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Autotuning Numerical Dense
Linear Algebra for Batched
Computation With GPU
Hardware Accelerators

This paper discusses automatic performance tuning for small linear algebra kernels,
which are important building blocks in many engineering and science applications.

By JACK DONGARRA
AND YAOHUNG M. TSAI

ABSTRACT | Computational problems in engineering and scien-
tific disciplines often rely on the solution of many instances of
small systems of linear equations, which are called batched
solves. In this paper, we focus on the important variants of
both batch Cholesky factorization and subsequent substitution.
The former requires the linear system matrices to be sym-
metric positive definite (SPD). We describe the implementation
and automated performance engineering of these kernels that
implement the factorization and the two substitutions. Our tar-
get platforms are graphics processing units (GPUs), which over
the past decade have become an attractive high-performance
computing (HPC) target for solvers of linear systems of equa-
tions. Due to their throughput-oriented design, GPUs exhibit
the highest processing rates among the available processors.
However, without careful design and coding, this speed is
mostly restricted to large matrix sizes. We show an automated
exploration of the implementation space as well as a new
data layout for the batched class of SPD solvers. Our tests
involve the solution of many thousands of linear SPD systems
of exactly the same size. The primary focus of our techniques
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is on the individual matrices in the batch that have dimen-
sions ranging from 5-by-5 up to 100-by-100. We compare our
autotuned solvers against the state-of-the-art solvers such as
those provided through NVIDIA channels and publicly available
in the optimized MAGMA library. The observed performance
is competitive and many times superior for many practical
cases. The advantage of the presented methodology lies in
achieving these results in a portable manner across matrix
storage formats and GPU hardware architecture platforms.

KEYWORDS | Dense numerical linear algebra; performance
autotuning

I. INTRODUCTION

For large dense matrices, software libraries for numerical
linear algebra methods are known to achieve high effi-
ciency (in terms of the fraction of peak performance) for
solving dense linear systems on graphics processing unit
(GPU)-accelerated hardware [1]. However, good perfor-
mance for many simultaneous small linear systems has
been hard to achieve and continues to be a challenge. The
available parallelism is inherently limited when dealing
with small matrices, e.g., when sizes are of order 100
(matrix dimension is 100 x 100) or smaller. As a result,
most methods fail to fully utilize the highly parallel com-
puting hardware units that are available in today’s high-
performance computing (HPC) platforms. This is where
batched mode of operation is helpful: in such a mode,
the implementation is exposed to a significant amount of
parallelism due to availability of a large set of small linear
systems that can be accessed by the software library at the
same time. This enables the linear algebra routine to use
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the parallel hardware in a significantly more efficient man-
ner. On throughput-oriented streaming processors—the
main execution units inside modern GPU accelerators—
there are additional gains to be made because of the
reduced overhead of launching individual kernels for each
matrix; instead, it is possible to dispatch a single kernel
as a batched function invocation. Making multiple kernel
calls (one for each linear system) cannot be efficiently
overlapped even with the communication of matrix data
because, in the most common case, the matrices are
already present in the accelerator’s main memory.

Every one of a GPU’s streaming multiprocessors (SMs)
has a fast local memory with a large register file, shared
memory, and cache-like scratch buffer that is, for opti-
mal performance, managed manually by the programmer.
Reusing data stored in these fast local memory caches
is essential for achieving high performance by exploiting
data locality [2], [3]. We combine these techniques with
a data layout based on intermatrix interleaving of entries,
which further helps to match the speed of the hardware
processing units with loading of matrix elements from the
main GPU memory.

The engineering and scientific applications that often
need large sets of small linear solves are constituent in
a surprising number of fields in computational science.
Thus, they are a perfect match for batched operations on
GPUs. Perhaps the most representative example from data
analytics is the alternating least squares (ALS) method [4].
There are additional examples in digital volume corre-
lation in experimental mechanics [5], [6], and rigorous
coupled-wave analysis (RCWA) in computational lithogra-
phy [71, [8]. Batched processing may also be applied as the
basic building blocks to construct solvers for large sparse
linear systems, where the coefficient matrices have many
small dense blocks [9], [10].

II. RELATED WORK

Currently, there is significant interest in batched matrix
operations. Of the major computing processor vendors,
both NVIDIA with cuBLAS [11] and Intel with the Math
Kernel Library (MKL) [12] provide extensive sets of
batched routines for basic linear algebra tasks, and so does
the Matrix Algebra on GPU and Multicore Architectures
(MAGMA) library [13] from the University of Tennessee.
Numerous papers have been published about the devel-
opment and optimization of batched routines [14]-[18].
This paper is a followup on our previous work on the
batched Cholesky factorization for smalled matrices [19].
The direct motivation for this work came from the ALS
algorithm for recommender systems [20]. In our previous
paper, we looked into the development of batched rou-
tines for the canonical columnwise data layout. Here we
are investigating alternative data layouts for batches of
extremely small matrices.

