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Abstract—We present a novel algorithm for parallel selection
on GPUs. The algorithm requires no assumptions on the in-
put data distribution, and has a much lower recursion depth
compared to many state-of-the-art algorithms. We implement
the algorithm for different GPU generations, always using
the respectively-available low-level communication features, and
assess the performance on server-line hardware. The computa-
tional complexity of our SampleSelect algorithm is comparable
to specialized algorithms designed for – and exploiting the
characteristics of – “pleasant” data distributions. At the same
time, as the SampleSelect does not work on the actual values
but the ranks of the elements only, it is robust to the input
data and can complete significantly faster for adversarial data
distributions. Additionally to the exact SampleSelect, we address
the use case of approximate selection by designing a variant that
radically reduces the computational cost while preserving high
approximation accuracy.

Index Terms—parallel selection algorithm, GPU, kth order
statistics, approximate threshold selection

I. INTRODUCTION

Sequence selection is an ubiquitous challenge that appears
in many problem settings, from quantile selection in order
statistics over determining thresholds in approximative algo-
rithms to top-k selection in information retrieval. One of
the most popular solutions to this problem is the widely-
used Quickselect algorithm [1], a partial-sorting variant of
Quicksort [2]. The close relationship between these two algo-
rithms is not a singularity, but characteristic of the connection
between selection and sorting algorithms. In fact, many im-
provements of Quicksort and similar partitioning-based sorting
algorithms can be directly transferred to the corresponding
selection algorithms, e.g., the deterministic pivot choice im-
plemented using the Median of medians algorithm [3], multiple
splitter elements in the Sample sort algorithm [4], and an
implementation variant optimized for modern hardware archi-
tectures called Super-scalar sample sort [5].

With the rise of parallel architectures, the development of
effective selection and sorting algorithms is heavily guided
by parallelization aspects. The traditional concepts employed
for the parallelization are based on work decomposition, and
have proven to be efficient for multi-core and multi-node
architectures embracing the multiple-instruction-multiple-data
(MIMD) programming paradigm. Unfortunately, the same
strategies largely fail to work efficiently ons modern manycore
architectures like GPUs. The primary reason is that these
devices are designed to operate in streaming mode, and that
their performance heavily suffers from instruction-branching,
non-coalesced memory access, and global communication

or synchronization. As streaming processors like GPUs are
becoming increasingly popular, and are nowadays adopted by
a large fraction of the supercomputing facilities, there exists
a heavy demand for selection algorithms that are designed
to leverage the highly parallel execution model of GPUs
and avoid global synchronization and communication in favor
of localized communication. In response to this demand,
we propose a new parallel selection algorithm for GPUs.
Aiming at a sample selection algorithm featuring fine-grained
parallelism, we follow a bottom-up approach by starting with
the GPU hardware characteristics, and selecting algorithmic
building blocks that map well to the architecture-specific
operating mode. Acknowledging CUDA’s asynchronous ex-
ecution model, and using low-level communication features
inherently supported by hardware, the new selection algorithm
proofs to be competitive with other GPU-optimized selection
algorithms that impose strong assumptions on the input data
distribution, and superior to input-data independent state-of-
the-art algorithms available in literature, open source software,
or vendor libraries.

The rest of the paper is organized as follows. In Section II
we recall some basic concepts of selection algorithms and their
parallelization potential. Section III list efforts that also aim
at parallelizing selection algorithms for GPUs. In Section IV
we present the novel SAMPLESELECT selection algorithm. We
also provide details about how the SAMPLESELECT algorithm
is realized in the CUDA programming model, and how the
low-level communication and synchronization features avail-
able in the distinct GPU generations are incorporated. Sec-
tion V, presents a comprehensive analysis of the effectiveness,
efficiency, and performance of the novel SAMPLESELECT se-
lection algorithm. We conclude in Section VI with a summary
of the findings, and an outlook on future research.

