Downloaded 06/27/19 to 130.88.240.104. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM REVIEW (© 2018 Society for Industrial and Applied Mathematics
Vol. 60, No. 4, pp. 808-865

The Singular Value
Decomposition: Anatomy of
Optimizing an Algorithm
for Extreme Scale*

Jack Dongarrat
Mark Gates?
Azzam Haidar?
Jakub Kurzak*
Piotr Luszczek?
Stanimire Tomov!
Ichitaro Yamazakit

Abstract. The computation of the singular value decomposition, or SVD, has a long history with
many improvements over the years, both in its implementations and algorithmically. Here,
we survey the evolution of SVD algorithms for dense matrices, discussing the motivation
and performance impacts of changes. There are two main branches of dense SVD methods:
bidiagonalization and Jacobi. Bidiagonalization methods started with the implementation
by Golub and Reinsch in Algol60, which was subsequently ported to Fortran in the EIS-
PACK library, and was later more efficiently implemented in the LINPACK library, target-
ing contemporary vector machines. To address cache-based memory hierarchies, the SVD
algorithm was reformulated to use Level 3 BLAS in the LAPACK library. To address new
architectures, ScaLAPACK was introduced to take advantage of distributed computing,
and MAGMA was developed for accelerators such as GPUs. Algorithmically, the divide
and conquer and MRRR algorithms were developed to reduce the number of operations.
Still, these methods remained memory bound, so two-stage algorithms were developed
to reduce memory operations and increase the computational intensity, with efficient im-
plementations in PLASMA, DPLASMA, and MAGMA. Jacobi methods started with the
two-sided method of Kogbetliantz and the one-sided method of Hestenes. They have like-
wise had many developments, including parallel and block versions and preconditioning to
improve convergence. In this paper, we investigate the impact of these changes by testing
various historical and current implementations on a common, modern multicore machine
and a distributed computing platform. We show that algorithmic and implementation
improvements have increased the speed of the SVD by several orders of magnitude, while
using up to 40 times less energy.
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I. Introduction. The singular value decomposition, or SVD, is a very powerful
technique for dealing with matrix problems in general. The practical and theoretical
importance of the SVD is hard to overestimate, and it has a long and fascinating
history. A number of classical mathematicians are associated with the theoretical
development of the SVD [107], including Eugenio Beltrami (1835-1899), Camille Jor-
dan (1838-1921), James Sylvester (1814-1897), Erhard Schmidt (1876-1959), and
Hermann Weyl (1885-1955).

In recent years, the SVD has become a computationally viable tool for solving
a wide variety of problems that arise in many practical applications. The use of
the SVD in these applications is centered on the fact that they require information
about the rank of a matrix, or a low rank approximation of a matrix, or orthogonal
bases for the row and column spaces of a matrix. Applications are as diverse as least
squares data fitting [53], image compression [3], facial recognition [111], principal
component analysis [92], latent semantic analysis [28], and computing the 2-norm,
condition number, and numerical rank of a matrix.

The SVD of an m-by-n matrix A is given by

(1) A=UZVT (A=U%V*# in the complex case),

where U and V are orthogonal (unitary) matrices and ¥ is an m-by-n matrix with
real diagonal elements, o;, conventionally ordered such that

01202220 > 0.

min(m,n) =
The o; are the singular values of A and the first min(m, n) columns of U and V are
the left and right singular vectors of A, respectively.

Theoretically, the SVD can be characterized by the fact that the singular values
are the square roots of the eigenvalues of AT A, the columns of V are the corre-
sponding eigenvectors, and the columns of U are the eigenvectors of AAT, assuming
distinct singular values. However, this is not a satisfactory basis for computation
because roundoff errors in the formulation of AT A and AA” often destroy pertinent
information.

The key to using the SVD is the fact that it can be computed very effectively.
There are two dominant categories of SVD algorithms for dense matrices: bidiag-
onalization methods and Jacobi methods. The classical bidiagonalization method
proceeds in the following three stages:

1. The matrix A is reduced to bidiagonal form A = U; BV{T if A is real (A =
U, BV if A is complex), where U; and V; are orthogonal (unitary if A is
complex), and B is real and upper bidiagonal when m > n or lower bidiagonal
when m < n, so that B is nonzero on only the main diagonal and either the
first superdiagonal (if m > n) or the first subdiagonal (if m < n).
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2. The SVD of the bidiagonal matrix B is computed, B = UQZ‘/QT’ where Uy and
V5, are orthogonal and ¥ is diagonal as described above. Several algorithms
exist for the bidiagonal SVD, the original being QR iteration.
3. If desired, the singular vectors of A are then computed as U = U;U; and
V=WW.
This is the basic, efficient, and stable algorithm as posed by Golub and Kahan in
1965 [53]. Golub and Reinsch [54] realized the first implementation of the SVD al-
gorithm in Algol60, the programming language of the time. Their paper was later
reproduced in the Wilkinson—Reinsch Handbook [117]. Bidiagonalization methods
are covered in sections 3 to 11, with additional tests of accuracy and performance on
various matrix types in sections 13 and 14.

In contrast, Jacobi methods apply plane rotations to the entire matrix A without
ever reducing it to bidiagonal form. Two-sided Jacobi methods, first proposed by
Kogbetliantz in 1955 [76], iteratively apply rotations on both sides of A to bring it
to diagonal form, while one-sided Jacobi methods, proposed by Hestenes in 1958 [68],
apply rotations on one side to orthogonalize the columns of A, implicitly bringing
AT A to diagonal. While Jacobi methods are often slower than bidiagonalization
methods, there remains interest in them due to their simplicity, easy parallelization,
and potentially better accuracy for certain classes of matrices. Jacobi methods are
covered in section 12, with additional tests in sections 13 and 14.

This article traces the development of the SVD algorithm over the past 50 years,
using various historical implementations. This development includes algorithmic
improvements such as blocking, the divide and conquer (D&C) and multiple rela-
tively robust representation (MRRR) algorithms, and a two-stage reduction, as well
as adapting to new computer architectures such as distributed memory, accelera-
tors, and multicore CPUs. We compare the performance of all the implementations
on a common multicore computer. Our focus is on computing all singular values,
and optionally, singular vectors, for both square and tall dense matrices. For bi-
section and MRRR methods we also compute a subset of the singular values and
vectors.

2. Experimental Setup. To test the various implementations, we ran six differ-

ent tests:
1. Square matrices, singular values only (no vectors).

Square matrices, singular values and vectors.
Tall matrices, m = 3n, singular values only (no vectors).
Tall matrices, m = 3n, singular values and vectors.
Tall matrices, m = 1000n, singular values only (no vectors).
. Tall matrices, m = 1000n, singular values and vectors.
When computlng singular vectors, we computed the reduced SVD consisting of the
first min(m,n) columns of U and V and min(m,n) rows and columns of ¥. This is
the most useful part computationally, sufficient for many applications such as solving
least squares problems, and we subsequently identify U, V, and ¥ with those of the
reduced SVD, which still satisty (1). For LAPACK, the reduced SVD corresponds to
job=¢%s" for both U and V. We store U and V separately from A, i.e., they do not
overwrite A. Where applicable, we query for the optimal workspace size; otherwise,
we use the maximum documented workspace size. This ensures that we always use
the “fast” path in codes, including blocking and other optimizations.

Unless indicated, matrices have random entries from a uniform distribution on
(0,1). For some tests, we generate singular values ¥ according to one of the distribu-

SOt N
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tions below, then form A = UXV7T, where U and V are random orthogonal matrices
from the Haar distribution [106]. Where given, « is the condition number of A.
e ¥ random: singular values are random uniform on (0,1). The condition
number is not determined a priori.
e Arithmetic: 0; =1 — % (1 — %) fori=1,...,n.
e Geometric: o; = = CD/(=1) for j =1,... n.
e Log-random: singular values are random in (%, 1) such that their logarithms
are random uniform on (log X, log 1).
e Cluster at %: Y= [1 1 1

e Cluster at 1: ¥ = [1,...71,%].

All tests were performed in double-precision real arithmetic. Except for PLASMA
and MPI-based implementations, which initialize memory in parallel, we used numactl
—--interleave=all to distribute memory across CPU sockets, and the CPU cache was
flushed before the SVD function call. To avoid repeating minor differences, we shall
generally assume that A is real and m > n. Operations for complex or m < n are
analogous.

We conducted experiments on a two-socket Intel Sandy Bridge Xeon E5-2670
running at 2.6 GHz, with 8 cores per socket, a theoretical double-precision peak of
333 Gflop/s, and 64 GiB of main memory. The measured practical dgemm peak is
313.6 Gflop/s and dgemv peak is 13.9 Gflop/s (55.8 GB/s). The STREAM triad
benchmark [91] measured the memory bandwidth as 57.8 GB/s with 16 OpenMP
threads. All CPU implementations were compiled with gcc and linked against Intel’s
Math Kernel Library (MKL) version 11.2.3 [71].

GPU results used an NVIDIA Kepler K40c with 15 multiprocessors, each con-
taining 192 CUDA cores. The theoretical double-precision peak performance is 1682
Gflop/s. On the GPU, 12 GiB of device memory can be accessed at a theoretical
bandwidth of 288 GB/s. The measured practical dgemm peak is 1243.1 Gflop/s and
dgemv peak is 45.3 Gflop/s (181.2 GB/s). For the GPU implementation, we used
CUDA version 7.0 [94].

3. EISPACK Implementation. The EISPACK project was an effort to develop
a software library for numerical computation of eigenvalues and eigenvectors of ma-
trices based on algorithms and ideas that were mainly contained in the Wilkinson—
Reinsch Handbook [117]. EISPACK was a transliteration of these Algol programs
into Fortran. It contains subroutines for calculating the eigenvalues of nine classes of
matrix problems: complex general, complex Hermitian, real general, real symmetric,
real symmetric banded, real symmetric tridiagonal, special real tridiagonal, gener-
alized real, and generalized real symmetric. In addition, it includes subroutines to
perform an SVD [50]. Some routines were updated to implement improvements in
the numerical accuracy and achieve portability across different computing systems.
However, the basic organization and access to matrix elements was kept in the Algol
style.

To arrange multidimensional arrays in linear storage such as memory, Algol uses
row-major order (each row is contiguous in memory), while Fortran uses column-
major order (each column is contiguous in memory). Array layout is critical for
correctly passing arrays between programs written in different languages. It is also
important for performance when traversing an array, since accessing array elements
that are contiguous in memory is usually much faster than accessing elements that
are not, due to the structure of the memory cache hierarchy. In the Algol routines,
and subsequently the Fortran routines of EISPACK, matrix elements were referenced
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Fig. | Results for EISPACK, which uses only one core.

by row, thus causing great inefficiencies in the Fortran EISPACK software on modern
cache-based computer systems.

Written in standard Fortran 77, with no outside dependencies, EISPACK still
compiles with a modern Fortran compiler. Figure 1 shows its performance results on
a modern computer for the six test problems described in section 2. EISPACK has
no notion of parallelism, so the code runs on only a single core. The operation count
formulas here assume two QR iterations per singular value, and that an initial QR
reduction is not done [23].

For square matrices without computing singular vectors, asymptotic performance
is limited to 0.74 Gflop/s for one core, while when computing singular vectors, per-
formance nearly triples to 2.17 Gflop/s. As is common, small sizes perform better
because the entire matrix fits into L2 cache. Performance for the tall 3:1 and 1000:1
cases is less than the square case, but exhibits a similar improvement when computing
singular vectors compared with no vectors. For comparison, the practical peak using
matrix-multiply on one core is 20 Gflop/s.
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4. LINPACK Implementation Using BLAS. In the 1970s, the Level 1 BLAS
(Basic Linear Algebra Subroutines) [79] were introduced as a standard set of interfaces
to perform common linear algebra operations. The Level 1 BLAS includes operations
with O(n) floating-point operations (flops), such as vector sum (y = ax + y, called
daxpy). The LINPACK project [39] reimplemented the SVD algorithm, along with
other linear algebra algorithms, using Level 1 BLAS for efficient execution on the
vector supercomputers of the 1970s and 1980s. It uses Fortran’s native column-major
order, which makes better use of cache and memory bandwidth. However, using
Level 1 BLAS, LINPACK is limited by the memory bandwidth and receives little
benefit from multiple cores. We see in Figure 2 that LINPACK achieves up to 3.9x
speedup over EISPACK for the square, no vectors case, and 2.7x speedup for the
square, vectors case. When computing a tall m x n matrix with m = 1000n, using
multithreaded BLAS on 16 cores yields some benefit, with speedups of 22.5x and
13.5x over EISPACK for the no vectors and vectors cases, respectively, compared
with speedups of 7.6x and 3.9x, respectively, with single-threaded BLAS. In some
instances, for large matrices such as n = 16,000, the code hung, appearing in a “sleep”
state in ps, so we were unable to collect all data points.

5. LAPACK Implementation Based on Blocked Householder Transforma-
tions. While successful for vector-processing machines, Level 1 BLAS were not a
good fit for the cache-based machines that emerged later in the 1980s. For cache-
based machines, it is preferable to use higher-level operations such as matrix-matrix
multiply, which is implemented by splitting a matrix into small blocks that fit into
cache memory and performing small matrix-matrix multiplies on these blocks. This
avoids excessive data movement between cache and main memory. This led to the
Level 2 BLAS [41] for operations with O(n?) flops, such as general matrix-vector
multiply (y = aAz + By, called dgemv); and Level 3 BLAS [40] for operations with
O(n?) flops on O(n?) data, such as general matrix-matrix multiply (C = aAB + SC,
called dgemm). Level 1 and 2 BLAS access O(1) elements per operation, and are
thus limited in performance by the memory bandwidth. Level 3 BLAS benefit from
the surface-to-volume effect of having only O(n?) elements to access for O(n?) op-
erations. The performance of Level 1, 2, and 3 BLAS are compared in Figure 3,
showing the significant benefit of Level 3 BLAS. The BLAS provide a means to
write high-level, high-performance, portable numerical software. Optimized BLAS li-
braries are available, from commercial vendors such as the Intel Math Kernel Library
(MKL) [71] and the IBM Engineering and Scientific Subroutine Library (ESSL) [70],
and also in open-source libraries such as OpenBLAS [96] and ATLAS [115]. These
math libraries often also included optimized versions of LAPACK, ScaLAPACK, and
other numerical libraries. Our tests used the optimized routines available in Intel
MKL.

