal World
Macro T </ 30 < an is O
Analysis aci distribu Optin i io : i

Mid-level daptive tr -
Analysis > n/ 5 O mniza calcula scheduling pe )
Layer

Institute of Mathematics for Industry o L R
Kyushu University * \ \ B deng, N
= \ b :

Mid Term

Micro
Analysis
Layer

Current System : Smartphone + Google Maps =

New Generation Personal Navigation System

= 4D Display + CPS Mobility (life, amusement, security) +
OPEN Al Infrastructure Wearable Devices (AR + VR)

Vicinit




EeDbE(;g_r;;a eélg ,? 9@ Kobe, Japan g% THE UNIVERSITY OF TOKYO

Convergence of equation based modeling and data
analytics on HPC resources:

example of accelerating finite-element earthquake
simulation with data analytics

Earthquake Research Institute, The University of Tokyo
Kohel Fujita



Convergence of equation based modeling

and data analytics on HPC resources

« Equation based modeling and data analytics have different
characteristics
« Equation based modeling: Highly precise, but costly
« Data analytics: Fast inferencing, but accuracy not as high

* More efficient computation is expected by using both methods
to complement each other on HPC resources

* WWe have been conducting research on this topic focused on
earthquake simulation problems

* In SC17 best poster [1], we used data generated by equation based
modeling for data analytics training

* In SC18 Gordon Bell Prize Finalist paper [2], we trained artificial neural
network to accelerate equation based modeling

[1] Tsuyoshi Ichimura, et al., Al with Super-Computed Data for Monte Carlo Earthquake Hazard Classification, SC17 Research Poster
[2] Tsuyoshi Ichimura, et al., A Fast Scalable Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on Low-Ordered
Unstructured Finite Elements with Artificial Intelligence and Transprecision Computing, Proceedings of SC18
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Example of using data analytics to accelerate
equation based modeling

» Target: Solve A x = fin unstructured implicit finite-element
urban earthquake simulation

« Difficulty in using data analytics in solver
« Data analytics results are not always accurate

* We need to design solver algorithm that enables robust and cost
effective use of data analytics

» We also need to consider uniformity of computation for scalability
on HPC resources

» Use information of underlying governing equation

» Governing equation’s characteristics with discretization conditions
shlould iInclude information about the difficulty of convergence in
solver

» Extract parts with bad convergence using artificial neural network
and extensively solve extracted part in preconditioner

« Same solution obtained with less compute cost

Extracted part by Al

(about 1/10 of model)
3



Performance of data analytics enhanced solver on K
computer/Summit

« FLOP count of data analytics enhanced solver decreased by 5.56-times from PCGE (standard solver;

Conjugate Gradient solver with block Jacobi preconditioning), and 1.32 times from a non data analytics
enhanced SC14 solver

« Fast and scalable on both CPU based K computer and GPU accelerated Summit

o76
1152
2304
4608
9216

12288
24576

# of MPI processes (# nodes)

NLN
(o)
—
N
N
or

Weak scaling on K computer

«———— (17.2% of FP64 peak)

10000 20000 30000 40000
Elapsed time (s)

W Data analytics enhanced solver W SC14 solver

Weak scaling on Summit

x
(7))
7]
o
0 500 1000 1500 2000

Elapsed time (s)

M Standard solver (PCGE)

2500



Summary and future implications

« Equation based modeling can be accelerated using data
analytics by careful design of algorithms

« \We accelerated earthquake simulation by designing a scalable solver
algorithm that can robustly incorporate data analytics

 |dea of accelerating simulations with data analytics expected to be
generalizable for other types of equation based modeling
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HEP Challenges for
HPC

Maria Girone
CERN openlab CTO and CERN Coordinator for HPC Europe



The LHC Upgrade Program

Launched in 2010, the LHC programme is only one third

complete
e  The HL-LHC upgraded accelerator will unleash an order

of magnitude more events of much higher complexity
Major detector upgrades planned for ALICE and LHCb

for Run3 and ATLAS and CMS for Run4
 Data selection rates go from 1kHz to 10kHz

LHC / HL-LHC Plar

Major computing model and software revisions
ongoing for all experiments

5 Even with technology
 ATLAS TRpsiminary ] improvements there is a huge

= Resource needs

(2017 Computing model) . resource gap

[ = Flat budget model

(15%lyear) : *  Exploring new types of
computing resources like HPC
centres and accelerated

e R ol i L RS B R R AT 5 I O A S U I SR NS U N TR S MO 1
2018 2020 2022 2024 2026 2018 2020 2022 2024 2026 2028 arc h Ite Ct ures

Year

| ATLAS Preliminary

= Resource needs
(2017 Computing model)
| — Flat budget model
(+20%/year)

Disk Storage [PBytes]

CPU Resources [kHS06*1000]




LHC Data Challenges

HEP applications involve the input and output of large data volumes
Reconstruction applications read raw data to find and write physics

objects. They take a constant stream of input data
Simulation applications are processing intensive and produce large

output data
The challenge is delivering data to and from the processing resources

The LHC community has developed data management systems to replicate

data between sites and to stream data to running processes
* Currently moves 80PB per month between between production and

processing and archiving centers
* Datais accessed by central production and thousands of analysis users

At HL-LHC the data will reach the exa-scale both in total volume and in

movement
* We are looking to improve solutions for Data Organization

Management and Access (DOMA)

Maria Girone
CERN openlab CTO




Handshaking with HPC centers

* LHC workflows have peculiar aspects with respect to more standard “HPC”

workflows

Architecture (difficult to overcome x86_64 as primary arch)
* Code is millions of lines written by hundreds of people over many years
Data intensive: from low |I/O to very high 1/O

Need for remote data accesses (possibly mediated by edge caches)
Need for local virtualization (docker, shifter, singularity, real VMs, ...)

Need to access remote services (possibly mediated by edge services)

Workflows are highly parallelized, involving 10s of thousands of independent running
processes

CVMFS preferred software distribution solution (but can be worked around with containers)

Workflow Management systems currently absolutely require outgoing network from the
worker nodes due to the tight coupling with central workflow management

¢ Often more than one site is processing in parallel Maria Girone
CERN openlab CTO




Provisioninge

CERN was an early adopter and continued leader in " B ' e

* Allows for flexible and dynamic deployment

* Moving to containers for even more flexibility
HTCondor@ CERN

Expertise from LHC experiments in virtualized
environments was critical for cloud deployments ' AT et AN

and opportunistic HPC access

Containers

Common interfaces between HPC centers will be

needed for authorization, access, discovery, and
submission
* Qur adoption of HPC sites have each been so far
effort intensive custom deployments
We would like to develop demonstrators to show
a lower cost of adoption at new HPC sites

- LE Fermilab

aria Girone
IN openlab CTO



Heterogenous architectures

Achieving sustainable HEP computing for the HL-LHC and the
upgrade program requires change

* CPU evolution is not able to cope with the increasing e — )
demand of performance | 155 Hours

. . . . 4 8 12
Depending on the application, GPUs can provide better e
performance and energy efficiency

8X Tesla V100 —

5.1 Hours

The HPC centers are huge processing resources and are often

early adopters of accelerated hardware

Tesla V100
* We have an active R&D program to exploit this technology

Tesla P100

X CPU
The next few years are a good opportunity to embrace a 0 20x nx
paradigm shift towards modern heterogeneous computer rerrmnce e e o

architectures and software techniques:

* Heterogeneous Computing
* Machine Learning (a very active area of development in HEP) Maria Girone
CERN openlab CTO




HEP is facing a huge resource gap for HL-LHC and would like to be able

to utilize the HPC centers
 Exa-scale data needs exa-scale computing

HEP applications have unique challenges in terms of data access and

data production

. We would like to work with the HPC centers to address processing challenges
of data intensive sciences

We are undertaking a major initiative in software and computing R&D to

realize the physics potential of the new program
» There are many activities that would benefit from CERN and the HPC community
working together




The Promise of Learning Everywhere and MLférHPC

Geoffrey Fox and Shantenu Jha contribution to Kobe BDEC meeting

e HPC to enhance ML is important

e Arguably more important is the question: Can ML enhance the effective
performance of HPC simulations ?

e We argue that ML can enhance HPC simulations by 10° if not greater!
- Enhancement not measured by Flops or usual performance measures
- But science done using same amount of computing for given accuracy

e Many challenges must be overcome
- Right hardware, right software system (platform)
o Application architecture and formulation.

For details see team papers

o http://dsc.soic.indiana.edu/publications/Learning Everywhere.pdf
o http://dsc.soic.indiana.edu/publications/Learning Everywhere Summary.pdf

Digital Science Center



http://dsc.soic.indiana.edu/publications/Learning_Everywhere.pdf
http://dsc.soic.indiana.edu/publications/Learning_Everywhere_Summary.pdf

MLforHPC and HPCforML K

We distinguish between different interfaces for ML/DL and HPC.
* HPCforML: Using HPC to execute and enhance ML performance, or using HPC
simulations to train ML algorithms (theory guided machine learning), which are then

used to understand experimental data or simulations.

® HPCrunsML: Using HPC to execute ML with high performance

¢ SimulationTrainedML: Using HPC simulations to train ML algorithms, which are then
used to understand experimental data or simulations.

* MLforHPC: Using ML to enhance HPC applications and systems

* MLautotuning: Using ML to configure (autotune) ML or HPC simulations.

* MLafterHPC: ML analyzing results of HPC, e.g., trajectory analysis in biomolecular simulations

* MLaroundHPC: Using ML to learn from simulations and produce learned surrogates for the
simulations. The same ML wrapper can also learn configurations as well as results

MLControl: Using simulations (with HPC) in control of experiments and in objective driven
computational campaigns, where simulation surrogates allow real-time predictions.