II. SELECTION

For an input sequence (x0, . . . , xn−1), the selection problem
is given by finding the element at position k in the sorted
sequence xi0 ≤ · · · ≤ xin−1

, i.e., finding the kth-smallest
element xik of the sequence. In this setting, we also say that
xik has rank k. If the rank of an element is not unique, i.e.,
because the element occurs multiple times in the sequence, we
assign it the smallest rank.

A. General framework

The most popular algorithms for the selection problem are
all based on partial sorting: If we choose b+1 so-called splitter
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1 double select(data, rank) {
2 if (size(data) <= base_case_size) {
3 sort(data);
4 return data[rank];
5 }
6 / / s e l e c t s p l i t t e r s
7 splitters = pick_splitters(data);
8 / / compute bucket s izes n i
9 counts = count_buckets(data, splitters);

10 / / compute bucket ranks r i
11 offsets = prefix_sum(counts);
12 / / determine bucket con ta in ing rank
13 bucket = lower_bound(offsets, rank);
14 / / r ecu rs i ve subca l l
15 data = extract_bucket(data, bucket);
16 rank -= offsets[bucket];
17 return select(data, rank);
18 }

Fig. 1. High-level overview of a bucket-based selection algorithm
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Fig. 2. Visualization of bucket-based partial sorting

elements si (−∞ = s0 ≤ · · · ≤ sb =∞), we can partition the
input dataset into b buckets containing the element intervals
[si, si+1). An important consequence of this partitioning is
that, aside from the element values, we also partition their
ranks in the sorted sequence: Let ni be the number of elements
in the ith bucket, i.e., the number of elements from the input
sequence contained in [si, si+1). Then these elements have
ranks in the interval [ri, ri+1), where ri =

∑i−1
j=0 nj is the

combined number of elements in all previous buckets.
Based on this observation, we can formulate a general

framework for exact selection: After determining the element
count for each bucket, it suffices to recursively proceed only
within the bucket containing the target rank. Specifically, for
identifying the element of rank k (k ∈ [ri, ri+1)) we proceed
with searching for the element with rank k−ri in this bucket.
The algorithmic framework for such a bucket-based selection
is given in Figure 1 and visualized in Figure 2. Virtually all
popular selection algorithms are based on this approach of
recursive bucket selection.

B. Splitter selection

The choice of splitters in a bucket-based selection algorithm
has a strong influence on the recursion depth, and thus the

total runtime of the resulting algorithm. In the general case,
the optimal splitters separate the input elements in b buckets
of equal size n/b. This results in an algorithm that needs at
most logb

n
B +1 recursive steps, where B is the base case size

(lowest recursion level), below which we sort the elements to
return the kth-smallest element directly. Without considering
the computational overhead of choosing the splitters, their
optimal values are the pi = i/b percentiles of the input dataset.
In practice, these can be approximated by the corresponding
percentiles of a sufficiently large random sample. In terms of
the relative element ranks, the average error introduced by
considering only of a small sample of size s of the complete
dataset can be estimated as follows: The relative ranks of
the sampled elements, i.e., the ranks normalized to [0, 1], are
approximately uniformly distributed: X1, . . . , Xs ∼ U(0, 1)
and, assuming sampling with replacement, independent. Thus
the sample percentiles are asymptotically normal-distributed
with mean pi and standard deviation

√
pi(1− pi)/s [6].

We can thus use the sample size s to control the imbalance
between different bucket sizes.

C. Approximating the kth-smallest element

An important observation in the context of bucket-based se-
lection algorithms is that after all elements have been grouped
into their buckets, the ranks of the splitter elements are
already available: Their ranks equal the aforementioned partial
sums ri. If the application does not require our algorithm
to compute the kth-smallest element exactly, but can work
with an approximation like the k ± εth smallest element, the
selection algorithm can be modified to terminate before the
lowest recursion level is reached. In this case, we can compute
the approximate kth order statistic as the splitter si whose
rank ri is closest to k. In terms of the element ranks, the
error is at worst half the maximum bucket size, and can thus
be controlled by the number of buckets and sample size. If
the distribution of the input data is smooth, the small error in
the element rank translates into a small error of the element
value. However, this is not true for the general case, as for
noisy input data, the induced error can grow arbitrary large.