5.1. Blocked Householder Transformations. With the introduction of Level 3
BLAS, algorithms were recast using matrix multiplies, and LINPACK was redesigned
into LAPACK [2] to use Level 3 BLAS where possible. The redesign for one-sided
factorizations such as QR, LU, and Cholesky is relatively easier than reductions for
eigenvalue problems and the SVD because the transformations used in QR, LU, and
Cholesky are applied from only the left side [40]. Consecutive elementary transforma-
tions are restricted to a block of columns at a time, referred to as the panel (depicted
in Figure 4(a)), and updates to the rest of the matrix, referred to as the trailing ma-
trix, are delayed. The transformations used for a panel are blocked together [14, 104]
and applied to the trailing matrix as Level 3 BLAS.
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On the other hand, the reduction of a matrix A to bidiagonal form is done by
applying orthogonal matrices on both the left and right sides of A—hence it is called
a “two-sided factorization.” The two-sided transformations create more data depen-
dencies, which make it impossible to entirely remove matrix-vector products involving
the trailing matrix (as in the one-sided factorizations). The panel becomes a block
row and block column, as shown in Figure 4(b), but panel operations also involve
the entire trailing matrix. Dongarra, Sorensen, and Hammarling [42] developed the
blocked algorithm for the bidiagonal reduction. The algorithm as implemented in
LAPACK is given in Algorithm 1, and can be summarized as follows.

Two orthogonal matrices, U; and V;, are applied on the left and right sides,
respectively, of an m x n matrix A to reduce it to bidiagonal form, B = U] AV;. The
matrices U; and V; are represented as products of elementary Householder reflectors:

U1 :HlHQHn and V1 :GlGQ...Gn_l.
Each H; and G; has the form
H,=1- TiUiUZ-T and G, =1- wiuiuiT,

where 7; and 7; are scalars, and v; and u; are vectors. H; eliminates elements below
the diagonal in column 4, while G; eliminates elements right of the superdiagonal in
row i. Let A(;_1) be the reduced matrix A after step i — 1. Applying H; on the left
yields

(2) HiA(i—l) = (I - TZ'UZ'U;F)A(Z‘_U = A(i—l) — 'Uiy;r7
while applying both H; and G; yields
A(i) = HiA(i—l)Gi = (I — TiUiUiT)A(i_l)(I — Wiuiul-T)

T

7

(3)

= Agi—1) — Uz‘yiT — L

where y; = 7314%;71

of (3), we obtain
(4) Ay =H;---HAG, -Gy = A- VYT - x;UT,

yvi and x; = mi(Agi—1) — viyi Ju;. Blocking together ¢ applications

where U; = [ul, .. ,ui], and similarly with V;, X;, and Y;. Note that it is possible to
update just part of A, namely, the ith column and row of A, in order to proceed with
the computation of the H; and G;. Thus, a delayed update is possible, but at each
step we still compute two matrix-vector products involving the entire trailing matrix
of A. As a result, if m = n, the entire factorization takes approximately §n3 flops,
with half of the operations in Level 2 BLAS (matrix-vector products), while the other
half are in Level 3 BLAS.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/27/19 to 130.88.240.104. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 817

Algorithm 1 LAPACK implementation of bidiagonal reduction. In the {-} . nota-
tion, only the indicated column or row should be computed, not the entire matrix
product. y; and x; are computed as a series of matrix-vector products by distribut-
ing v; and u;. In LAPACK, Householder vectors representing V and U overwrite A.
Auxiliary function householder(z) (dlarfg in LAPACK) returns 7 and v that define
a Householder reflector H;, and the updated vector & = H;x = [ £|z[,0,...,0]7.
// bidiagonal reduction (A is m x n; assumes m > n and n divisible by n)
function gebrd( A )
for i =1:nbyn
(V;Y; X; U) = labrd( Aim, i )
Ai+nb:m7 i+npin — Ai+nb:m7i+nb:n -vyT - Xxu”
end
end function

// panel of bidiagonal reduction (A is m X n; assumes m > n)
function labrd( A )
V., Y, X, U initially empty
for i=1:mn,
// compute column i of A¢;_1) using (4),
// then compute H; to eliminate below diagonal
Aim,i = {A-ViYT, = Xi UL},
(1i; vi; Aim, ) = householder( A;.pp, ;)
Yi = TiAZ;_l)Ui =1i(A-Vi Y, — X, UL )T,

// compute row i of H;A(;_1y using (2) and (4),
// then compute G; to eliminate right of superdiagonal
A igim = {A-VY — Xi—1U£1}i,i+1:n
(7'('7;; Ui Ai’iJ’»l:n) = hOllSEhOldeI‘( Ai7i+1:n )
x; = mi(Au_1) — vyl Ju; = m(A = VY — X UL,
end
return (Vi 41:m,1:m, Yop+1:n,1:m0 5 Xnp+1:m, 1 Unp+1:n,1i05 )
end function

5.2. QR Iteration. After the bidiagonal reduction, LAPACK solves the bidiag-
onal SVD using QR iteration, similar to EISPACK and LINPACK, or using divide
and conquer (D&C), which is described later in section 7. The original QR iteration
algorithm computed singular values to high absolute accuracy, meaning small singular
values might be inaccurate. Demmel and Kahan [31] derived the implicit zero-shift
QR iteration algorithm and proved that it computes all singular values to high relative
accuracy; this is used as needed for accuracy by LAPACK when computing singular
vectors. Accuracy is discussed further in section 13.

The qd (German: quotienten-differenzen) [100] and differential qd (dqd) [101]
algorithms proposed by Rutishauser actually predate QR iteration and are among the
first algorithms for computing singular values for modern computers. Subsequent to
Demmel and Kahan’s work, Fernando and Parlett [48] derived a shifted version called
dqds that allowed the use of shifts to maintain fast convergence, while still maintaining
high relative accuracy. This is used by LAPACK when computing singular values only
(no vectors). Quite a few more variants of qd can be derived [97].
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5.3. Computation of Singular Vectors. Normally, LAPACK stores orthogonal
matrices in an implicit fashion as a sequence of Householder reflectors, each repre-
sented by a scalar 7; and vector u;. For QR iteration to accumulate the singular
vectors, it first generates U; and Vi explicitly (using dorgbr); this is essentially ap-
plying block Householder reflectors to an identity matrix as a series of Level 3 BLAS
operations.

The QR iteration algorithm then updates U; and Vi by applying the Givens
rotations used to reduce the bidiagonal matrix to diagonal. This is implemented in a
Level 2 BLAS-like fashion, where an entire sequence of n Givens rotations is applied to
update the entire U and V matrices (using dlasr). Recently, Van Zee, Van de Geijn,
and Quintana-Ort{ [113] developed a Level 3 BLAS-like implementation of applying
Givens rotations, which they found made the SVD using QR iteration competitive
with the SVD using D&C (discussed in section 7).

5.4. Initial QR Factorization. If m > n, it is more efficient to first perform a QR
factorization of A and then compute the SVD of the n-by-n matrix R, since if A = QR
and R = UXVT, then the SVD of A is given by A = (QU)XVT. Similarly, if m < n,
it is more efficient to first perform an LQ factorization of A. Chan [23] analyzed this
optimization, showing that it reduces the number of floating-point operations. The
operation counts are given in Table 1, with the theoretical crossover points based on
flops. Figure 5 plots the operation count as the ratio m:n increases, illustrating the
large savings as a matrix becomes taller. The results for tall matrices in Figures 7(c)
to 7(f) show that LAPACK achieves significant speedups, such as 120x compared
with EISPACK. This is a result of the reduced operation count and the fact that
much of the computation is done via Level 3 BLAS in QR factorization, followed by
a relatively small square SVD problem.

Table |  Floating-point operation counts.

QR iteration, D&C,
no vectors with vectors with vectors

Unoptimized 4mn? — %n3 12mn? + %n:‘ 8mn? + %n:j

With initial QR 2mn? + 2n3 6mn? + 16n3 6mn? + 8n3

Theoretical crossover —m > %n m > %n m > %n

no vectors QR iter., vectors D&C, vectors
o 4on? 120m3 120n3 T T : T
C
3 3 3
S 30n j 0n7 - A unoptimized
§ 20m 4 60n = = with initial QR
g 10n° 3003 crossover
Q
©  0n? on3

12 4 6 8 10
min aspect ratio min aspect ratio min aspect ratio

Fig. 5 Operation counts as ratio m:n increases (i.e., matriz gets taller), showing crossover where
doing initial QR factorization is beneficial.

Since bidiagonal D&C (discussed in section 7) always operates on a square matrix,
doing an initial QR factorization with D&C results in less of an improvement than with
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Algorithm 2 Overview of SVD algorithm using QR iteration (dgesvd) for m > n.
Accumulating U = U;Us and V = V1V, occurs during QR iteration. 1 Marked lines
are required only when computing singular vectors.

Description LAPACK | Cost Cost
Routine for m>n
if m > n then
QR = A (QR factorization) dgeqrf 2mn? — 2n?
A=R
else
A=A
end
U, BV = A (bidiagonalization) — dgebrd 4mn? — 4n3 8n3
generate explicit Uy dorgbr t | 2mn® — $n? I
generate explicit V; dorgbr t | 3n® %113
U2V = B (QR iteration) dbdsqr O(n?) O(n?)
U =U,U, weoon ot 6mn? 6n3
V="V, moow 4| 6n3 6n>
if m > n then
generate explicit Q dorggr f 2mn? — 2n?
U=QU dgemm 2mn?
end
Total cost (with vectors T) 12mn? + n? | 6mn® + 16n°
Total cost (no vectors) 4mn? — 3n? 2mn® + 2n®
300 ‘LAP‘ACI‘< dgesvd, n‘=1(?000‘ LAPACK‘ dgesvd, 900?00>< 900
250 - U=0lr
< 200 S || generate Q
a 150 2 Il bidiagonal QR iter.
g g generate U, V,
+ 100 = B reduce to bidiagonal
50 [ 0r factorization
0
m=n m=3n m=n m=3n m=1000n m=1000n
no vectors with vectors no vectors with vectors

Fig. 6 Profile of LAPACK SVD. Left are 10000 x 10000 and 30000 x 10000 problems. QR factor-
ization reduces the 30000 x 10000 matriz to a 10000 x 10000 matriz. Right is a 900000 x 900
problem, where reduction to bidiagonal and QR iteration become vanishingly small.

QR iteration. Asymptotically, as the ratio m:n — inf, the initial QR factorization,
generating (), and multiplying by @ are responsible for most of the cost, as is shown by
the profile of the 1000:1 case in Figure 6. As a result, using QR iteration or D&C yields
the same performance for very tall-skinny matrices. The crossover points in Table 1
are based solely on flop counts. Since doing an initial QR also shifts operations from
Level 2 to Level 3 BLAS, the crossovers are ideally tunable parameters, for instance,
by using LAPACK’s ilaenv tuning function.
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5.5. Results. An overview of all the phases in the complete SVD is given in
Algorithm 2, with a profile of the time spent in each phase in Figure 6. For the
square, no vectors case, we see that the bidiagonal reduction (blue with \\ hatching)
takes almost the entire time, while QR iteration (green, no hatching) takes very little
time, as is expected since QR iteration is O(n?) while the bidiagonal reduction costs
%n3 flops. When computing singular vectors, the QR iteration time becomes nearly
half of the overall time, due to accumulating U = U;Us and V = V; V5. Generating
the explicit U; and V; matrices (orange with \\\\ hatching) is a small portion of the
time, even though together they have nominally the same operation count (§n3) as
the bidiagonal reduction. This exemplifies the performance difference between Level 2
BLAS, in the bidiagonal reduction, and Level 3 BLAS, in generating U; and V.

The tall 3:1 matrix first does an initial QR factorization, resulting in a square R
matrix the same size as the square case (10000 x 10000). Thus, the profile for the 3:1
case simply adds the QR factorization, generating Q, and multiplying U = QU steps
to the square case. For the tall 1000:1 matrix, the initial QR factorization dominates
the overall time, with the subsequent bidiagonal reduction and QR iteration becoming
vanishingly small. When vectors are computed, generating ) and multiplying U =
Q[Af add significant time, while generating U; and V; and updating U = U;U, and
V = V1V, during QR iteration are also vanishingly small. Thus, for very tall-skinny
matrices, the performance is dominated by operations rich in Level 3 BLAS.

Figure 7 shows the speedup that LAPACK achieves compared with EISPACK.
Even a single-core implementation may achieve over 5x speedup. But the real poten-
tial is shown when using multiple cores (16 in this case)—a 45x speedup is possible for
square matrices and over 350 speedup for tall matrices with a 1000:1 row-to-column
ratio. The square, no vectors case in Figure 7(a) is dominated by the bidiagonalization,
as the subsequent bidiagonal SVD is O(n?). With Level 3 BLAS being significantly
faster than Level 2 BLAS, and half the operations in Level 2 BLAS, we expect the
bidiagonalization to be about 2x the speed of Level 2 BLAS. Modeling the time as

4n3  4n3
o 37"2 37"3 ’
with the Level 2 BLAS rate as ro = 13.4 Gflop/s and the Level 3 BLAS rate as
rg = 315 Gflop/s (from Figure 3), we obtain a theoretical bound of 25.7 Gflop/s.
This yields a speedup of 34.7x over EISPACK—exactly what we see for LAPACK in
Figure 7(a). When computing singular vectors, LAPACK achieves a higher speedup,
up to 45.3%, reflecting that computation of U; and V; uses Level 3 BLAS. The tall
matrix cases achieve even higher speedups because much of the work is done in the
initial QR factorization.

t

5.6. Level 2.5 BLAS Implementation. Since the bidiagonalization performance
is limited by the Level 2 BLAS operations, Howell et al. [69] sought to optimize these
operations by observing that several Level 2 operations can be done together, thus
reducing memory transfers by keeping data in cache. This technique of fusing several
Level 2 operations together was called the Level 2.5 BLAS [69, 17]. For instance, to
compute

z= ATy + 2,

w = oAz,
known as dgemvt, A is partitioned into block columns as

A=A 4y - A,
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Fig. 7 Comparison of LAPACK, LINPACK, and EISPACK. Solid lines represent 16-core runs;
dashed lines represent single-core runs.

where each A; has b columns and is sized such that it fits into cache. Correspondingly,
r and z are partitioned as

T %k

The dgemvt loops over the A; blocks, performing two dgemv operations with each
block as shown in Algorithm 3. Keeping each A; in cache for the second dgemv cuts
main memory traffic roughly in half, thereby increasing the potential performance.
With some algebraic manipulation, the two products y; = 7:ATv; and x; = m;Au;
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process 0 process 1 process 2
1,1 1121314 (15(1,6 1,1 1,4 1,215 1,3 1,6
2112223|24 25|26 3,134 3,2 |35 3,3 | 3,6
3,1/32/33|34 /35|36
41|42 43 44 a5 a6 process 3 process 4 process 5
2124 22|25 2,3 |2,6
41 |44 4,2 | 4,5 43 4,6
(a) Global view of matrix. Each (b) Local view of matrix. Each local submatrix
square is an np X np block, colored by is stored in column-major order.

the process that it is distributed to in

(b).