Our autotuning methodology is based on an automated
performance engineering approach that we pioneered
with the Automatically Tuned Linear Algebra Software

1) Register file

2) Shared memory and/or Level 1 cache
3) Read-Only data cache

4) Level 2 cache

5) Device main memory

Fig. 1. Architectural components of NVIDIA GPUs.

(ATLAS) [21], which has since then grown into a vibrant
field of experimental performance optimization guided
by execution profiles. To name a few early efforts, we
could start with Portable High Performance ANSI C
(PHiPAC) [22] that generated code for superscalar proces-
sors implementing dense linear algebra operations. Sparse
matrix computations were targeted by the optimized
sparse kernel interface (OSKI) [23] and the fastest Fourier
transform (FFT), and similar transforms were optimized
by FFT in the West (FFTW) [24] and Spiral [25]. In fact,
Spiral’s automated code synthesis has recently addressed
matrix-matrix multiply [26]. To the best of our knowledge,
these projects do not target their autotuning efforts specif-
ically for accelerators. Also, they concentrate on using the
human expert knowledge of the tuned kernel and embed it
as the core of the project and an integral part of the imple-
mentation code. Our approach is to expose this knowledge
as a generic component in the form of user-defined tem-
plates and/or stencils. Finally, there are domain-specific
languages (DSLs) designed specifically for the purpose of
autotuning parallel scientific codes [27], [28]. A more
exhaustive survey of recent advances in the area of auto-
tuning is available elsewhere [29]. The recent work that
targeted GPU-specific autotuning [19], [30], [31] is also
relevant and some of the results are updated here.

IIl. HARDWARE PRELIMINARIES

For the sake of completeness, in this section, we provide
an overview of the GPU-based hardware accelerators and
their design features that are the most important from the
standpoint of implementing the batched kernels that are
the subject of this paper—Cholesky factorizations/solves.

The two most prominent aspects of modern compute-
oriented GPUs are the single-instruction—multiple-threads
(SIMT) processing model and the memory hierarchy. The
code that mismanages either of them would quickly lower
the performance rate below the optimal level.

Fig. 1 lists the basic elements of an architecture of mod-
ern NVIDIA and AMD GPUs. The most basic execution unit
of an NVIDIA GPU is referred to as a CUDA core. One such
core can possibly execute basic floating-point instructions
at a throughput of one instruction per cycle. However, a
single CUDA core may not follow an independent instruc-
tion stream that is completely unrelated to the nearby
cores’ instruction streams. This is in stark contrast to a
more traditional core of a central processing unit (CPU).
Instead, a set of 32 GPU cores has to follow the same
execution path. Therefore, the basic unit of scheduling is

Vol. 106, No. 11, November 2018 | PROCEEDINGS OF THE IEEE 2041



Dongarra et al.: Autotuning Numerical Dense Linear Algebra for Batched Computation With GPU Hardware Accelerators

a warp, which is a set of 32 threads mapped by the GPU
thread scheduler onto the CUDA cores.

CUDA cores are organized into multiprocessors, the
names of which are shortened as SM or SMX. The
Kepler architecture features multiprocessors that con-
tain 192 cores, and a single GPU chip contains up to
15 streaming multiprocessors; this makes a total of up to
2880 CUDA cores per chip. NVIDIA Maxwell, Pascal, and
Volta designs lower the per-multiprocessor core count to
64 but increase the per-chip multiprocessor count to 24,
60, or 80, respectively. In addition to the cores and their
instruction-scheduling logic, the Kepler multiprocessor fea-
tures a large register file of 65536 registers of 32-b size
and 48 KiB of read-only data cache, and 64 KiB of fast
memory, which may be configured as a combination of a
flexible/programmable level 1 (L1) cache and/or shared
memory.

The fastest memory in the multiprocessor is the register
file. The registers in the file are partitioned among threads,
and each thread has a private set of registers at the time of
execution. The second fastest memory in the multiproces-
sor is the L1 cache and/or shared memory. Much like in
the CPU, the L1 cache is a standard hardware-controlled
cache. On the other hand, the shared memory is controlled
entirely through software. Two threads may exchange data
by storing data pieces from registers into shared memory
locations, then executing a synchronization operation, and
finally reading the data from a shared memory location to
a register. Thus, the shared memory is a scratchpad storage
that is specific to GPUs (in contrast to CPUs). Initially, GPUs
were exclusively designed for data-parallel workloads, and
the individual cores could not communicate directly—
collaboration in terms of data exchanges was not possi-
ble. The subsequently introduced GPU designs added the
shared memory feature and thus allowed handling of more
complex tasks, such as exchanging data among cores. In a
way, the shared memory can be considered an extension of
the register file rather than simply a traditional cache—and
the CUDA constructs and compiler optimizations make that
connection seamless from the programmer’s standpoint.