Digital Science Center



MLAutotuned HPC. machine Learning for Parameter Auto-
tuning in Molecular Dynamics Simulations: Efficient Dynamics of lons

near Polarizable Nanoparticles
Integration of machine learning (ML) methods for

JCS Kadupitiya Geoffrey Fox parameter prediction for MD simulations by
. ’ ’ demonstrating how they were realized in MD
Vikram Jadhao simulations of ions near polarizable NPs.

i Note ML used at start and end of simulation blocks

headgroups Exterior
\

Enhanced Dynamical Optimization Framework

ML-Based =
Simulation InitailVirtual OpenMP/MPI
Configuration Parameters E: “ybri.d Outputs
Inputs K. T\ Parallelized lon
Ion Features | | | s Simulation D =l
NP Féatiiras Virtual = cnsitics
e At . 1=0 [ Parameters -L -
e o Fatty Cellinterior * Adaptive At ] |At(r.£.®) Falsc R, f. R,
| =t
! . s T BT |_ a Error
open closed acyl chains pra
i %

Digital Science Center



MLaroundHPC: Machine learning for performance enhancement with Surrogates af

molecular dynamics simulations

[ ]
;"""""""""""—""—""""'-'I 1.2 = T
I ANN based Feature Extraction and Regression 1 =1 ¥ T T ]
I 1 = =
! ANN] 1 z @
1 1 L sk
i No Activation : = E b ﬁ‘ma
e | 5L ¥ lomm|l 2 ool Boof o _
(Input/Output Data) : :@ i=p i S Gn’dgnls I1 1‘_5 IZ 25 m‘@tﬁp
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I i oalk , ‘.. i - ) ) ) |
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: : ‘Centar Dansify (WMD)
I | 0 . .
--------------------------------------- . 0.2 0.4 06 0.2 1 1.2
Contact Density from MD (M)
MLaroundHPC in Nanoscale Simulation o
Outputs
MD Simulation J
Nanoscale on HPC Cluster Structure
Correlation
System o o) I
Control ML-Based Training '
Parameters|| sinndlaton : : i Critical
Prediction ) e o S
ANN Model Predicted _ L4

ML used during simulation

Digital Science Center

We find that an artificial neural
network based regression model
successfully learns desired
features associated with the
output ionic density profiles (the
contact, mid-point and peak
densities) generating predictions
for these quantities that are in
excellent agreement with the
results from explicit molecular
dynamics simulations.

The integration of an ML layer
enables real-time and anytime
engagement with the simulation
framework, thus enhancing the
applicability for both research
and educational use.

Deployed on nanoHUB for
education



Speedup of MLaroundHPC .

e T.,issequential time
e T... timefora (parallel) simulation used in training ML
¢ Tiearm is time per point to run mach_lne learning

e Tiookup 1S time to run inference per instance
e N,,.., number of training samples

e Nj,oup NUMber of results looked up

Is 7K to 16K in our work

N

train

Tseq (N lookup + N train )
- ﬂookupN lookup -+ (Tt'rain =+ Tleafrn)N trawn

o Becomes T, /T, if ML not used

o Becomes T, /T .., (10° faster in our case) if inference dominates (will
overcome end of Moore’s law and win the race to zettascale)

e This application deployed on nanoHub for high performance education

Effective Speedup S =

L
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Computational Media

2 Y
Phy'

Yoshinari Kameda (University of Tsukuba, Japan)
Computer Vision and Image Media Lab.
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Research backgound

® Computational media group
at division of computational informatics
at Center for Computational Sciences, U-Tsukuba.

® Tech: Computer vision, pattern recognition, Mixed
Reality, Augmented Reality, free-viewpoint
visualization by a large number of cameras

® Apps: Cyber-Medical issues, sport analysis,
intelligent transport systems, empowerment of
human functions, etc.
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From computer vision to CHI
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Towards real-world application

1. Human interface
* Instant reaction to input from human (10-1000ms)

 Sensing: multiple cameras, audios, other sensors

* Presenting: visual/auditory feedback via AR/MR

2. Continuous data analysis
1. Reinforcement learning

2. Scalability and flexibility for data input channels
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Development scheme

1. Making on-line programs
 Trial-and-error to cope with unexpected input data

* Adaptation for new sensors and visualization
devices (new cameras, HMD, etc)

2. Sharing R&D environment
1. OS /Libraries / Docker

2. Commonly available (transferrable) codes
3. App level support (e.g. github, google colab, etc)



Optimized Images via ManifestList

BDEC2, Kobe Workshop

Christian Kniep, 2019-02 @ docker
Technical Account Manager EMEA
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DISCLAIMER

Information subject to change

The content of this slide deck represents a experp of the ongoing discussion within Docker,

with customers and partners.

Thus, the information is subject to change and not a committed roadmap.
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Convoy from GPU to HPC

In general: three levels to become a traditional HPC workload

1. beginner:
2. Intermediate:
3. advanced:

Start using GPUs with local storage

Control access to local mount points via POSIX enforcement
Distributed workloads using MPI

Complexity

advanced

MPI

data access

_ a.k.a. HPC!
driver match / image lifecycle

hardware access Maturity
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Convoy from GPU to HPC

Today: Just a brief discussion about the first step and how to improve

1. beginner: Start using GPUs with local storage

advanced

Complexity

driver match / image lifecycle
hardware access Maturity




Modular Software Stacks

Docker is an enabler for Al/ML

- Multiple phases in ML livecycle.

Moded Sevving (AP1)

- Modular Assembly of Software Stacks

b Wlth d |Ve I'SG and 8 gl’OWIng Set Of E Tensorflew 1.10 Tensorflow GPU 1.10 Pytorch 0.4.0 Keras 2.2.4 Caffe 1.0
hardware and SOﬂware’ Cu rating \g Computer Yision |:::'I|-J::E“ Optimisation
= i |JI|;|Q¥L‘{H“I[!IIIH .
stacks is hard. e

ML / Al contexts

DockerCon EU 2018: Lessons in Using Docker to Close the Loop on Industrializing Al and ML Applications

Provision P™N Configure Train ™8 Tune Deploy =Y Scale

e e e

source: hitps./thenewstack.io/an-introduction-to-the-machine-learning-platform-as-a-service/



https://thenewstack.io/an-introduction-to-the-machine-learning-platform-as-a-service/

Modular Software Stacks

- Multiple phases in ML livecycle. Docker is an enabler for Al/ML

- Modular Assembly of Software Stacks S Noebook

- With diverse and a growing set of Tensorflow 110 TensorflowGPU 1.10 | Pytorch0.4.0 Keras2.2.4
hardware and software, curating ™ | Compoteveon | RSTIS | ugige | Loige | opumsatn
stacks is hard. py— bt 16.04 Ut 16.04

Ubuntu 16.04 Ubuntu 16.04
Ubuntu 16.04
CUDA 8 cuDNN 6 (GPU) CUDA 9 cuDNN 7 (GPU)

< DevOps > < Developers / Data Scientists > < DevOps >

source: hitos:/thenewstack.io/an-introduction-to-the-machine-learning-platform-as-a-service/



https://thenewstack.io/an-introduction-to-the-machine-learning-platform-as-a-service/

Host-Agnostic vs. Host-Specific

kernel-bypassing devices

devices and userland drivers have to be present into a container.
The userland driver...
o can be part of the container
o can be a local volume on the host, which adds/augments
the library into the container

These devices/drivers might be host-specific

92

process

container FS

userland driver

Idev/nvidia0

Host

rnel -
GPU
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Driver/Toolkit Mapping

Making it easy and smooth - and manageable

&

docker



GPU Driver Match

#2 Application / User-land compatibility

Application has to deal with variants of bind-mounted
userland driver.

This breaks the immutability of the container FS, forces
the application to be flexible wrt the user-land version

and thus puts the burden on the runtime.

94

training:v9

Application v9.x

CUDA v9.1

nvidia-390-77

OS Kernel

Host1

training:v9

Application v9.x

nvidia-396-44

OS Kernel

Host2




GPU Driver Match

#2 Application / User-land compatibility

Possible Solution: Using image annotations to
download the exact image for the underlying
configuration.

This allows to optimize down to different versions,
GPU/CPU models and such. Forces customers to

use proper automation (as a side effect).
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training:v9,nv-390

Application v9.0

CUDA v9.0

training:v9,nv-396

Application v9.2

CUDA v9.2

nvidia-390-77

OS Kernel

Host1

nvidia-396-44

OS Kernel

Host2




System-Optimized Images .

$ docker run --rm -ti --device=/dev/nvidia{0,ctl,-uwm} gnib/cv-tf-dev:1.12.0

Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FM
[]

$ docker run --rm -ti --device=/dev/nvidia{0,ctl,-uwm} gnib/cv-nccl90-tf-dev:broadwell 1.12.0
libcuda reported version is: 390.30.0

kernel reported version is: 396.44.0

kernel version 396.44.0 does not match DSO version 390.30.0 -- cannot find working devices in this configurat

[1

$ docker run --rm -ti --device=/dev/nvidia{0,ctl,-uwm} gnib/cv-nccl92-tf-dev:broadwell 1.12.0
Ignoring visible gpu device (name: Tesla M60, compute capability: 5.2) with Cuda compute capability 5.2.
The minimum required Cuda capability is 7.0.