Fig. 8 2D block cyclic distribution of the matriz A using 2-by-3 processor grid.

from the bidiagonalization panel can be computed together using this dgemvt. Tests
that Howell et al. [69] ran showed a 1.2-1.3x speedup over the existing LAPACK
implementation for the bidiagonalization. Van Zee et al. [114] further analyzed these
operations and fused them at the register level, reusing data in registers to also avoid
unnecessary accesses to cache memory, showing potential further speedups. So far,
these results have been for single-threaded implementations, and the speedups do not
carry over when using multithreaded BLAS. If optimized Level 2.5 BLAS becomes
available for multicore processors, this might become a viable approach, but we don’t
pursue it further here.

Algorithm 3 Pseudocode for dgemvt

w=20
fori=1:k
z; = BATx; + 2, /] dgemv, loads A; into cache
w=caA;xz;+w // dgemv, reuses A; in cache
end

6. ScaLAPACK Implementation. To use a distributed-memory computer, the
Scalable Linear Algebra Package (ScaLAPACK) [16] extends LAPACK by distribut-
ing the matrices in a 2D block cyclic layout using the prescribed block size n;, and
the pair of parameters (p, ¢) to define a p-by-¢ process grid, as illustrated in Figure 8.
ScaLAPACK parallelizes the LAPACK subroutines using the parallel version of BLAS
(PBLAS) and the Basic Linear Algebra Communication Subprograms (BLACS) for
the interprocess communication, implemented on top of the Message Passing Inter-
face (MPI) [93]. For instance, to bidiagonalize the input matrix for computing the
SVD [24], dgebrd of LAPACK uses the Level 2 BLAS matrix-vector multiply (dgemv)
to perform about half of its total flops. Now, to perform the matrix-vector multiply
on a distributed-memory computer, in pdgemv of PBLAS, each process first gathers
all the required nonlocal block rows of the input vector from other processes. After
the completion of this initial interprocess communication, each process independently
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Fig. 9 Comparison of ScaLAPACK to LAPACK.

computes the matrix-vector multiplication with the local submatrix. Finally, each
process computes the local part of the output vector by gathering and accumulating
the partial results from the other processes in the same row of the process grid. Hence,
ScaLAPACK follows the fork-join parallel programming paradigm and is designed for
weak parallel scalability of the algorithm. Since PBLAS performs most of its local
computation using BLAS, ScaLAPACK can exploit a NUMA (nonuniform memory
access) architecture using a threaded version of BLAS.

Figure 9 compares the performance of ScaLAPACK’s pdgesvd with the perfor-
mance of LAPACK’s threaded dgesvd for computing the SVD on our 16-core shared-
memory computer. While, from Scal,LAPACK’s perspective, each MPI process has its
own memory and explicit messages are passed between MPI processes, on a shared-
memory computer the MPI implementation uses an efficient shared-memory com-
munication layer to copy data. See section 11 for ScaLAPACK’s performance on a
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Fig. 10 Profile of ScaLAPACK reference implementation with ny = 32 and (p,q) = (4,4).

distributed-memory computer. The performance of pdgesvd was obtained using the
tester included in ScaLAPACK version 2.0.2, which was linked with ScaLAPACK and
the sequential LAPACK/BLAS of Intel MKL. We tested the performance of pdgesvd
using 8-by-2, 4-by-4, and 2-by-8 processor grids and block sizes of 32, 64, and 128. The
figure shows the optimal performance among these parameter configurations. We see
that the performance of pdgesvd was often lower than the performance of LAPACK’s
dgesvd. This is mainly because several optimizations have not been implemented
in pdgesvd. For instance, for a tall-skinny matrix (m > n), dgesvd computes the
QR factorization of the input matrix A, followed by the SVD of the resulting upper-
triangular matrix, as described in subsection 5.4. For a tall-skinny matrix A, this
greatly reduces the number of required floating-point operations compared to that
of pdgesvd, which directly computes the SVD of the input matrix. As a result, for
computing the SVD of a tall-skinny matrix, pdgesvd was slower than dgesvd.

After the bidiagonalization of the input matrix A, pdgesvd computes the SVD
of the bidiagonal matrix using dbdsqr of LAPACK. If only the singular values are
requested, pdgesvd typically spends an insignificant amount of time in dbdsqr. How-
ever, if the singular vectors are needed, our performance profile in Figure 10 using
the reference implementation of pdgesvd reveals that the execution time can be dom-
inated by the time to compute the singular vectors of the bidiagonal matrix. The
reason is that pdgesvd has all the MPI processes in the same column or row of the
processor grid redundantly compute the left or right singular vectors, respectively, of
the bidiagonal matrix, which are distributed to the process group. Compared with
pdgesvd, LAPACK’s dgesvd obtained higher performance by using dbdsqr with mul-
tithreaded BLAS. The reference implementation of pdgesvd obtained about the same
performance as that of MKL’s pdgesvd when linked to MKL BLAS and LAPACK.

Finally, ScaLAPACK supports only the QR iteration algorithm for computing the
SVD of the bidiagonal matrix, using LAPACK’s dbdsqr, while, as shown in section 7,
the D&C process in LAPACK’s dbdsdc may be faster than dbdsqr.

7. Singular Vectors from the Divide and Conquer Process. For solving the
bidiagonal SVD subproblem, QR iteration and the related qd algorithms may take as
much as 80% of the total time when computing singular vectors of a dense matrix [56].
Gu and Eisenstat introduced the bidiagonal D&C [57, 59] algorithm, which may be
an order of magnitude faster on some machines [56]. The development of D&C was
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based on prior work focusing on computing eigenvalues and singular values [4, 25, 52,
58, 74].

The D&C process includes a matrix partitioning step that introduces two large
submatrices. The splitting can occur with either “the middle” row [4, 56] or col-
umn [57]:

By 0
B = |arer Prer or B = {

31 ALCL 0 :|
0 B,

0 Brer Ba

Note that after the partitioning, B; might not be square, even though B was. The
fix is to append a zero row or column [57] to obtain the desired shape.

In either the row or the column case, the process continues recursively to obtain
the SVD of By and Bs, which can be used to decompose B as

B = QTMTWT or B = QcMcha

with orthogonal matrices @, W, Q., and W.. M, and M, have a special structure:
only the diagonal and either a single row or column, respectively, are nonzero,

21 22 ... Zn z1
da zg  da
M, = ) or M.=| .

Trivially, because matrices Q,, W,., Q., and W, are orthogonal, B and M, or M,
share singular values o;. A number of theorems and lemmas [74, 57] lead to a fast
and numerically (relatively) stable procedure for computing the SVD of M, or M, as
U X VI The interlacing property sets the bounds and ranges for o,

0=di <oy <de < -+ <dp <op<dy+ |z,
and the secular equation
flo)y=1+ zn: _FE
= di— o

is used for computing the values o; with a specifically crafted root finder that ac-
counts for floating-point vagaries of past and modern computing systems [80]. The
corresponding formulas for the left singular vectors U,,,

o/ a s
I 21 Zn “k
® et wta] [\ S

[ n k=1

and the right singular vectors V,,

dazs dnzn 17 ~  (dr2i)?
(6) vi:[_l’d202""’d2/02] / 1+Z(d%702)27

k=2 (

indicate that there could be accuracy problems for the components of either set of
vectors, even though the computed singular values ¢ are a good approximation of
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LAPACK dgesvd and dgesdd, n=10000
300F T — |l v=00

- generate 0

7 v=uts; v=vivy
Il bidiagonal D&C

| (I bidiagonal QR iter.
generate Uy, V,
- reduce to bidiagonal
B or factorization

time (sec)

QR iter. D&C QR iter. D&C
m=n m=3n
with vectors with vectors

Fig. Il  Profile comparing LAPACK QR iteration (dgesvd) and D&C (dgesdd) algorithms. For QR
iteration, it generates U1 and Vi, then updates them with Uz and V2 during QR iteration.
D&C generates Uy and Va, then multiplies U = U1Uz and V = V1V afterwards.

the exact singular values o, because the ratios z;/(dz — 07) in (5) and (6) can be
inaccurate. The trick is not to use the same M, or M, matrices that were used to
compute the approximate singular values g;, but to instead construct new M, or M,
based on &; that improve the accuracy of expressions in (5) and (6) [80, 59]. This can
dramatically diminish the departure from orthogonality for both sets of vectors.

After computing U, and V,,, the SVD of B is computed by multiplying Q..U,,
and V,IW,.. This is done for each B matrix in the recursion tree, from the leaf nodes
to the root. Most of the cost of D&C is in these matrix multiplications, which are
Level 3 BLAS. In particular, most of the cost is at the higher levels of the recursion
tree, near the root node, as the matrices get larger.

Li et al. [81] recently showed that D&C internally generates matrices with struc-
ture that can be exploited. The matrices U,,, and V,,, which are the singular vectors
of M, have low rank off-diagonal blocks that can be efficiently compressed with hi-
erarchically semiseparable (HSS) matrices. Using HSS improves the speed of matrix
multiplies, reducing the cost of the bidiagonal D&C step from O(n?) to O(n?r), where
r depends on the matrix but usually r < n for large n. Li et al. [81] showed over 3x
improvement compared to Intel MKL for the bidiagonal D&C step on large matrices.

D&C restructures the SVD algorithm somewhat, as is shown in Algorithm 4,
compared with the QR iteration version in Algorithm 2. D&C directly computes the
SVD of the bidiagonal matrix B = UsX V5, and then multiplies U = U;U; and V =
V1V4 afterwards (using dormbr), while with QR iteration, LAPACK first generates
Uy and V; (using dorgbr), then accumulates Us and Vs onto U; and Vi during QR
iteration. The profile in Figure 11 shows this difference in the bidiagonal QR iteration
(green, no hatching) vs. D&C steps (green, + hatching); and the generate Uy, Vi
(orange, \\\\ hatching) vs. U = U Uy, V = V4V, (orange, // hatching) steps. The
main advantage of the D&C approach is that it saves nearly half the flops compared
to QR iteration when computing singular vectors. For a square matrix, D&C is ~ 9n>
flops, compared to ~ 17n? for QR iteration (see Table 1). We can observe this as a
reduction in time for the steps mentioned in Figure 11.

Figure 12 shows the relative speedup over EISPACK when using a modern multi-
core system, for both the D&C and QR iteration algorithms. We see that for square
and tall 3:1 matrices, D&C is consistently faster than QR iteration. Because of the
initial QR factorization (described in subsection 5.4) the advantage decreases as m
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Algorithm 4 Overview of the SVD algorithm using D&C (dgesdd) for m > n.
Generating explicit Uy and V5 occurs during D&C. T Marked lines are required only
when computing singular vectors.

Description LAPACK | Cost Cost
Routine form>n
if m > n then
QR = A (QR factorization) dgeqrf 2mn? — %n‘g
A=R
else
A=A
end
U, BV = A (bidiagonalization)  dgebrd 4mn? — %n3 §n3
U2V = B (D&C) dbdsdc O(n?) O(n?)
generate explicit Us noono g | 43 4,3
generate explicit V5 noon %yﬁ %nd
U=U,U, dormbr dmn? — 2n3 | 2n3
V=Wl dormbr t | 2n3 2n3
if m > n then
generate explicit @ dorgqr T 27mn? — %nfi
U=QU dgemm 2mn?
end
Total cost (with vectors t) 8mn? + 4n3 | 6mn? + 8n3
Total cost (no vectors) d4mn® — 3n® | 2mn® + 2n3

grows relative to n, so that for a very tall matrix, both methods take nearly the same
time, as is seen by the 1000:1 case in Figure 12(c). It may be safely assumed that
D&C is superior to the QR iteration algorithm for most scenarios, and the worst case
is when both perform at the same speed. When computing only singular values, not
singular vectors, LAPACK always uses QR iteration, since in that case both bidiag-
onal QR iteration and D&C are O(n?), while the overall time will be dominated by
the O(n?) reduction to bidiagonal.

8. Bisection and Inverse Iteration. LAPACK 3.6.0 introduced a bisection meth-
od (dgesvdx) to compute all or a subset of the singular values and vectors [86].
Similar to QR iteration (dgesvd) and D&C (dgesdd), it first reduces the matrix A to
bidiagonal form B. Then it computes the singular values of B based on bisection and
the corresponding singular vectors by inverse iteration, using dbdsvdx. For computing
the SVD of B, it converts the bidiagonal matrix B to the Golub—Kahan [53] symmetric
tridiagonal matrix T' of dimension 2n,

bl,l b1,2 b2,2 b2,3 s bn—l,n bn,n
(7) T =tridiag[0 0 0 0 0 ... 0 0o |,
bl,l b1,2 b2,2 b2,3 e bnfl,n bn,n

whose eigenpairs are (£0;, z;), where o; is the jth singular value of B. Elements of u;
and v;, the corresponding left and right singular vectors of B, are interleaved in the
eigenvector as z; = [V, —U1j,Va.j, —U2.js - -, Un j, —Un ;]/V/2. Instead of developing
new subroutines, dbdsvdx relies on the subroutines dstebz and dstein that compute
the eigenvalues and eigenvectors, respectively, of the symmetric tridiagonal matrix
based on bisection and inverse iteration.
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Fig. 12 Comparison of LAPACK D&C to QR iteration. Solid lines represent 16-core runs; dashed
lines represent single-core runs.

