
Interoperable Convergence of Storage, Networking, and Computation

Micah Beck, Terry Moore, and Piotr Luszczek
mbeck@utk.edu, tmoore@icl.utk.edu, luszczek@icl.utk.edu

Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville, TN 37996

Accepted to Future of Information and Communications Conference (FICC) 2019

Abstract—In every form of digital store-and-forward communi-
cation, intermediate forwarding nodes are computers, with at-
tendant memory and processing resources. This has inevitably
originated efforts to create a wide-area infrastructure that goes
beyond simple store-and-forward, a facility that makes more
general and varied use of the potential of this collection of
increasingly powerful nodes. Historically, these efforts predate
the advent of globally routed packet networking. The desire
for a converged infrastructure of this kind has only intensified
over the last 30 years, as memory, storage, and processing
resources have both increased in density and speed while
simultaneously decreasing in cost. Although there is a general
consensus seems that it should be possible to define and deploy
such a dramatically more capable wide-area facility, a great
deal of investment in research prototypes has yet to produce a
credible candidate architecture. Drawing on technical analysis,
historical examples, and case studies, we present an argument
for the hypothesis that in order to realize a distributed system
with the kind of convergent generality and deployment scala-
bility that might qualify as ”future-defining,” we must build it
from a small set of simple, generic, and limited abstractions
of the low level resources (processing, storage and network) of
its intermediate nodes.

1. Introduction

A variety of technological, economic, and social de-
velopments — most notably the general movement toward
Smart Cities, the Internet of Things, and other forms of
“intelligent infrastructure” [1] — are prompting calls from
various quarters for something that the distributed systems
community has long aspired to create: A next-generation
network computing platform. For example, the authors of
a recent Computing Community Consortium white paper,
writing with the US “Smart Cities” initiative [2] in view,
express the research challenge as follows:

“What is lacking—and what is necessary to define in the
future—is a common, open, underlying ‘platform’, analogous
to (but much more complex than) the Internet or Web, al-
lowing applications and services to be developed as modular,
extensible, interoperable components. To achieve the level
of interoperation and innovation in Smart Cities that we
have seen in the Internet will require federal investment in

the basic research and development of an analogous open
platform for intelligent infrastructure, tested and evaluated
openly through the same inclusive, open, consensus-driven
approach that created [the] Internet.” [3] [Emphasis in source]

The experiences of the last two decades have made the
distributed systems community acutely aware of how elusive
the invention of such a future-defining platform is likely to
be [4]. Achieving this vision has been the explicit or implicit
ambition of a succession of well funded and energetically
pursued research and development efforts within or around
this community, including Active Networking [5], Grid
Computing [6], PlanetLab [7], and GENI [8], to name a few.
Although these broad efforts have produced both valuable
research and useful software results, nothing delivered so
far has achieved the deployment scalability necessary to
initiate the kind of viral growth that everyone expects such
an aspirational platform to exhibit. At the same time, chronic
problems with network hotspots were an early and persistent
sign that the Internet’s stateless, unicast datagram service
had scalability limitations with respect to data volume and/or
popularity. This fact has led to increasingly sophisticated and
increasingly expensive technology “workarounds,” from the
FTP mirror sites and Web cache hierarchies of the early years,
to the content delivery networks (CDN) and commercial
Clouds we see today.

The central idea of this paper is that the appropriate
common service on which to base an interoperable platform
to support distributed systems is an abstraction of the low
layer resources and services of the intermediate node, i.e.,
a generalization of the Internet stack’s layer 2. The “Inter-
net Convergence” of the 1990’s developed the “hourglass”
paradigm, with a best-effort datagram delivery as the common
service, or “spanning-layer,” at its narrow waist [9]; we
believe that the paradigm required by the data saturated world
now emerging in edge/fog environments is more accurately
pictured as an “anvil” (Figure 1), with a common service
interface that exposes storage/buffer, network, and processor
resources in a programmable way. Drawing on technical
analysis and historical examples, we argue that in order to
build distributed systems with the kind of interoperability,
generality and deployment scalability that might qualify as
“future-defining,” we must implement them using a small
set of simple, generic, and limited abstractions of the data
transfer, storage and processing services available at this

LAYER 7

LAYER 4

LAYER 3

LAYER 2

LAYER 1

IP

TCP, UDP

APPLICATIONS

PHYSICAL

LINK

STORAGE

IP

TRAN
SFER

TCP, UDP

PROCESSING

APPLICATIONS

PHYSICAL

LINK

A B C

Figure 1. The Hourglass vs. The Anvil

layer. In our model, these abstractions all revolve around the
fundamental common resource, the memory/storage buffer.

2. Background

Given the inclination of computer scientists to add
features, the fact that every form of digital store-and-forward
communication (including the Internet) has intermediate
forwarding nodes that are computers, with attendant memory
and processing resources, makes attempts to create a wide
area infrastructure with services beyond simple store-and-
forward inevitable. Such efforts to make more general use of
these increasingly powerful nodes— a generalized converged
network, in our terminology—predate the advent of globally
routed packet networking (e.g. uux [10]). The exponentially
increasing density and speed, and rapidly decreasing cost of
memory, storage and processing resources over the past 30
years has only intensified the desire to define and scalably
deploy a converged infrastructure of this general description.
Yet despite the general consensus that it should be possible
to do so, this aspiration has remained unfulfilled.

One problem is that the goal of converged networking
runs in the opposite direction of the traditional architectural
approach of the Internet design community, which insists
that services other than datagram delivery must be kept out
of the Network Layer of the communication protocol stack.
This community maintains that the ability of the Internet to
function properly and to continue growing globally depends
on keeping this common service layer “thin”, in the sense that
it provides services that are simple, generic and limited [11].
From this point of view, services other than datagram delivery
should be implemented in systems connected to the Internet
as communication endpoints. Various rationales supporting
this point of view are collectively referred to as “End-to-End
Arguments” [11].