[1

$ docker run --rm -ti --device=/dev/nvidia{0,ctl,-uwm} gnib/cv-nccl92-tf-dev:broadwell nvcap52 1.12.0
Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6723 MB memory)

-> physical GPU (name: Tesla M60, compute capability: 5.2)
['/job:localhost/replica:0/task:0/device:GPU:0"]




System-Optimized Images [cont] 97

image: gnib/cv-tf:1.12.0-rev9
manifests:

[ : - i : gnib/cv-tf-dev:1.12.0-revll
Using a meta-Image (Manifest List) image: gnib/cv ev rev

platform:
to use a common name. architecture: amdé64
os: linux
Dependlng on the nOde_Conﬂg the image: gnib/cv-nccl92-tf-dev:broadwell 1.12.0-rev8
node downloads the right Manifest. plattomm:
features:
- broadwell
$ sudo cat /etc/docker/daemon.json - nvidia-396-44
{ image: gnib/cv-nccl92-tf-dev:broadwell nvcap52 1.12.0-rev2
"platform-features": [ platform:
features:

"broadwell",

. g - broadwell
nv-compute-5-2", | - nv-compute-5-2
"nvidia-396-44" nvidia-396-44
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Implications

HW and OS Optimizations

This scheme can not only be employed for different GPU drivers, but
- highly optimized code for CPUs, Storage (gcc flags are the limit)
- No generic container images across multiple host configurations, stable image even if new
nodes are added or old are removed
- Needs to be evolved into decision tree
a. Try to fetch most specific image

b. lterate to generic image if no specific image is available




THANK YOU :)

More Info:
e http://gnib.orq/2019/02/14/manifest-list-to-pick-optimized-images/

e https://github.com/moby/moby/issues/38715
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http://qnib.org/2019/02/14/manifest-list-to-pick-optimized-images/
https://github.com/moby/moby/issues/38715

Device Access

#1 Device Passthrough

Device Passthrough

e Available GPUs are mapped in, depending on scheduler

e Auxiliary devices are mapped in, depending on use-case

100

Container 1

/dev/nvidia0

ﬂ— /dev/nvidia1

/dev/nvidia-uwm

= /dev/nvidia-uwm

/dev/nvidiactl

@—  /dev/nvidiact

GPU#2
GPU#1

0OS
Kernel

Host

k8s device plugin
1

/dev/nvidia0

Container O

/dev/nvidia0

/dev/nvidia-uwm

/dev/nvidia-uwm

/dev/nvidiactl

o

/dev/nvidiactl




Cl/CD is King

build Images

O

0]

(6]

TF w/ CUDA 9.0
TF w/ CUDA 9.2
TF w/ CUDA 10

Merge into ManifestList

(@]

gnib/cv-tensorflow-jupyter

[ uplain-cudnn-pip3-cv-te... Lo

Instance: & V5M
Duration: 5m 44.0a

https:t/gthub.ca...
additiona RUM comm

[ uplain-cudnn-pip3-cv-te... Lo

Instance: 9 VSM

Dwration: 1m 30.0s

[ uplain-cudnn-pip3-cv-te... Lo

fr uplain-cudnn-pip3-cv-te... o]

Instance: 10 M
Duration: 2m 26.0a

H
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[ uplain-cudnn-pip3-cu-te &

Instance: 5 VSM
Dwration: im 3.0s

[ cv-tensorflow-jupyter ]
Instance: 15
Dwration: 20.0s

f uplain-cudnn-pip3-cv-te... i

Instance:5 VSM
Dwration: 3m 52.0s




Docker Deployment Methodology

Docker Deployment Pilot Advisory Service

The Docker Deployment Meticdelogy .

Methodology is prescriptive and
comprehensive process Kosiistiin
enabling customers to deploy -
Docker Enterprise Edition at

scale to run production

workloads Pipsiing

_E;Lﬁa .F\:?:::‘.{";,'
Ciaiinaih s
eE [5.\;\.\-'..-.:.\"

Platform

The Methodology was —
developed directly from 3+ @ E H n
years of operationalizing '
containers with enterprise Goveliinien m

customers T
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Production Advisory Service
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BLUE WATERS

SUSTAINED PETASCALE COMPUTING

W---sz B
W




BLUEWATERS LEECEIRE

In the last few years, using leadership computing, new best of breed approaches for creating
Gﬁo data, model and mapping (DMM) products created paradigm shifting products that many
other use.

- Digital Surface and Digital Elevation maps
«  Seismic Hazard Maps
«  Crop planting and yield maps

Example - The digital elevation map creation capabilities greatly reduce the cost and improves
the timeliness and resolution of traditional map and been shown to be 58,000 times more
productive (faster, cheaper)

«  The improvements include increasing the resolution of current elevation maps by more than 3 orders
of magnitude (12.52 improvements in resolution),

« improving the time to production 58,500x in time to solution compared to a single workstation, and
« a 220 times reduction in cost, resulting in 9 orders of magnitude of overall productivity improvement.
The conumers have grown increasingly reliant on timely products

Initial this was a research investigation to create applications that would prove effective but also
had a serendipitous benefit of creating use DMM products that other areas use.

«  Water resource managers, environmental research, building engineers, farmers, ....

BDEC2 Meeting — Kobe Japan February 19-20, 2019



BLUE WATEH 3 Example Requirements

required to process one time

336,492 538 million 54 million 5.38
2,956,131 2,365 million 473 million 47.30
3,292,623 2,903 million 527 million 52.68

* The computational needs to create a single, 2 meter global set of
DEMs one time is
« 527 million Blue Waters X86 node hours — 3.2-3.5 Blue Waters
Years
.5 meter resolution is 16 time the computational requirement —
51.2-56 Blue Waters years
Requirement is to redo this processing every 2-3 year, with more
frequent processing in high interest areas

BDEC2 Meeting — Kobe Japan February 19-20, 2019



HRIREVYES N Example Data Requirements

SUSTAINED PETASCALE COMPUTING

« Each stripe averages 4 GB in size, and two strips are
needed for every DEM.

 Two meter DEMs average 8 GBs.

« So, the processes consumes 8 GB and produces 8 GB
per sample.

* One time world map is requires 26-30 PB is consumed
and 26-30PB is produced.

 Since the original strip data flows from repositories
specific for the satellites, and is stored in open access
repositories, these 50+ PBs of data has to move within
the period of the campaign.

* If you assume this is a yearly campaign, the average
sustained data rates are ~10 kbps, but will have peaks
where multiple streams of 8 GBs need to move before
or after a job initiated.

Sos iy L

BDEC2 Meeting — Kobe Japan February 19-20, 2019



EARTHQUAKE SYSTEM AND ARGICULTURE
BLUE WATERS [k

SUSTAINED PETASCALE COMPUTING

« Seismic
» Develop physics-based earthquake simulations that are
more accurate than the current empirical NSHMP

standard

Challenges — resolution, shaking frequency proportional to structure height,
structure analysis

» Many engineering and social applications: performance-
based design, seismic retrofitting, resilience engineering,
insurance rate setting, disaster preparation and warning,
emergency response, and public education

* Requirements same order as DEMs, more areas (entire
Pacific Northwest, data, improvements)

’ AgriCUIture 40°20'0°N g

» Developed modeling framework which combines the .
strengths of earth system model and agronomy crop oo
model to conduct parameter sensitivity analysis and
spatially explicit optimization

88°20°0"W 88°0'0"W

5 f40°20'0°N % 0t200°N

40°200"N7 !

Sl H40°100°N 40°10'0"N
\

407100N]

-40°0°0"N 40°0'0"N

- Using three different cuDNN-accelerated deep learning — T i I Y= o
frameworkswith of satellite data at a 30-meter resolution, o ! — o 1N e |
achieve well over 95% accuracy. N oW 0w N oW oo

(a) Raw CDL (b) Aggregated field-level CDL

Example of the 2015 CDL of Champaign County. (a) Raw CDL; (b)

the aggregated field-level CDL, where the CLU is used to provide
the field-level boundaries.

NGA Research Group - July 2018



BLUE WAT E H 3 Move from Frontier Science to Best of Breed

SUSTAINED PETASCALE COMP

« Codes and methods that were research first time frontier science
have now moved to best of breed sustaining production

«  Workflows are established to being established.

* New versions of the codes with improvements (e.g. high frequency
for seismic modes, better identification for crop yields, etc.)

« But the success of frontier science has made DMMs for these areas
now required and expected by a broad, diverse communities

BDEC2 Meeting — Kobe Japan February 19-20, 2019



109

Benchmarking Huawei ARM Server
Processor for HPC Workloads

James Lin

Shanghai Jiao Tong University (SJTU), Center for HPC

BDEC2,Kobe, JP
February, 2019



BEtEFUBEAS FETEXY
ARM HPCHES IS E

| GRITHFWERSES LRk
| ARM HDCE: At B Byt

[ - =
5 -'...h s A =

e Supported by major ARM
| vendors in China, including
Huawei, Phytium/NUDT
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Huawei Kunpeng 920 ARM Sever Chip

Intel Xeon

Kunpeng 920

Mcicia) Gold 6148 Ll (Engineering Sample)
Arch Skylake-SP ARMv8-A ARMv8.2-A
Lithography 14nm 16nm 7nm
Main Frequency(GHz) 24 2.4 2.0
Num of Cores 20 32 48
Vectorization Ins/Width AVX512/512bits ASIMD/128bits ASIMD/128bits
Theoretical DP Peak 1536 307.2 768

Performance (GFLOPS)*
L1 Cache

L2 Cache

L3 Cache

DRAM Support

TDP
Launch Time

32KB Ins + 32KB Data

1 MB

1.375 MB
6 x DDR4-2666
150
2017

48KB Ins + 32KB Data

1MB
(shared)

32MB
(shared)

4 x DDR4-2400

70
2016

64KB Ins + 64KB Data

512KB

64MB
(shared)

8 x DDR4-3200

150
2019

* Theoretical DP peak performance is calculated based on the frequency we test during chips running their

best vectorization instruction set.

Announced on Jan 7, 2019
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Float-point Results

41.1% Better than Hi1616, compared to a 165.3% increase from Haswell to Skylake in
3 years.

HPL efficiency on Kunpeng 920 is around 40% compared to more than 70% on other
chips.