The main memory, either graphics double data rate
(GDDR) or high bandwidth memory (HBM) random access
memory (RAM), consists of the slowest memory types in
a GPU accelerator. Reads from the main memory must
pass through the L2 and L1 caches or the read-only data
cache. A GPU’s main memory RAM’s bandwidth is often a
limited quantity and the most scarce resource in the con-
text of batched matrix operations because they fall on the
memory-bound side of the computational intensity spec-
trum. Critically, accessing the main memory must exhibit
access coalescing, i.e., the reads execute most efficiently if
all threads in a single warp read the same 128-B cache line.
If the data being read are not cached, the cache line will
be fetched from RAM in a single memory transaction and
thus the data traffic is maximized and the control traffic is
limited. If distinct threads in a warp access different cache
lines, then multiple memory transactions will be issued and
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Algorithm 1 Unblocked, POTF2, right-looking,
lower-triangular Cholesky factorization using C-style
(zero-based) indexing.

1for k=0ton—1do
2 | Apk < Ak

3| for m=k+1ton—1do
4 Ami < Amk/Akk
5

6

7

for n=k+1ton—1do
for m=nton—1do
L Am,n <~ Am,n - An,k X Am,k

thus extra memory bandwidth will be consumed by the
control packets with the addresses of the requested cache
lines, thus using the bus bandwidth less efficiently.

IV. ALGORITHMIC OVERVIEW

A system of linear equations of the form Ax = b with a
symmetric positive definite (SPD) dense matrix A € R"*"
and real vectors x,b € R" can be solved efficiently with
minimal space requirements through a decompositional
approach by first computing the lower Cholesky factoriza-
tion A = LLT, and then using forward and backward sub-
stitutions to apply on the right-hand-side vector b through
the triangular factors L and LT. In this paper, we focus
on all three steps: the factorization and two solve steps—
but only for the lower triangular formulation because the
upper triangular one, A = U U, is equivalent and may use
very similar techniques without any loss of generality in
the exposition.

In Figs. 2-6, the basic linear algebra subprograms
(BLASs) and the Linear Algebra PACKage (LAPACK) rou-
tine names are used to refer to the building blocks of
the different implementations of Cholesky factorization,
including:

e POTF2—unblocked Cholesky factorization (of a small

square submatrix on the diagonal);

e TRSM—solve for a set of vectors with triangular fac-

tor;

e SYRK—rank-k update to a symmetric matrix;

o GEMM—general matrix-matrix multiply.

Algorithm 1 and Fig. 2 show the canonical formulation
for computing the factors of the Cholesky factorization
without cache-friendly blocking of submatrix operations—
this is called POTF2 in LAPACK. The algorithm proceeds
along the diagonal from the upper left to the lower right
corner of the matrix. As it proceeds, the diagonal elements
are subsequently replaced by their square root after the
prior updates have completed. These updates comprise
divisions of each element in the current column (called a
panel column) by the computed diagonal value. Addition-
ally, a rank-1 update is applied to the remaining part of the
matrix, i.e., to the right of the current diagonal element—
called a trailing submatrix. It is custom for the implementa-
tions to operate only on one half of the matrix by assuming
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Fig. 2.
looking, lower triangular).

Canonical Cholesky factorization (no blocking, right

symmetry. Either the lower or upper triangular portion is
updated, leaving the other part unchanged. This particular
implementation is called unblocked and there exist old
codes that use this formulation with one column factored
at a time and rank-1 outer-product updates applied to the
trailing submatrix. In terms of existing software libraries,
this algorithm uses the set of L1 and L2 BLAS: vector—
vector and matrix—vector operations are needed. In prac-
tice, such implementations produce inferior performance
results. This is because such ordering of computations
is inherently memory bound, but it can be easily shown
that the algorithm is a compute-bound algorithm if recast
differently. We proceed to describe such a version of the
factorization.

The use of blocking is one of the main optimization
methods for the Cholesky factorization, and is shown in
Algorithm 2 and Fig. 3. This optimization, which may be
viewed as a form of blocking of the inner computational
loops, is the primary choice for dense linear algebra rou-
tines suitable for cache-based multicore systems. It was
heavily used throughout the LAPACK software library. The
benefits of blocking stems from replacing most of the L1
and L2 BLAS calls in the canonical unblocked algorithm
with L3 BLAS calls, which implement matrix-matrix oper-
ations. The performance gains come from leveraging the
surface-to-volume effect of dense linear algebra routines.
This is the inherent compute-bound nature of these algo-
rithms: they perform O(n?) floating-point operations on

Algorithm 2 Right looking variant of blocked
Cholesky factorization POTRF of n-by-n matrix A
with block size np.