Since a router that has substantial system storage (i.e.
other than network buffers) and generalized computational
resources (i.e. other than forwarding) is neither difficult
nor expensive to build, there have been numerous efforts
to resist this orthodox point of view. The simple fact that
storage and computational resources can be provisioned and

located throughout the network at reasonable cost stimulates
efforts in this direction. Moreover, the apparent opportunity
to create such a powerful distributed infrastructure presents a
temptation that is inherently difficult for computer scientists
and engineers to resist. These facts, however, do not make it a
good idea to add extensions to the fundamental service of the
global Internet, nor do they ensure that if it is built, service
creators and users will adopt it in sufficient numbers to enable
economic sustainability beyond the prototype stage. Indeed,
while a number of plausible network service architectures
have been defined that can provide access to such distributed
resources [5], [12], the widespread deployment of extended
services on a converged wide area infrastructure has proved
elusive.

Perhaps an even more compelling reason for the contin-
ued drive to create such a converged infrastructure is that
some important distributed applications cannot be efficiently
and effectively implemented through decomposition into two
components, one implemented by a “thin” datagram delivery
service in the core of the network, and the other implemented
at “fat” endpoints. For example, some applications require
an implementation that is sensitive to the location of storage
and computation in the network topology. Point-to-multipoint
communication was an early and obvious example. Using
simple repetition of unicast datagram delivery was viewed
as too inefficient by early Internet architects, but an efficient
tree could be built only through the use of network topology
information. Such low level information was seen as inap-
propriate for users of the “thin” and stable Network layer to
access. Thus, multicast was added to Layer 3, fattening that
thin layer with services that seemed to address this issue.
However, IP multicast has proved difficult to standardize and
has failed to achieve the universal deployment of “simple,
generic and limited” unicast IP datagram delivery.

But problems with lack of generality in the intermediate
nodes were manifest even in highly successful Internet
applications. The early growth of the Internet was fueled by
applications that seemed to fit the unicast datagram delivery
model well enough: FTP and Telnet. Of these, the one-to-
many nature of FTP, albeit asynchronous, created a problem
in the distribution of popular and high-volume files. Ignoring

2

the implications of topology led to ineffective use of the
network, with hotspots at servers that attracted high volumes
of traffic and unnecessary loads placed on expensive and
overburdened wide area links. The result was the creation
and management of collections of FTP mirror sites [13], and
the ubiquitous invitation for users to “choose a mirror site
near you”, which meant the use of approximate information
about network topology by the end-user, at a level above
even the Internet stack’s Application Layer.

The advent of the World Wide Web exacerbated the
problem of indiscriminate access to servers with no reference
to network topology or even geography. Mirror sites for file
download proliferated, and redundancy in the storage of all
high-traffic Web content became a necessity. A Network layer
that hides topology from its clients is, after all, an inherently
inadequate platform on which to build high traffic globally
distributed systems. The need to work around this reality
gave rise to automated Web caching [14], [15] and server
replication [16], [17], which were precursors to modern
Content Delivery Networks [18], [19].

It should be noted that although both Web caching and
server replication are obvious examples of the convergence
of networking and storage, they also require computation in
the implementation of policy and server-side processing; and
so in fact they represent convergence of all three fundamen-
tal computational resources. We examine the approach to
convergence that they represent in more detail in section 5
below. Following a different strategy, Logistical Networking,
discussed in section 6.2, implements a convergence of
networking and storage service that avoids the need for
general computation by minimizing policy and other server-
side processing [20], but was later extended to include limited
server-side operations [21].

3. The Convergence Spectrum

The interplay between technological divergence and
convergence is a dialectic with a long history. In the area
of computing and communications, there was an early
divergence in the conception and implementation of several
different information technology resources. Because of the
phenomenon of path dependence [22], such divergence has
tended to be self-reinforcing, leading to a set of familiar
technology silos, such as data transmission and broadcast
using radio frequency signals, virtual circuits, switches and
gates and magnetic or solid state storage cells. The success
of the Internet in the 1990‘s provided the foundation for
the substantial or partial convergence of various traditional
telecommunication silos–telephony, broadcast television, etc.–
in this century [23], but the fundamental silos at the base of
computing–storage, processing, networking–have remained
as entrenched as ever.

The early divergence of basic computational resources
has given rise to conceptual, technological and organizational
silos corresponding to correspondingly isolated communities.
Formal models and methods of reasoning have been adapted
to deal with the complexity and specific issues of each niche.
For example Boolean logic is a useful model of solid state

N
et
w
or
k

St
or
ag
e

Co
m
pu

te

Overlay	
Convergence

Figure 2. Overlay Convergence of Legacy Silos

circuits, and ”stateless” communication is a useful model of
wide area data network built out of switches and FIFO line
buffers.

The development of silos has been an enabling strategy
for modeling and optimization of these quickly evolving
technological fields. However, they have also led to the
creation of service stacks, or silos, with highly specialized
services at the top layers (see Figure 2). But because the
low level resources that these silos encapsulate can only be
accessed through high level services, this inevitably tends to
create barriers to the flexible and efficient use of constituent
low level resources in combination.

The problem with silos as a strategy for dealing with the
complexity and specialization of disparate underlying tech-
nologies has become more pronounced due to the evolution
of low level systems toward general mechanisms that utilize
processors or digital logic controlled by software, firmware
or by hardware designed using computerized tools. Such
generality in low level mechanisms holds out the possibility
of the implementation of highly efficient system architectures,
with optimizations that span traditionally disparate resources.
The challenge is to bridge or eliminate the existing silos, or,
in other words, to implement convergence.

We say that a service interface (i.e., an API) is converged
if it gives unified access to multiple low-level resources
(or services) traditionally available only through isolated
service silos. Historical examples of system design that
leverage convergence include the auto-increment register,
direct memory access I/O and vector processing.

When the goal is to achieve convergence for a service
interface using previously non-interoperable resources, there
are two fundamentally different ways to go about it: overlay
convergence which combines silos at a layer above their
high level services, and interoperable convergence, which
strives to unify their foundations. These two strategies lie
at the ends of a spectrum along which a variety of familiar
examples can be arrayed.