HPL Benchmark on Four Platforms HPL Efficiency on Four Platforms

90.0%

2500
2252.2 80.0%
2000 70.0%
60.0%
1500 50.0%
98882 40.0%

1000
750 6/0.7 30.0%
2602 475.2 I o0
500 : 3105 0%
0 0.0%

2683 6148 1616 920 2683 6148 1616 920

m Single Socket mDual Socket m Single Socket mDual Socket
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M i n i'a ppS ReSU |ts (lower is better)

SNAP Teal eaf
nSingle  m2-Socket Strong Scaling  m2-Socket Weak Scaling 1Single  m2-Socket Strong Scaling  m2-Socket Weak Scaling
1 ——————8:946—5:9+ 1200
0.9 989.88
0.77 0.766 1000
0.8 - :
go7 — 056 Z 800
g 06 —— « 3 601.18 607.13
= g.i —_— 2 600 —
_(% 03 g 400 ——1 364.42
| 193.05
0.2 =— 200 — !
0.1 ——
0 0 L ! _
6148 920 6148 920
CloverLeaf-bm16
CloverLeaf-bm128_short
mSingle m 2-Socket Strong Scaling
1600 mSingle m2-Socket Strong Scaling
1342.61 250
1400 208.78
1200
"'3* —
~ 1000 &
g 3
o 800 8
400 =
200

6148 920 6148 920
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Normalized Performance (Higher is better)

o
w

0.0

100 100 1.00 100

E5 2680 v3(Haswell)
Dual-Socket

Real Application Result:
GTC-P (Gyrokinetic Toroidal Code - Princeton)

Gold 6148(Skylake)
Dual-Socket

20
138
129
II |

.14

1351

HI1616
Dual-Socket

B Peak Performance
B Stream Bandwidth
Em GTC-P

0 perf jwWatt

Kunpeng 920
Dual-Socket
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Innovative Method for Integration
of Simulation/Data/Learning in the
Exascale/Post-Moore Era
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FY -
11 12 13 14 15 16 17 18.‘ 19‘ 20‘ 21‘22 23 24 25 New Ty_pes Of Usefrs
: [ ]
scagre: Mostly CSE, so far
D e P e - Data, ML, Al etc.
25PFL( PS, 919.3TB xtreme Computing ]
- nome Analysi
Oakleaf-FX: Fujitsu PRIMEHPC BDEC System Ge 0 © a yS S i
Fﬁ;’;ﬁfggﬁgg?ﬁ" | 60+ PFLOPS (7 — Medical Image Recognition
—\
| Sridgerx S New Methods
gt sponete, [T * Integration of CSE
cientific Simulations 1.93 PFLO 'S . :
supbrcomauter e [T (Simulations) + Data +
m;g-TZ?Enegite?:Lstiggs 243 HE\OFS Learnlng BEn ineerin

ata

Engineering T

M Info. Sci. : System
M Info. Sci. : Algrorithms
M Info. Sci. : Al
M Education
M Industry

Bioinformatics

™ Social Sci. & Economics

Oakleaf/Oakbridge-FX (FY.2017)  Reedbush-H (FY.2018) Data
Commercial Version of K Intel BDW + NVIDIA P100

o ) . Medical Image
|| Engineering Recognition

ERERLE \

Earth & Space
Science




BDEC System at ITC/U.Tokyo"

April 2021

Platform for Simulation +
Data + Learning (S+D+L)

60+ PF, 3.5-4.5 MW
— External Nodes for Data
Acquisition/Analysis (EXN)
« 5-10 PF, 200+ TB
— Internal Nodes for

CSE/Data Analysis (INN)
« 50+ PF, 1+ PB, 15+ PB/sec.

— Shared File System (50+PB,

1+TB/sec) + File Cache
Architectures of EXN and
INN could be different

— EXN could include GPU,
FPGA, Quantum Device

Internal Nodes

Simulation: INN
50+PF, 1+PB, 15+PB/sec

Shared File [N

System
SFS External Nodes

50+ PB, 1+TB/sec DatafLeSa1rOnF|3rF|g: EXN

External Network

DI OOO00C0] e

* Possible Applications

— Atmosphere-Ocean
Simulations with Data
Assimilation

— Real-Time Disaster Sim.
(Flood, Earthquakes, Tsunami)

« Earthquake Simulations with
Data Assimilation

— Data Driven Approach :



Real-Time Earthquake Simulation

with Data Assimilation

« Seismic Observation Data (100Hz/3-dir's/O(103) pts)
by JDXnet is available through SINET in Real Time
— Peta Server in ERI/U.Tokyo: O(102) GB/day=EXN of BDEC
— O(10°) pts in future including stations operated by industry
° EXte rn al NOd eS ) Opservation NetworkhfolrlE:frtt?.quake.:_ 0O(10%) Pomts

— Real-TimeData . v/ & | ..
Acquisition | 71 |
— Data Assimilation & (7| &°

— Update of
Underground
Model

* Internal Nodes @@ ¢ o
— Large-Scale o W s

. L 30s : 50s
M'U Itl ple Real-Time Data/Simulation Assimilation
Simulations Real-Time Update of Underground Model 4




Data Driven Approach| "
o -

DDA, Integration of (S+D+L)
4 ReaI'WorId SimUIGtionS External Nodes: amﬁm

- Non_Linear: Huge Number Of Machine [l Data*+Learning

Learning, DDA Data Assimilation

Parameter Studies needed \

yonisinboy

Ext. Resource
Server, Storage, DB,
Sensors etc.

* Reduction of cases is a very
crucial _issg.le _
— Data Assimilation

100 Ensemble Cases, 1,000 needed: Bgmose2usay "5, |-

for accurate solution. LN -
* 50-100 (or fewer) may be enough for- g e=e

accurate solution, if opt. parameters ;‘?"“j‘\-:"rj;a

(e) 1280 members w/o localization

are selected (e.g. by ML), T

80 55
fo -
= 81

« Data Driven Approach (DDA) i
— Integration of CSE & (Observatlon) & I\/IL
— O(103-10%) Training Data Sets: Difficult

» Successful under Only Limited Conditions using Simplified Models

s — hDDA: Hierarchical DDA by More Efficient Training Approach

[Miyoshi et al. 2014]



h3-Open-BDEC

i +
New Principle for Simulation + Data + integration

" I nn Ovati ve S Oftwa re Computations Learning ComTJlt'irl‘iit‘i::;iO"S"'
I nfra Stru Ctu re fO r (S + D + L ) Algosr'ig&esnvmh;\ﬁgh- th!-Open-APP: Simulation h3-Open-SYS

Pﬂl‘fﬂrm;f?lc?. Reliability, Application Development Control & Integration
ciency
— h3: Hierarchical ) H yb rid ] h3-Open-VER h3-Open-DATA: Data  yygilitios for Larao.Scale
Verification of Accuracy Data Science Computing
Heterogeneous . _

h3-Open-AT h3-Open-DDA: Learning

 Innovative/New ldeas

Automatic Tuning Data Driven Approach
— Adaptive Precision +
Accuracy Verification + AT

. ?f \r ‘
« Appropriate Computing o
— hDDA for General Problems G : _ S""P"f*ed

by Machine Learning -> |
Reduction of Computations — Control &

» Generation of Integratlon b
Simplified/Local/Surrogate Heterogeneous
Model by ML Containers

* Multilevel/Multi-nested « Various Functions on
Approach using AMR Heterogeneous Architectures

« MOR (Model Order Reduction) * Including CPU, GPU, FPGA,
« UQ (Uncertainty Quantification) Quantum Devices 6
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Farming the Environment into the
Electrical Power Grid

- Offshore Wind Farm Simulation & Control

Dr. Yiwei Qiu
ywqiu@mail.tsinghua.edu.cn
BDEC2-Kobe
Feb. 20, 2019



Smart Grid Operation and Optimization Laboratory

* Smart Grid Operation and Optimization Laboratory (SGOOL) was established
in Tsinghua and Zhejiang in 2009 and 2012 respectively

2 Professors, 4 Associate Professors, 1 Assistant Professor, 5 Postdoctoral
Research Fellows, about 20 Ph.D. Students and 30 M.S. Students

Tsinghua University Zhejiang University

Dr. Yonghua Song

Professor, Tsinghua University/Zhejiang
Univeristy

Rector of Macau University from Jan, 2018

Dr. Yi Ding
Professor, Zhejiang University
Research Interests: Power System Reliability, Market

Dr. Zechun Hu Dr. Ha-o Wu ~ L
Associate Professor, Tsinghua University s Associate Professor, Zhejiang University ) )
Research Interests: Electric Vehicle, Energy Storage " . Research Interests: Power System Operation/Security

Dr. Shufeng Dong
Associate Professor, Zhejiang University

Dr. Jin Lin
Associate Professor, Tsinghua University
Research Interests: Industrial Microgrid, Active

Distribution Network, Hydrogen EDN Information

Dr. Can Wan
Assistant Professor, Zhejiang University

: Research Interests: Renewable Prediction,
¥ Optimization

I" | Research Interests: State Estimation, Electrical

Smart Grid Operation and Optimization Laboratory, Tsinghua University



Objective of the FENGBO Project

Farming the Environment into the Grid: Big data in Offshore Wind

e Complex aerodynamic
interaction among turbines
caused by the wake effect

o Electromechanical interaction
among turbines through the
power grid

e Investigate the interactions and
coordinated control among
different wind turbines

= Funded by Natural Science Foundation
of China

Smart Grid Operation and Optimization Laboratory, Tsinghua University



Hierarchical Wind Farm Control Scheme

Turbine level control — operating performance; local wind turbulence;
Farm level control — aerodynamic interaction among WTs; respond to meet

Power output

Power output

the requirements (power, spinning reserve) of the power grid
Pitch and
rotor speed

l .
Ambient wind speed I
references

Turbine
WEF Supervisory Controller for each WT
optimize operating point

l l Wake interaction

Turbine

Local wind
disturbance [
Pitch angle control

Rotor speed control

_l Wake interaction

rbine measurements

Electromechanical dynamics Large-scale aerodynamics
Compatible with PCs Only with supercomputers

Smart Grid Operation and Optimization Laboratory, Tsinghua University



Research Steps

« Problem—How does the WF aerodynamics interact with the \
electro-mechanical dynamic processes of the power system?
Does the widely used wind farm model (single aggregated
turbine) in electrical power industry valid?