The bisection algorithm implemented in dstebz uses Sylvester’s inertia theorem
to compute the number of eigenvalues within a certain interval. In particular, the
algorithm relies on the LDL” factorization of the matrix T, where L is a lower-
triangular matrix with unit diagonal and D is a diagonal matrix. For the symmetric
tridiagonal matrix T, the diagonal matrix D can be computed with O(n) flops based
on the simple recurrence formula

i—1,i
dz,z (tz,z S) di—l,i—l .

Given the LDLT factorization of the matrix T' — sI for a certain shift value s, the
number of negative elements of D is equal to the number of eigenvalues of T" smaller
than s. In other words, given the LDLY factorizations of two shifted matrices, T — s 1
and T — soI, with s1 < so, if there are ny and no negative entries in their respective
diagonal matrices, then there are ny — ny eigenvalues in the interval (si,s2]. In
addition, for the tridiagonal matrix, it can be shown that the LDL” factorization
without pivoting can be reliably used for counting the number of eigenvalues [34, 75].
Based on these observations, dstebz keeps bisecting the initial interval containing
all the desired eigenvalues until it finds a small enough interval for each eigenvalue
such that the computed eigenvalue has the desired accuracy. Each bisection improves
the accuracy of the eigenvalue by one bit, hence the iteration converges linearly. An
advantage of bisection is that it can be naturally adapted to compute a subset of
eigenvalues, which was one of the motivations for introducing dgesvdx [86].
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Given the eigenvalues computed by dstebz, dstein computes the correspond-
ing eigenvectors based on inverse iteration. Namely, for each computed eigenvalue
A, it first computes the LU factorization of the shifted matrix A — AI with partial
pivoting. Then the corresponding eigenvector of A\ is computed by inverse iteration,
with a starting vector whose entries are random numbers uniformly distributed in the
interval (—1,1). Given an accurate eigenvalue approximation, inverse iteration con-
verges quickly [72] (e.g., dstein sets the maximum number of iterations to be five).
However, when the eigenvalues are close to each other, inverse iteration may fail to
generate orthogonal eigenvectors. To recover the orthogonality among such vectors,
dstein reorthogonalizes the vectors based on the modified Gram—Schmidt procedure.
Unfortunately, when the computed eigenvectors are nearly dependent, the eigenvec-
tors may not be accurate after the reorthogonalization [33]. In addition, if many of
the eigenvalues are close to each other, this reorthogonalization cost could become sig-
nificant with O(k?n) flops for computing k eigenvectors in the worst case. As a result,
in our experiments shown in Figure 13, we saw that when computing all the singular
values and vectors, bisection can be significantly slower than other methods. Even
with 16 threads available, it is slower than the single-threaded QR iteration (dashed
line). Bisection and inverse iteration are embarrassingly parallel—each eigenvalue and
eigenvector may be computed independently—however, LAPACK does not currently
include such explicit parallelization, instead relying primarily on parallelism within
the BLAS, which is not advantageous in this case. On the other hand, as seen in Fig-
ure 14, when only a subset of k singular values and vectors is computed, we observed
that bisection and inverse iteration (nonhatched bars) can be up to 2.4x faster than
D&C (black bar and dashed line), which must compute all the singular values and
vectors. Depending on the matrix type, when computing k = 400 or k£ = 600 vectors
out of n = 3000, it becomes faster to simply compute all the vectors using D&C. The
exception here is the cluster, with one singular o7 = 1 and all other o; = 1/k. In
that case, computing any k > 1 vectors was as slow as computing all vectors with
bisection. See section 2 for a description of the matrices.

9. Multiple Relatively Robust Representations (MRRR). MRRR [35, 36] was
developed to improve both the performance and the accuracy of inverse iteration.
Analysis has shown that MRRR can compute the numerically orthogonal eigenvectors
of a symmetric tridiagonal matrix in O(n?) flops. At the time of preparing this
paper, there was no publicly available software package that implements MRRR for
computing the SVD of a general matrix, but there were at least two software packages
that compute the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using
MRRR: dstemr of LAPACK [38] and dstexr due to Willems and Lang [118], which
is tailored toward the tridiagonal matrix with zeros on the diagonal, as used in (7) for
the SVD. For our experiments, we replaced the symmetric tridiagonal solver (dstevx)
used in dgesvdx with dstexr. Performance with dstemr was generally similar but
somewhat slower.

One of the main drawbacks of inverse iteration is that, for the eigenvalues with
small relative gaps, the computed eigenvectors may not be orthogonal to each other.
Hence, reorthogonalization is needed. This increases the computational cost and
potentially leads to loss of accuracy in the computed eigenvectors. To address these
issues, MRRR combines several techniques.

First, though the eigenvectors are invariant under a diagonal shift, we can increase
their relative gaps by diagonally shifting the matrix. For instance, let us define the

relative gap between two eigenvalues ); and A; to be X =2

— 2=~ Then, we can
max ([ [,[A;]) )
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Fig. 13 Comparison of bisection with QR iteration. Solid lines represent 16-core runs; dashed lines
represent single-core Tuns.

increase their relative gap by a factor of i /\lilﬂ when we diagonally shift the matrix

using a shift 7 that is close to .

Hence, before applying inverse iteration, MRRR recursively refines the approx-
imation to the eigenvalues and applies appropriate diagonal shifts to a cluster of
eigenvalues such that it can guarantee large enough relative gaps between all the
eigenvalues of T to maintain the orthogonality among the computed eigenvectors
without reorthogonalization. For instance, given two approximate eigenvalues A; and
Aj, inverse iteration is used to compute their respective eigenvectors v; and v; with
small residual norms, i.e.,

|Tvr, — Avg| = O(ne|T)|) for k =i and j.
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Fig. 14 Results for computing k singular vectors of an n X n matriz, n = 3000. Dashed lines show
D&C performance for computing all vectors. The numbers on top show the time for bars
that exceed the graph’s height.

Then, according to [37, 38], a realistic bound on their orthogonality error is given by

Ail + A1)
viTv- —O(n6(| J .
o [Ai = A4

Therefore, if the gap |A; — A;| is of the same order as the eigenvalues, their eigenvectors
are numerically orthogonal, i.e., |viij| = O(ne).

There are several parameters that can be tuned to improve the performance [38],
including the accuracy of the eigenvalue approximation computed at each step and
the choice of the algorithm for computing the approximation (e.g., bisection, QR
iteration, or Rayleigh quotient correction).

Second, while computing the eigenvalues (e.g., applying the diagonal shift), a
small relative roundoff error in the entry of the tridiagonal matrix could result in
a large relative error in the computed eigenvalues, especially in those with small
magnitudes. To preserve the relatively high accuracy of the computed eigenvalues,
MRRR stores the intermediate matrices in particular representations, referred to as
the MRRR of the matrices. For instance, it has been shown that the LDLT rep-
resentation of the tridiagonal matrix T', without pivoting, is relatively robust, even
with the presence of the element growth [31]. Hence, MRRR stores the sequence of
intermediate matrices with different shifts in their LDLT forms.

Third, for an eigenvalue with a small relative gap, the cost of inverse iteration
may be high, requiring a few iterations to obtain the eigenvector with a small relative
residual norm. Fortunately, there is at least one starting vector with which inverse
iteration converges in one iteration. For example, when the ith column of (T — AI)~!
has the largest column norm, then with the canonical vector e; as the starting vector,
one step of inverse iteration computes the approximate eigenvector x such that

|Tx—/\x|§\/ﬁ|/\—/_\|,

where ) is the exact eigenvalue [72]. Hence, if the eigenvalue is computed to a high
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Fig. 15 Comparison of MRRR with QR iteration, D&C, and bisection.

relative accuracy, - ~
}/\ - )\} =0O(e |)\‘),
(e.g., using bisection with O(n) flops), then the computed eigenpair obtains a small

relative residual norm,

[Tz — Az| = O(ne|A]).

There is an algorithm to find the column of (T — AI)~! with largest norm with
O(n) flops [98]. In addition, if a twisted factorization is used to find the starting
vector, then it can be shown that the computed eigenpairs have small residual norm
with respect to the original matrix 7' [36, 37]. The twisted factorization must be
carefully computed for T° with a zero diagonal because the leading dimension of an
odd dimension is singular. To enhance the numerical stability, dstexr computes a
block variant of the factorization [118].

As can be seen in Figure 15, by avoiding the reorthogonalization, MRRR can
significantly improve the performance of inverse iteration, making MRRR comparable
to QR iteration. However, D&C is often faster.

Especially for large matrices, we noticed numerical issues where the backward er-
ror ||[A — USVT|| /(min(m,n) || Al|) was large, e.g., 10~ instead of 107 as expected.
Further tests in section 13 show that, even when the above error is acceptable, MRRR
has poor relative error for the singular values. Marques and Vasconcelos [86] also ob-
served numerical issues with the existing MRRR implementation.

When only a subset of k singular vectors are computed, we observe in Figure 14
that inverse iteration can be up to 1.6x faster than MRRR for a small number of
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vectors (k = 1 or 10). For a larger subset of k = 600 vectors, MRRR can be up
to 1.8x faster than bisection, but in this case, only for the random entries matrix is
MRRR significantly faster (1.3x) than computing all the singular vectors with D&C.
The exception is the cluster matrix, where for £ > 1, MRRR is 30x faster than
bisection, but always slower than using D&C.

10. MAGMA Implementation for Accelerator Architectures. Accelerators
such as GPUs and the Intel Xeon Phi provide a high degree of parallelism and a
larger memory bandwidth than traditional multicore CPUs. The MAGMA library
was developed to address this new architecture and accelerates most phases of the
SVD algorithm: reduction to bidiagonal, bidiagonal D&C, and computation of sin-
gular vectors. For tall-skinny matrices, it also accelerates the initial QR factorization
and generating Q.

The most prominent place to start is an accelerated version of the bidiagonal
reduction [109]. We have seen in Figures 6 and 11 that this phase (blue tier with \\
hatching) takes from 50% to 70% of the time for a square matrix when computing sin-
gular vectors, and 98% of the time when computing only singular values (no vectors).
As described in section 5, the bidiagonal reduction has half its flops in Level 2 BLAS
and half in Level 3 BLAS. Accelerators are known for achieving very high performance
on compute-intensive, Level 3 BLAS operations. On an NVIDIA K40c GPU, cuBLAS
achieves 1245 Gflop/s with dgemm, compared with 315 Gflop/s using Intel MKL on
the multicore CPU. Due to the accelerator’s large memory bandwidth, the memory-
bound Level 2 BLAS operations are also significantly faster, achieving 45 Gflop/s with
cuBLAS dgemv, compared with 14 Gflop/s on the multicore CPU. Therefore, both
the trailing matrix-vector product (dgemv) and the trailing matrix update (dgemm) are
performed on the accelerator. The small panel operations—constructing Householder
reflectors—are performed on the CPU, which is better at serial operations with more
control flow. This incurs CPU-to-GPU communication of a couple of vectors for each
dgemv operation during the panel. Due to dependencies, the trailing matrix update
cannot be overlapped with the next panel, as would occur in a one-sided QR factoriza-
tion. Using the accelerator improves the speed of the bidiagonal reduction by about
a factor of 2, as is shown by the profile in Figure 16 (blue tier with \\ hatching) and
by the square, no vectors case in Figure 17(a), which is dominated by the bidiagonal
reduction.

LAPACK and MAGMA, 30000 10000

300 : T T T T 7
B 000
250 - generate Q
< 200 7 v=u010s; v=V11y
8 150 Il bidiagonal D&C
g Il bidiagonal QR iter.
5 100 generate Uy, V;
50 B reduce to bidiagonal
B or factorization
LAPACK MAGMA LAPACK MAGMA MAGMA
QR iter., 2-stage
with vectors D&C, with vectors

Fig. 16 Profile comparing LAPACK and MAGMA. Most phases are accelerated using the GPU,
except the bidiagonal QR iteration and multiplying U = QU. MAGMA 2-stage is described
in section 11.
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Fig. 17 Comparison of MAGMA with LAPACK.

For the bidiagonal SVD, because D&C is faster than QR iteration, MAGMA
will inherently achieve a better overall speedup using D&C. We further implement
an accelerated version of D&C [51]. Since most of the operations in D&C are in
multiplying Q,.U,,, and V,LW,. to generate singular vectors, these Level 3 BLAS dgemm
operations are assigned to the accelerator. The solution of the secular equation to
find the singular values of M, is left on the CPU, since it is a complex iterative
algorithm with limited parallelism, as is computing the singular vectors U,, and V,,
of M,.. These are parallelized on the CPU using OpenMP. MAGMA achieves about
a 3x speedup for the D&C phase compared to LAPACK.

For a tall-skinny (m > n) matrix, we accelerate the initial QR factorization [110].
This is a one-sided factorization, so it doesn’t have the extra dependencies imposed by
the two-sided reduction to bidiagonal form. Panel operations are within a simple block

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/27/19 to 130.88.240.104. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 835

column that doesn’t involve the trailing matrix. The panel factorization is performed
on the CPU, while the trailing matrix update is performed on the accelerator. The
accelerator updates the next panel first and sends it back to the CPU so the CPU can
start factoring it while the accelerator proceeds with the rest of the trailing matrix
update. This overlap allows the factorization to achieve a substantial portion of the
peak dgemm speed, up to 970 Gflop/s with an NVIDIA K40c. The QR factorization
phase was up to 3.6x faster than on the multicore CPU, as is seen in Figure 16 (cyan
tier with x hatching).

There are three routines that solely apply block Householder reflectors, which are
implemented as a series of Level 3 BLAS matrix multiplies entirely on the accelerator:
(1) for QR iteration, generating explicit U; and V; matrices (dorgbr), (2) for D&C,
multiplying U;Us and V4V, (dormbr), and (3) for a tall-skinny matrix, generating
an explicit @ matrix (dorgqr). These were all up to 3.3x faster when using the
accelerator than when using the multicore CPU. We see in Figure 16 that the time
for all three of these phases is substantially reduced.