Overlay convergence is the most common approach lying
at one end of the spectrum and creating a high level interface
that provides access to a number of traditionally separate
service silos. We term this approach overlay convergence
because it typically involves the creation of a service that
provides unified access to the existing service silos from
above, through their high level client interfaces (see Figure 2).
By contrast, at the other end of the convergence spectrum

3

STORAGE BLOCK

FILE BUFFER
READ SEND

STORELOAD

PROCESS
MEMORY

SOCKET
BUFFER

COMMON
BUFFER

NETWORK BUFFER STORAGE BLOCK

STORELOAD

NETWORK BUFFER

Figure 3. Read-Send vs. Sendfile

is what we call interoperable convergence. We say that a
platform is interoperably converged if it minimizes the im-
position of unnecessary high-level structure or performance
costs when applying different low-level services, so that
those underlying common resources can be accessed without
incurring the overhead and restrictions that are associated
with complex and specialized service silos.

Both overlay and interoperable forms of convergence
seek to create a common service, or spanning layer, which
supports a generalized set of applications requiring resources
that were previously segregated. The purpose of such a
spanning layer is to enable interoperability in the support of
this rich category of applications [9].

Some examples that fall along this spectrum and illustrate
these different approaches include the following:

• The BSD kernel created an overlay convergence of
Unix process and local file management with local
and wide area networking through the addition of the
socket related system calls. While some calls that act
on file descriptors such as read() and write()
were extended to operate on sockets, the level of
integration is mainly syntactic and does not extend
deeply into integration of common functions such as
buffer management.

• Following the implications of this example, in order
to move data stored in a file to a TCP stream in
UNIX, it was originally necessary to move it into a
process’ address space using the read() system call
and then inject it into the TCP stream using send()
(see Figure 3). A more interoperable approach is a
combined sendfile() system call was added as an
extension to Linux that allows data to be transferred
from storage into a kernel memory buffer and from
there directly to the network without moving it to
process memory or using a dedicated network data
buffer. However this buffer management solution is
applicable only in quite specific scenarios. We thus
characterize it as a workaround.

• A distributed file system converges storage and data
movement in a more interoperable manner. These
resources are traditionally available through local file
management and networked file transfer tools.

• A database system can store a set of tuples without
order, but traditional data movement tools operate on
files. Thus, it is necessary to serialize a set of tuples
as a file in order to send it to a remote database

system. The file is transferred serially, using TCP with
retransmission to keep the serialized data in order. A
somewhat interoperable approach would generate the
serialized stream representing the tuple set on demand,
rather than creating and storing it as a complete file.
A more interoperable approach would be to implement
a specialized protocol that takes advantage of the lack
of natural sequentiality in the tuple set to perform re-
transmission out-of-order. This might require additional
work to ensure that the new protocol was “TCP-friendly”
when used in public shared networks.

• A data analysis system (such as MapReduce [24])
traditionally consists of a deep data store and a dedicated
compute resource such as a cluster or a shared-memory
parallel computer. Visualization typically requires data
to be moved from the data store to the compute
resource which then returns its results to the data store.
User access then requires that the visualization output
be moved to and interpreted by a human interaction
system. A more interoperable approach would allow
computations to be applied to the data in the data store
(in-situ), and for the user to interact with the results of
that computation directly as it occurs.

4. Deployment Scalability

Because it is impossible to evaluate alternative strategies
without identifying a criterion for success, we introduce the
concept of deployment scalability as the goal of creating
converged infrastructure. We define deployment scalability as
widespread acceptance, implementation and use of a service
specification. The workarounds we have described build
overlay converged network but they are not interoperable
and cannot achieve deployment scalability.

In a recent paper [25], Beck makes an argument for a
fundamental design principle underlying systems that exhibit
deployment scalability:

The Deployment Scalability Tradeoff There is
an inherent tradeoff between the deployment scala-
bility of a specification and the degree to which that
specification is weak, simple, general and resource
limited.

The terms “simple, generic and resource limited” are
derived from the classic paper “End-to-End Arguments in
System Design” by Saltzer, Reed and Clark which discusses
them in the context of Internet architecture. The term “weak”
refers to logical weakness of the service specification as
a theory of program logic, and is due to Beck’s partial
formalization of the arguments in that paper. Stating this
principle as a tradeoff is a further refinement of the usual
interpretation of the original paper as an absolute rule
(or principle) requiring or prohibiting particular design
choices [26].

The classic example of the application of the End-to-End
Principle, from which its name is derived, is the location of
the detection of data corruption or packet loss or reordering
in the TCP/IP stack [11]. The scalability argument for end-
to-end detection of faults is that removing such functions

4

from the spanning layer makes it weaker, and therefore
potentially admits more possible implementations. Because
fault detection can be implemented above the spanning layer,
the set of applications supported is not reduced.

The evolution of process creation in Unix teaches a
similar lesson. In early operating systems it was common for
the creation of a new process to be a privileged operation that
could be invoked only from code running with supervisory
privileges. There were multiple reasons for such caution,
but one was that the power to allocate operating system
resources that comprise a new process was seen as too great
to be delegated to the application level. Another reason was
that the power of process creation (for example changing
the identity under which the newly created process would
run) was seen as too dangerous. This led to a situation in
which command line interpretation was a near-immutable
function of the operating system that could only be changed
by the installation of new supervisory code modules, often
a privilege open only to the vendor or system administrator.

In Unix, process creation was reduced to the fork()
operation, a logically much weaker operation that did not
allow any of the attributes of the child process to be
determined by the parent, but instead required that the child
inherit such attributes from the parent [27]. Operations that
changed sensitive properties of a process were factored out
into orthogonal calls such as chown() and nice(), which
were fully or partially restricted to operating in supervisory
mode; and exec() which was not so restricted but which
was later extended with properties such as the setuid bit
that were implemented as authenticated or protected features
of the file system. The decision was made to allow the
allocation of kernel resources by applications, leaving open
the possibility of dynamic management of such allocation by
the kernel at runtime, and creating the possibility of “Denial
of Service” type attacks that persists to this day.