1for k=0ton/np,—1do

2 POTF2(Ak.x)

3 | form=k+1ton/ny,—1do
4 |_ TRSM(A/{,/{, Am,k)

5 | form=k+1ton/ny,—1do
6 SYRK(Am,k, Am,m)

7 forn=k+1tom—1do
8 |_ GEMM(Am,k, An,k, Am,n)

N

POTRF

7

TRSM
PR
2

SYRK
~.

NB

Fig. 3. Right-looking blocked Cholesky factorization.

O(n?) data. The blocked factorization takes advantage of
this feature by applying the Cholesky algorithm on one
panel of width n;, columns. If we let | « n;, < n, and
we follow by a rank-n;, update, then we take advantage
of the inherent data locality property. When described in
terms of loop transformations, blocking is similar to loop
tiling of the outermost loop in line 1 of Algorithm 1.

A comparatively important choice to be made in the
implementation is whether to use aggressive or delayed
evaluation. This goes beyond what is called in loop-
transformation parlance loop reordering, and advanced
variants of such transformations may be applied in this
context [32]-[34]. Another perspective is to look at how
much parallelism is exposed to the hardware or whether
the memory writes are minimized at the expense of
repeated reads. The three main variants of the Cholesky
factorization are the right-looking, the left-looking, and the
top-looking factorizations. Fig. 3 shows the right-looking
variant—it corresponds to aggressive evaluation because
immediately after the panel is factored, the updates write
to the entire trailing submatrix. In terms of parallelism, this
variant sacrifices data locality but exposes a large amount
of work quickly, and thus it favors highly parallel hard-
ware. Furthermore, this implementation modifies the data
by both reading and writing the entire trailing submatrix.
This, therefore, does not map well onto small-sized fast
memory structures, the very situation in which the left-
looking variant of the factorization performs much better.

Note that the above transformations are followed by
automated macro expansion and code generation, which
then is finally fed to the NVIDIA compiler that performs
additional work, including, for example, loop tiling across
all levels of loop nests—provided they meet the require-
ments of the code mapping internals. These are based
on the specific hardware models and are applied to a
loop-based code with much concrete (ideally, constant at
compile-time) bounds and iteration steps.

Fig. 4 shows the left-looking variant of the Cholesky fac-
torization, which is characterized by its delayed evaluation
style. This variant postpones the updates to, and thus the
access of, the trailing submatrix. Specifically, the update
operations are applied exclusively to the area of the current
panel, which is then immediately followed by the panel
factorization. The consequence of this is that at every step
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SYRK

NB

Fig. 4.
implementation in LAPACK).

Left-looking blocked Cholesky factorization (the

of the algorithm, all pending updates are applied from the
left-hand side of the matrix, and then, and only then, the
panel is factored. Thus, only the panel area is modified
(both read from and written to) at any given algorithmic
step, and the growing part of the matrix to the left of the
current panel is accessed in read-only fashion. For these
reasons, the left-looking formulation of the factorization is
used as the starting point for implementations that have to
take into account a small buffer memory (either a scratch
pad or the first level cache) for storing data (commonly the
panel data).

Historically speaking, on tiered memory systems with
hierarchical storage structures, customized algorithms that
efficiently deal with the limited size of the intermediate
memory levels have been referred to as out-of-core (OOC)
algorithms. The core would refer to the magnetic core
storage used in the 1950s, 1960s, and 1970s. Presently,
it is considered confusing to use the word “core” in such a
context because of the emergence of multicore and many-
core processor designs where the word now designates a
central processing element. Consequently, since 2006, the
word “core” established its new meaning as an indepen-
dent processing unit that displaced the term CPU. As a con-
sequence, the term out-of-core is often deprecated and the
term out-of-memory (OOM) is preferred. Unfortunately,
with respect to the content of this paper, the new term
may also confuse the reader because we deal extensively
with situations where the data exceeds the register file but
the algorithmic design forces them to be fully contained
inside the main memory. Therefore, we choose nonresident
algorithm as the term of choice throughout this text.

One of the primary objectives of nonresident algorithms
is, first, to allocate a small amount of read/write storage in
the fastest memory and, subsequently, stream that data in
read-only mode from the lower level storage, presumably a
slower part of the memory hierarchy. Clearly, this is a very
generic method that may refer to a number of different
situations: hard disk may be the slow memory and the fast
memory may be the main memory (RAM). Or slow is RAM
and fast is cache. Or slow is cache and fast are registers. Or
the main memory of the CPU host against the accelerator
device memory. The central concept of the nonresident
batched Cholesky factorization and solve is to use the left-
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SYRK

TRSM

Fig. 5. Top-looking block Cholesky factorization.

looking variant by first placing the matrix panel entries in
the fast memory; second, streaming in the pending updates
from the slow memory; third, factoring the panel in the fast
memory; and finally, saving the fully processed data in the
slow memory.

Fig. 5 shows another factorization variant: the top-
looking Cholesky factorization, which does delay the
updates the most. Instead of factoring the whole panel, the
top-looking factorization only factors a diagonal triangle of
limited size, the blocking factor n;, and defers all updates
to the rows below the triangle, as well as all updates to the
trailing submatrix to the right. In other words, each step of
the algorithm is as follows: first, all pending updates (from
the top of the matrix) are applied to a stripe of the matrix
(to the left of the diagonal triangle); then, that stripe is
used to update the diagonal triangle; finally, the diagonal
triangle is factored.

Also, all operations involved in the Cholesky factoriza-
tion can be tiled, i.e., expressed as a set of operations on
blocks of size nj, x nj as shown in Fig. 6. This is due to the
fact that the Cholesky factorization is self-similar: it admits
a fully recursive formulation without extra floating-point
operations. Any efficient BLAS implementation applies
hierarchical tiling to facilitate data reuse at multiple levels
of the memory hierarchy (registers, caches, etc.). Tiled
formulation is yet another loop transformation—a combi-
nation of tiling and reordering. The order of tile accesses
determines whether the implementation is left-, right-, or
top-looking.

The system of dense linear equations may be solved by
applying the so-called forward and backward substitutions.
These use the factors obtained through the factorization

POTRF

7
Li‘

GEMM

SYRK

WSdL

Fig. 6. Tile Cholesky factorization (left-looking).
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Algorithm 3 Forward substitution using C-style
zero-based indexing.

Algorithm 5 Cholesky factorization as a non-resident
implementation in the context of GPU’s SIMT.

1for k=0ton—1do

2 bi < bi/Lg

3| for n=k+1ton—1do
4 Lbn <_bn_bk/Lkn

process, whereby the input matrix is factored into the
product of a lower triangular matrix and its transpose.
Algorithm 3 shows the forward-substitution procedure and
Algorithm 4 shows the backward-substitution procedure.
Triangular solves, as these algorithms are known, may
easily be implemented by the TRSV routines—a part of
the set of L2 BLAS. Crucially, unlike the cubic-complexity
factorization, the solves require only O(n?) operations
while using O(r?) data, which results in constant O(1)
reuse ratio. As a result, both triangular solves are com-
pletely memory bound and are consequently unlikely to
deliver distinct benefits, regardless of using either multiple
algorithmic alternatives such as those that originate in loop
reordering [34] or those that deal with imperfect loop
nests [32], [33].

V.IMPLEMENTATION OF CHOLESKY
FACTORIZATION

The two main problems that need to be addressed in
order to achieve efficient batched factorization for dense
matrices are, first, a near-optimal use of the memory band-
width and, second, high utilization of the hardware’s SIMT
scheduler (the lack of thread divergence). As described in
Section IV, the left-looking algorithm is ideal for solving
the bandwidth issue while the right-looking algorithm is
perfect for solving the other—a clear instance of divergent
optimization goals. As a solution, maximizing memory
bandwidth is addressed first by choosing the nonresi-
dent Cholesky algorithm with GPU dynamic random-access
memory (DRAM) acting as the slow storage and the
shared memory and register file represent the fast stor-
age. Algorithm 5 describes such an implementation that
can be considered the nonresident Cholesky factorization.
This algorithm requires only O(n x np) worth of matrix
elements stored in the fast memory to factor the entire nxn
matrix while still keeping the schedule busy enough.

For the sake of convenience, the term “global memory”
will be used here as a stand-in for the GPU RAM, while

Algorithm 4 Backward substitution using zero-based
indexing.

1for k=N —1to0do

2 bi < bi/Lg

3 | for n=k—1to0do

4 L bn < bn - bk/Ln,k

1for £=0to [n/np] —1 do

2 | Read panel ¢: global memory — local memory

3 __syncthreads ()

4 | for ' =0to ¢ —1do

5 Read panel #: global memory — shared mem-

ory
6 _ _syncthreads ()
7 Apply update from panel # to panel ¢
8 __syncthreads ()

9 | Factor panel ¢ using only local and shared memory

10 __syncthreads ()
11 | Save panel ¢: shared memory — global memory
2| _ _syncthreads ()

“local memory” will be, for the most part, synonymous
with the register file. The outermost loop of the factoriza-
tion encompasses the following actions in each step: first,
a panel of width n; columns is loaded to the local memory
(line 2). Second, the loop iterates over all nj-size stripes to
the left of the panel and performs the following: it loads
each stripe, one at a time, into the shared memory (line 5)
and then applies the pending update to the current panel
(line 7). That panel is then factored, using both the register
file and the shared memory as storage (line 10). Writeback
of the data to the global memory finishes this second step.
One notable feature of this implementation pertains to the
limited storage requirement: only n x n; entries of the
shared memory and n x n registers per thread block are
needed. Memory coherence is provided in Algorithm 5 by
repeated calls to CUDAs __syncthreads () that synchro-
nizes the threads with respect to one another and thus
guarantees a consistent memory view.

Our tool of choice for explicit transformation of the
source code is pyexpander, a macroprocessor for text
documents written in Python and with Python-like syntax.
This offloads our preprocessing tasks to a generally avail-
able code base with ongoing maintenance and support.
Also, our specification language for search space iterators
and constraints is also based on Python-exclusive syntax
and search execution, which lowers the user’s burden of
entry into our autotuning infrastructure.

The factorization is implemented in C/C++ and CUDA,
but without any use of low-level constructs: no intrinsics or
embedded PTX. Additionally, the optimized code includes
#pragma unroll statements for all relevant loops—
except for the outermost one, in line 1 of Algorithm 5,
which is explicitly unrolled using the pyexpander pre-
processor. The main reason for this loop to be explicitly
unrolled is the fact that the value of the loop counter
affects the boundaries of the inner loops, and the CUDA
compiler does not unroll those loops that have nonconstant
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boundaries. This explicit inlining does not yield a sub-
stantial code size increase because the number of the
outermost loop’s iterations is small.

From a performance engineering standpoint, the com-
piler is expected to completely unroll all loops and place
the majority of local memory variables in the register file.
In particular, the local array that holds the panel should
remain in registers throughout the entire factorization.
Whether this optimization was applied as a transformation
and performed by the compiler can be determined with an
inspection of the compiler-produced assembly. This file is
not created by default while compiling the source code,
but the cubin format file can be easily produced and then
disassembled. Compilation to cubin format is done by the
compiler with the -cubin flag supplied on the command
line when using the nvcc compiler. The disassembly, on
the other hand, is performed with the NVIDIA toolchain by
passing the resulting cubin file to the nvdisasm tool.

Clearly, our approach transcends a single platform
and a single implementation choice. Instead, it moves
toward portable performance without resorting to the
aforementioned low-level techniques, opting instead for
autotuning—a systematic process of generating generating
high performance implementations for a variety of prob-
lem sizes when using only CUDA source code. In what
follows, we document this technique for Cholesky factor-
ization across data storage formats and NVIDIA's hardware
platforms in the form of the company’s successive GPU
generations.

VI. IMPLEMENTATION OF FORWARD-
AND BACKWARD-SUBSTITUTION STEPS

Unfortunately, a triangular solve with only a single right-
hand side offers very little compute-bound parallelism
and is mostly memory bound. The vector b is updated
by one column of matrix A at any given time. There is
only work for one GPU warp for matrices of size 32 and
smaller. Seemingly, there is work for more than one warp
in the initial steps when dealing with larger matrices,
but this quickly drops off as the loop finishes its initial
iterations. Keeping this in mind, using just a single thread
warp for each solve presents no serious downsides, and
boasts two distinct advantages. First, if only a single thread
warp is used, then an explicit synchronization through
a call to __syncthreads () may be omitted because
the threads are implicitly synchronized at the warp level.
Second, direct register-to-register communication may be
used to send the results of the division in line 2 of
Algorithms 3 and 4 to all the threads in the warp, rather
than relying on shared memory copies. GPU devices with
compute capability of at least 3.0 perform this operation
with the __shf1l () instruction known as a warp shuffle.
Matrix data alignment in memory is a not an issue in
the forward substitution because the warp may be aligned
with the columns of the matrix. For backward substitution,
this poses a new challenge that needs to be addressed.
Commonly, in software libraries for dense linear algebra
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such as LAPACK, the Cholesky factorization modifies only
one half of the input matrix, either lower or upper triangu-
lar portion, while leaving the other portion untouched. We
chose to present the lower triangular implementation here.
Accordingly, both the forward substitution and backward
substitution use the same matrix elements. The latter
accesses the data with the matrix viewed in a transposed
form. Because of this, any GPU implementation faces a
performance issue: the transposition causes the threads
to access the memory in a detrimental pattern with a
stride that is equal to the size of the matrix. A com-
mon solution to this problem is to use shared memory
for reading the matrix in limited-size stripes, and then
perform the transposed access in shared memory, where
such an access pattern incurs much less severe penalty.
This solution encounters the shared resource problem,
however, because the total usage of shared memory limits
the maximum occupancy that the code may reach. We
propose a solution below that could be considered a novel
contribution.

Prior to being saved to the device’s main memory, each
panel is factored using the combined storage of both the
register file and the shared memory. In order for the trans-
posed access to be efficient as well, the triangular matrix is
written to the device memory twice: in nontransposed and
transposed form. The latter one is placed in the unused,
upper part of the input matrix. Now, the factorization
is present in shared memory, and by reorganizing the
GPU threads, aligned writes are made possible in both
the nontransposed and transposed cases. Clearly, a slight
penalty on the factorization performance is imposed by
the additional transposed matrix writeback. However, the
cost is amortized because it enables a fast implementation
of the transposed triangular solve. Ultimately, this cost is
basically a trivial result of the nontransposed triangular
solve.

Last, the remaining problem that needs addressing is
the potential low occupancy value caused by the imple-
mentation with only a single warp. It is known that
high occupancy is important for bandwidth-bound kernels.
Creating only one warp per thread block yields low occu-
pancy because the maximum number of thread blocks per
multiprocessor is much lower than the maximum number
of warps per multiprocessor and the thread scheduler
has little possibility for parallel execution. However, the
solution to this problem turns out to be simple: each thread
block is given multiple warps, because repeated triangular
solves are available in batch mode and each warp ends up
being responsible for a different triangular solve. And as
an added bonus, each warp is independent of all others.
Hardware-dependent optimization involves choosing the
optimal number of warps per block.

Thus, the only parameter to be tuned for the triangular-
solve kernels is the number of warps per block. The objec-
tive is simple: maximize the achieved memory bandwidth.
It turns out that the easiest way to accomplish this is
to maximize value of hardware occupancy. For example,
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with respect to the Kepler architecture, the maximum
number of blocks per multiprocessor is limited to 16, but
the maximum number of warps per multiprocessor is 64.
Consequently, launching a single warp per block reaches
only 16/64 = 25% occupancy. Increasing the number of
warps per block enables the implementation to increase
the resulting performance, with the limit being four
warps per block, at which point the maximum occupancy
(4x 16/64 = 100%) is reached; any further increases of
the warp counts may only keep the performance at the
same level and would not improve it. Alternatively, the
same result can be achieved by creating two blocks with
32 warps per thread block, which would also enable the
hardware scheduler to run the maximum number of warps
per block.

VII. AUTOTUNING OF THE CHOLESKY
FACTORIZATION

We maximize the achieved performance by identify-
ing the fastest among a large number of generated
implementations—a classic heuristic for automatic soft-
ware tuning commonly referred to as autotuning method-
ology. For every size of the matrix to be factored (n),
a number of implementation choices need to be made, as
different sizes are possible for the width of the panel—the
blocking factor n, in addition to the two dimensions of the
CUDA thread block. To facilitate the automation, the actual
kernel source code is generalized so that any value for ny,
can be used for a given n, and any shape and size of the
GPU thread block can be used for a given np; i.e., there
are no constraints on the shapes and sizes other than the
correctness, which is checked against the reference code.
In our case, we use the original LAPACK code running on
the host CPU. It would be possible to check against cuBLAS
in case of LU and QR factorizations, but since cuBLAS
currently does not provide batched Cholesky factorization,
we default to the canonical CPU code at the moment—
arguably a more time-consuming option. For performance
comparisons, we use the MAGMA numerical library [13].
The batch size of 10 000 is used for all runs reported in this
paper to serve as a reference point that has a good standing
in practical cases. At such large batch sizes, the kernel’s
performance is very close to its asymptotic value, and
increasing the batch size any further would not noticeably
increase the gigaFLOP/s rate.

Recall that the primary objective of batched factoriza-
tion routines is to achieve good performance for a signif-
icantly large number of small-sized factorizations/solves.
The tuning we perform within this context is done for all
matrices in the range of 5 x 5 and 100 x 100, inclusively,
i.e.,, 5 < n < 100. Then, for each matrix size n, the panel
widths n;, (also called blocking factors) are taken to be the
following: n, [n/21, [n/3], [n/4], ..., 1. In particular, for a
matrix of size n = 33, the set of values for n;, is: 33, 17,
11,9, 7,6, 5, 4, 3, 2, and 1. Furthermore, for each shape
of the panel (n x np), the height of the GPU thread block
varies across all powers of two smaller than n (2¥, k < n)

and the first value larger than n, and the width of the GPU
thread block ranges through the powers of two smaller
than np, with the first value larger than n,. For example,
for a panel of size 33 x 11, the values for the height of the
GPU thread block (blockDim.x) are: 1, 2, 4, 8, 16, 32,
and 64; and the values for the width of the GPU thread
block (blockDim.y) are: 1, 2, 4, 8, and 16. To reduce the
search space with respect to practical considerations, two
additional filters are applied. The first one ensures that the
GPU thread blocks with the total number of threads not
divisible by the warp size (32) are not considered. The
second one makes sure that the thread blocks with the total
number of GPU threads that exceed the hardware-defined
maximum number are skipped. For example, for the Kepler
architecture this maximum is 1024. As a result, our runs do
not represent a fully exhaustive sweep. Ideally, more panels
could be tested for almost all matrix sizes. Also, even
more thread block shapes and sizes could have been tried
for each panel. However, the currently implemented tool
chain for code generation, code compilation, and binary
timing is still a sequential process. In practice, it occupies
a single GPU device for long periods of time. In the future,
we plan to include in the tool chain more parallelism in
shared and possibly distributed-memory environments for
massively parallel evaluation, which would result in a more
exhaustive sweep with less constraints. Clearly, some of
the constraints we impose at the generation time may still
be imposed during code compilation or kernel launch, or
both.

VIII. AUTOTUNING OF THE FORWARD-
AND BACKWARD-SUBSTITUTION
SOLVES

As discussed above, there is one main parameter of the
triangular solve in their respective implementation ker-
nels: the number of warps per GPU thread block. The
objective of choosing the right value for that parameter
is to maximize the memory bandwidth achieved during
the execution. The most straightforward way to accom-
plish this goal is to maximize the hardware occupancy
value. For instance, on the NVIDIA Kepler architecture,
the maximum number of thread blocks per multiprocessor
is 16, while the maximum number of warps per mul-
tiprocessor is 64 (see Table 1 for more details). Thus,
an implementation that launches a single thread warp
per thread block reaches only 16/64 = 25% occupancy.
With an increased number of thread warps per thread
block, greater performance may be attained, but only up
to four warps per block—the saturation point with the
maximum hardware occupancy (100%) is reached. Any
further increases in the number of warps would only keep
the execution performance at the same level. As an alter-
native, one could create two thread blocks with as many
as 32 thread warps in each, which would again maximize
the number of warps per block as far as the NVIDIA Kepler
hardware is concerned.
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Table 1 Side-By-Side Comparison of Three Recent Generations of NVIDIA
GPU Cards

Tesla Products: Tesla K40  Tesla M40  Tesla P100
Name Kepler Maxwell Pascal
GPU GK110 GM200 GP100
SMs 15 24 56
FP32 cores / SM 192 128 64
FP32 cores / GPU 2880 3072 3584
FP64 cores / SM 64 4 32
FP64 cores / GPU 960 96 1792
Base clock MHz 745 948 1328
Boost clock MHz 810/875 1114 1480
FP64 Gflop/s* 1680 213 5304
Texture units 240 192 224
Memory type GDDR5 GDDR5 HBM2
Memory i-face bits 384 384 4096
Memory size 12 24 16
Level 2 cache KiB 1536 3072 4096
Register file / SM KiB 256 256 256
Register file / GPU KiB 3840 6144 14336
TDP Watts 235 250 300
Transistors billion 7.1 8 15.3
Die Size mm? 551 601 610
Manufacturing process nm 28 28 16
* based on boost clock

IX. ALTERNATIVE DATA LAYOUTS FOR
BATCHED OPERATION

Commonly, matrices for batch operations are laid out in the
main memory one after another, and each one occupies a
contiguous piece of memory, usually in column-major data
layout. This layout makes it more challenging to have coa-
lesced memory reads, especially as the dimensions of the
matrices become smaller. Eventually, it is nearly impossible
to have any remaining coalesced reads for matrices smaller
than 32 in single-precision arithmetic.

The most straightforward way to solve this issue is to
reorder the dimensions. In addition to matrix width and
height, there is an additional dimension for batch process-
ing mode: the matrix index. This extra dimension can be
used as the fastest growing of the three, as illustrated in
Fig. 7. In this case, one thread warp reads 32 elements,
with the same row and column index in 32 consecutive
matrices. Observe that as long as the whole data set
is 128-B aligned, and the number of matrices is divisible
by 32, the data will always be read with optimal coalesc-
ing occurring regardless of the other two dimensions. An
admittedly uncommon layout, we observe that it has its
precedence not in dense linear algebra [35], [36], but

Fig. 7. