
Are we doing the right thing? — A Critical
Analysis of the Academic HPC Community

Hartwig Anzt∗†, Goran Flegar‡
∗Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

†Departamento de Ingenierı́a y Ciencia de Computadores (ICC), Universidad Jaume I, Castellón, Spain
hartwig.anzt@kit.edu, flegar@uji.es

Abstract—Like in any other research field, academically sur-
viving in the High Performance Computing (HPC) community
generally requires to publish papers, in the bast case many of
them and in high-ranked journals or at top-tier conferences. As
a result, the number of scientific papers published each year in
this relatively small community easily outnumbers what a single
researcher can read. At the same time, many of the proposed and
analyzed strategies, algorithms, and hardware-optimized imple-
mentations never make it beyond the prototype stage, as they
are abandoned once they served the single purpose of yielding
(another) publication. In a time and field where high-quality
manpower is a scarce resource, this is extremely inefficient. In
this position paper we promote a radical paradigm shift towards
accepting high-quality software patches to community software
packages as legitimate conference contributions. In consequence,
the reputation and appointability of researchers is no longer
based on the classical scientific metrics, but on the quality and
documentation of open source software contributions — effec-
tively improving and accelerating the collaborative development
of community software.

Index Terms—Scientific Excellence Paradigms, Conference
Contributions, Scientific Reputation, Community Software De-
velopment

I. STATE-OF-THE-ART

Academic research in general – and the field developing
algorithms for high performance computing in particular –
experiences an increasing number of journal publications,
workshop contributions, and conference proceedings [1]. Even
though the development of HPC algorithms is a relatively
small research field, it is virtually impossible to keep track of
all work contributed by peers. This increasing number of scien-
tific publications reflects the pressure imposed by appointabil-
ity for tenure and the fact that the reputation is still primarily
based on scientific metrics like the Hirsch-Index [2] and the
plain number of publications. Acknowledging the merits of
these traditional metrics, the community benefits of classical
publication formats are limited — particularly in comparison
to other, more effective technology dissemination strategies.
Due to the focus on the traditional metrics and with regard to

This work was supported by the U.S. Department of Energy Office of
Science, Office of Advanced Scientific Computing Research, Applied Mathe-
matics program under Award Numbers DE-SC0016513, DE-SC-0016564, and
DE-SC-0010042. H. Anzt was supported by the “Impuls und Vernetzungs-
fond” of the Helmholtz Association under grant VH-NG-1241. G. Flegar was
supported by the CICYT projects TIN2014-53495-R and TIN2017-82972-R
of the MINECO and FEDER.

the sluggish acceptance of “scientific software engineering”
as an academic field, many researchers working on high
performance algorithm development rely on scientific papers
for job security. The papers then often present derivations of
novel algorithms, the development of new implementations for
large-scale parallelism or new hardware technology, or large-
scale simulation runs. In many cases, the algorithm is realized
in a prototype implementation that fulfills the requirements
for proposing and presenting the technology in a scientific
paper or conference contribution, but fails to contribute to
the community’s software ecosystem: the publications typi-
cally lack the level of detail that allows to reproduce the
technology, and, with prototype realizations often remaining
private, the readers are unable to track the code. In response
to the situation, different publication formats now encourage
(or even require) the release of source code and supporting
data. These reproducibility efforts [3], [4] providing reviewers
access to the raw material aim at increasing the replicability,
traceability, and general software quality. The side benefit
is that the community can leverage the novel technology
by accessing the sources and re-engineering the algorithms
in already existing software libraries or simulation codes.
Unfortunately mostly disconnected from these efforts, there
exists a number of established open source software packages
that are developed as collaborative community effort [5] to
provide domain scientists with the technology and the tools
to realize scientific simulations. These software packages
typically feature a high standard in terms of software quality
and software sustainability [6], and serve as the powertrain
behind many of the recent research achievements. At the same
time, these community software packages are dependent on
high-quality contributions from software developers. And with
scientists responding to the academic pressure on publishing
scientific papers, the software packages are often lacking
the production-ready implementation of novel algorithms and
hardware-specific efficient implementations. As a result, soft-
ware packages are inclined to also accept contributions that
lack the level of documentation and code readability that
would be preferred for software sustainability.