III. RELATED WORK

In the past, different strategies aiming at efficient selection
on GPUs were explored. The first implementation of a se-
lection algorithm on GPUs was presented by Govindaraju et.
al. [7] for the problem of database operations. The proposed
algorithm recursively bisects the value range of the binary
representation of the input data. A different approach was
proposed by Beliakov [8] – it is based on the reformulation
of the median selection as a convex optimization problem.
Monroe et. al. [9] published a Las-Vegas algorithm for choos-
ing two splitters that bound a small bucket containing the
kth-smallest element with high probability. Alabi et. al. [10]
were the first to use a larger number of buckets in their
selection algorithm, either by uniformly splitting the input
value range (BUCKETSELECT), or based on the RadixSort
algorithm (RADIXSELECT). Furthermore, significant advances
in the theoretical treatment of communication-minimal parallel
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selection algorithms as well as the practical implementa-
tion thereof on distributed systems have been presented by
Hübschle-Schneider and Sanders [11].

Unlike most previous works on GPU selection, our algo-
rithm is purely comparison-based, i.e., we only use the relative
order and ranks of elements to determine the kth-smallest
element.

IV. IMPLEMENTATION

A. Optimizing for memory bandwidth
Every algorithm for sequence selection needs to read each

element at least once. The classical QUICKSELECT algorithm
applied to a sequence of length n needs to read and write
2n elements on average, using auxiliary storage of size
n/2 if the input cannot be overwritten. As the sort- and
selection algorithms are memory bound on GPU architectures
(which implies that the data access volume correlates with
the runtime), we aim at developing an algorithm with a lower
memory access volume. The SAMPLESELECT algorithm we
propose requires (1 + ε)n element read and write operations
on average, with a small and configurable ε parameter and
auxiliary storage of size at most n/4.1

B. SampleSelect
At its core, our SAMPLESELECT implementation consists

of three elementary kernels:
1) The sample kernel builds a sorted set of splitters.
2) The count kernel traverses all data, and determines the

size of the distinct buckets.
3) The filter kernel extracts the elements of a single

bucket.
a) Sample kernel: To select a suitable splitter set for the

following steps, our sample kernel first loads a small sample
of elements into shared memory, and sorts them using a bitonic
sorting network [12]. From the resulting set, we pick the i/b
percentiles for i = 1, . . . , b − 1, and store them in global
memory.

b) Count kernel: At its core, the count kernel is the
combination of two important steps: First we need to identify
which bucket an element belongs into. Then we need to incre-
ment the shared counter for this bucket. While the bucket index
could be identified using a binary search on the sorted splitter
array, the involved index calculations are rather complicated.

Thus, we decided to employ a technique introduced in [5]
and place the splitters in a complete binary search tree that
is implicitly stored in an array. The indexing of this array is
based on the approach often used in binary heaps: For a tree
node at index i, its parent has index b i−1

2 c and its children
have the indexes 2i + 1 and 2i + 2. To reduce the memory
footprint necessary to identify elements from a single bucket,
we memoize the bucket index for each element (called oracle)
in as few bits as possible – on realistic hardware, that means
we use a single byte to store each oracle, limiting us to at
most 256 buckets. The indexing and search tree traversal are
visualized in Figures 4 and 3.

1For single precision inputs based on the parameters providing the greatest
performance. Double precision inputs only require only half that amount.
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Fig. 3. Search tree based on bucket splitters s1, . . . , s8 (left) and its implicit
array storage order (right).

