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2 BACKGROUND

1 Introduction

In the tuning and analysis of high performance so�ware, it is crucial to be able to connect the
performance achieved by the so�ware to the capabilities of underlying hardware. If we are
unable to determine to determine and describe the capabilities of the hardware, we will not be
able to tell if the so�ware is reaching the expected performance levels.

The Roo�ine model [1] is an intuitive visual performance model that can be used to put
so�ware performance in the context of the underlying hardware. The peak computation
and communication capabilities of the hardware are used to bound the space of achievable
performance. The performance of a so�ware routine can be viewed within these bounds to
determine if it is close to achieving the available performance.

This report looks at the implementation and performance of two mathematical routines from
the SLATE linear algebra library project. The routines being examined are chosen to illustrate
di�erent aspects of the so�ware and underlying hardware.

In this report we look at linear algebra routine in the hardware context of a current state-of-the-
art high performance supercomputer Summit 1. This class of machine combines CPUs with
multiple GPUs and derives most of its computational capability from GPU acceleration. We will
see if the Roo�ine Model is able to provide us with useful insight into the achieved performance
on this class of machine. Understanding the behavior of high performance scienti�c so�ware
on Summit is essential along the path to Exascale computing.

1.1 Motivation

There have been very few systematic studies looking at mapping the performance of so�ware
libraries to the capabilities of the distributed hybrid hardware platforms such as Summit. Each
node of Summit has 2 IBM Power9 processors and 6 NVidia V100 GPU’s. The GPU’s account
for 97 percent of the double precision computational �ops provided by the machine. Due to
the presence of these powerful GPUs, the nodes are highly provisioned for compute capability.
But the data movement within the nodes from CPUs-to-GPUs as well as the message passing
between the nodes are a well-recognized bottleneck for obtaining scalable performance. We
will attempt to use the Roo�ine model and other bounds models to visualize the performance
of numerical so�ware on this machine.

2 Background

2.1 The Roo�ine Model

The Roo�ine model [1] is a visual performance model which enables an intuitive understanding
of the performance of a given computation kernel running on speci�c hardware architecture.
The hardware architecture can be used to determine multiple bounds on performance based

1https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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2.2 The SLATE Linear Algebra Project 2 BACKGROUND

on characteristics such as the communication bandwidths (cache, memory, network, etc.) and
on computational capabilities (from single-core, multi-core, accelerators, etc.).

The machine hardware characteristics are related to three principal components a�ecting
performance of a so�ware kernel: the computation it does, the communication required, and
the locality of the data.

A basic Roo�inemodel for an algorithm can be obtained by plotting �oating-point performance
(�op/sec) as a function of arithmetic intensity of the so�ware, where arithmetic intensity is
the number of �ops/byte of data. If a computation has a high arithmetic intensity it is less
likely to be limited by the communication bounds of the hardware; it is “compute-bound”.
In contrast, a computation which has a low arithmetic intensity is likely to be limited by the
communication bandwidth of the hardware; it is “communication-bound”. The basic Roo�ine
model can be extended by adding more bounds based on other known hardware/so�ware/-
compiler limitations; for example we could have peak performance bounds with and without
instruction-level-parallelism enabled. These can be used during kernel development to bound
the maximum performance achievable by using di�erent optimization techniques.

The Roo�ine model provides a readily understandable representation that puts the hardware
bounds and the so�ware kernel performance into context with each other, allowing a developer
to see if the kernel’s performance results meet expectations or if they can/should be improved.

2.2 The SLATE Linear Algebra Project

So�ware for Linear Algebra Targeting Exascale (SLATE) 2 [2] is being developed as part of the
Exascale Computing Project (ECP) 3, which is a collaborative e�ort between two US Depart-
ment of Energy (DOE) organizations, the O�ce of Science and the National Nuclear Security
Administration (NNSA). SLATE will deliver fundamental dense linear algebra capabilities for
current and upcoming distributed-memory systems, both GPU-accelerated andmulticore-only.
SLATE is designed to serve as a replacement for ScaLAPACK for the upcoming pre-exascale and
exascale DOE machines. SLATE will accomplish this objective by leveraging recent progress in
parallel programming models and by strongly focusing on supporting hardware accelerators.

The principles of the SLATE so�ware framework were laid out in SLATEWorking Note 3 [2].
SLATE’s design relies on the following principles:

Tiled Matrix Layout: The matrix is represented as a set of individual tiles with no constraints
on their locations in memory with respect to one another. Any tile can reside anywhere
in memory and have any stride. Notably, a SLATE matrix can be created from a LAPACK
matrix or a ScaLAPACKmatrix without making a copy of the data.