These two classical examples of interoperable conver-
gence point to a significant issue. Changing the low level
services on which existing silos are built requires the redesign
and reimplementation of complex higher level service stacks.
The influence of path dependent thinking and the pain of
abandoning ”sunk investments” explain the natural tendency
of service provider communities to develop workarounds
that preserve widely deployed lower level services.

5. Web Caching and CDNs: A Case Study in
Overlay Workarounds

During what might be called the “Internet Convergence”
in the 1990‘s, the generality and scalability of the Internet’s
datagram delivery model gave rise to the idea of using it to
implement the convergence of broadcast, telephony and data
services [23]. The emergence of unicast datagram delivery as
the only universal Internet service (discussed in Section 2) has
meant that the underlying capabilities of analog connectivity
mechanisms to implement true broadcast and to provide
quality of service guarantees through resource reservation
are not accessible to Voice over IP and Streaming Media over

SERVERPROPRIETARY
NETWORK

Content Delivery Network

SERVER

Cloud

IP Multicast

ROUTER

SOURCE

DESTINATION

Web Caching

CACHE

Figure 4. Overlay Workarounds Addressing Point-to-Multipoint Distribution

IP protocols. In spite of such limitations, the convenience
and cost benefits of convergence workarounds continue to
dominate the commercial development of these services.

But the absence of a universal point-to-multipoint com-
munication mechanism within the common Network layer
of the Internet also left a large class applications without
native support, and this, in turn, has generated a whole series
of overlay workarounds (see Figure 4). For instance, the
distribution of static Web pages (those that require only
minimal rewriting of stored HTML pages) can be viewed as
a form of point-to-multipoint application. A browser cache
uses moderate storage resources in the network endpoint
to capture the delivered Web page and associated metadata
and minimal processing to implement the cache policy and
mechanism. A proxy cache uses larger scale storage and has
a greater processing load, which is supplied by a substantially
provisioned network intermediate node. The convergence of
resources in Web caches led to an architectural development
in which application-specific proxies are uploaded to the a
“middlebox” platform which implements both caching and
general processing.

Web caching played a pivotal role in the expansion of
the Web as a global data distribution service during the
period when intercontinental data links were too expensive
to allow unfettered access by academics. A hierarchical
system of large scale caches was developed and deployed in
US Research and Education Networks [14], [15] and use of
national caches to access Web data across intercontinental
links was made mandatory in many countries.

In spite of its effectiveness in reducing the traffic loads
due to delivery of static Web pages, the popularity of
intermediate caches has waned dramatically in the past
decade. There are several reasons for this trend including:

• The correctness of Web caching relies on lifetime
metadata being provided by origin servers which is

5

often missing or inaccurate.
• The growth of dynamic Web applications means that

many Web objects are not cachable.
• The lack of an accurate and universal mechanisms for

reporting views interferes with the dominant business
model of Web advertisers.

• Reliance on a complex cache infrastructure decreases
the control of the implementer of a Web service over
the Quality of Service experienced by customers.

Many of these factors stem from the implementation of Web
caching on top of the HTTP application protocol, albeit with
some modifications to increase control over intermediate and
browser caches by origin Web servers. Cache networks are
an overlay which accesses Web services from the top of the
protocol stack and thus does not allow the degree of fine-
grained control that is required for seamless convergence.

An alternative approach is to start from the source, and
to replicate the functionality of the Web server on multiple
network nodes. Manual procedures for FTP mirroring led to
automated mechanisms like Netlib [13], and high traffic Web
sites gave rise to sophisticated cluster and geographically
distributed server replication schemes [16], [17].

Commercial content Delivery Networks have approached
the problem in a somewhat different way, using HTTP and
streaming protocols for client access almost unchanged. This
is analogous to the way that online services (e.g. Compuserve
and AOL) and ISPs used telephone services. CDNs have
instead focused their innovation on the underpinnings of the
Internet in order to improve the effectiveness. replication.
They use a combination of server side caching, distributed file
and database systems and complex streaming and synchro-
nization protocols implemented on proprietary international
networks of application-specific servers.

CDN Web and DNS servers may be implemented as
applications processes, but by using lower layer Internet
mechanisms through now-commonplace layering violations
(such as topology-sensitive DNS resolution), they use knowl-
edge of network topology and other low level information that
is intended to be encapsulated within the Network Layer of
the Internet architecture. Modern extensions to the Network
layer may allow CDN‘s to be implemented without such
violation of layering, but at the expense of creating a “fatter”
and less generic Network layer (see Section 4).

Commercial CDNs are thus a kind of Chimera, patched
together from proprietary components and standard, low
level components of the Internet. They create a proprietary,
specialized network with their own services as the spanning
layer, using the Internet as tools in their implementation and
as a means of reaching end users. This view is supported by
the trend toward using private or non-scalable mechanisms
to implement internal communication among centralized and
distributed CDN nodes. Since currently emerging paradigm
for edge computing “. . . extends the CDN concept by lever-
aging cloud computing infrastructure. [28],” the non-
interoperable nature of these overlay approaches undermines
the coherence of Internet-based information service ecosys-
tems. As we argue below, Exposed Buffer Processing offers

a more interoperable and unified foundation for such next-
generation ecosystems.

6. Exposed Buffer Processing: An Approach to
Interoperable Convergence

While operating system interfaces such as POSIX provide
access to storage, networking and computing services, they
do so in ways that conform to the traditional silos.

• File system calls do not have explicit access to general
networking or computation resources.

• The sockets interface does not provide access to general
storage and or computation resources.

• The POSIX process management functions do have only
the minimal necessary overlap with storage and network
functions (notably specifying an executable file image
in the exec() system call).

However, the core resource that is used to implement all
these silos is the persistent memory or storage buffer.

• In storage, storage blocks or objects are used in the
implementation of higher level file and database systems,
along with RAM memory buffers that are used to
improve performance, enable application/OS parallelism
and allow for flexible exchange of data with other
operating system data structures.

• In networking, buffers are used at the endpoints for
much the same reasons as storage, and are used at
intermediate nodes to allow for asynchrony in the
operation of store-and-forward packet networking.

• In computing, memory pages make up process address
spaces, are also used to enable asynchrony in inter-
process communication, and hold all other operating
system data structures used in the implementation of
functions on behalf of processes.