1 double element = data[idx];
2 double tree[2 * tree_width - 1];
3 i n t i = 0;
4 f o r ( i n t l = 0; l < tree_height; l++)
5 i = 2 * i + (element < tree[i] ? 1 : 2);
6 i n t bucket = i - (tree_width - 1);
7 counts[bucket]++;
8 oracles[idx] = bucket;

Fig. 4. Loop for traversing the implicit search tree.

c) Filter kernel: The filter kernel scans through all
oracles, loading only the elements belonging to a fixed bucket
and stores them contiguously using a shared counter that stores
the next unused index in the contiguous storage.

C. Repeating elements
Initially, the SAMPLESELECT algorithm is designed for

sequences of pairwise different elements, each of them having
a unique rank. However, small modification introduced in [5]
enable SAMPLESELECT to handle equal elements: In case
identical splitters sa = ... = se < se+1 occur, the equal
elements are sorted into the eth bucket together with all
elements smaller than se+1. Replacing se by s̃e = se + ε
enables to place identical elements in an equality bucket.
In case the target element is contained in such an equality
bucket, the algorithm can terminate early by just returning the
corresponding lower bound splitter.

D. Sorting small inputs
Different stages of selection algorithms require the efficient

sorting of small element sets. For this purpose, we implement a
simple bitonic sorting kernel [12] operating in shared memory.
As bitonic sorting requires explicit synchronization, the kernel
needs to be restricted to a single thread block, as this is the
largest thread group that is guaranteed to be scheduled on the
same multiprocessor (SM) and capable of leveraging shared
memory atomics. In the distinct algorithm implementations,
the bitonic sorting implementation is used for the splitter se-
lection in SAMPLESELECT, pivot selection in QUICKSELECT,
and for the recursion base case in both algorithms.

E. Recursion
As the recursion depth of our algorithms is not exactly

known a-priori, and communication/synchronization between
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1 i n t l = 0, r = size - 1;
2 double pivot;
3 f o r ( i n t i = 0; i < size; i++)
4 bool smaller = data[i] < pivot;
5 i n t o = smaller ? l : r;
6 l += smaller ? 1 : 0;
7 r -= smaller ? 0 : 1;
8 out[o] = data[i];

Fig. 5. Branchless partitioning algorithm for Quickselect.

the host processor and the GPU can be a source of large
latencies, we use CUDA Dynamic Parallelism to keep the
control flow completely on the GPU.2 For this purpose, we
introduced additional kernels that select the bucket containing
the kth-smallest element, and compute the kernel launch
parameters for the subsequent recursion level.

F. Reference implementation: Quickselect

As a reference point in the performance evaluation, we
implemented a GPU version of the Quickselect algorithm,
and employ the same performance optimizations like for the
implementation of the SAMPLESELECT algorithm we propose
in this work. While SAMPLESELECT chooses a large number
of splitters and (conceptually) partitions the elements into
the resulting buckets, QUICKSELECT only chooses a single
so-called pivot element based on which the input data is
bipartitioned. This difference leads to simpler treatment of a
single element, but in general requires more recursion levels
and more read and write operations to input elements than
SAMPLESELECT.

As a basic building block, we implemented a branchless
bipartition kernel that processes the selection by growing the
array of elements smaller than the pivot from the left and
elements larger than the pivot from the right. The core of the
bipartition kernel is provided in Figure 5.

G. Shared counters

A core functionality of all aforementioned kernels is the
atomic increment of counters shared by a large thread group
that processes the data in parallel. For this purpose, the CUDA
language provides a set of atomic operations that can operate
on shared and global memory. However, operations on global
memory usually require a large degree of synchronization,
and can thus quickly become detrimental to the kernel per-
formance. On the other hand, the much faster shared memory
atomics can only be used to synchronize within a single
thread block, thus requiring additional reduction operations
to combine the partial results to global counts.

For both, the selection kernel and the bipartitioning kernel,
the atomic counters in global memory can be replaced with
a hierarchy of atomics working on different memory levels.
This can be realized by

2CUDA Dynamic Parallelism allows kernels on the GPU to asynchronously
launch new kernels. By utilizing that all kernels launched from the CPU or a
single thread on the GPU will be executed in the order they were launched
in, we were able to implement a simple tail-recursion.

1) Executing the kernel (selection/bipartitioning) once, but
only accumulating the atomic operations for a single
thread block in a shared-memory counter and storing
this block-local partial sum.

2) Computing a prefix sum (also sometimes referred to as
exclusive scan) over all block-local partial sums. These
sums denote the boundaries of memory areas each thread
block will write to, thus assigning an index range to each
thread block. This operation is denoted by reduce in
the following descriptions.

3) Executing the kernel (selection/bipartitioning) a second
time, this time using the index ranges computed by the
previous step to assign an unique index to each output
element.

In case of our SAMPLESELECT implementation, the count
kernel does not require the partial results of the atomic
counters in shared memory. Hence, the last step is merged
with the filter kernel, instead. This works because both
kernels operate on exactly the same element indexes, so the
prefix sums from one kernel can be used in the other one.
The implementation of filter using shared-memory atomics
follows the approach introduced in [13], but differs in the sense
that instead of storing predicate bits as an intermediate step,
it stores the bucket indexes in the oracles.

A consequence of the use of atomics is the significant per-
formance impact of atomic collisions. These collisions occur
in case multiple threads execute atomic operations on the same
operand/memory location. For a moderate number of buckets,
this is likely due to the Birthday paradox [14]. A mitigation
strategy that reduces the number of atomic collisions is warp-
aggregation [15]. The idea is to use warp-local communication
to synchronize among the threads of a warp (1 warp contains
32 threads), and issue only a single atomic operation for each
atomic counter in a warp. As a side-effect, this technique
can reduce the number of atomic operations, especially in
cases where only few different operands/memory locations get
updated atomically. While warp-aggregation is usually used
on global counters that get updated by each thread, the same
techniques can also be used in the histogram-like bucket count
operation, as demonstrated in Figure 6: For a fixed thread, the
loop computes a bitmask containing all threads of the warp that
computed the same bucket index (and would thus introduce a
atomic collision). In the implementation of the bucket count
kernel, the mask computation can also be interleaved with the
searchtree traversal, potentially hiding latencies from shared
memory access.

H. Tuning parameters

The SAMPLESELECT and QUICKSELECT implementation
have a number of tuning parameters and configuration options
which can be modified to optimize for the best performance
on different architectures or input data distributions.

a) Work distribution: The launch parameters, i.e., the
number of thread blocks and threads per block can have a
significant impact on the overall performance of a kernel.

b) Sample size: A larger sample used to select the
bucket splitters generally improves the splitter quality. In
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1 i n t bucket;
2 i n t mask = 0xffffffff;
3 f o r ( i n t b = 0; b < tree_height; b++)
4 bool bit = bucket & (1 << b) != 0;
5 i n t step_mask = ballot(bit);
6 i f (bit)
7 / / keep a l l threads t h a t have the b i t se t
8 mask = mask & step_mask;
9 e l s e

10 / / keep a l l threads t h a t don ’ t have the b i t
se t

11 mask = mask & ˜step_mask;

Fig. 6. Warp-aggregation for bucket indices

consequence, it may decrease the variation in runtime or
approximation error due to imbalances between the bucket
sizes. However, it also increases the splitter-selection overhead,
and can (if the sample size exceeds the shared memory size)
require a more complex splitter-selection kernel.

c) Number of buckets: A larger number of buckets in-
creases the accuracy of a single recursion level, and therewith
decreases the the recursion depth of exact SAMPLESELECT.
However, a it also increases the amount of shared memory
needed to store the partial bucket for the count kernel, and
increases the overhead of the reduction operation when using
shared memory atomics.

d) Unrolling: If data traversal is unrolled for a single
thread, the compiler is able to reorder instructions from
consecutive iterations such that memory access latencies can
be reduced. However, unrolling also potentially increases
the register pressure of the kernel, reducing the maximum
occupancy per streaming multiprocessor (SM).

e) Atomics: The performance characteristics of global
and shared memory atomics is very architecture-dependent.
Furthermore, the warp-aggregation alleviating the performance
impact of atomic collisions introduces some overhead for the
general case.

f) Base case: The input size at which the algorithm
switches to resort a simple sorting-based selection kernel
potentially impacts the overall execution time. However, as the
input size decreases exponentially with the recursion level, we
consider the impact negligible.

I. Kernel fusion

Aside from its stand-alone form, the SAMPLESELECT ker-
nel is amenable to kernel fusion [16] in the situation that not
only the kth-smallest element is required, but also all larger
elements are of interest (often described as top-k selection).
This can be achieved by modifying the filter kernel such
that it copies not only elements from the target bucket, but also
from all buckets containing larger elements. As the splitters are
ordered, the recursion still only needs to descend into the target
bucket, but all elements from larger buckets are guaranteed to
be part of the top-k selection.

V. EXPERIMENTS

In the experimental evaluation of the SAMPLESELECT im-
plementation, we assess its performance for different param-

K20Xm V100
Architecture Kepler Volta
DP Performance 1.2 TFLOPs 7 TFLOPs
SP Performance 3.5 TFLOPs 14 TFLOPs
HP Performance – 112 TFLOPs
SMs 13 80
Operating Freq. 0.75 GHz 1.53 GHz
Mem. Capacity 5 GB 16 GB
Mem. Bandwidth 208 GB/s 900 GB/s
Sustained BW 146 GB/s 742 GB/s
L2 Cache Size 1.5 MB 6 MB
L1 Cache Size 64 KB 128 KB

TABLE I
KEY CHARACTERISTICS OF THE HIGH-END NVIDIA GPUS. THE HALF
(HP) PERFORMANCE OF THE V100 IS FOR THE 8 TENSOR CORES. THE

SUSTAINED MEMORY BANDWIDTH IS MEASURED USING THE BANDWIDTH
TEST SHIPPING WITH THE CUDA SDK.

eter configurations in comparison to the QUICKSELECT im-
plementation. We consider two GPU architectures belonging
to distinct compute generations, and a set of input datasets
varying in size and value distribution.

A. Input data

As the SAMPLESELECT algorithm is sensitive only to the
distribution of the element ranks, not the actual numeric
values, we consider datasets generated as uniform distribution
across a pre-defined set of distinct values. Specifically, we
generate input datasets with sizes from n = 216 to 228,
containing d = 1, 16, 128, 1024 and n distinct values. Using
d < n allows to evaluate the performance impact of repeating
elements. For each input dataset, we also chose a random
rank uniformly at random to simulate a variety of different
workloads. To account for variation induced by random rank
selection, we run each experiment on 10 distinct input dataset
and report the average data along with the variation.

To ensure the correctness of the SAMPLESELECT imple-
mentation, we compare the results to a reference solution
computed by the std::nth_element algorithm from the
C++ standard library.

B. Hardware environment

We run experimental analysis on two different GPU mod-
els – The Tesla K20Xm and the Tesla V100. Their ba-
sic performance characteristics are listed in Table I. The
kernels are compiled using the CUDA 9.2 compiler with
code generation for the highest compute capability en-
abled. To minimize the impact of random noise, we mea-
sure the execution time for each kernel 10 times us-
ing the CUDA Runtime API (cudaEventRecord and
cudaEventElapsedTime), and report the average results
along with the variation.