Multi-level Scheduling: Node-level scheduling relies on two levels of nested OpenMP tasking,
with the top level of tasking responsible for managing dynamic data�ow dependencies
and the bottom level responsible for deploying large numbers of independent tasks to
multi-core processors and accelerator devices.

2http://icl.utk.edu/slate/
3https://www.exascaleproject.org
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Figure 1: Implementation of gemm as a sequence of outer products.

Batch Execution: Batch BLAS is used extensively for obtaining node-level performance. Most
routines spend the majority of their execution in the call to batch gemm.

Explicit Communication: The Message Passing Interface (MPI) is used for message passing
with emphasis on group communication, with the majority of communication being
structured as multi-casts to varying sets of processes that are identi�ed dynamically.

2.3 Matrix-Matrix multiplication in SLATE

The implementation of SLATEmatrix-matrixmultiplication is described in detail in [3]. Figure 1
illustrates the implementation of the gemm operation C ← αAB + βC in SLATE as a sequence
of outer products executed in an embarrassingly parallel manner, in the sense that each tile of
the output matrix can be computed independently. This outer product gemm implementation
enables a large number of independent operations that can be launched using batch execution
on the GPUs. The batch execution can extract high performance from the GPU hardware even
if each of the individual operations in the batch is relatively small.

The theoretical arithmetic intensity of the matrix-matrix multiplication operation is easily
obtained. The double precision matrix-matrix multiplication from BLAS dgemm(n) does 2n3

�oating point operations while communicating 4n2 data. So it has an arithmetic intensity of
n/2 �ops/byte.

2.4 Matrix Norm in SLATE

The implementation of SLATE norm routines is described in detail in [3]. Figure 2 illustrates
the most complicated case of the matrix-norm, where the matrix is spread across multiple
distributed memory nodes and across multiple accelerators in each node. The �gure shows
the stages of computing the one-norm, i.e., �nding the maximum column sum. This means
computing the sumof all elements in each column and then �nding themaximum sum. Figure 2
illustrates the case with four nodes in a 2D block cyclic arrangement and four devices per node,
also in a 2D block cyclic arrangement. The process consists of four steps:

3
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(1)
internal::
norm<Devices>(Norm::One, ...

(2) blas::axpy(...)

(3) MPI_Allreduce(..., MPI_SUM

(4) lapack::lange(Norm::Max, ...

dev 0

node 0

node 1

node 2

node 3

dev 2

dev 1 dev 3

Figure 2: Stages of the one norm using four nodes in a 2D block cyclic arrangement and four
devices per node in a 2D block cyclic arrangement.

(1) Within each node, each device computes column sums for each of its tiles, using a
specialized device kernel.

(2) Within each node, contributions from all devices are summed up to a local vector of
partial sums using blas::axpy.

(3) Partial sums from all the nodes are summed up using MPI_Allreduce.
(4) Within each node, the maximum sum is found using lapack::lange.

The norm implementations can run on CPU’s or use device kernels implemented in CUDA for
GPU acceleration. These norm routines are embarrassingly parallel and basically boil down to a
sequence of reductions.

We use a theoretical �op count for the norm operation. For the one-norm on a m × n matrix
we would need (m − 1) × n �oating point operations (additions) and would move 2 ×m × n
numbers. This means that the arithmetic intensity of the norm operation is a constant regardless
ofm or n. For this report, we present the performance of the norm operation on a bandwidth-
against-matrixsize chart which will allow us to see how the norm implementation is constrained
by the available bandwidth limits.

4



3 EXPERIMENTS

Figure 3: Summit node architecture (image fromORNLOLCF July 30 2018 TrainingWorkshop
by Judy Hill).

3 Experiments

3.1 Environmental Environment

Performance numbers were collected using the Summit system 4 at the Oak Ridge Leadership
Computing Facility (OLCF). Summit is based on IBM POWER9 processors and NVIDIA V100
(Volta) accelerators.

Summit contains 4608 nodes, each with two sockets (see Figure 3 for the node architecture).
Each socket has one POWER9 CPU and three NVIDIA V100 GPUs. Each two-socket node (2
POWER9s and 6 V100s) provides a double-precision peak-performance of 42 TFlops (tera�ops).
The three V100 GPUs in a socket are inter-connected with 50 GB/s NVLINK. The two sockets
in a node are connected via a 64 GB/s X-Bus, which is a much smaller bandwidth than the
inter-socket connectivity. The nodes are interconnected using via a 25 GB/s, dual-rail EDR
In�niband.

The so�ware environment used for the experiments included GNU Compiler Collection
(GCC) 6.4.0, CUDA 10.1.168, Engineering Scienti�c Subroutine Library (ESSL) 6.1.0, Spec-
trumMPI 10.3.0.1, Netlib LAPACK 3.8.0, and Netlib ScaLAPACK 2.0.2. All our results are for
double precision data types (e.g. dgemm).