Overall, MAGMA achieves significant improvements using an accelerator for the
SVD problem. Figure 17 shows that it is about 2x faster than LAPACK in most
cases. For the square, vectors case in Figure 17(b), MAGMA’s SVD using D&C is
2.5x LAPACK’s D&C version, and 2x MAGMA’s SVD using QR iteration, while
MAGMA’s SVD using QR iteration is only 1.6x LAPACK’s QR iteration version,
due to both D&C being inherently faster and having an accelerated version of the
D&C phase. In the tall 1000:1 case in Figure 17(e), MAGMA is 2.6x faster, and
for some sizes as much as 3.5x faster, than LAPACK, and up to 1000x faster than
EISPACK, due to the accelerated QR factorization.

Il. Two-Stage Reduction. While all the preceding algorithmic and architectural
improvements have greatly increased the speed of the SVD, all these one-stage meth-
ods remain limited by the memory-bound, Level 2 BLAS operations. To overcome
the limitations of the one-stage approach, Grofler and Lang [78, 55] introduced the
two-stage bidiagonal reduction, which increases the use of compute-intensive Level 3
BLAS operations. The idea behind the two-stage algorithm is to split the origi-
nal one-stage bidiagonal reduction into a compute-intensive phase (first stage) and
a memory-bound phase (second or bulge-chasing stage), as represented in Figure 18.
The first stage reduces the original general dense matrix to a band form (either upper
or lower), and the second stage reduces the band form to bidiagonal form (again, ei-
ther upper or lower). The algorithm maps computational tasks to the strengths of the
available hardware components, taking care of the data reuse. It also uses techniques
to mix between dynamic and static scheduling to extract efficiency and performance.
We implemented two-stage algorithms in the PLASMA library for multicore environ-
ments [82, 83, 62, 60], the DPLASMA library for distributed environments [19, 18],
and the MAGMA library for accelerator architectures [51]. Similar two-stage reduc-
tion [61] and multistage successive band reduction (SBR) [13, 6] to tridiagonal have
been used for the symmetric eigenvalue problem. A multistage approach would also
work for the bidiagonal reduction, and could be advantageous for achieving optimal
communication costs at each stage. However, when computing singular vectors, each
stage adds cost to the back transformation, making a multistage approach less favor-
able.

11.1. First Stage: Compute-Intensive and Efficient Kernels. The first stage
applies a sequence of blocked Householder transformations to reduce the general dense
matrix to an upper (for m > n) band matrix. This stage uses compute-intensive
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Fig. 18 Two-stage technique for the reduction phase.

matrix-multiply kernels that eliminate the memory-bound matrix-vector products
from the one-stage panel factorization.

The first stage proceeds by computing a QR factorization of a block column to
annihilate entries below the diagonal and updating the trailing matrix, as shown in
Figure 19. It then computes an LQ factorization of a block row to annihilate entries
right of the upper bandwidth, and updates the trailing matrix. It repeats the factoring
of block columns and block rows, until the entire matrix is brought to band form. The
width of the block columns and rows is the resulting matrix bandwidth, ny.

| LQ panel } nb I
) I '
§| trailing —_— [ . —_— [
Bl matrix | trailing :
o) | matrix |
| |
n 1

Fig. 19 One panel of the first-stage reduction to band form.

The PLASMA and DPLASMA implementations use a tile algorithm [1] that
makes them highly parallel. The matrix is split into tiles of size n; X ny, where ny
is the matrix bandwidth. Data within each tile is stored contiguously in memory.
A panel factorization is a series of QR or LQ factorizations done between pairs of
tiles; once a pair of tiles has been factored, updates on the corresponding portions
of the trailing matrix can start immediately, before the rest of the panel has finished
factoring. This unlocks a large amount of parallelism very quickly. The algorithm
then proceeds as a collection of interdependent tasks that operate on the tile data
layout and are scheduled in an out-of-order fashion using either the OpenMP runtime
for PLASMA or the powerful PaRSEC distributed runtime system for DPLASMA.

The MAGMA implementation uses a standard column-wise layout. It does the
QR and LQ factorizations on the CPU, copies the block Householder reflectors to the
accelerator, and updates the trailing matrix on the accelerator. Unlike in the one-
sided factorizations, it cannot start the next panel until the trailing matrix update is
finished due to data dependencies.

The first stage’s cost is %n?’ operations in Level 3 BLAS. As shown in [60], the
performance of this stage is comparable to the performance of the QR factorization
and can reach a high percentage of the machine’s peak.

11.2. Second Stage: Cache-Friendly Computational Kernels. The second
stage reduces the band form to the final bidiagonal form using a bulge-chasing tech-
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Fig. 20 Bulge-chasing algorithm. “o” indicates eliminated elements; “+” indicates fill. Arrows

show application of a Householder reflector on the left (—), which updates a block row, and
on the right (1), which updates a block column.

nique. It involves 6n,n? operations, so it takes a small percentage of the total op-
erations, which decreases with n. The operations are memory bound, but are fused
together as Level 2.5 BLAS [69] for cache efficiency. We designed the algorithm to
use fine-grained, memory-aware tasks in an out-of-order, data-flow task-scheduling
technique that enhances data locality [60, 61].

The second stage proceeds in a series of sweeps, each sweep bringing one row to
bidiagonal and chasing the created fill-in elements down to the bottom right of the
matrix using successive orthogonal transformations. It uses three kernels. Kernel 1
(yellow task Ti 1 in Figure 20(b)) applies a Householder reflector from the right (in-
dicated by the down arrow) to eliminate a row right of the superdiagonal, which also
creates a bulge of fill-in beneath the diagonal. It then applies a Householder reflec-
tor from the left (indicated by the right arrow) to eliminate the first column of the
bulge below the diagonal, and applies the update to the first block column only. The
remainder of the bulge is not eliminated, but is instead left for subsequent sweeps to
eliminate, as they would reintroduce the same nonzeros.

Kernel 2 (blue task T 2) continues to apply the left Householder reflector from
kernel 1 (or kernel 3) to the next block column, creating a bulge above the upper
bandwidth. It then applies a right Householder reflector to eliminate the first row of
the bulge right of the upper bandwidth, updating only the first block row.

Kernel 3 (red task T4 3) continues to apply the right Householder reflector from
kernel 2, creating a bulge below the main diagonal. As in kernel 1, it then applies a
left Householder reflector to eliminate the first column of the bulge below the diagonal
and updates just the current block column. After kernel 3, kernel 2 is called again
(blue task Ti 4) to continue application of the left Householder reflector in the next
block column. A sweep consists of calling kernel 1 to bring a row to bidiagonal,
followed by repeated calls to kernels 2 and 3 to eliminate the first column or row of
the resulting bulges, until the bulges are chased off the bottom-right of the matrix.

For parallelism, once a sweep has finished the first kernel 3, a new sweep can start
in parallel. This new sweep is shifted over one column and down one row, as shown in
Figure 20(c). Before task ¢ in sweep s, denoted as T ;, can start, it depends on task
T5_1,i+3 in the previous sweep being finished, to ensure that kernels do not update
the same entries simultaneously. To maximize cache reuse, tasks are assigned to cores
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based on their data location. Ideally, the band matrix fits into the cores’ combined
caches, and each sweep cycles through the cores as it progresses down the band.

11.3. Singular Vectors Computation. The singular vectors of A are computed
from the orthogonal transformations used in the reduction to bidiagonal form and
from the singular vectors of the bidiagonal form. Recall that for the classical one-
stage approach, A = U1 BV{l and B = U V4. After using D&C to obtain U, and
Vo, we multiply U = U;Us and V = Vi Vs, costing 2n3 each for U and V' (if m = n).

In the case of the two-stage approach, the first stage reduces the original matrix
A to a band matrix by applying a two-sided transformation to A such that A =
Uy ApanaV,l . Similarly, the second, bulge-chasing stage reduces the band matrix Apang
to bidiagonal form by applying a two-sided transformation such that Apana = Up BV .
As a consequence, the singular vectors must be multiplied according to

U=U,U,U, and V =V, WVa.

Hence, the two-stage approach introduces a nontrivial amount of extra computation—
the application of U, and Vj,—when the singular vectors are needed. The total cost of
updating the singular vectors when using the two-stage technique is 2(1+ :L—b[)n:3 +2n3
each for U and V', where n; is the bandwidth and 4, is an internal blocking; usually
iy < np/4. This extra cost compared with the one-stage approach reduces the potential
speedup, but as it is in Level 3 BLAS, it does not completely negate the large speedup
that we gain by the two-stage bidiagonal reduction.

11.4. PLASMA Implementation for Multicore. The experiments shown in Fig-
ure 21 illustrate the superior efficiency of our two-stage SVD solver compared with
the optimized LAPACK version from Intel MKL. Figure 21(a) shows that the bidiag-
onal reduction itself is 6x faster than LAPACK, both using 16 cores, and 2.5x faster
than the MAGMA one-stage version. The reason is that LAPACK and MAGMA
are bound by the Level 2 BLAS performance, while our two-stage algorithm relies
on Level 3 BLAS for most of its computation. When computing singular vectors in
Figure 21(b), it is still about 1.8x faster than LAPACK, even though it requires an
extra 2 x 2(1 + :L—bb)n?’ operations to multiply by U, and V;. Here, the accelerated
MAGMA one-stage version is still faster.

For the tall 3:1 case in Figure 21(c), both LAPACK and MAGMA fare better,
since part of the computation is in the initial QR factorization, which is primarily
efficient Level 3 BLAS operations for all three implementations (LAPACK, MAGMA,
and PLASMA). For the very tall 1000:1 matrices in Figures 21(e) and 21(f), PLASMA
and MAGMA rely on their efficient QR factorization. In PLASMA, this is an imple-
mentation of the tall-skinny QR [1, 29], which even beats the accelerated MAGMA
implementation.

Overall, we expected such an improvement using the two-stage technique, due to
its heavy reliance on Level 3 BLAS. Even when performing more operations, it can
still have an advantage.

11.5. Energy Consumption. As we move toward exascale computing, power and
energy consumption play increasingly critical roles. Figure 22 shows the power con-
sumption over time during the SVD computation. We observe that PLASMA has
the lowest energy consumption, due to its fast execution, despite having the highest
power rate, indicative of its high compute intensity using Level 3 BLAS. Its energy
consumption is about half that of LAPACK, and 23x less than EISPACK, as shown
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Fig. 21 Comparison of MAGMA, PLASMA, and LAPACK.

in Figure 23(b). When computing singular values only, and no vectors, the differ-
ence is even more remarkable, with PLASMA being 5.6 x more energy efficient than
LAPACK, and 40x more energy efficient than EISPACK, as shown in Figure 23(a).

Interestingly, we can correlate the various phases of the computation with the
power consumption. For LAPACK, the long plateau in Figure 22 up to the 105
seconds mark is the reduction to bidiagonal, followed by D&C, where the power
varies significantly, and ending with the two back transformations by U; and V; from
the 130-150 seconds mark. In PLASMA, the reduction to bidiagonal is significantly
shorter, up to the 20 seconds mark, followed by D&C, and the back transforma-
tions by U,, Uy, V,, and V3, which are twice as long as they are in LAPACK. EIS-
PACK, in contrast, has a very long and steady computation. It uses only one core,
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Fig. 22 Comparison of power during SVD computation for PLASMA, LAPACK, and EISPACK,
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is annotated for each one.
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Fig. 23 Reduction in total energy consumption compared to EISPACK.

and thus has low power consumption; but the computation itself is 48x longer than
LAPACK.

11.6. MAGMA Accelerated Two-Stage Reduction. A two-stage algorithm can
also be implemented very effectively using an accelerator. MAGMA accelerates the
first-stage reduction to band form, as described above, and uses PLASMA for the
second-stage reduction from band to bidiagonal. MAGMA also accelerates the com-
putation of singular vectors, both applying the transformations from the second stage
(e.g., UpUs) and applying the transformations from the first stage (e.g., U, (UpUs2)).
Other steps are as in the accelerated one-stage MAGMA version. The profile in Fig-
ure 16 shows the difference with the one-stage version: the reduction to bidiagonal
(blue with \\ hatching) is significantly reduced, but multiplying U = U1Us = U,UpUs
and V =WV, = V,V, V5 (orange with // hatching) is increased.

Figure 24 shows the performance of the MAGMA two-stage implementation
(dashed line), compared with the PLASMA two-stage and MAGMA one-stage im-
plementations. The square, no vectors case in Figure 24(a) shows that for the bidiag-
onal reduction itself, the two-stage MAGMA is up to 2.4x faster than the two-stage
PLASMA and 6.4x faster than the one-stage MAGMA, and nearly 500x faster than
EISPACK. When computing singular vectors, in Figure 24(b), it is again up to 2.4x
faster than PLASMA, but only 1.7x faster than the one-stage MAGMA, due to the
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Fig. 24 Comparison of MAGMA two-stage with MAGMA one-stage and PLASMA two-stage.

extra cost in multiplying by U, and V. It also performs well in the tall 3:1 case, while
for the tall 1000:1 case, its time is dominated by the initial QR factorization, so it
performs similarly to the one-stage MAGMA.

11.7. DPLASMA Implementation for Distributed Memory. To cover the dis-
tributed-memory environment, we also performed a study on a modern, large dis-
tributed system. It is representative of a vast class of supercomputers commonly used
for computationally intensive workloads. The DPLASMA algorithm is the two-stage
algorithm described above for multicore, but implemented using the PaRSEC runtime
engine [19, 18] to exploit the data flow representation, handle all the communication,
and provide asynchronous task execution based on dependency analysis. PaRSEC
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employs the dataflow programming and execution model to provide a dynamic plat-
form that can address the challenges posed by distributed hardware resources. The
PaRSEC runtime combines the source program’s task and dataflow information with
supplementary information provided by the user—such as data distribution or hints
about the importance of different tasks—and orchestrates task execution on the avail-
able hardware. From a technical perspective, PaARSEC is an event-driven system.
When an event occurs, such as task completion, the runtime reacts by examining the
dataflow to discover what future tasks can be executed based on the data generated
by the completed task. The runtime handles the data exchange between distributed
nodes, and thus it reacts to the events triggered by the completion of data trans-
fers as well. Thus, communications become implicit and are handled automatically
as efficiently as possible by the runtime. When no events are triggered because the
hardware is busy executing application code, the runtime gets out of the way, allowing
all hardware resources to be devoted to the application code’s execution.