QUICKSELECT and SAMPLESELECT are both linear-in-
time algorithms. As performance metric, we take the total
execution time of the selection process in relation to the
dataset cardinality (not accounting for the distribution of the
values), invert the ratio, and obtain “throughput” as dataset-
size / algorithm runtime.
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Fig. 7. Parameter tuning benchmarks (single precision). Based on preliminary experiments, we only visualize the performance using global memory atomics
on the K20Xm and shared memory atomics on the V100, as these are the fastest configurations on the respective platform.

C. Parameter tuning

SAMPLESELECT features a list of parameters amenable to
hardware-specific tuning. In Figure 7 we analyze the effect
of different parameter choices on the overall performance
of the algorithm implementations. In particular on the older
K20 architecture, the SAMPLESELECT performance benefits
from maximizing the number of buckets (within the limits
of what a thread block allows for). At the same time the
performance of the SAMPLESELECT implementation remains
mostly unaffected from the number of threads accumulated in
a block (for a fixed number of buckets) and the loop unrolling
depth.

D. Performance comparison with QUICKSELECT

In Figure 8 we present the throughput plots for different
input sizes to compare the shared-memory variants and global-
memory variants of QUICKSELECT and SAMPLESELECT. For
completeness, we consider both, single and double precision
inputs.

A central observation is that the overall performance
winner is architecture-specific. On the older K20Xm GPU,
the implementations based on global-memory-communication
(“sample-g” and “quick-g”) are generally faster than their
shared-memory counterparts (“sample-s” and “quick-s”, re-
spectively). In both precision formats, the differences are
quite significant in particular for the QUICKSELECT algorithm.
Oppose to this, the newer V100 GPU heavily favors the
variants based on shared-memory-communication. There, the
shared-memory variant of SAMPLESELECT is more than 10x
faster than the global-memory variant, while the performance

gap between the QUICKSELECT implementations is much
smaller. For larger input datasets, SAMPLESELECT outper-
forms QUICKSELECT by a small margin on the K20Xm, but
is more than twice faster on the V100. The performance gap
increases for double precision inputs, where SAMPLESELECT
achieves a throughput only slightly smaller than for single-
precision inputs, As the atomics always operate on 32bit
integers, this suggests that the atomic operations expose the
bottleneck for the SAMPLESELECT implementation, oppose
to the QUICKSELECT algorithm whose performance is more
limited by the memory bandwidth. While randomness effects
challenge a comprehensive roofline analysis, we estimate the
SAMPLESELECT algorithm to achieve about one third of the
peak bandwidth of the V100 GPU. Performance trends indicate
that even higher efficiency values may be attainable for larger
input datasets.

Comparing the SAMPLESELECT implementation with previ-
ous implementations of GPU selection algorithms ([7], [8], [9],
[10]) proved difficult, as we were unable to obtain the source
code of these implementations or run benchmarks on similar
GPUs to compare with their reported performance numbers.

The most fair comparison would be between the fastest
algorithm from [10], namely BUCKETSELECT, evaluated on
a NVIDIA Tesla C2070 GPU and our SAMPLESELECT al-
gorithm on the K20Xm.3 On n = 227 uniformly distributed
single-precision floating point numbers, the authors of BUCK-
ETSELECT report a mean runtime of 40.16 ms, while our
SAMPLESELECT algorithm takes 25.6 ms on average. This

3The peak memory bandwidth of the K20Xm is only 40% larger than of
the C2070, however, the floating-point performance is roughly 3.5x larger.
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difference is probably to a large degree due to the aforemen-
tioned hardware differences, as the BUCKETSELECT algorithm
is based on the same fundamental approach, but their splitter
choice is optimized for uniformly distributed data, simplifying
their bucket index calculation significantly.

Our algorithm is thus competitive in the optimal use case
for BUCKETSELECT and doesn’t suffer from the existence of
adversarial input datasets.