4https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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3.2 Experiments with MatrixMultiplication

Our experiments examine if the SLATE gemm implementation is e�ciently using and adapting
to the available hardware and if we can relate the performance achieved to the Roo�ine model.

In order to explore the behavior of di�erent bounds, we look at the performance of double
precision gemm on (1) a single socket, (2) a single node, and (3) four nodes. On each of these three
situations, we further test on two di�erent execution targets (a) the Power9 CPUs, or (b) the
V100 GPUs. These situations expose most of the communication limitations on the machine
(Figure 3).

• Single socket CPU: Bandwidth is limited by the communication with main memory.
• Single socket GPU: Communication uses the high bandwidth memory (HBM) for data
local to a single GPU and travels between GPUs and CPU over NVLink.

• Single node CPU: Now the communication is additionally limited by the relatively small
bandwidth XBar connecting the two sockets.

• Single node GPU: Communication uses the HBM and NVLink but is limited by the XBar
connecting the two sockets.

• Four nodes CPU: Communication between the nodes needs to go through the In�niband
network interface.

• Four nodes GPU: Communication goes through the In�niband network interface, and on
a node uses the XBar, NVLink, and HBM.

Our expectation is that the di�erent communication limitations will be evident in the Roo�ine
views of the executions.

Single socket only: Running the CPU gemm implementation on a single socket means that
the bandwidth should be limited by DRAM and the maximum performance is limited by
the Power9 CPUs. The GPU implementation of gemm on a single socket uses the NVLink
interconnect between GPUs and the Power9, which provides 50 GB/s on each connection (GPU-
GPU, GPU-CPU) leading to a large available aggregate bandwidthwithin a socket. Themaximum
performance of gemm on the 3 GPUs is bounded by the theoretical peak of 3×7.8 = 23.4TFLOPS.

Figure 4 shows the roo�ine curves for double precision gemm on a single socket using the CPU
and GPU implementations. The peak performances reached at the right side of the curve are
close to the theoretical peaks for the CPUs and GPUs hardware. However, the bandwidth-bound
part of the curves (on the le�) are fairly distant from the theoretical bounds for communication.

Single node: Running on single node containing two sockets adds a new communication
limitation to the gemm implementation. The two sockets are connected via an X-Bar switch
that has a bandwidth of 64 GB/s. Both the CPU and GPU implementations of gemm need to
communicate through the X-Bar to complete inter-socket communication.

Figure 5 displays a roo�ine graph that shows the peak performance constraints for the CPUs
and GPUs, and the bandwidth dependent constraints from the DRAM, NVLINK and X-bar. In
the bandwidth constrained part (le� part) of the Roo�ine graph, both the CPU and the GPU

6
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Figure 6: DGEMM performance on 4 nodes .

performance are far from the known constraints. This implies that it may be possible for the
implementation to improve in that region. In the computation-bound region of the Roo�ine
graph (right side), the performance of gemm on the CPU is approaching 750 GFlops which is
fairly close to the theoretical peak performance of 1080 GFlops. For the GPU implementation
of gemm the performance approaches 32 TFlops, which is reasonable fraction of the theoretical
peak performance of 46 TFlops. Note, the GPU performance has not �attened out, but because
of the size of the GPU memory we were unable to run larger problems.

Four nodes: We examine the behavior of the SLATE implementation of gemm in a distributed
setting by running on 4 nodes. In a distributed setting the communication bottleneck is the band-
width between the distributed nodes. For the nodes on summit, the bidirectional bandwidth
provided the In�niband network interface cards is 25 GB/sec each way (Figure 3).

Figure 6 displays a Roo�ine graph with the performance curves for gemm on the CPUs and on
the GPUs. Once again, the communication-bound section of the Roo�ine curves (le� side)
are far from the hardware bounds, implying that there should be performance improvements
available to the implementation. For the CPU, the computation-bound section of the curve
(right side) achieves amaximumperformance of 3.0 TFlops, which is a reasonable fraction of the
maximum theoretical performance of 4.3 TFlops. The GPU performance for gemm reaches 143
TFlops which on 4 nodes (containing 24 V100 GPUs), where the theoretical peak performance
is 187 TFlops.
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Figure 7: Norm bandwidth achieved using CPUs.

3.3 Experiments with the Matrix Norm

Since the matrix norm is bandwidth-limited, these results are measured and presented on
bandwidth charts. The arithmetic intensity of the norm operation is constant regardless of
the problem size, so using a standard Roo�ine graph would provide limited insights. For our
results, we use SLATE to compute the max norm of the matrix. The bandwidth achieved for
the norm operation is calculated by the bytes in the matrix (n×m) divided by the time taken
for computing the max norm. The performance of the norm-operation is measured on 1-socket,
1-node and 4-nodes. The results for the norm experiments are displayed grouped by CPU results
and then grouped by GPU results.