We benchmarked our two-stage implementation from the DPLASMA library and
the ScaLAPACK SVD routine from Intel MKL. Because only the singular values
computation of our two-stage approach is currently implemented in the distributed
DPLASMA library, we limited our tests to the case where only the singular values are
computed. We performed our experiment on a recent hardware system consisting of
49 distributed nodes, where every node has two sockets of 18-core Intel Xeon E5-2697
(Broadwell) processors, running at 2.6 GHz, providing a total of 1764 cores. Each
socket has 35 MiB of shared L3 cache, and each core has private 3.5 MiB L2 and 448
KiB L1 caches. The system is equipped with 52 GiB of memory per node. When
only singular values are to be computed, the SVD solution consists of the reduction
to bidiagonal and the computation of the singular values using QR iteration. Note
that QR iteration on the bidiagonal matrix is a sequential process and thus it does
not exploit any parallelism for either DPLASMA or ScaLAPACK. Its computational
time is the same on either 1 or 49 nodes, and this time increases quadratically with
the matrix size. Thus, the percentage of time spent in this portion varies with the
matrix size. QR iteration consists of less than 5% of the time for a matrix of size 20k,
while it reaches about 15% for ScaLAPACK and 26% for DPLASMA for a matrix of
size 200k. As a result, the speedup will be affected by this constant,

timeppr,ASMA-BRD + tz

speedup = — ,
tIMeSCALAPACK-BRD + Uz

where ¢, is the time required to perform the bidiagonal singular value computation.
Figure 25 shows the comparison between our implementation and the ScaLAPACK
pdgesvd. Asymptotically, our code achieves up to a 3x speedup for the largest matri-
ces tested. This is the result of the efficient implementation of the first stage (reduction
to band) using the PaRSEC engine, which enables us to exploit the compute-intensive
nature of this stage, thereby minimizing the communication cost, and also from the
careful design and implementation of the second stage that maps both the algorithm
and the data to the hardware using cache-friendly kernels and data-locality-aware
scheduling. Note that for small matrix sizes (e.g., a matrix of size 20k), there is not
enough parallelism to exploit the 1764 available cores to make our two-stage algorithm
3x faster; the tile size is about 160, so there are only about 125 tiles in each direction.

12. Jacobi Methods. In contrast to bidiagonalization methods, Jacobi methods
operate on the entire matrix A, without ever reducing to bidiagonal. This allows
Jacobi methods to attain high relative accuracy, which will be discussed in section 13.
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Fig. 25 Comparison of DPLASMA and ScaLAPACK computing singular values only for square
matrices on 49 nodes (1764 cores).

Jacobi first proposed his method in 1848 for solving the symmetric eigenvalue prob-
lem [73] by diagonalizing the matrix A using a sequence of plane rotations

Ay = 4, Agsr) = T Awy T Ay = A as k — oo.

Each plane rotation, J) = J(x)(i, 4, 0), now called a Jacobi or Givens rotation, is an
orthogonal matrix that differs from the identity only in rows and columns ¢ and 7,

1

J(Z7]70) = I )

where ¢ = cosf and s = sind. The angle § is chosen to eliminate the pair a;;, a;;
by applying J(i,7,0) on the left and right of A, which can be viewed as the 2 x 2
eigenvalue problem

c s r a a c S d 0

A S ii ij a4 o

Ty AT = [—3 J Lﬁ aja] [—S C} ; {0 djj} = Awen,

where the notation A is the 2 x 2 submatrix [327 Z;i] of matrix A. Subsequent

eliminations will fill in the eliminated entry, but at each step the norm of off-diagonal
elements,

1/2
off(4) = 1A — ding(4) [ = (3 a3) .
1#]

is reduced until the matrix converges to diagonal form, A, revealing the eigenvalues.
Accumulating the plane rotations, V' = J)J(1) ..., yields the eigenvectors. Origi-
nally, Jacobi chose to eliminate the off-diagonal pair a;;,a;; of largest magnitude at
each step, giving the largest possible reduction in off(A4). This is inefficient as it in-
troduces an O(n?) search for each rotation of O(n) work. Instead, in modern times
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Algorithm 5 Two-sided Jacobi SVD method for n x n matrix A.
function two_sided_jacobi_svd( A )
v=5LV=1I
repeat // loop over sweeps
for each pair (4, j), ¢ < j, in prescribed order
solve 2 x 2 SVD jTA(k)K' = A(k—H)
A=JTA /] update rows i and j
A=AK //update cols i and j
U=UJ
V=VK
end
until off(A) < tol||Ao||
fori=1,...,n
o; = |ail
if a;; < 0 then u; = —u;
end
sort ¥ and apply same permutation to columns of U and V
return (U,X, V)
end function

the method was reformulated so that one sweep goes over all n(n—1)/2 combinations
of (i,7) with ¢ < j in a predetermined order, typically cyclic by rows, i.e.,

(1,2),(1,3),...,(1,n);(2,3),...,(2,n);...; (n—1,n),

or cyclic by columns. It converges after a small number of sweeps, typically 5-10.
Wilkinson [116] showed that convergence is ultimately quadratic. Rutishauser [102]
gave a robust implementation in the Wilkinson-Reinsch Handbook [117].

12.1. Two-Sided Jacobi SVD. Jacobi’s eigenvalue method was generalized to the
SVD of a general, nonsymmetric matrix in two different ways. The first way is the two-
sided method due to Kogbetliantz [76], which applies two different plane rotations,
J(i,4,0) on the left of A and K(i,7,¢) on the right of A, to eliminate the a;; and
a;; entries. As before, sweeps are done over the off-diagonal entries until the norm of
off-diagonal entries is below a specified tolerance, revealing the singular values, ¥, via
the iteration

A(O) = A, A(k+1) = J(T,;)A(k)K(k), A(k) — Y as k — oo.
Accumulating the left rotations, U = Jig)J(1) . . ., gives the left singular vectors, while
accumulating the right rotations, V' = K)K() ..., gives the right singular vectors.

Determining J (%, j,0) and K (i, j, ¢) can be viewed as solving a 2x 2 SVD problem,
c s;1" [as a c s d
T A | Cy J i Qi K K| _ |G _ A
o o= |2 T [ ] ]

The angles for J and K are not uniquely determined, so various methods have been
derived [22, 49, 76]. Brent, Luk, and Van Loan [22] proposed the algorithm USVD,
which uses one rotation to symmetrize the 2 x 2 subproblem, then a second rotation
to eliminate the off-diagonal entries. This produces an unnormalized SVD, where the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/27/19 to 130.88.240.104. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 845

diagonal entries are unsorted and may be negative. Postprocessing to sort and adjust
the signs of the singular values and singular vectors yields a standard SVD. They
also formulated the normalized rotation/reflection algorithm NSVD that corrects the
signs during the iteration. Algorithm 5 outlines the two-sided Jacobi method.

Rectangular matrices can be handled by first doing a QR factorization, optionally
with pivoting, and then doing the SVD of the R matrix, as previously described for
bidiagonalization methods (subsection 5.4). For Jacobi, this QR factorization has the
added benefit of preconditioning the system to converge faster, as discussed further
in subsection 12.5.

Heath et al. [67] developed a variant for computing the SVD of a product of
matrices, A = BT C, without explicitly forming A. Applying rotations By1) = ByJ
and C(y41) = C(xy K implicitly applies J and K on both sides of A. When B = C, it
simplifies to the one-sided Jacobi method, discussed next.

12.2. One-Sided Jacobi. The second way to generalize the Jacobi method to
the SVD is a one-sided method due to Hestenes [68]. Earlier we noted that the
SVD can be solved by computing the eigenvalues of the Gram matrix, AT A, but
that explicitly forming AT A is undesirable for numerical reasons. Instead, Hestenes
applied plane rotations on only the right side of A to orthogonalize the columns of
A, which implicitly performs the two-sided Jacobi eigenvalue method on AT A. The
columns of A converge to U, that is, the left singular vectors scaled by the singular
values:

Ay =4, Ae+1) = Ay Iy Agy = UL as k — oc.

This means that, implicitly, A(k)TA(k) — X2, Accumulating the rotations, V =
JyJ) - - -, gives the right singular vectors. Alternatively, V' can be solved for after
the iteration, as described below in subsection 12.5.

The rotations are determined similarly to the Jacobi eigenvalue method, by solv-
ing the 2 x 2 eigenvalue problem

o | bii bij| 5 dii
) I [bij b [T = i

where b;; = aiTaj and a; is the ith column of A(y. Over the course of a sweep, it
computes the matrix B = AT A; however, J is not applied directly to AT A, but to A
itself, avoiding the numerical instabilities associated with AT A. Algorithm 6 outlines
the one-sided Jacobi method. It skips rotations if |b;;| < €4/b;;bj;, indicating that
columns a; and a; are already numerically orthogonal. It converges when all rotations
in a sweep are skipped. Using this formula to check for convergence is required for
attaining high relative accuracy [32] (see section 13). The b;; column norms can be
cached rather than recomputed for each pair, which reduces operations when rotations
are skipped. Note that the last sweep takes about n® flops computing b;; terms to
check for convergence, without doing any useful work.

A left-handed version can be defined analogously by applying rotations on the
left to orthogonalize the rows of A [84]. This might be preferred if A is a wide matrix
stored row-wise, rather than a tall matrix stored column-wise.

One-sided Jacobi can be applied to a rectangular matrix, but again, preprocess-
ing using a QR factorization, and applying Jacobi on the square R matrix, reduces
the operation count and preconditions the system for faster convergence; see subsec-
tion 12.5.
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Algorithm 6 One-sided Jacobi SVD method for m x n matrix A, m > n.
function one_sided_jacobi_svd( A )
V=I
repeat // loop over sweeps
done = true
for each pair (7,j), ¢ < j, in prescribed order
bi = AT A = || A)*
byy = AT, = |14,
bij = A?AJ
if |b1]| Z € biibjj then
solve 2 x 2 symmetric eigenvalue problem JTBJ =D
A=AJ // update cols ¢ and j
V=vJ
done = false
end
end
until done
fori=1,...,n
oi = [lail,
U; = CLi/O'z'
end
sort ¥ and apply same permutation to columns of U and V
return (U,X,V)
end function

12.3. Convergence. For the row and column cyclic orderings, Forsythe and
Henrici [49] proved that all the Jacobi methods (two-sided eigenvalue, one-sided SVD,
and two-sided SVD) converge, provided the rotation angles are bounded below /2
by some b,

(10) 0] <b< /2.

For the two-sided eigenvalue and one-sided SVD methods, 6 can always be chosen
to satisfy (10); see [102]. For the two-sided SVD method, however, this condition
may fail to hold. In Forsythe and Henrici’s method, the bound is b = 5, which
may introduce a cycle interchanging two singular values without converging. For the
methods of Brent, Luk, and Van Loan [22], NSVD has a bound b = 37/4 and USVD
has a bound b = 57/4. Proofs for other orderings, particularly for parallel orderings,
have been elusive. Despite failing to satisfy the convergence proof’s prerequisites, in
practice Jacobi methods reliably converge. Using a threshold to skip updates to small
entries is a common tactic, especially in the first several sweeps, to accelerate and
guarantee convergence [102, 27, 8].

When applied to triangular matrices, Heath et al. [67] and Hari and Veseli¢ [66]
observed that applying one sweep of the two-sided SVD method with the row-cyclic
ordering (without thresholding) converts an upper-triangular matrix to lower triangu-
lar, and vice versa. Hari and Veseli¢ derived rotation angle formulas in the triangular
case, and proved that the angles are bounded below 7/2, guaranteeing convergence.
Hari and Matejas [65] later derived more accurate formulas.
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Fig. 26 Parallel orderings. Rectangles indicating processors are labeled with their assigned columns.
Arrows depict movement of columns between Jacobi sweeps. The circled pivot column is
stationary.

Applying column pivoting during the Jacobi iterations can improve convergence.
In the one-sided method, de Rijk [27] follows the row-cyclic ordering, but at the start
of row 1, searches columns i,...,n for the column of largest norm and pivots it to
column ¢. Unfortunately, using the row-cyclic ordering makes parallelism difficult.
Zhou and Brent [120] likewise show that sorting column norms improves convergence,
and they give a parallel ordering for sorting.

12.4. Parallel Orderings. In two-sided Jacobi, a pair of rotations applied on
the left and right affect only two rows and two columns. In one-sided Jacobi, each
rotation applied on the right affects only two columns. Therefore, in both cases,
|n/2] rotations can be performed in parallel. However, the row and column cyclic
orderings are not amenable to parallel computation, as they introduce dependencies
between consecutive pairs of elements. Since there are n(n — 1)/2 pairs to eliminate,
an optimal parallel ordering would have n — 1 steps, with each step eliminating n/2
pairs in parallel (for n even). Many different parallel Jacobi orderings have been
devised. While parallel orderings typically lack a proof of convergence, in practice
they work reliably.

Commonly, for parallel implementations of both one-sided and two-sided Jacobi,
the matrix is distributed by columns. Early systolic implementations placed two
columns [21] or a 2 x 2 submatrix [22] per processor. Later block implementations
placed two block columns [15, 11] or a 2 x 2 block submatrix [12] per processor.
When each processor stores two columns, one-sided Jacobi has the advantage that no
communication is required during an update, whereas in two-sided Jacobi, the left
transformations (J’s) must be broadcast in an all-to-all fashion.

Brent and Luk [21] introduced the round-robin ordering, shown in Figure 26(a),
which had previously been known for chess tournaments. After each Jacobi rotation,
each node sends and receives two columns, except for the pivot node that sends and
receives one column. Eberlein [46] gave the odd-even ordering in Figure 26(b). After
each odd sweep, the odd permutation (solid arrows) is used; after even sweeps, the
even permutation (dashed arrows) is used. Each node sends and receives one column.