« Solution— A joint simulation platform
wind flow ve

field e /

« Problem—How to utilize the interaction between the electro- \

mechanical system and the wind flow field to improve WF

(@) eration erformance?
Control & P P

Optimization « Solution—Are the PDE governing equations practical to be

incorporated into the control loop? Or should data-driven

approaches be used to fit the aerodynamic interactions based
on field data? -/

Smart Grid Operation and Optimization Laboratory, Tsinghua University



Joint Simulation Platform on Sunway Taihu Light

Supercomputer with CFD PC with Commercial Power
software System Simulation Software
mechanical torque;
average wind speed
>

Power system

| dynamic ODE model

System
requirements

Wind farm and
<4 turbine control
logics

Control references
pitch angle; yaw
angle; rotor speed

Sychronization

Joint Simulation Platform

e Sunway Taihu Light, China's National Supercomputing Centre in Wuxi

Smart Grid Operation and Optimization Laboratory, Tsinghua University
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Thank you!

Farming the Environment into the

Electrical Power Grid
- Offshore Wind Farm Simulation & Control

Dr. Yiwei Qiu
ywqiu@mail.tsinghua.edu.cn
BDEC2-Kobe
Feb. 20, 2019
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System Infrastructure for Elevating
Edge to be a Peer of the Cloud

Kishore Ramachandran

Embedded Pervasive Lab, Georgia Tech
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Fog/Edge Computing

Extending the cloud utility computing to the edge

Fog/Edge computing today?
* Edge is slave of the Cloud
* Platforms: loT Azure Edge, CISCO lox, Intel FRD, ...

* Mobile apps beholden to the Cloud

Vison for the future?

* Elevate Edge to be a peer of the Cloud
* Prior art: Cloudlets (CMU+Microsoft), MAUI (Microsoft)

In the limit
 Make the Edge autonomous even if disconnected from the Cloud



Programming Models Efficient Runtime

Problem Problem
- Densely geo-distributed devices are hard to program: > Resource-constrained Edge nodes need:
-» How to distribute the computation? -» High multi-tenancy
-» How to move the information? ; ;
- |solated execution environments

- How to tune the parameters? _ _ _ _
> How to support multiple hardware platforms? > Dedicated VMs/containers impractical

-» How do we coordinate hundreds of application Solution
simultaneously? -» Serverless Computing (aka Function-as-a-Service)
Solution ¢ Applications executing only when needed
- Declarative languages designed for geo-distributed setting o Allows for better resource sharing
- Aut(_)m_afcic decomposition of st_ages Adabtina S I for Ed
-» Optimizing for WAN configurations apting Serveriess for kdge
> Efficient reuse of data and computation - SoA relies on containers (e.g., Docker) to isolate functions
-» Suffers from cold start problem
SELECT FRAME, OBJECT ¢ 300ms+ of setup time

WHERE OBJECT.LABEL == “car”

AND OBJECT.COLOR == RED
FROM CAMERAS NEAR GATECH ¢ Reduce cold start time by modifying Docker’s runc
¢ Alternative format (WebAssembly) for functions

¢ Problem for latency-sensitive apps

w !
D GET /faas/resize _ | | resize_loader, js resize.wasm IIr‘IVOkEI"

= urn
results ) I J

IoT Device

Edge Node

v8 Isolate




Intelligent data management in the edge + cloud resource continuum

Objective : To provide cloud-like data abstractions (e.g. key-value stores, publish-subscribe)
on edge + cloud infrastructure continuum

Aims of the project Interplay between edge and cloud : to alleviate capacity constraints
o Low-latency data access to real-time apps running in edge P
e  Support intensive OLAP queries in cloud o  Utilize temporal locality of queries ‘ }
e Abstractions similar to cloud platforms o Store temporally relevant |?ﬂ..
o get/put key-value pairs, publish-subscribe data data on edge nodes 'Sfflnf L
o  don't worry about data placement/migration/.... o  Useful for real-time queries = .-
Peculiar challenges in edge comguting_envirgzltme?ts ' e  Older data available on cloud nodes G -
1. Widely geo-distributed resources e WA N o For historical (OLAP) queries qz” %
i W) 7 [ & ° 9
PP A \ 2]
2. Constraints on resource capacity b RS ‘, e - & & ®
v = ﬁ; : Y :
3. Low statistical multiplexing in client workload R SRR L % Multiple levels of load balancing for tolerating skews

4.  Geographically correlated failures are more likely T T ———

] L o Some areas generate more data than others
Location-awar itioning for low-laten = spatial skew in client workload
O il il o Adding additional capacity should evenly balance the data

"location" : {
Keep data close to potential users %:ttilt%r:je“ 1 *.B4.7445
. P Eor low Iatel::'lc Ao g, ORI « Resource sharing b/w nodes for short-term load surges
© y "timestamp" : "1520123197", o  Temporary surge in traffic at subset of nodes
. Use of spatial attributes to : + o  Offload storage temporarily to nearby nodes to maintain
distribute data-items . geohash H(metric) H(timeld) throthPUt

partition [ digw [2587092151[2039412664]
g bits m bits t bits




Smart Camera Surveillance: Vehicle Tracking at the Edge of the Network

Aims of the project

. Track all vehicles over
time.

. Store the space-time
trajectories instead of
videos.

e  Answer queries directly % | IR

from those trajectories. '
|

High-performan nd graph pr: in
o “Each camera” processes (detecting vehicles) its stream at the edge of the o Adopt probabilistic graph to store the trajectories of all
network vehicles
o No wasteful network backhual bandwidth to send “everything” to the o Encode extra information (confidence from re-
cloud identification) for better query answering.
o Efficient communication policy between “cameras” E Explore graph processing techniques to relieve the errors
o Forward and backward propagation to exchange detection objects from detection and re-identification
for re-identification o Example: maximum-probability path for one vehicle
versus maximum-probability paths for all vehicles
o Efficient storage policy across “cameras” (Each vehicle should occupy an unique disjoint path
o  Construct the trajectories from the result of re-identification in the graph)
o Use aggregation to limit the storage requirements for each “camera”
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Glenn’s 2019 In-and-Out List (Internet Systems)

Out

IN

People use the Internet

Move data to computing

Exploit massive datacenters & networks
Validated datasets

Abundant inter-city backbone bandwidth
Bandwidth is the key net measurement
Best effort

Task Scheduling

Computers model and monitor real world

Devices use the Internet

Move computing to the data

Exploit data locality

Perishable data streams

Abundant intra-city access bandwidth
Latency is the key net measurement
Predictable, deterministic response time
Packet Scheduling

Computers are integral parts of real world

@ usignire
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Glenn’s 2019 In-and-Out List (Technology)

Out

IN

CPUs

Deductive Programming

Virtual Machines

Datasets

Location Driven by Economy of Scale
Discrete runs

Edge Computing
Vertically-integrated clouds

North-South Network Traffic

GPUs and TPUs

Inference Engines

Containers, Microservices, and Lambdas
Data flows

Location Driven by Required Latency
Continuous operation

Multiple Collaborating Edges
Horizontally-cooperating clouds

East-West Network Traffic

@ usignire
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Glenn’s 2019 In-and-Out List (Programming)

Out

IN

User Interface
Interact with user
Respond

Explicit Programming
Explicit intentions

Focus on apps

Device and environmental interfaces
Interact with whole environment
Anticipate

Stating intentions

Machine learning (discovery)

Focus on data streams

@ usignire




Connected Collgboration Skype

Application Latency

11

F

0.1psec fusec  10psec  100psec  Tmss 10msec  00msec  1sec  10sec

Electromagnetic

Me:hanical

Dedicated Edge Cloud Traditional Cloud
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Barcelona

Supercomputing EXCELENCIA
Center SEVERO
OCHOA

Centro Nacional de Supercomputacion i)

,‘/ ©

Earth System
Modelling:
requirements and
challenges

Kim Serradell
Computational Earth Sciences

BDEC2 Kobe 2019 EnNes ;w /
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Earth System Modelling Workflow

HETEROGENEOUS
DATA

—————————————————————————————————————

|
1
i
INITIAL i SIEOIRTAE1
CONDITIONS . ] post-processing
! : analysis
: ;
; |
; |
I 1
| T —————
: i
: l Servers / Cloud
I Fast delivery :
: results I
\ /
\\\ ’/I

enes U«/’
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Pre-processing

Deal with massive and heterogenous

TEROGENEOUS amount of data (Earth Observations)

DATA * Sensors (with valid and non valid data)

\/

 Satellite data

Complex processes to build initial
conditions

* Real-time data

e Data assimilation

INITIAL *  Model checkpoints as initial conditions
CONDITIONS

@

Center
Cenire Macional de Suparcampulacion



141

Model simulation

* Traditional HPC

* High-powered nodes, large batch jobs, low-latency

networks to deal with increasing problem size
(resolution, ensembles, ...)

H PC * Programming models to deal with heterogenous
architectures (DSLs and ”separation of concerns”)

* Reproducibility

* Software Stack (using tools like Spack or
Containers)

* Results (CMIP6 exercise 2 ~ 100 models)
Fast delivery

checkpoints results * Operational services

simulations

e Storage
* Periodic output of selected variables
* Fast delivery (for meteorological applications)
* Traditional (mix disk/tapes) for later analysis

)

Barcelona

Supercomputing eres s

e ks .
Suparcompulacicn

@
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Post-processing

Multiple data sources to validate results

HETEROGENEOUS * |In-situ analysis - visualization

* Reformatting, sub-setting, re-gridding, averaging...
* Limit as possible data transfers
* On user demand analysis and needs

* Reliable dissemination platforms

STORAGE * Earth System Grid Federation (CMIP6: 15 to 30 Pb
post-processing of data)
analysis
* Curated archive, identification and citation

* Efficient and timely handling

* Required throughput for real world

:i‘% applications

* Climate services

=y A — * Machine Learning growing need e

@
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And last but not least...

* We need powerful, reproducible and easy to adopt
workflows to orchestrate the full earth modelling

* Don’t forget “Human factor”
* One individual, multiples roles

* Training Research Engineers, Computer Scientists...
* |dentify end-users: Earth Scientists, Data Scientists, Policy Markers...

* Extreme Earth Flagship
* Technology case (Science Cloud, Big Data
handling and Distributed extreme-scale computing)
e http://www.extremeearth.eu/technology-case

Barcelona

Suparempuiing enes C//
Conter EUROPEAN NETWOLR

Ceniro Nacicnal de Suparcampulacion FOR EMATH STSTEN HODELLING


http://www.extremeearth.eu/technology-case
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Barcelona

Supercomputing EXCELENCIA
SEVERO
Center OCHOA

Centro Nacional de Supercomputacion ]

Thank you

kim.serradell@bsc.es
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COMMENTS FOR BDEC MEETING

Dan Stanzione

Executive Director, TACC
Associate Vice President for Research, The University of Texas at Austin
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THESE WORKFLOWS ARE ALREADY HERE

» We dlready see this kind of work at TACC

» An exemplar project, DARPA's Synergistic Discovery and
Design
» Multiple robot-driven experimental facilities feeding data into an

HPC-enabled repository, with hundreds of analysts consuming via
web services.

T;’@@ TEXAS 2/18/19
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@ Synergistic Discovery and Design

Objective: Develop data-driven methods to accelerate design in domains that lack complete models.
Design in domains with

cienti'c theories

Historically Mathematical models F Computer aided

& design tools
Simulation Integrated Circuits Aero_nauti{_:s _ _
Design in domains with
incomplete scientific theory
2 P - i g ;.}:‘
SD2 | Qata & ) . Data-driven i
Discovery Algorithms design tools L) iz
P
Perovskite Protein Design
Chemistry

DoD Applications: Foundational technologies with use cases Algorithms for scientific discovery and design

(olevant 1o national secnity; such_ ase L + Al methods that considers trillions of theories and
« Sensors to detect Chemical, biological, radiological, and converges on ones that fit the data

nuclea_r {CERNY Boenis i « Al methods that meets or exceeds human performance
« Organisms that detect and metabolize nuclear waste to in discovery and design

remove radiological threats i '
: o ; « Human-computer team that discovers a new subfield of
+ Inexpensive, efficient solar materials science though analysis of failed experiments at scale



Data-Centric Scientific
Discovery

= P{alB)P(B)

s +B3C
= FE+F

Validated
models

Experimental
outcomes

Extract scientific knowledge and
theory directly from experimental
data at scale

SD2E Data and Analysis Hub

Validated

Constraint
s

models Designs

Scientific

hypotheses Observed behavior

(Successes and

failyres) . .
Hypothesis and Design Evaluation
Virtualize experimental workflows to
facilitate reproducibility

Challenge Problem Integrator
Evaluation through quarterly challenges problems

148

Design in the Context

of Uncertainty

S I S N
» >
e

Automate development of robust
designs despite incomplete

scientific knowledge

Design/
Experimental
plan
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SD2E Integrated Infrastructure Components

* User Applications * 125 deployed functions
- Discovery Workspace » ElasticSearch/Logstash/Kibana
* JupyterHub * 400,000 log events/day
+ 100+ shared notebooks * Data Catalog API _
« SynBioHub * JSON schema-informed metadata management
* 25,000+ synthetic biology components + TACCS3 )
« SD2ECLI * Performant S3-compatible uploads

+ Comprehensive scripting support .
* Computing Resources

« Developer Services (Hosted) * Stampede2
* GitLab +« Wrangler
+ 100 active repositories « Maverick 1 &2
* Jenkins * Lonestarb
+ 70 CICD pipelines * Rodeo & Jetstream
* Portainer
* 31 user-managed Docker Swarm services « Data Resources
» Stockyard
* Web Service APIs * Corral _
« Agave Science API * AWS S3+Glacier

+ 45+ user apps
* Abaco Functions-as-a-Service
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2
£
2
&

Integrated Cyberinfrastructure Design

S =S G =
pupyter y \
—
Portal Automation JupyterHub Learning Web Developer
Center . Integrations Tools
DOMAIN-ENABLING SERVIGES
Science APls Identity & Access Data Protocols Smart Search
DATA DEPOT
SYSTEM SOFTWARE AND COMPONENTS

Ansible Django Docker GPFS InCommon Jenkins Lustre MVAPICH Oauth2 OpenStack Slurm Vmware wso2

HARDWARE RESOURCES
| 1 1 |
| 1 1 |
k Jk Jb 3 -
CIDudS}stems ngh Perfom'ﬂnoe Databases Scalable Storage

Web-based
Apps

Context-
aware Web
Services

Pervasive
and
Performant
Storage

Software
Foundations

Exascale
Physical
Systems +
Cloud




ARCHITECTURAL APPROACH

» This requires some new top level architectural approaches, but many things
stay the same:

» HPC apps should still be programmed like HPC apps
» Al/DL/ML apps should still be programmed like HPC apps ;)

» Web services provide the top-level glue between subsystems, security architecture,
etc.

» Data fransfer may not Be performant in these environments.
» We have building blocks enabling this now:
» All our systems have a front end, persistent REST API
» All systems now.support container tfechnology, including grabbing from repos.

» Policies still need to evolve — a single security standard would be nice.

ﬂ;\@@ ' TEXAS 2/18/19



NEW SYSTEM SUPPORT ACTIVITIES

» Full Containerization support (this platform, Stampede, and *every other* platform now
and future.

» Support for Conftrolled Unclassified Information (i.e. Protected Datq)

» Application servers for persistent VMs to support services for automation.
» Data Transfer (ie. Globus)

» Our native REST APIs
» Other service APIls as needed — OSG (for Atflas, CMS, LIGO)

» Possibly other services (Pegasus, perhaps things like metagenomics workflows)

. TACC TEXAS > )OQ 4 2/18/19 IB



THANKS!

DAN STANZIONE
DAN@TACC.UTEXAS.EDU

T;’@@ TEXAS 2/18/19
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A Brief Report on the Utilization Status
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Overview

= Sunway Taihu Lig ht The node-hom: share of major
application fields

O Over 40,000 computing nodes gy
o Consumed over 210,000,000 effective node-hour Intelligence |  Other

in 2018 (about 60% utilization rate) Aeronzutics 2% Applizc;tions
O Occupied 8.4 PB out of the total 20 PB storage A

20%

= Major application fields

5 . B  Advanced : a stem
O Earth System Science: CESM, WRF, CWRF etc. | Eemkana: V E r;:l By
O Life Science: GROMACS, DOCK, Gene Screening, oy 7% 58%
etc. A\ .
8 WEIGHEL

O Material Science: VASP, LAMMPS, etc. | science 1

' 5%
0 Advanced Manufacturing: OpenFOAM, Palabos,
swLBM, etc. jﬁ Life Science

6%
O Aeronautics and Astronautics .
O Artificial Intelligence

=/l ExeEitETEn

tional Supercomputing Center in W




Earth System Science

= CESM

O

O

Community Earth
System Model (CESM)

Consumed around
75,000,000 node-hour

Generated 400 TB data,
most in the form of
NetCDF

The major users are the
Qingdao National
Laboratory for Marine
Science and Technology,
and Tsinghua University

EREHETTETEDIL

Supercomputing C

= WRF & CWRF

O

O

Weather Research and
Forecasting Model (WRF)

Consumed around
50,000,000 node-hour

Generated 2.5 PB data,
most in the form of
NetCDF

The major users are the
China Meteorological
Administration and local
meteorological companies
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Aeronautics and Astronautics

m Unified Astronautics 0 Airliner Design
Numerical Simulation

o C919 Airliner design
Software J

o Consumed around
o Consumed around
40,000,000 node-hour 2,000,000 node-hour
o Generated 200 TB data o Generated 50 TB data
o The major user is the o The major user is

National Laboratory for ,
Computational Fluid the China Aerospace

Dynamics of Beihang Establishment
University.

”

=/l ExeEitETEn

2 tional Supercomputing Center
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Conclusion

m The Sunway TaihuLight is mainly used in the following fields:

0o Earth System/ Aeronautics and Astronautics/ Material Science/ Life Science/ Advanced
Manufacturing/ Machine Learning/ ..