Max-Norm performance on CPUs: Figure 7 shows the bandwidth achieved by SLATE’s norm
implementation on CPUs and the bandwidth bounds between the P9 CPUs and the DDR4
memory. On a single-socket the peak theoretical bandwidth bound is 170 GB/s and SLATE’s
CPU max norm implementation can achieve approximately 80 GB/s. So, on a single socket we
can get 50% of the peak available bandwidth.

On a single-node, consisting of two sockets, the theoretical peak bandwidth from the CPUs to
the memory is doubled to 340 GB/s since each socket is accessing local memory banks. This is
re�ected in the 160 GB/s bandwidth achieved during the norm implementation.

Finally, on four-nodes, the bandwidth achieved by the norm operation is about 600 GB/s. The
norm implementation shows very good scaling from the single socket bandwidth (80 GB/s

9



3.3 Experiments with the Matrix Norm 3 EXPERIMENTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20000  40000  60000  80000  100000

GPU-HBM single GPU local HBM BW 900 GB/s

B
an

dw
id

th
 (

G
B

/s
ec

)

Matrix Size (N)

Bandwidth Bounds on Summit (GPU execution)

genorm:gpus:4 nodes (42 P9 cores + 6 V100s)
genorm:gpus:single node (42 P9 cores + 6 V100s)

genorm:gpus:single socket (21 P9 cores + 3 V100s)

Figure 8: Norm bandwidth achieved using GPUs .

per-socket × 2 sockets × 4 nodes = 640 GB/s).

For all the CPU implementations of the norm operation, we see very good scalability in the
bandwidth achieved, and we get a reasonable 50% of the theoretical peak bandwidth. This
means that it is unlikely that the SLATE norm implementation on CPUs could be improved to
obtain a larger fraction of the theoretical peak.

Max-Norm performance on GPUs: The SLATE implementation of the norm operation on
reads data from local memory and exchanges a limited amount of information with other
processes as needed. For the NVidia V100 GPUs, the bandwidth from the GPUs to local high-
bandwidth memory (HBM) is a very fast 900 GB/s (Figure 3). So, relative to speed of accessing
local HBM, even exchanging a limited amount of information with other processes can become
a bottleneck in the computation.

In Figure 8 it can be seen that using a single socket with 3 V100 GPUs to compute the max norm,Z
the bandwidth achieved is about 295 GB/s and is still slowly increasing. The bandwidth between
a single V100’s and the local HBM is 900 GB/s so the operation is only getting a fraction of that.

Using a single node, which consists of two sockets with a total of 6 V100 GPUs, there is no
appreciable increase in the bandwidth achieved. This implies that there is some other bottleneck
that is preventing the norm implementation from using the full available bandwidth.

Looking at the norm implementation on four-nodes it is seen that the bandwidth achieved has
scaled very well, reaching approximately four times the bandwidth achieved on a single node.
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This would seem to imply that the inter-node communication is not the immediate bottleneck
for this implementation, however there should be improvements possible at a node level.

We did not display additional bandwidth bounds in the GPU norm Figure8, because the aggre-
gated P9-HBM bandwidth for multiple GPUs would so high that the scale of the �gure would
be lost. It is clear that there are other bounds on the norm that are limiting performance.

4 Summary

We examined at the performance of the compute-bound gemm operation in the SLATE linear
algebra library on a distributed memory GPU-intensive machine. We used Roo�ine graphs
to indicate if the performance achieved matched the expectations and bounds that emerge
from the underlying hardware. Our observation is that the gemm implementation in SLATE
performs well in computation-bound regions for both CPUs and GPUs, however there is an
unexplained performance lag in the bandwidth-bound regions. This implies that there may be
opportunities for improving SLATE performance in bandwidth-bound regions.

We tested the memory-bound norm operation to see if the performance achieved indicates
that the SLATE implementation is reaching the bandwidth bounds dictated by the hardware.
Our observation is that SLATE’s norm implementation on the CPU is unlikely to get much im-
provements, however the GPU implementation should be examined for possible performance
improvements.

Roo�inemodels and other hardware-boundmodels are di�cult to use in the context of complex
hardware systems because it is di�cult to say which hardware bounds are relevant. For example,
on a scalable, distributed memory, hybrid system such as Summit, when the operation under
consideration is mostly local but requires some global communication, what would be the
appropriate communication bottleneck? Our opinion is that hardware-bound models are best
suited to simpler systems and small kernels and not well suited for larger operations on complex
systems.
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