Luk and Park [85] studied the equivalence of orderings, demonstrating that many
orderings are equivalent in the sense that relabeling the columns gives identical or-
derings. For example, choosing a different pivot column in round-robin will give an
equivalent ordering. Luk and Park showed that the two main classes of Jacobi order-
ings are the round-robin and odd-even types. Becka and Vajtersic [12, 11] compared
implementations of the round-robin, odd-even, and a butterfly-like ordering inspired
by the fast Fourier transform (FFT), on ring, hypercube, and mesh networks for block
Jacobi methods.
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Algorithm 7 Preconditioned one-sided Jacobi SVD method (simplified)

function preconditioned_one_sided_jacobi( A )
input: m X n matrix A, m >n
output: U, X, V
transpose = (m == n and ng(AAT) < na(ATA)) // see (11)
if transpose then

A=AT
end
Q.RPT = A // QR factorization with column pivoting
LQ;=R // LQ factorization
(U1, X)) = onesided_jacobi_svd(L) // Algorithm 6; skip V'
U= QrUl

V=PQIL Y UX) or V=P.R1UY)
if transpose then
swap U &V
end
end function

12.5. Preconditioning. Another means to improving the speed of Jacobi meth-
ods is to precondition the matrix to reduce the number of sweeps required for con-
vergence. Drma¢ and Veseli¢ [44] introduced several forms of preconditioning for
the one-sided Jacobi method. The major ideas are outlined below, with a simplified
version in Algorithm 7.

First, for a square matrix A, heuristically choose to factor either X = A or
X = AT, Drmag and Veseli¢ give the example of A = DQ, where D is diagonal and
Q is orthogonal. One-sided Jacobi applied to A implicitly diagonalizes Q7 D?D, while
applied to AT, it implicitly diagonalizes D?, which is already diagonal. One heuristic
they suggest is to choose the X that maximizes Hdiag(XTX)||2, hence minimizing
off(XTX). Their second heuristic is to choose the X that minimizes the diagonal
entropy of X7 X, defined by

(11) na(XTX) = n (diag(X" X)/ trace(X X)),
where the entropy of a vector p with p; > 0, >, p; = 1, is defined as

1

(12) n(p) = “logn ;pz logp;, with 0log0 = 0.

Both heuristics are O(n?).

The second preconditioning technique is to use a QR factorization with column
pivoting (QRP) of A, then factor R. This concentrates the mass of the matrix along
the diagonal of RT R, reducing the number of Jacobi sweeps. For a rectangular m x n
problem, m > n, this also shrinks it to an n X n problem, as in subsection 5.4.

Third, use either an LQ factorization of R, or simply let L = RT, then factor
L. An LQ factorization further concentrates the mass along the diagonal of LT L.
Using LQ is particularly advantageous in the rank deficient case. For a matrix of
rank r, QRP generates R = [R(}l g;i] with the (n —7) x (n — r) block Ras being
negligible. Doing an LQ factorization of [Rn ng} yields a smaller, r x r, full-rank
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matrix L. Alternatively, simply using L = R” is an implicit step of Rutishauser’s LR
diagonalization applied to RT R, again concentrating mass along the diagonal of LT L
as compared to RTR.

Additionally, Drma¢ and Veseli¢’s error analysis based on using QRP and option-
ally LQ factorization shows that computing V' by solving with either of the triangular
matrices L or R is numerically stable and generates an orthogonal matrix; see Al-
gorithm 7 for specifics. This allows us to skip accumulating V' during the one-sided
Jacobi iteration, removing some Level 1 BLAS operations, and adding Level 3 BLAS
operations after the iteration, so we can expect a good performance increase. Their
paper gives detailed algorithms that make choices about which preconditioning to use
based on condition estimates. Hari [64] and Becka, Oksa, and Vajtersic [9] also applied
QRP and LQ preconditioning in the context of parallel one-sided block Jacobi.

In addition to preconditioning, Drma¢ and Veseli¢ [45] introduced optimizations in
the one-sided Jacobi iteration, based on the structure of the preconditioned matrix. In
the first sweep, the zero structure of the triangular matrix can be exploited to reduce
computation. Second, based on work by Mascarenhas [87], they used a modified row-
cyclic strategy to more frequently visit diagonal blocks, since those blocks converge
at a slower rate. Heuristically, based on the expectation that LT L is diagonally dom-
inant, during the first few sweeps, if two rotations in a row are skipped due to thresh-
olding, they skip the rest of the row. This avoids computing dot products when the
rotation will likely be skipped. Finally, they used a tiled row-cyclic strategy to improve
cache efficiency. All of these improvements combine for a more efficient algorithm.

Oksa and Vajtersic [95] showed that the same preconditioning techniques, QRP
factorization optionally followed by LQ factorization, also improve convergence for the
parallel two-sided block Jacobi method. In their tests, preconditioning concentrated
more than 99% of the weight of ||Al|, into the diagonal blocks. Depending on the
SVD, this gave up to an order-of-magnitude reduction in time. This preconditioning
was later extended to multiple QR iterations [10].

As noted earlier, two-sided Jacobi preserves the triangular structure when used
with an appropriate cyclic ordering. Hari and Matejas [65, 88, 89] use the QRP and
LQ preprocessing to generate triangular matrices. They prove high relative accuracy
results for the two-sided Jacobi method on such triangular matrices, and utilize a
parallel ordering due to Sameh [103] that preserves the triangular structure.

12.6. Block Jacobi. In section 5, we saw that blocking was a major improvement
for SVD methods. Blocking can also be favorably applied to Jacobi methods. Van
Loan [112] and Bischof [15] were among the first to describe two-sided block Jacobi
SVD methods. The method is very similar to the nonblock implementation, with
plane rotations J and K operating on two rows or columns now becoming orthogonal
block rotations operating on two block rows or block columns. For a block size ny,
let N = [n/ny]| be the number of blocks. The indices 4, j now loop over the blocks,
1,...,N. We reinterpret the notation A to be the 2 x 2 block matrix

o TA. A
A= i1 z]:| 7
[Aji Ajj

where each A;; is an ny, x ny, block. Instead of the 2 x 2 SVD (8), it computes a 2 x 2
block SVD,

o e A A - D:: 0
JTAK:JT|: 1 lj:|K: l: i :|’
Aji Ajj 0 Djj
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either recursively using a serial Jacobi method, or using some other SVD method
such as QR iteration. Each processor now holds two block columns. Block row and
column updates by the orthogonal matrices J and K are applied as Level 3 BLAS
matrix multiplies, greatly enhancing the efficiency of the algorithm.

Bischof [15] investigated two methods to solve the SVD subproblem: using QR
iteration or using a single sweep of two-sided Jacobi. In the latter case, in using only
one sweep the block method does not fully annihilate the off-diagonal blocks of the
2 x 2 block subproblem, and is in fact simply a reorganization of the nonblock method,
but with updates applied using Level 3 BLAS. Bischof found that using Jacobi to solve
the subproblem was faster than using QR iteration; however, this was prior to the
fast blocked versions of QR iteration available in LAPACK.

Arbenz and Slapni¢ar [5] gave an early implementation for the one-sided block
Jacobi SVD method. Again, the block method is very similar to the nonblock method,
with the 2 x 2 eigenvalue problem (9) being replaced with a 2 x 2 block eigenvalue
problem,

wmonn s [Be:  Biil a D.. 0
T _ T 1% (%] _ [
TAr=d {BT' Bj]J_{O Djj]’

with B;; = A?Aj, where A; is the ¢th block column of A. Arbenz and Slapnicar used
the two-sided Jacobi eigenvalue method to solve the subproblem, which is important
for preserving Jacobi’s high relative accuracy. Hari [64] derived an optimization using
the cosine-sine decomposition as a kind of “fast scaled block-rotation,” reducing the
flop count up to 40%. Boukaram et al. [20] developed batched one-sided Jacobi and
block Jacobi methods for GPUs, to compute SVD factorizations of a batch of small
matrices.

Becka, Oksa, and Vajtersic introduced dynamic orderings for the two-sided [8] and
one-sided [9] Jacobi methods. Instead of using a cyclic ordering such as row-cyclic,
round-robin, or odd-even, the idea is to find the off-diagonal blocks of maximum norm
to eliminate. This is Jacobi’s original idea, applied on the block level. Using a greedy
solution to the mazimum-weight perfect matching problem takes O(p?logp) time for
p processors and yields a set of N/2 subproblems of maximum weight to solve in
parallel. Their results show significantly improved convergence and time to solution.

12.7. Performance Analysis. While Jacobi methods have a long history, even
predating bidiagonalization methods, many implementations have been either research
codes or designed for unique systems like the ILLIAC IV [84]. Therefore, we do not
have as rich a collection of historical implementations to compare as for bidiagonal-
ization methods. We tested four current implementations of Jacobi methods:

e One-sided Jacobi, available in LAPACK as dgesvj, due to Drmag¢ [44].

e Preconditioned one-sided Jacobi, available in LAPACK as dgejsv, due to
Drmac [44].

e Two-sided Jacobi, available in Eigen 3.3.3 [47].

e Preconditioned one-sided block Jacobi, due to Becka, Oksa, and Vajtersic [9].

Jacobi has traditionally trailed bidiagonalization methods in performance for two
reasons. First, a comparison of flops in Table 2 shows that for computing singular
values only (no vectors), Jacobi cannot finish even one sweep in the same flops as
bidiagonalization (%n?’). When computing vectors, Jacobi would need to complete
in two sweeps to have fewer flops than QR iteration, and one sweep to have fewer
flops than D&C. However, with optimizations to skip rotations and take advantage
of matrix structure [45, 89], these Jacobi flop counts are significant overestimates.
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Table 2 Floating-point operation counts for square n X n matriz and S Jacobi sweeps. For Jacobi,
fast Givens rotations [63] are assumed. For preconditioned Jacobi, initial QRP and LQ
factorizations and triangular solve for V are also assumed.

No vectors With vectors

QR iteration Sn? 2n3 ~ 1708
8.3 28,3 . 0.3
D&C 3n Fn° ~9n
One-sided Jacobi 55n3 75n3
Two-sided Jacobi 4Sn3 85n3

Preconditioned one-sided Jacobi  5Sn3 + %n?’ 55n3 4+ %ns

Preconditioned two-sided Jacobi 4Sn3 + %ns 6Sn3 + %7713

However, as we have repeatedly seen, flops are now a poor metric for performance.
It matters whether flops are in compute-intensive Level 3 BLAS or not. For Jacobi, dot
products and plane rotations are Level 1 BLAS, so are memory bandwidth limited. For
preconditioned Jacobi, QRP has a mixture of Level 2 and Level 3 BLAS operations,
similar to the traditional one-stage bidiagonalization discussed in subsection 5.1, so
its performance is also limited by memory bandwidth. The triangular solve for V' and
multiplying QU will both be Level 3 BLAS operations. The level of parallelism also
matters. The two LAPACK implementations, one-sided Jacobi and preconditioned
one-sided Jacobi, do not use explicit parallelism. Therefore, the only parallelism is
within the BLAS, which is very limited for Level 1 BLAS. In contrast, the block
Jacobi method uses Level 3 BLAS operations and explicit parallelism via MPI, so we
can expect much better performance.

In Figure 27(a), for square matrices without vectors, both one-sided Jacobi meth-
ods were about half EISPACK’s speed, while with vectors in Figure 27(b), precon-
ditioned Jacobi is 2x faster than plain Jacobi, and close to EISPACK’s speed. For
tall, 3:1 matrices in Figure 27(c), the plain one-sided Jacobi does not do an initial
QR factorization, so it remains about half of EISPACK’s speed, while the precondi-
tioned Jacobi improves to about 2x EISPACK’s speed. When computing vectors in
Figure 27(d), the preconditioned Jacobi version gains even more, being over 3x faster
than EISPACK.

For the very tall-skinny 1000:1 case in Figures 27(e) and 27(f), the time with
preconditioned Jacobi is dominated by QRP, which uses more Level 2 and 3 BLAS
operations, so the performance improves to over 100x EISPACK. LAPACK’s QR it-
eration uses a regular QR factorization (no pivoting), which is predominantly Level 3
BLAS, so its performance is significantly faster than Jacobi. However, QRP will gen-
erate a more accurate factorization than regular QR, especially if A is ill-conditioned.

In most cases, the Jacobi single-core performance was identical to its multicore
performance, indicating that the Level 1 BLAS routines do not have appreciable par-
allelism. For tall matrices, preconditioning gained an advantage when using multiple
cores, shown by the difference between the »— and »- - # lines in Figures 27(c)
to 27(f), due to parallelism within QRP, solving for V, and computing QU.

In all of these results, the two-sided Jacobi implementation available in Eigen was
considerably slower. This can partly be explained because it has to update the matrix
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Fig. 27 Comparison of LAPACK’s one-sided Jacobi, preconditioned one-sided Jacobi, and Eigen’s
two-sided Jacobi.

both row-wise and column-wise, making for poor cache performance. For square
matrices, it does not do any preconditioning. For tall matrices, it uses QRP, which
improves its relative performance somewhat. (Note that Eigen can be configured to
instead call LAPACK’s QR iteration method.)

Figure 28 shows results for the preconditioned one-sided block Jacobi method. We
tested two variants of the preconditioning, one using QRP, the other using regular QR
factorization (no pivoting). In both cases, this was followed by an LQ factorization.
This implementation has explicit parallelism via MPI. It uses ScaLAPACK for the
QRP, QR, and LQ factorizations. We see that with QRP + LQ, it performed similarly
to ScaLAPACK QR iteration, while with QR + LQ, it was a bit faster, matching
LAPACK’s QR iteration in performance for the tall, 3:1 case.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/27/19 to 130.88.240.104. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

THE SVD: ANATOMY OF OPTIMIZING AN ALGORITHM 853

60 120 T T T

o 50 o 100
3¥ 40 3% 80
Yo 20 gm 40
& 10 & 20

0 0

0k 2k 4k 6k 8k 0k 2k 4k 6k 8k

columns (matrix size N xN) columns (matrix size 3N xN)
(a) square, with vectors (b) tall, 3:1, with vectors

VY3 Block Jacobi, QR + LQ @@ ScalAPACK
V- = ¥ Block Jacobi, QRP + LQ  @==g LAPACK D&C
PP | APACK Precond. Jacobi =l LAPACK QR iter.

Fig. 28 Comparison of preconditioned one-side block Jacobi, LAPACK’s preconditioned one-sided
Jacobi, QR iteration, and DE&C.