0 Most of the applications are based on open-source codes

= The requirements from scientific and engineering applications for
the ACP
o Tremendous computational capacity, storage capacity and network bandwidth for ultra-
high resolution and large-scale simulation
0 Data compression, data backup, and redundancy deletion

o Ability of conducting real-time and continuous post processing and visualization
o Support for interdisciplinary with certain flexibility

EREHETTETEDIL

Supercomputing C
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Convergence of computing and
storage models in Big Data and
Extreme computing

Martin Swany, Intelligent Systems Engineering

INDIANA UNIVERSITY
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] Convergence of Domains and Functionality

« Computing and Networking

— Virtual bridge encapsulation is essential in many data center networks

« Cloud, HPC and Embedded Systems

— Supercomputers and cloud engines built out of ARM cores

« Network Functions Virtualization (NFV) is the networking equivalent of what
we are doing here

— Common hardware elements can realize routers, firewalls, load-balancers with
software changes

w INDIANA UNIVERSITY
SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING
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Commonalities in execution across the

I spectrum
« Serverless computing / Function as a service

« Over-decomposition in asynchronous many task programming
« Stream processing operators

* Looked at correctly, these are all the same design patterns —
small computational kernels of data (message) driven
operations

w INDIANA UNIVERSITY
SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING




Storage is the same

« Simple storage elements with simple semantics compose to provide a

range of functionality

« Storage and networking for content distribution and streaming data

« Storage plus processing, for serverless, stream and everything else!

w INDIANA UNIVERSITY
SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING
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Converged functionality for an advanced
cyberinfrastructure platform

We have a chance (and a charter) to design something that is perhaps
the first radical departure from existing abstractions in many years

We should focus on applications that can take advantage of it

Bare metal, choose your own stack is closer to indifferent cohabitation
than convergence



In LOCUS In-Network Processing at the Edge
Edge Devices T

InLocus is an architecture that allows streaming .

data to be processed in the network. InLocus Microcontroller
targets microcontrollers, microprocessors, network SoC C t
processors and Field Programmable Gate Arrays © omputer
(FPGAs) that can be embedded in the network for *  FPGA

highly efficient data processing at the edge.

Motivation « Smart Cities and the Internet of
_InLocus Compute Node Things generate massive data. Moving
processing to the edge improves latency and
reduces network usage.

regjsrra m)n

Implementation « Network Functional Units form
a distributed, heterogeneous compute fabric of
MCUs, FPGAs, and resource-constrained

i i ; devices, programmed and dynamically routed
: by a central server (Unified Network Information
Task Scheduler SerVice (o] § UNlS)
L'_ Future Work « Benchmarking against VM-based
__F () applications like Heron to compare

performance of C and FPGA implementation
with traditional cloud architectures.

w INDIANA UNIVERSITY
SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING



Application Drivers

Christine Sweeney, LANL, BDEC2, Kobe, Japan 2-20-19

Data Analytics at the Exascale for

Free Electron Lasers (ExaFEL)

+ SLAC-to-NERSC interfacility workflow
https://vimeo.com/slaclab/review/24265

8577/8aaal6actb
» Acceleration of nanocrystallography
and single particle imaging analyses

Requirements:

» High throughput data streaming and
fast data analysis (real-time)

* Real-time data reduction

« Interfacility data flow from user facility
to analysis at supercomputer or cloud

Pl: A. Perazzo, LANL PI: C. Sweeney

ExalLearn: Codesign Center for Machine

Learning Technologies

 Closed loop control of experiments via
real-time reinforcement learning

« Surrogate model development

. Learnmg on multi- modal data

. packed I_urh:al
yl d lers cylinde:

-—».*.—».—-.-.

&ﬂ lél & !L lﬂ

Image courtesy Pawel W Majewskl and Kewn G. Yager
Requirements:
* Model trained at supercomputing facility
and deployed at user facility
* ML control of devices at the edge
» Ensemble runs to create synthetic

training data.

Pl: F. Alexander, Control Use case Lead: C. Sweeney

Iwrizontal !arge

ez uricrvt Iluns

2M15M19 | 1

Los Alamos National Laboratory


https://vimeo.com/slaclab/review/242658577/8aaa06acfb

Application Drivers (cont)

Real-time Adaptive Acceleration of Coherent Diffraction Imaging
Dynamic Experimental Science « Ptychography, laminography and
» Experiment/simulation/emulation for tomography of samples
dynamic compression light source
experiments. N
[ Yol ,.:
Simulate ' Simulation Vidaston Pl
Simulation Results i scientific 5 ;
M| G - : An:rl]\{ize _ &E’é‘iﬁ.":ﬁ E
[ Expg:;nnental q:} == Gompee p?ucesses
Experiment " Experiment :
F Experimental 'ﬂ’ Resutls” R | microns
Requirements: Requirements:
* Real-time emulation and data « High throughput data collection
analysis for human decision-making  « Compute-intensive (GPU) local and/or
» HPC for ensemble simulations remote analysis
* Integration of data from materials « Fast data reduction and data tidying
repositories » Streaming data and data formats
Pl: J. Ahrens, Co-Pis: C. Bolme, R. Sandberg Pl: R. Sandberg

2115118 | 2

Los Alamos National Laboratory



Basic Application Patterns Identified

* Flow of raw and/or processed data between many locations: edge
hardware, user facility, supercomputing center, cloud and users

» Analysis on streaming data in real-time (fast feedback and reduction)

» High-bandwidth data transfer between edge, local and nonlocal
compute and storage

* Human-in-the-loop and collaborative (with potentially remote users)
decision-making
» On-demand and reserved provisioning of supercomputing resources

« Simultaneous processing of data at multiple levels (edge (detector),
streaming analysis, batch analysis, human-in-the-loop decision-
making, closed-loop inference for control)

» Generation and synthesis of multi-modal data (streams) from multiple
sources (edge (detector), analytics results from supercomputer,
simulation, machine learned models, scientific domain databases,
cloud)

Los Alamos National Laboratory 21519 | 3



Base-level Components Needed

Connectivity:

» Novel streaming protocols and abstractions to enable streaming between
heterogenous resources and with constraints.

» Heterogeneous data lakes to support data stored in distributed locations, on
various storage platforms and with various security constraints.

» Schedulers that operate on heterogeneous workloads (containers, tasks, etc.)

« Composition of services on cloud, mobile and supercomputers

Facility support:

» Resource provisioning for semi-scheduled, on-demand, bursty, and pseudo real-
time workloads

« Effective but non-intrusive authentication between facilities

* Front-end services at supercomputing facilities

Usability:

» Recovery mechanisms for computations that may fail anywhere

» Execution and data version provenance across converged platform

* Mechanism for performance- and arena-portable (cloud, mobile, supercomputer)
code

Los Alamos National Laboratory 2/15M19 | 4



Specific Technologies

Programming models:

« Parallel programming models that will enable flexible, portable,
computations all the way out to the edge.

» Programming models that can extend across arenas (cloud, mobile,
HPC) for connecting services or for distribution of compute.

* Programming models that support data models that are abstracted
from the storage type.

Workflows:

 Abstractions and interfaces that enable users to specify high-level
constraints (result quality, performance, resource usage) on workflow.

 Mechanisms that allow workflows to interface with each other
Domain-specific languages and interfaces:

« Abstracting novel low-level protocols and programming models to aid
in the convergence of services in the cloud and HPC arenas

Los Alamos National Laboratory



Building the Open Storage Network

Alex Szalay
Christine Kirkpatrick, Kenton McHenry, Alainna White
Steve Tuecke, lan Foster, Joe Mambretti

Institute for Data Intensive Engineering and Science

idies



Computational and Networking Infrastructure

44—t 172
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The NSF has invested significant funds into high performance
computing, both capacity and capability

— These systems form XSEDE, a national scale organization with
excellent support infrastructure

The NSF has invested about $150M to bring hugh-speed
connectivity to over 200 universities in the CC-NIE and CC*
programs

— Internet2 provides a stable high-speed backbone at multiple 100G
lines

Storage infrastructure largely balkanized

— Every campus/project does its own specific vertical system, lots of
incompatibilities and inefficiencies

— BIg projects need petabytes, also lots of ‘long tail’ data
Cloud storage not a good match at this point for PBs
— Wrong tradeoffs: cloud redundancies too strong for science
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« The NSF has funded 150+ universities to connect to
Internet2 at high speeds (40-100G) for ~$150M

 |deal for a large national distributed storage system:
— Place a 1-2PB storage rack at each of these sites (~200PB)

— Create a redundant interconnected storage substrate
Incredible aggregate bandwidth, easy flow between the sites

— Can also act as gateways/caches to cloud providers

— Automatic compatibility, simple standard API (S3)

— Add Globus to the top layer (G-Connect, GlobusAuth)
— Implement a set of simple policies

— Enable sites to add additional storage at their own cost
— Variety of services built on top by the community

« Estimated Cost: ~$20M for 100 nodes

System could be the world’s largest academic storage facility




Transformative Impact

+ +

t

« Totally change the landscape for academic Big Data
— Create a homogeneous, uniform storage tier for science
— Liberate communities to focus on analytics and preservation
— Amplify the NSF investment in networking
— Very rapidly spread best practices nationwide
— Universities can start thinking about PB-scale projects

* Impact unimaginable
— Links to XSEDE, NDS, RDA, Globus

— Big Data projects can use it for data distribution
« LHC, LSST, OOI, genomics

— Small projects can build on existing infrastructure
— Enable a whole ecosystem of services to flourish on top

— Would provide “meat” for the Big Data Hub communities
» Enable nation-wide smart cities movement

New opportunity for federal, local, industrial, private partnership




Community prototypes for different use cases, e.g.

i.  Move and process 1PB of satellite images to Blue Waters
using just-in-time streaming

ii.  Move specific PB-scale MREFC data from Tier1 to multiple
Tier2s at universities for detailed sub-domain analytics (LSST)

iii.  Create large simulation (cosmology or CFD) at XSEDE, using
ML-driven data compression and move to a university to include
in a Numerical Laboratory

iv. Take a large set of LongTail data with small files through a
DropBox-like interface, save them on OSN and organize into
larger containers, and explore the emergence of broader context

v. Interface to cloud providers (ingress/ egress/ compute),
especially with GPU allocation




...................

Over the next 5 years it will host and move much of the
NSF generated academic data

Will establish best practices and standards

Open Data Services migrate one level up, built over
trusted storage

Some time in the next 10 years most academic data will
migrate into the cloud due to economies of scale

The OSN will not become obsolete, but becomes part of a
hierarchical data caching system

It will also provide impedance matching to the Tier0/1 to
Tier2 center connectivity of MREFC instruments/projects



...................