E. Data distribution and intra-warp communication

On the right-hand side of Figure 8, we assess the impact
of the data distribution, in particular the collisions resulting
from multiple occurrences of the same value. The distinct
communication strategies differ in the efficiency to mitigate the
effects: On the older K20Xm GPU, atomic collisions have a
large impact on the runtime of both, shared-memory as well as
global-memory atomics. This impact can be avoided by using
the aforementioned warp-aggregation technique for histogram
calculations, while incurring only a small performance penalty
in the general case. The fast shared-memory atomics (initially
introduced with the Maxwell architecture [17]) make warp-
aggregation unnecessary on the V100 GPU.

F. Runtime breakdown

In Figure 9, we visualize the runtime breakdown for the
different kernels of a single recursion level of SAMPLESELECT
and QUICKSELECT on the V100 GPU. We observe that the
recording of oracles (“count with write”) has only negligible
impact on the runtime of the sample and count kernels
of SAMPLESELECT. Oppose to that, the following reduction
becomes more expensive, as additionally to the total bucket
counts, also the partial sums need to be computed, as those
are used by the following filter kernel. The count kernel
of QUICKSELECT completes much faster, as it only compares
the elements against a single pivot element, and updates two
atomic counters. At the same time, the filter kernel is much
slower than the corresponding kernel of SAMPLESELECT,
probably due to the larger memory footprint of the elements
compared to their oracles. In the end, the QUICKSELECT
algorithm needs a much deeper recursion hierarchy, which
implies that the the QUICKSELECT needs a much higher
number of kernel invocations.

G. Approximate selection

Many problem settings do not require an accurate selection
process, but can accept an approximate splitter identification.
For this setting, we reduce the SAMPLESELECT algorithm to
a single recursion level. This “approximate SAMPLESELECT”
algorithm computes only the bucket counts, and selects the
splitter that is closest to the target rank. Obviously, this
introduces some approximation error, while radically reducing
the computational (and memory) work. In Figure 10 we
visualize the throughput performance (y-axis) and relative
approximation error in terms of the element rank (x-axis)
for both the (exact) SAMPLESELECT implementation and the
inexact SAMPLESELECT variant. The problem setting uses 228

uniformly-distributed single precision values, the approximate
SAMPLESELECT algorithm (green triangles) is evaluated for
configurations using 128, 256, 512, and 1024 buckets. Obvi-
ously, the accuracy decreases for smaller bucket counts, and
for using only 64 buckets, the relative approximation error
grows up to almost 1%. At the same time, this variant executes
almost three times faster than the exact SAMPLESELECT (blue
circle). For larger bucket counts, the accuracy increases, and
when using 1024 buckets, 50% runtime savings compared
to the exact SAMPLESELECT come with an average relative
approximation error of .1%. An important observation in this
context is that while the error has a large variability based
on the random sample choice, the performance impact of a
larger bucket count is rather small, so in the approximate
selection algorithm, it seems advisable to always use the
maximal bucket count for which the sample and count
kernels stay within the shared memory limits (b ≤ 1024 on
older NVIDIA GPUs).

VI. CONCLUSION

We have proposed a new parallel selection algorithm for
GPUs. The SAMPLESELECT algorithm employs a set of
splitters for partitioning the input dataset, and low-level syn-
chronization mechanism to preserve much of the asynchronous
execution mode of modern GPUs. The SAMPLESELECT is
competitive to specialized In comparison to state-of-the-art
GPU implementations that impose strong assumptions on the
input data distribution, the SAMPLESELECT is competitive in
runtime while being immune to of coping also with unpleasant
data distributions. We also propose an approximate SAMPLE-
SELECT variant that terminates before reaching the lowest
recursion level, therewith introducing moderate approximation
errors. This variant can still be attractive for problem settings
where the (significantly faster) identification of approximate
splitters is acceptable. In future research we will research
on extending the SAMPLESELECT algorithm to other typical
selection applications like multiple sequence selection, and the
extension to a complete sorting algorithm.
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