In a summarizing field analysis, the community of high
performance computing

• responds to academic pressure by publishing an increas-



ing number of scientific papers (often containing novel
algorithms and parallelization strategies);

• bears a significant amount of prototype implementations
for novel algorithm technology in private possession;

• serves domain scientists by providing open source soft-
ware packages;

• falls short in releasing novel algorithm technologies as
production-ready implementations featuring detailed doc-
umentation and problem-specific efficiency analysis.

Obviously, it is not realistic to quickly change the academic
system to endorse scientific software developers or base the
promotion to tenure on software quality. However, we want
to encourage a journey in this direction by proposing to
base conference contributions no longer only on scientific
papers in the traditional sense, but also on the submission of
well-documented software patches to established open source
community software.

II. THE CONCEPT OF SOFTWARE PATCHES TO OPEN
SOURCE COMMUNITY SOFTWARE

Community software packages are typically developed in
the environment of a distributed versioning system like Git [7]
or Mercurial [8]. These versioning systems are not only able
to take snapshots of source code that can be revisited or
retrieved at a later point, but also provide tools to track changes
and orchestrate modifications introduced by distinct develop-
ers, therewith enabling the efficient development of software
as a collaborative effort. In healthy software development,
every new contribution to the main branch of a repository
(which is the branch containing a stable version that has
been tested to work correctly on all supported backends and
in all supported environments) is submitted as a software
patch. Technically, the concept of submitting a patch is,
depending on the repository hosting platform, realized as a
pull request on GitHub [9] or Bitbucket [10], or a merge
request on GitLab [11]. Independent of the hosting site, the
software patches compose of the new code contributions, a
description of the features/bug fixes added, and are reviewed
by other developers for correctness, consistency, and quality. If
approved by the reviewers, the patch is merged into the main
branch of the repository. The merge integrates the source code
of the new feature. In addition to archiving the patch itself, an
advanced repository hosting platform like GitHub or GitLab
also archives its documentation and discussions that evolved
during the review process. All secondary information can be
retrieved at a later point to track changes and recall arguments
or design choices. Archiving all secondary information also
ensures contributors receive recognition for adding features,
and allows to track who proposed changes or participated in
discussions. In the best case, a software patch is accompanied
with a detailed functionality description (e.g., in terms of
Doxygen [12] comments), a usage example, and an efficiency
analysis for relevant problem and hardware settings. This way,
a patch not only extends the functionality of the software, but
at the same time establishes a comprehensive documentation
of the software and its features.

III. SOFTWARE PATCHES AS CONFERENCE CONTRIBUTION

We propose to emphasize the significance of software
patches by making them a contribution concept for confer-
ences on high performance computing algorithms. The idea is
that researchers submit a software patch that has been accepted
as a pull request / merge request on a public software repos-
itory hosting site as a conference contribution. The program
committee evaluates the patch in terms of software quality,
feature significance, and sustainability against the question of
whether this software contribution qualifies to be presented at
the conference. Obviously, a patch submitted as conference
contribution is required to come with a detailed algorithm de-
scription and feature specification, but also some functionality
testing and efficiency analysis. In the end, the documentation
of a software patch may not be too different from a scientific
paper, however coming with significant benefits:

• Full reproducibility and traceability is ensured, as not
only reviewers but the complete community can track the
software patch;

• The versioning systems keeping track of the authors of
each line helps to identify the main contributors of a
software contribution, but also to link to the right person
in case of technical questions;

• Novel algorithms and hardware optimized implementa-
tions are integrated into open source software already at
the point of publishing the new technology (or shortly
after);

• The whole community can contribute to the development
of a novel algorithm by commenting on software contri-
butions – without the individuals losing the recognition
for the ideas as the comments are publicly available and
tracked by the collaboration platform;

• Designing software patches as conference contributions
naturally implies an extremely high level of code doc-
umentation, and efficiently enables users to evaluate
(based on the patch and the included efficiency analysis)
the appropriateness of a software feature for a specific
problem;

• Presenting patches at a conference not only makes the
whole community aware of a new feature, but domain
scientists can directly approach the developers, establish
contact, and discuss technical aspects;

• The submission rate will be far lower, and acceptance
rate far higher, as each submission will most likely pass
at least some pre-review process by library developers,
and the authors of the papers will be forced to produce
a higher quality contribution.

Since the patch already passed a review process as part of its
acceptance to the community software project, the program
committee does not need to focus on verifying every detail
of the implementation, but rather on general aspects such as
the novelty of the work and the clarity and completeness of
the user-facing documentation. Combined with the expected
lower submission rate, we do not expect that the total effort
for reviewing the contributions for a conference based on



Fig. 1. Screenshot of the patch description on the collaboration platform.

software patch contributions exceeds the reviewing effort for a
conference with traditional total manpower needed to complete
the reviews for a conference with traditional contributions.

Even though the benefits for the community are obvious, a
contribution of this type alone may be unable to provide the
same academic reward a scientific paper comes with. Hence,
in order to boost the appeal and benefits for the contributing
researcher(s), we propose to complement the concept with
post-conference proceedings that accept patches as scientific
publications. Technically, these publications may differ from
“traditional” papers by featuring a shorter general introduction,
as it is not necessary to motivate the importance of scientific
high performance computing. On the other hand, we expect the

technical aspects to be discussed more elaborately, as, beside
the algorithm presentation, the feature description also has to
include the user documentation, usage examples or tutorials,
and a scalability or efficiency analysis. In fact, the technical
content of the publication should comprise all information
necessary to understand the functionality, its application field,
and usage. We also expect that the acknowledgment list would
reflect the community- and reviewer comments, as well as the
hardware facilities accessed to ensure cross-platform portabil-
ity of the contribution. We think that this adapted design of
a conference proceeding does not harm the readability, but
instead makes the publication more attractive to researchers
active in the fields of algorithm engineering and scientific



computing.

IV. EXAMPLE OF A WELL-DESIGNED SOFTWARE PATCH

We use an example to illustrate how to design a software
patch that qualifies as a conference contribution. Instead of
creating an artificial patch, we recall an already existing pull
request to the Ginkgo1 Open Source library publicly hosted on
the GitHub [9] repository hosting site. We emphasize that we
do not select the pull request #1592 because of its technical
content qualifying as a conference contribution, but instead
because of its compactness (qualifying as a short example)
and its completeness in terms of documentation and efficiency
assessment.

The patch starts off with a description of the new capability,
and illustrates the strategy used to realize the feature, see
screenshot of the collaboration platform shown in Figure 1.

The repository hosting platform (in this case GitHub [9])
makes it easy to identify the name of the patch (BLOCK-
INTERLEAVED BLOCK STORAGE IN BLOCK-JACOBI #159),
the contributor (on the left: GFLEGAR), the reviewers that
approved the pull request (on the right: HARTWIGANZT and
TCOJEAN), and also allows to add labels that are somewhat
similar to keywords in a classical scientific application (here:
CUDA, CORE, ENHANCEMENT, REFERENCE). Not employed
in this examples is the possibility to link to a project and
a milestone. Finally, all individuals that participated in the
related discussions are listed. The description of the new
functionality is straight forward, refers to previous patches,
and uses a figure to sketch out the strategies. We note that the
header of the patch also provides information that the patch
was successfully merged into the develop branch of the project
on November 26th, 2018.

What now follows is a community discussion on the
functionality, its algorithmic realization, the software quality,
and implementation aspects. For this patch, there was no
discussion about the functionality itself or its properties. For
#159, only implementation aspects were discussed, with an
example reported in Figure 2.

The collaboration platform tracks the complete discussion
along with the participants and timestamps of the contribu-
tions. The possibility to add code fragments or tie comments
to code lines makes it easy for the reader to link these aspects
to the implementation.

Finally, the patch was accompanied with some efficiency
/performance assessment we list in Figure 3. This also enables
readers and reviewers that do not have access to the target
hardware to follow the argumentation or assess the quality of
the contribution.

When submitting the software patch as a conference contri-
bution, the program committee can (but is not required to)
access and dissect the code on the collaboration platform
hosting the repository. This enables to review the contribution
and to assess the quality of the software patch. For a post-
conference proceeding, one option is to append the most

1https://ginkgo-project.github.io/
2https://github.com/ginkgo-project/ginkgo/pull/159

Fig. 2. Screenshot of technical discussions of the patch implementation.

Fig. 3. Screenshot of performance aspects the patch is accompanied with on
the collaboration platform.

relevant code segments in the appendix – which is what
we do in this example. An alternative is to complement the
proceeding with a digital artifact – or simply refer to the patch
archived in the collaboration platform.

The graphical comparison of the original code and the code
enhancement of the software patch make it easy to evaluate the
algorithm realization. For brevity, we do not list the complete



code of the patch (interested readers may find that under
#1593), but instead show an example of code created by the
patch and code that is modified by the patch. Figure 4 in the
Appendix reports new code contributed by the patch that is
enhanced with Doxygen [12] documentation and comments
indicating future steps. The file shown in Figure 5 is heavily
modified by the patch. The collaboration platform employs
colors to visualize Git’s “diff” command [7], which makes it
easy to track the changes introduced.

V. SCOPE AND LIMITATIONS

We recognize that the contribution format proposed in this
work is not suitable for all types of conference contributions.
One example would be a purely theoretical exposition of
a new algorithm or method that does not yet have a high
performance implementation, and whose practical implemen-
tation or performance is not part of the contributions. Another
example are papers that do aim at contributing an algorithm or
software component, with this paper being such an example.
Thus, we do not propose to completely abandon the traditional
concept of scientific papers, but to allow for a wider variety of
contribution formats that are in line with the contribution type.
Ultimately, it remains the program committee’s responsibility
to judge whether the format of a specific contribution is
adequate for its type.

Even in cases where a patch would be an appropriate
contribution, there could be special circumstances which do
not allow for the publication of a patch. Such examples
include cases where the implementation itself is classified
or proprietary due to a third-party contract. One possible
approach would be to allow the contribution in a classical
paper format, augmented with a statement from the third party
that verifies that the software in question is indeed protected
by the contract, and that the claims made about it in the
contribution are valid.4.

VI. SUMMARY

In this position paper, we propose to base conference
contributions on software patches to open source community
software. The program committee evaluates the patch in terms
of software quality, feature significance, and sustainability
against the question of whether this patch qualifies to be pre-
sented at the conference. Publishing the algorithm description,

3https://github.com/ginkgo-project/ginkgo/pull/159
4Since both authors of this work are only supported through public funding,

this approach is only a suggestion. The actual solution should be discussed
with scientists that have third party arrangements.

the technical analysis, and the performance assessment of the
software patch as post-conference proceeding aims at provid-
ing the authors with the same academic rewards like publishing
the new technology as a traditional journal paper. At the same
time, the community benefits with outstanding traceability, fast
propagation of new technology via community software, and
excellent documentation of source code. In a larger picture,
accepting software patches as conference contribution is an-
other step in the direction of entrenching scientific software
development as an academic field, and moving the academic
evaluation system from traditional metrics (like the Hirsch-
Index) towards community-advancing software contributions.

ACKNOWLEDGMENTS

The authors want express their appreciation for comments
of the anonymous reviewers of the PDSEC’19 workshop.
Acknowledging that this paper is provocative and we sure
failed to consider all aspects of this controversial topic, we
are highly thankful for the valuable feedback and input. We
also thank Fabian Brunk for comments and discussion on an
earlier version of the paper.

REFERENCES

[1] UNESCO science report: towards 2030, ser. UNESCO Reference
Works Series. UNESCO, 2015. [Online]. Available: https://books.
google.de/books?id=SDHwCgAAQBAJ

[2] J. E. Hirsch, “An index to quantify an individual’s scientific research
output,” Proceedings of the National Academy of Sciences of the United
States of America, vol. 102, no. 46, pp. 16 569–16 572, 2005. [Online].
Available: http://www.pnas.org/content/102/46/16569.abstract

[3] Michael Allen Heroux, “The TOMS Initiative and Policies for
Replicated Computational Results (RCR),” https:// toms.acm.org/
replicated-computational-results.cfm, 2017.

[4] S. Conference, “SC Reproducibility Initiative,” https:// sc18.
supercomputing.org/submit/ sc-reproducibility-initiative/ , 2018.

[5] “xSDK: Extreme-scale Scientific Software Development Kit https://
xsdk.info/,” accessed in August 2018.

[6] “Better Scientific Software (BSSw) https://bssw.io/,” accessed in August
2018.

[7] Git https://git-scm.com/.
[8] O’Sullivan, Bryan, Mercurial: The Definitive Guide. O’Reilly Media,

Inc., 2009.
[9] GitHub https://github.com/.

[10] Bitbucket https://bitbucket.org/.
[11] GitLab https://gitlab.com/.
[12] D. van Heesch, “Doxygen: Source code documentation generator tool,”

2008. [Online]. Available: http://www.stack.nl/∼dimitri/doxygen/



APPENDIX

Fig. 4. The patch adds a significant amount of new code to an existing file.



Fig. 5. The patch applies significant changes to already existing code.