13. Accuracy. While Jacobi methods have struggled to compete with the perfor-
mance of bidiagonalization methods, for some classes of matrices they have a distinct
advantage in accuracy, which is now their main motivation. In this section, we briefly
explore the accuracy differences between methods. The traditional perturbation the-
ory [32] for both bidiagonalization and Jacobi methods shows that

lo; — 64

< O(e)k(4),

g5

where o; and §; are the singular values of A and A + J A, respectively, with a small
perturbation dA such that ||§A], < O(e) ||4],, and k(A) is the condition number
of A. This implies that large singular values are computed accurately, but small
singular values may be totally inaccurate if k(A) is large. For the one-sided Jacobi
SVD method, this bound can be improved. Specifically, on matrices of the form
A = CD, where C has columns with unit two-norm and D is diagonal, Demmel and
Veseli¢ [32] proved the bound

loi — &

(13) < 0(e)(0).

i
Crucially, it is possible that x(C) < k(A), particularly in the instance of a strongly
scaled matrix where D is ill-conditioned. If ill-conditioning is artificial, due to poor
scaling, then one-sided Jacobi will be unaffected by it and will compute even small
singular values to high relative accuracy. Demmel et al. [30] extended methods of
computing the SVD with high relative accuracy to a wider class of matrices of the
form A = XDYT, where D is diagonal and X and Y are well-conditioned.

Similar results apply for the two-sided Jacobi eigenvalue method with a positive
definite matrix A = DT BD [32]. For eigenvalues of an indefinite matrix, though, QR
iteration may be more accurate than Jacobi [108].

When applied to triangular matrices, Matejas and Hari [88, 89] proved that the
two-sided Jacobi SVD method also attains high relative accuracy. One can preprocess
a general matrix using QRP to obtain such a triangular matrix.
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with various test matrices. Figure 30 shows details for three instances indicated by arrows:
geometric distribution with (k(C), (D)) = (10°,10); (10%,10%9); (103, 1029).

Applied to a bidiagonal matrix, the implicit zero-shift variant of QR iteration and
the bisection method have been shown to achieve high relative accuracy for all sin-
gular values [31]. However, the classical reduction from dense to bidiagonal perturbs
the singular values so the exact singular values of the bidiagonal matrix no longer
have high relative accuracy for the original matrix A. Hence, any method based on
an initial reduction to bidiagonal will lose relative accuracy for small singular values
of an ill-conditioned matrix. To address this deficiency, Barlow [7] developed a more
accurate bidiagonalization, using QRP followed by a Givens rotation-based bidiag-
onalization. Recently, Drmac [43] demonstrated that preprocessing a matrix with
QRP (LAPACK’s dgeqp3 routine) is sufficient to enable a subsequent QR iteration
or bisection to have high relative accuracy (but not D&C, which is not as accurate as
QR iteration).

Here we test the accuracy of various methods on matrices with three different
distributions of singular values: arithmetic, geometric, and a cluster at 1/x(C), as
described in section 2. For each distribution, we generate singular values ¥ with con-
dition number x(C), scale them so that Y ¢2 = n, and set ¢ = UXVT, where
U and V are random orthogonal matrices from the Haar distribution [106]. To
satisfy the conditions of (13), we use the method by Davies and Higham [26] to
make C = CW with columns of unit two-norm, where W is orthogonal. Finally,
we set A = CD, where D is diagonal with entries whose logarithms are random
uniform on (log(1/k(D)),log(1)). For each distribution, we set n = 100 and vary
k(C) € {10,105,10'°} and (D) € {10,10°,10'°,10%°}. For a reference solution, we
used MATLAB’s [90] variable-precision arithmetic (vpa) with 64 digits.

Figure 29 demonstrates the significant difference between one-sided Jacobi meth-
ods and bidiagonalization methods (QR iteration, D&C, bisection, MRRR). Both
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one-sided Jacobi methods achieve high relative accuracy for all singular values, at or
below the dashed line representing machine e. For small scaling, with (D) = 10,
all methods achieve high accuracy on all the matrices. Most of the bidiagonalization
methods show increased relative errors as the scaling (D) grows. For x(D) = 10%°,
the maximum errors were sometimes larger than 1, i.e., no correct digits in the smallest
singular values. Among bidiagonalization methods, the exception was preprocessing
using QRP, then using QR iteration (QRP + QR iter., blue diamonds), which also
achieved high relative accuracy, as predicted by Drmac.

QR iteration (blue squares) and bisection (purple down triangles) produce ex-
tremely similar errors, demonstrating that they both accurately compute singular
values of the bidiagonal matrix, and the error occurs in the reduction to bidiagonal.
Once the condition number x(A) exceeds 1/e, D&C (red diamonds) has much worse
error than QR iteration. Even with modest scaling, MRRR (stars) has the worst
error. Eigen’s two-sided Jacobi (orange up triangles) also exhibits significant error as
the scaling increases. Preprocessing with QRP before Eigen’s two-sided Jacobi (not
shown) improved the accuracy, but not to the high relative accuracy of one-sided Ja-
cobi. Based on [89], other two-sided Jacobi implementations are expected to achieve
high relative accuracy.

To explain these results in more detail, we look at three specific cases for the
geometric distribution with (C) = 10° and k(D) € {10,10'°,10*°}. In Figure 30,
the left column shows the actual singular values, in both log and linear scale, while the
right column shows the relative error in each singular value, o;, from¢ = 1,...,100. In
the top row, with minimal scaling (k(D) = 10), all the methods achieve high accuracy,
below € in almost all cases. Eigen has a slightly higher error for large singular values,
and MRRR is slightly higher for small singular values.

In the middle row, with modest scaling (k(D) = 10'°), the one-sided Jacobi
methods and QRP + QR iteration maintain high relative accuracy for all singular
values. The bidiagonalization methods have high accuracy for the large singular values
(near o1), but the relative error increases for small singular values, losing digits of
accuracy. Eigen’s error also increases.

In the bottom row, with large scaling (x(D) = 102°), the error of bidiagonalization
methods for small singular values grows even more. As seen in the bottom-left graph,
several methods compute singular values that diverge noticeably from the reference
solution. For this matrix with omax ~ 1029, MRRR declares all o; < 107 to be
3.27 x 107, i.e., it cannot resolve smaller singular values. Similarly, for D&C, all
o; < 10 are computed as 6.91 x 103. Eigen also has issues for ¢ < 10%, though it does
not flatline as MRRR and D&C do. QR iteration and bisection follow the true singular
values much more closely, but still exhibit significant error for small singular values.

14. Additional Test Cases. So far, we have mostly considered the performance of
random uniform matrices. In this section, we look briefly at additional test cases using
various distributions of singular values. Our purpose here is to give the reader an idea
of the variability in performance and how representative the random uniform tests are.
The distribution of singular values affects the performance of various SVD algorithms
differently. For QR iteration and D&C, whenever a singular value is determined with
sufficient accuracy, it can be removed to shrink the problem size, a process known
as deflation, improving the performance. For MRRR, having singular values close to
one another will cause it to recurse further in the representation tree, decreasing its
performance [119]. For one-sided Jacobi, matrices that are close to orthogonal—i.e.,
most of the weight of AT A is near the diagonal—converge faster.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/27/19 to 130.88.240.104. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

856

log scale

log scale

log scale

DONGARRA ET AL.

singular values relative error

102 l) 1 1 1 1 B 20

10

10° F {15 3

10! E 02

102 | B Rl

10° E = Y -g

0% E

10° ) S S S 1

0 20 40 60 80 100 0 20 40 60 80 100

(a) minimal scaling, x(C) = 10, k(D) = 10, x(A) = 2.4 x 10°
singular values relative error
I I I I

10° |f

10°

10° |

10° |

1073 |
OO OO

(b) moderate scaling, x(C) = 10%, k(D) = 109, x(A) = 6.9 x 1013

relative error

0 20 40 60 80 100

(c) large scaling, x(C) = 10°, k(D) = 102°, k(A) = 5.2 x 10?3

B— Reference solution, log scale »>—» 1-sided Jacobi, precond.
{—< Reference solution, linear scale =~ <¢—< 1-sided Jacobi

—_—— ¢ A—A Eigen 2-sided Jacobi
B—l QR iter. ¥ - ¥ Bisection

@---® QRP + QR iter. *—% MRRR

9—4¢ D&C

Fig. 30

F

Singular values of A = CD are plotted twice in the left column, once in log scale (black
squares) and once in linear scale (gray diamonds). In most cases, computed singular values
are visually coincident with the reference solution (log scale). The right column shows
relative error in each singular value, |6; — oi| /(k(C)o;). The x awzis indezes the singular
values from largest to smallest, i = 1,...,100.

igure 31 shows results for six methods on various matrices. These all use the

LAPACK implementations, except MRRR which uses a modification of the bisection
dgesvdx code, as described in section 9. Note that the y-axis scale is different for
QR iteration, D&C, and MRRR compared to Jacobi and bisection. See section 2
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20F T T T 600 T T T
500 E
- 15 400 .
[0
(2]
; 10 300 —
E

0
QR iter. D&C MRRR 1-sided 1-sided bisection
Jacobi Jacobi,
precond.

. entries random uniform . geometric, k=10 . log-random, x =10°
. arithmetic, k=10 . geometric, k =10° . log-random, x =10
. arithmetic, k=10° . geometric, k=10" . cluster at 1/x, k=10°
. arithmetic, x =10" . log-random, k=10 E cluster at 1, kK =10°

Fig. 31 Time to compute the full SVD for n = 3000. Note the change in the y azis; dashed line at
t = 20 corresponds to the y azis in the left plot.

for a description of the matrix types. For each algorithm, the first, blue bar is for a
random uniform matrix, matching most of the results elsewhere in this paper. The
geometric and log-random distributions themselves are similar, so in most cases their
performance trends are similar, except when using bisection. We see that for QR
iteration, the performance for most matrices is similar to that of random uniform, with
a few being up to 18% slower. For D&C, the arithmetic distribution (cyan) was up
to 24% slower, while log-random (green) was up to 23% faster than random uniform.
The two clusters (red, orange) were 77% and 60% faster, due to significant deflation.
MRRR is more variable, with geometric (purple) and log-random (green) being up
to 47% and 52% slower on ill-conditioned matrices (k = 10'°), while both clusters
of repeated singular values were up to 3x faster than random uniform. Arithmetic
(cyan) was not significantly affected by conditioning.

Because one-sided Jacobi and bisection were significantly slower, they are plotted
with a different y axis. In all cases, one-sided Jacobi and bisection were slower than
QR iteration, D&C, and MRRR. The geometric (purple) and log-random (green)
matrices exhibited opposite behavior for the two Jacobi methods: for plain Jacobi,
both matrices became slower as the conditioning worsened, while for preconditioned
Jacobi, both became faster. A cluster at 1/x took similar time to random. A cluster
at 1 was much faster, because A7 A is already nearly diagonal, but preconditioning did
not further improve it. Bisection was surprisingly 4.9x faster for a well-conditioned
(k = 10) log-random matrix, but the speedup decreased for poorer conditioning. As
we saw earlier in section 8 when computing a subset of vectors, clusters were not
advantageous.
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While the performance does vary for different classes of matrices—sometimes
substantially—at a high level, our performance conclusions remain valid: D&C is
the fastest (being tied with MRRR in one case), then QR iteration, then MRRR.
One-sided Jacobi is the slowest method, with preconditioning generally improving its
speed, often by a factor of 2x or more. For computing all vectors, bisection is also
slow; its main advantage is in computing a subset of vectors, as previously shown in
section 8.

I15. Conclusions. As we have seen, algorithms to compute the SVD have continu-
ally evolved to address changes in computer hardware design, as well as advancements
in mathematics. Farly implementations such as EISPACK demonstrated that com-
puting the SVD stably was feasible. Later implementations focused on improving the
performance, first by using Level 1 BLAS for vector computers, then by reformulat-
ing the algorithm for Level 3 BLAS to address the emergence of cache-based memory
hierarchies. More recently, a two-stage algorithm shifted even more operations from
Level 2 to Level 3 BLAS. These changes have addressed the growing gap between
memory bandwidth and computational speed, as well as enabling greater use of par-
allel hardware. Implementations have also taken advantage of different architectures
such as distributed-memory computers and accelerators. Mathematical advancements
have been important in reducing the number of operations performed. For tall-skinny
problems, using an initial QR factorization can eliminate a quarter to half of the op-
erations. For square matrices, the D&C algorithm reduces operations by nearly half.
For Jacobi methods, preconditioning has been vital to improving convergence, while
at the same time making computation of singular vectors more efficient. Block Jacobi
methods with dynamic selection of subproblems have become competitive with some
bidiagonalization methods. Improvements in algorithms used to preprocess a matrix,
such as using a CAQR factorization [29] for tall-skinny matrices, or future improve-
ments to QRP methods, are immediately applicable to benefitting SVD performance.

As we build the next generation of linear algebra software targeting exascale com-
puters [77], the goal is to integrate these techniques—such as the two-stage reduction
to bidiagonal, accelerators, and distributed computing—into a scalable SVD solver.
While the techniques have been demonstrated to work, the challenge is being able
to hide communication latencies in large distributed machines. Bottlenecks due to
Amdahl’s law, such as solving the bidiagonal SVD, will also be crucial to resolve.
Improving algorithms to remove communication and memory bandwidth limitations
becomes critically important.

For certain classes of matrices that are strong scaled, classical methods based on
reduction to bidiagonal will not accurately compute small singular values. In these
cases, one should turn to Jacobi methods or preprocessing the matrix using QRP to
attain high relative accuracy.

We have focused on solving dense systems. There are, of course, different tech-
niques for solving SVD problems with sparse linear systems. Also, if one is concerned
with only an approximate, low rank solution, then using a randomized SVD algo-
rithm [99] may be another avenue to pursue. This is often the case for huge systems
arising from big data problems.

Here we have compared implementations on a common, modern architecture. To
give some historical perspective, in 1977, EISPACK took 0.79 seconds (1.7 Mflop/s)
to compute singular values for n = 80 on an IBM 370/195 [105]. Today, the same
EISPACK code achieves 0.74 Gflop/s on large problems, yielding over two orders-
of-magnitude advancement in single-core hardware speed. On top of this, we have
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shown an additional two orders-of-magnitude improvement going from EISPACK to
PLASMA (146 Gflop/s) on a multicore architecture, and four orders of magnitude to
DPLASMA (6.8 Tflop/s) on a distributed-memory machine—while moving from solv-
ing systems of dimension 100 to over 100,000—yielding over six orders-of-magnitude
performance improvement in 40 years.
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