....................

High end computing has three underlying pillars
— Many-core computing/HPC / supercomputers

— High Sped Networking

— Reliable and fast data storage

The science community has heavily invested in first 2
— Supercomputer centers/XSEDE, Internet 2, CC-NIE, CC*

Time for a coherent, national scale solution for data
— Needs to be distributed for wide buy-in and TRUST

Only happens if the whole community gets behind it
KEEP IT SIMPLE and AGILE!

openstoragenetwork.org



Scientific Methods Transformation via Al/Deep Learning &
Advanced Cyberinfrastructure Platforms (ACP): Fusion Energy Exemplar

William M. Tang
Princeton University/Princeton Plasma Physics Laboratory (PPPL)

Big Data & Extreme Computing 2nd Series, (BDEC-2)
Workshop 2: Kobe, Japan

February 19-20, 2019

Princeton/PPPL Fusion Al Team:
Jullan Kates-Harbeck (Harvard U/PPPL), Alexey Svyatkovskiy (Princeton /Microsoff)

Eliot Feibush (PPPL/Princeton), Kyle Felker (Princetorn/ANL), Ge Dong (Princetor/PPPL)

Dan Boyer (PPPL) & Keith Enickson (PPPL)
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Al/Deep Learning: Scientific Methods Transformation
Exemplar: Fusion Energy

Most Critical Problem for Fusion Energy —>

Accurately predict and mitigate/avoid large-scale major disruptions in

maagnetically-confined thermonuclear plasmas such as ITER — the $258
interational buming plasma ‘fokamak”

» with goal of 10X ‘break-even” and operation scheduled for ~ 2026

Recent Status = described in defail in NATURE article (accepted for
publication, January 2019)




Success of ITER Requires Sufficiently Low Disruption Rate

Availability > 80%

(during  operation

» Mid-pulse disruptions eliminate
planned discharge time following
disruptive event = greatly reduces
physics productivity

periods)

Design target <10%
disruptivity

* Disruptions can require /ong recovery time
bad for overall shot frequency

* Disruption heat fluxes can reduce
component lifetime
(e.g. divertor target ablation)

« Damage to in-vessel components can
require shutdown for repair




Control Capabilities Needed for Real-Time Experimental Planning 181
with Dan Boyer, Keith Erickson, ... and especially experimental/advanced diagnostic expertise

Faster-than-real-time prediction

Forecast |
flﬁ[utre_beglg\hr:ﬁr of the “Where we think
shot via FRNI \we can be"
Real-time & —
Diagnostics | Estimate: plasma . Supervisory control: shut
| state from limited Where Actuator | down the shot orchange
measurements (DIII-D)|\, We think plan mission requirements (TBD)
| we are
Real-time prediction FTT——— /
on DIiI-D 2 to optimize performance ;}‘IN h:re wo
Where ______»| +avoid machine limits ml dwe "
we want via FRNN & DIII-D couldgo
togo Much-faster-than-real-time prediction

* Can we make our models fast & accurate enough?

--- €.0., Via reinforcement learning/inference/ ......

* Can we make our models realistic enough?

--- €.0., Via focused actuator planning with experimental partners



Control Methods with Containers
Ref: Vallery Lancey, Lead DevOps Enqineer, ‘Checkfront”

* Managing a system using human and internal controls
* Inputs dictate what the controller should do (setpoint)
 Qutputs dictate what the controlled process should do

Closed Loop Container: (i) Contains feedback from the process to the
controller; (ii) Controller able to self-correct to achieve desired outcome

’ce
anpv‘,' —_— Con‘l‘ro“el‘ > ‘
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Control System Management

Traditional: a"sysadmin” examines Automatic: the system tracks its
the system, makes a judgement, own state, and translates the
and performs an action. state to some internal action.

POSSIBLE FRNN DEPLOYMENT INTO PCS @ DIII-D, JET, KSTAR, ...
(A. Svyatkovskiy,, Princeton U/PPPL/Microsoft)

Suggested Approach: Deploy Al/DL FRNN disruption predictor as a web service using “azureml”
and Azure Container service (Microsoft)

1) Train modes as usual using the FRNN package

2) Prepare a "helper code" to deploy the model — (details sketched)

3) Interact with the model via “RESTful API” -- by sending input data in as “JSON" operation and
Receive prediction as “JSON”

4) This approach can serve predictions on the order of a few 100 nano-seconds (<400 nanoseconds),
Including network latency *

* examples available from Microsoft deployment
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In Situ Data Analytics for
Next Generation
Molecular Dynamics Workflows

Michela Taufer

Department of Electrical Engineering and Computer Science
The University of Tennessee Knoxville

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE
BIG ORANGE. BIG IDEAS.’



Project Overview

Project goals: (1) create new in situ
methods to trace rare events such as
conformational changes in classical
molecular dynamics (MD) simulations at
runtime; (2) design new data
representations for machine learning
inferred knowledge and build an global
organization of structural and temporal
molecular properties; (3) integrate
simulation and analytics into workflows
for detection of changes in structural and
dynamic molecular properties and
runtime steering of MD simulations

Pls: Michela Taufer (UTK), Trilce Estrada (UNM), Ewa
Deelman and Rafael Ferreira da Silva (USC), Michel
Cuendet and Harel Weinstein (Weill Cornell Medical
College of Cornell University)

Sponsor: NSF 1841758/1741040/1740990
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Building a Close-loop Workflow

—mEmEEEEEE Data Feedback s T EEEEEES
/ / ——
| = —
S | I
Run n-Strid ! [
| THn AmStride | v I 1 Collective
| simulation steps ] Parallel File I _ |
I I S rieen I | Variables I
! | | | (es,Llustre) | | | MlL-inferred I
I | ] = I | algorithms |
: : | 1 A4AMD l
| | Burst Buffer | | | aanalytics l
! I I (I modules I
I Plumed I i I
Dataflow, IR Dataflow J
' ! I ——t
I I !
i Ingestor [ _ _ _ _ _ ~ Retriever [« - - - |
Controlflow = 4 | /
\ Controlflow : ontrolflow Controlflow
\ S s S e S . . .. — / \ —— R e ; % N e e e e e G O e — == j
Data Generation Data Storage Data Analytlcs
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Algorithms for ML-inferred Knowledge

Backbone 1.- Ramachandran Plot
dihedral angles | 7P
| - .
§ & 4 - Final Encoding
2. .
m | F
180 135 90 P—;mégr“tﬁs) °0 138 W

Original 3D protein

Channel:3
N : 1]
L
¥ 2 - Every channel encodes
Atoms’ Cartesian — ‘-,.-—TL+_ - information associated with
coordinates* _ _ Tz particular secondary structures
2.- Distance Matrix and their spatial relationship

3.- Channel Encoding

*Other coordinate systems and distance
representations could also be used

T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer.
Graphic Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.

BIGORANGE
BIGIDEAS
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From Multi-fold Representation ...
... to Image Encoding

T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer.
Graphic Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.
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From Multi-fold Representation ...
... to Image Encoding

T. Estrada, J. Benson, H. Carrillo-Cabada, A. Razavi, M. Cuendet, H. Weinstein, E. Deelman, and M. Taufer.
Graphic Encoding of Proteins for Efficient High-Throughput Analysis. ICPP 2018.
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Challenges and Opportunity

* FEfficiency: Optimize workflows’ performance and power usage
associated to data movement and analytics

e Generality: Build workflows that support different types of
analytics across different MD applications

* Non-invasive: Capture data from MD simulations without
rewriting legacy codes or simulation scripts

e Portability: Execute combined simulations and analytics across
different platforms and with heterogenous resources

e Scalability: (Re)design ML algorithms for knowledge discovery
at scale







Patient Dossier: Implementing medical queries over distributed resources.

The Patient Dossier is a collection of medical queries that can be asked
about a patient.

Each question is answered by a recipe: a
pipeline working over inputs and

+ leveraging ancillary resources
a
» PATIENT: A A
_ & %ﬁ SENSITIVE/PRIVATE
éﬁ s * Ancillary resources are:
NON * Reference data
3 i SENSITIVE/PRIVATE
¢ - * Software tools
- * Inputs are data and parameters
. () %) PATIENT DOSSIER ]
Eh e Data may be made accessible
via data logistics
@ CATALOGUED 4

Input data may be sensitive
* Processing it might make it non-
sensitive

S ANCILLARY
, @ . RESOURCE



OMICS example

Preparing analysis tools

A o o
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Gather and manage data from hospitals and
research projects

Setup pipelines using best practices and state
of the art tools

Run pipelines in the infrastructure in response
to user queries respecting access policies

Composing reusable pipelines
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Preparing the software tools is often cumbersome:
* Provisioning tools like puppet might help, also anaconda
Containers help but:

* Ancillary resources might make it prohibitively large
Light containers running on an environment with provisioned ancillary resources

helps but:
* Software resources might need to be compiled through the container and

make it awkward
We are trying a hybrid approach

ENVIRONMENT
CONTAINER

HARDENED  PROVISIONED INPUTS

DATA
ANCILLARY RES.




Thematic functionalities packaged in pipelines or dependency trees
* Managed by specific teams
Possible to tie to particular runtime environments
* Protect IP of methods and ancillary data
* Transparent use in the overall picture
Comfortable development and deployment of updates
* Develop locally and deployed via containers simply

Workloads can be very heterogeneous:
* Expensive long tasks: NGS alignment
* Exhaustive annotation of annotations: large ancillary resources

195

* Creative approaches: Data exploration, interpretation, machine learning, etc
Workload details and privacy calls for a distributed approach to execution across

Cloud/HPC/Workstation
How to incorporate streaming data is not clear

Cohort-base queries require:
 Awareness of data provided. Indices. FAIR Data?
* Consent. GDPR Compliance?
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