So although convergence of storage, networking and
computation is possible through conventional operating
system interfaces using the generality of the user process as
a gateway between silos, a more interoperable approach is to
expose a common abstraction of the underlying resource that
all of these high level silos operate on, namely persistent
storage blocks or memory buffers. We call this approach to
convergence Exposed Buffer Processing.

6.1. Core EBP functionality

Exposed Buffer Processing is a general architectural
idea that can have different implementations. The original
implementation takes the form of the Logistical Networking
stack described in Section 6.2 encapsulates the service
as remote procedure call over TCP. Certain aspects of
this implementation would have to be redesigned in an
implementation directly over a datagram-oriented protocol.

• allocate – This call allocates storage capacity into
which data can be stored. It is possible for this allocation
to be performed implicitly (as part of the store
operation described below) or explicitly (as a reservation

6

of resources which subsequent store operations can
use.) An allocation call specifies several parameters that
limit characteristics such as duration that limit its effect.
An important attribute of an allocation is a local name
by which stored data is referenced in subsequent calls.

• store and load – These calls allow EBP clients to
store data in an allocated buffer or to load data that has
previously been stored.

• transfer – This call transfers data between buffers
specified by name on the same or on different depots.

• transform – This call applies a named operation to a
set of buffers on a single depot, potentially transforming
the data of one or more of them. The operation name is
local to the depot and must have been defined by an code
upload operation which is specific to the implementation
of the depot. Operations will be assigned names through
a client-community process that ensures that names are
used in a sufficiently consistent manner.

6.2. Logistical Networking as EBP in Overlay

Over the past 15 years the Logistical Networking
project [20], [21], [29] has worked to define an approach to
Exposed Buffer Processing that is implemented as an overlay
on the Internet. An examination of the key components of
that implementation provides an EBP proof of concept:

• Internet Backplane Protocol (IBP): IBP is a general-
ized Internet-based storage service that is encapsulated
as remote procedure call over TCP. IBP was designed to
be simple, generic and limited following the example of
the Internet Protocol (IP) [11]. It is a best effort service,
its byte array allocations are named only by long random
keys (capabilities) and represent leases whose duration
and size are limited by the individual intermediate node
(in analogy to the IP MTU). The intermediate node that
implements IBP is called a depot, and it is intended as
a storage analog to IP routers. In many ways IBP is
closer to a network implementation of malloc() than
a conventional Internet storage service like FTP, and
in addition every IBP allocation is a lease of storage
resources which can be limited in duration. IBP has
been implemented in both C and Java.

• exNode: Because IBP is such a limited service, the
abstraction of an allocation that it supports does not
have the expressiveness of the file abstraction that
users typically expect of a high level data management
system. The exNode is an abstract data structure that
holds the structural metadata required to compose
IBP allocations into a file of very large extent, with
replication across IBP depots, identified by their DNS
name or IP address [30]. The exNode can be thought of
as an analog to the inode used in early Unix file system
implementations. The exNode has both standard XML
and JSON sequentializations.

• Logistical Runtime System (LoRS): The exNode can
be used as a file descriptor to implement standard
file operations such as read and write. The Logis-
ticsal Runtime System (LoRS) uses the exNode to

implement efficient, robust and high performing data
transfer operations. Some of the techniques used in the
implementation of LoRS are comparable to those used
in parallel and peer-to-peer protocols [31].

• Logistical Distribution Network (LoDN): While the
exNode implements topological composition of IBP
allocations to implement large distributed and replicated
files, it does not deal with the temporal dimension
introduced by IBP’s use of storage leases. LoDN is an
active service which holds exNodes and applies storage
allocation, lease renewal and data movement operations
as required to maintain policy objectives set by end
users through a declarative language and manageable
by an intuitive human interface.

• Network Functional Unit (NFU):The NFU was intro-
duced as a means to allow simple, generic and limited
in-situ operations by a depot to data stored in its IBP
allocations. The NFU has been used in numerous ex-
perimental deployments, and has been shown to enable
robust fault tolerance and high performance is a wide
variety of applications [32], [33], [34]. However, the
middleware stack that supported such experimentation
has never been fully integrated with the deployed
versions of LoRS and LoDN or the Data Logistics
Toolkit (discussed below), and so the NFU has never
been used in a persistent large scale deployment.

6.3. “Packetization” of Storage and Processing

One way to characterize EBP‘s simple, generic, and
limited design philosophy for the abstractions of common
spanning layer services is to say that it extends the idea
of “packetization” from the domain of networking, where
it has proved so remarkably successful, to the domains
storage/memory and processing as well. Unfortunately, this
contradicts the impulses many designers who have histori-
cally relied on the more complex, specialized and virtually
unbounded services. The relevant contrasts between packet-
based and circuit-based approaches are familiar and clear in
realm of Networking:

• Size: Circuit-based networks allow an unbounded
amount of data to pass over a persistent circuit, in
analogy to an electrically connection, masking the
underlying digital implementation in terms of MTU-
limited packets. The Internet exposed the MTU and
required endpoints to concatenate packets into streams.

• Failure: Circuit-based networks provide Quality-of-
Service (QoS) guarantees sufficient to enable application
developers to either ignore occassional communication
faults or to fail catestrophically when they are detected.
The Internet exposed the possibility of failure by drop-
ping faulty packets and by exporting a best effort service,
requiring endpoints to detect and respond to failures.

• Locality Independence: Circuit-based networks can
allocate resources and maintain state along a specific
path from sender to receiver, helping to ensure fast
forwarding and providing a stable platform for imple-
mentation of auxilliary services. The Internet allows

7

every packet in a connected flow to be forwarded along
a different path, putting the burden for maintaining
stability on the packet routing scheme and ruling out
connected services that require the maintenance of state,
but enabling great resilience in the face of failures and
changes in topology.

The similarities between between networking and storage
make the the analogous set of contrasts relatively easy to
work out for the realm of Storage:

• Size: File-based models of storage allow a very large
amount of data (assumed by many applications to be
virtually unbounded) to be stored as a single linear data
extent. Logistical Networking (i.e., EBP in overlay)
exposes a maximum storage allocation size imposed by
the storage resource (analogous to the Internet Protocol’s
MTU) requiring endpoints to explicitly concatenate
allocations into files.

• Failure: File and database systems provide QoS guaran-
tees sufficient to enable application developers to either
ignore occassional storage faults or to fail catestrophi-
cally when they are detected. Logistical Networking ex-
poses a simple failure model (faulty operations terminate
with unknown state for write-accessible storage) and by
exporting a best effort service, requiring endpoints to
explicitly detect and respond to failures.

• Locality Independence: File-based models of storage
can allocate resources and maintain state on a well-
connected “site” to manage fault tolerance and repli-
cation in terms of where “copies” reside. Logistical
Networking allows every allocation comprising a file
to be managed independently, potentially spreading
them across topologically seperated nodes, moving and
storing data on a fine-grained basis as called for by
applications (e.g., data streaming).

Finally, although computation can and often does trans-
form the data on which it operates, an analogous set of
contrasts can none less be worked out for the realm of
Computation:

• Size: Process-based computation allows an unbounded
amount of processing to be performed one or a set of
closely-coupled threads. The Network Functional Unit
(i.e., EBP in overlay) exposes a unit of processing that
can be limited in many resource dimensions, includ-
ing elapsed clock time, CPU cycles consumed, RAM
allocated during execution and I/O activity performed,
requiring a runtime system to concatenate limited re-
sources to create an unbounded virtual execution model.

• Failure: Process-based computation provides QoS guar-
antees sufficient to enable application developers to
either ignore occasional processing faults or to fail catas-
trophically when they are detected. The NFU exposes a
simple failure model (faulty operations terminate with
unknown state for write-accessible storage) and exports
a best effort service, requiring endpoints to explicitly
detect and respond to failures.

• Locality Independence: Process-based computation
can allocate resources and maintain state on a set of

well-connected processors, enabling successive time
slices to execute sequentially in a manner that leverages
continuity of operating system and application data
state. The NFU allows every allocation comprising
a process to be managed independently, potentially
moving them and the memory/storage allocations that
comprise the state of supervisory and application data
state as required (eg fault tolerance and load balancing).

6.4. EBP Below the Network Layer

The argument for creating a converged layer to support
the Internet and other global distributed services is com-
pelling. The need for distributed systems to have access to
and control over low layer network characteristics including
topology and performance is clear in the steps that have been
taken to work around the stricture that forbids such direct
access in the Internet architecture.

We propose the creation of a platform based on a common
service similar to IBP but which models the networking
capabilities of the Link Layer. We use the term Exposed
Buffer Processing for this as-yet-unrealized service. The
central idea of this paper is that the appropriate platform
for the creation of distributed systems is some form of EBP.
We emphasize that EBP need not follow the design of IBP,
as long as it takes appropriate account of the Deployment
Scalability Tradeoff. We offer experience with IBP as an
overlay form of EBP for the consideration of the community.

7. Applications of EBP

7.1. Scientific Content Delivery

Dissemination of data is one of the fundamental chal-
lenges of modern experimental and observational science.
There is a general move toward the open sharing of raw
data sets, enabling replication of analyses, cross-cutting
studies, innovative reexamination of previously collected
data and historical examination of collection and analysis
techniques [35], [36]. In many case the data collected is
large and observation is continuous, as in remote data
from satellites and other sensors [37], experiments such
as the Large Hadron Collider [38], or broad harvesting of
multimedia content [39]. The resources required to make
such data streams instantaneously and persistently available
can exceed the centralized capabilities of institutions or
government agencies.

Commercial CDN or Cloud solutions may be too ex-
pensive, and may not adequately serve the entire global
user community (see discussion of the Digital Divide below)
and may not adequately support the publication by users of
secondary data products resulting from their processing of
raw data. However, the ICT resources required to address
such problems may be affordable, and the community of user
institutions may be capable of hosting them in a distributed
manner. Using shared EBP infrastructure, we can build a
distributed, federated content management system using the
resources of the content provider and user communities

8

7.2. Digital Divide and Disasters

Modern network services take full advantage of the strong
assumptions that can be made about the implementation of
the Internet in the industrial world. It is common for services
to rely on continual low-latency datagram delivery, always-
connected servers, stable and uninterrupted datagram routing
paths and high bandwidth connectivity to take just a few
examples. Services implemented at Cloud Computing centers
are among those that place great demands on the Internet
backbone and “last mile” connectivity to edge networks.

Many services can be decomposed into synchronous and
asynchronous components, and different “Data Logistics”
strategies applied to each part [40]. Techniques used in
Content Delivery Networks, including caching and prestaging
can be applied on a fine-grained and even per-client basis. It is
sometimes the case that the entire service can be implemented
using edge resources. In other cases there is a component
that can only be implemented using synchronous end-to-
end datagram delivery across the backbone, but requires
only low bandwidth. In some cases analysis of the applica-
tion combined with reconsideration of the truely necessary
characteristics of the service delivered to the end-user can
reduce the need for high quality synchronous connectivity to
the vanishing point. In a sense, reliance on strong network
assumptions is often used to trade off unnecessary reliace
on excellent network infrastructure for ease of development.
This is a useful strategy for those who can afford and support
the necessary infrastructure.

Today, some environments cannot support strong network
assumptions, even when local IT resources are available.
Examples are communities isolated through geography, eco-
nomic (poverty, discrimination) or political circumstances
(famine, war), or social factors. Disasters create environments
where infrastructure is disrupted even in the most advanced
societies. The recent response of modern network technolo-
gists has been to bring fixed or mobile wireless technology
(satellite, 4G) into remote locations and to the scene of
disasters or to create complex wireless infrastructures based
on continuous aviation drones such as Google’s baloon-
based project Loon [41] and Facebook’s drone-based project
Aquila [42]. By contrast, using a mix of interoperable
heterogeneous synchronous and asynchronous data transport
integrated into a flexible platform to support a variety of
distributed applications can be cheap, robust and easily
deployed.

7.3. Big Data and Edge Processing

One of the inexorable trends in the collection of data is
the emergence of large scale online sensors and instrument
that produce data that must be subjected to volume-reducing
processing before it can be passed over the network. Growing
trends in sensor networks, the Internet of Things, and Smart
Cities will severely exacerbate this problem, to say the
least [43]. The historical approach of sending all such
data to computation centers that are either self-contained or
connected to their peers through heroic networking that may

be private or even proprietary in nature is no longer sufficient
to address the total size, globally distributed generation,
and need for use by applications that we see today [44].
An alternative possible using EBP is to apply limited edge
processing on the in the edge network using a converged
infrastructure that can also store and transport data.

7.4. In-locus Data Analysis

Data Analytics (DA) has emerged as a new paradigm
for understanding unreliable and varying environments. It
goes beyond logging, reporting, and thresholding to perform
meaningful analysis of large scale data sources that are
networked through dynamic and distributed infrastructure.
(The stage before batch or streaming analytics take place is
often called “data assimilation”.) DA is capable of extracting
latent knowledge and providing insight from field sensors,
computational units, and large mobile networks. At the same
time, the number of these data sources and the resulting ingest
rate are growing dramatically with increased edge hardware
capability (resolution and sampling rate) and hybridization
(multi-messenger and multi-sensor data acquisition). This
requires new algorithmic approaches that closely integrate
the network, I/O, and computational software stacks to lower
the overheads and provide non-trivial data metrics at the
edge. The emerging field of approximate and/or randomized
algorithms position themselves perfectly in this role as they
combine new methods for matrix approximation via random
sampling that have recently been developed by the Applied
Mathematics and Machine Learning communities.

Due to the recent interest [45], [46] in randomized and
approximate algorithms, such methods have become a much
better fit in an inherently unstable and constantly changing
distributed environments by attaching a probabilistic measure
to the result. In fact, there are many statistical techniques in
the Randomized Linear Algebra class of algorithms that lend
themselves perfectly to utilize the convergence principles of
in-locus computing (as manifest in IBP’s best effort Network
Functional Unit operations as discussed in Section 6) and
respond algorithmically to assimilate the inherent failures that
naturally occur in a widely distributed system at the scale that
we target. The iterative nature of most approximate methods
allows us to incorporate erroneous response from a sensor or
a network transmission and gradually remove the malformed
data from the multidimensional subspace that is being worked
on. Similarly, an intermittent lack of response from a sensor
or a network element may naturally be incorporated as
a sampling and selection operator that is triggered by a
system-reported event as opposed to the classical method
that uses a pseudo random number generator (PRNG) as an
unbiased projector or selector. Also, the probabilistic nature
of the approximate algorithms allows us to weigh the data
sources based on their history of reliable responses and the
quality of the data they delivered (if a measure of quality can
be obtained, from, for example, a duplicate sensor). High
quality sensors and network connections will, over time,
gain large weights and thus render them highly probable

9

to be approximately correct as envisioned by the Probably
Approximately Correct (PAC) learning framework [47].

8. Conclusions
In this paper, we have argued that interoperable conver-

gence of storage, networking and processing is necessary
in building a platform to support distributed systems which
exhibits deployment scalability, and that the most effective
implementation is a form of Exposed Buffer Processing
at a layer below that which implements the Internet. Our
argument rests on practical historical examples of the prob-
lems caused by the Internet’s lack of expressiveness and an
argument based on a partially formalized design methodology
that the spanning layer of any converged infrastructure must
be simple, generic and limited.

References
[1] E. Mynatt, J. Clark, G. Hager, D. Lopresti, G. Morrisett,

K. Nahrstedt, G. Pappas, S. Patel, J. Rexford, H. Wright
et al., “A national research agenda for intelligent infrastructure,”
arXiv preprint arXiv:1705.01920, 2017. [Online]. Available: http:
//cra.org/ccc/resources/ccc-led-whitepapers/

[2] Networking, I. T. Research, and D. N. Program, “Smart and Con-
nected Cities Framework,” 2015, https://www.nitrd.gov/sccc/materials/
scccframework.pdf.

[3] K. Nahrstedt, C. G. Cassandras, and C. Catlett, “City-scale intelligent
systems and platforms,” arXiv preprint arXiv:1705.01990, 2017.
[Online]. Available: http://cra.org/ccc/resources/ccc-led-whitepapers/

[4] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, vol. 38, no. 4, pp.
34–41, April 2005.

[5] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network
architecture,” Computer Communication Review, vol. 26, pp. 5–18,
1996.

[6] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, ser. Advanced computing. Computer systems design.
Morgan Kaufmann Publishers, 1999, pp. 47–48.

[7] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: An overlay
testbed for broad-coverage services,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 3, pp. 3–12, Jul. 2003. [Online]. Available:
http://doi.acm.org/10.1145/956993.956995

[8] R. McGeer, M. Berman, C. Elliott, and R. Ricci, Eds., The GENI
Book. Springer, 2016.

[9] D. D. Clark, “Interoperation, open interfaces, and protocol architecture,”
The Unpredictable Certainty: White Papers, no. 2, pp. 133–144, 1995.

[10] “Uux(1p) posix programmer’s manual,” IEEE/The Open Group, 2013.
[Online]. Available: http://www.unix.com/man-page/posix/1p/uux/

[11] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end
arguments in system design,” ACM Trans. Comput. Syst., vol. 2,
no. 4, pp. 277–288, Nov. 1984. [Online]. Available: http:
//doi.acm.org/10.1145/357401.357402

[12] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,”
RFC 3234, Feb. 2002, network Working Group. [Online]. Available:
https://tools.ietf.org/html/rfc3234

[13] J. Dongarra, G. H. Golub, E. Grosse, C. Moler, and K. Moore,
“Netlib and NA-Net: Building a scientific computing community,”
IEEE Annals of the History of Computing, vol. 30, pp. 30–41, Apr.
2008.

[14] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.
Worrell, “A hierarchical Internet object cache,” in IN PROCEEDINGS
OF THE 1996 USENIX TECHNICAL CONFERENCE, 1995, pp. 153–
163.

[15] D. Wessels and k claffy, “ICP and the Squid Web cache,” IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATION, vol. 16,
pp. 345–357, 1998.

[16] D. Kirkpatrick, “IBM’s olympic fiasco department of
groundless optimism,” Fortune Magazine, September 9 1996.
[Online]. Available: http://archive.fortune.com/magazines/fortune/
fortune archive/1996/09/09/216607/index.htm

[17] M. Beck and T. Moore, “The Internet2 distributed storage infrastructure
project: An architecture for internet content channels,” in Computer
Networking and ISDN Systems, 1998, pp. 2141–2148.

[18] R. Buyya, M. Pathan, and A. Vakali, Eds., Content Delivery Networks.
Springer, 2008.

[19] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: A
platform for high-performance Internet applications,” SIGOPS Oper.
Syst. Rev, 2010.

[20] M. Beck, T. Moore, and J. S. Plank, “An end-to-end approach to
globally scalable network storage,” in In ACM SIGCOMM 2002,
2002.

[21] ——, “An end-to-end approach to globally scalable programmable
networking,” in Future Directions in Network Architecture. ACM
Press, 2003, pp. 328–339.

[22] P. A. David, “Path dependence: a foundational concept for historical
social science,” Cliometrica, vol. 1, no. 2, pp. 91–114, 2007.

[23] D. G. Messerschmitt, “The convergence of telecommunications and
computing: What are the implications today?” Proceedings of the
IEEE, vol. 84, no. 8, pp. 1167–1186, 1996.

[24] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[25] M. Beck, “On the Hourglass Model, End-to-End Arguments, and
Deployment Scalability,” Communications of the ACM, vol. to appear,
2018.

[26] “Will the real end-to-end argument please stand up?”
http://mercury.lcs.mit.edu/ jnc/tech/end end.html.

[27] D. M. Ritchie and K. Thompson, “The Unix time-sharing system,”
Communications of the ACM, vol. 17, pp. 365–375, 1974.

[28] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[29] J. S. Plank, A. Bassi, M. Beck, T. Moore, D. M. Swany, and
R. Wolski, “Managing data storage in the network,” IEEE Internet
Computing, vol. 5, no. 5, pp. 50–58, Sep. 2001. [Online]. Available:
http://dx.doi.org/10.1109/4236.957895

[30] M. Beck, D. Arnold, R. Bassi, F. Berman, H. Casanova, T. Moore,
G. Obertelli, J. Plank, M. Swany, S. Vadhiyar, and R. Wolski,
“Logistical computing and internetworking: Middleware for the use of
storage in communication,” in In 3rd Annual International Workshop
on Active Middleware Services (AMS), 2001.

[31] J. S. Plank, S. Atchley, Y. Ding, and M. Beck, “Algorithms for high
performance, wide-area, distributed file downloads,” LETTERS, Tech.
Rep., 2002.

[32] H. Liu, M. Beck, and J. Huang, “Dynamic co-scheduling of distributed
computation and replication,” in IEEE International Symposium on
Cluster Computing and the Grid, May 2006.

[33] M. Beck, H. Liu, J. Huang, and T. Moore, “Scalable distributed
execution environment for large data visualization,” IEEE Explorer,
Nov. 2007.

[34] H. Liu, “Scalable, data-intensive network computation,” Ph.D. disser-
tation, University of Tennessee, Knoxville, 2008.

[35] O. J. Reichman, M. B. Jones, and M. P. Schildhauer, “Challenges and
opportunities of open data in ecology,” Science, vol. 331, no. 6018,
pp. 703–705, 2011.

[36] R. Kitchin, The data revolution: Big data, open data, data infrastruc-
tures and their consequences. Sage, 2014.

[37] S. S. Board, N. R. Council et al., Landsat and Beyond: Sustaining and
Enhancing the Nation’s Land Imaging Program. National Academies
Press, 2014.

[38] I. Bird, “Computing for the Large Hadron Collider,” Annual Review
of Nuclear and Particle Science, vol. 61, pp. 99–118, 2011.

[39] M. Breeding, “Building a digital library of television news,” Computers
in libraries, vol. 23, no. 6, pp. 47–49, 2003.

[40] M. Asch, T. Moore, R. M. Badia, M. Beck, P. Beckman, T. Bidot,
F. Bodin, F. Cappello, A. Choudhary, B. R. de Supinski, E. Deelman,
J. Dongarra, A. Dubey, G. Fox, H. Fu, S. Girona, M. Heroux,
Y. Ishikawa, K. Keahey, D. Keyes, W. T. Kramer, J.-F. Lavignon,

10

Y. Lu, S. Matsuoka, B. Mohr, S. Requena, J. Saltz, T. Schulthess,
R. Stevens, M. Swany, A. Szalay, W. Tang, G. Varoquaux, J.-P. Vilotte,
R. W. Wisniewski, Z. Xu, and I. Zacharov, “Big data and Extreme-
Scale computing: Pathways to convergence – toward a shaping strategy
for a future software and data ecosystem for scientific inquiry,” The
International Journal of High Performance Computing Applications,
vol. 32, pp. 435–479, July 2018.

[41] “Project Loon,” https://x.company/loon/.
[42] “Facebook takes flight,” https://www.theverge.com/a/mark-zuckerberg-

future-of-facebook/aquila-drone-internet.
[43] S. Banerjee and D. O. Wu, Final report from the NSF Workshop

on Future Directions in Wireless Networking. National Science
Foundation, 2013.

[44] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014.

[45] H. Avron, P. Maymounkov, and S. Toledo, “Blendenpik: Supercharging
LAPACK’s least-squares solver,” SIAM Journal on Scientific Comput-
ing, vol. 32, no. 3, pp. 1217–1236, 2010.

[46] P. Drineas and M. W. Mahoney, “RandNLA: Randomized numerical
linear algebra,” Communications of the ACM, vol. 59, no. 6, pp. 80–90,
2016.

[47] L. G. Valiant, “A theory of the learnable,” Communications of the
ACM, vol. 27, pp. 1134–1142, 1984.

11

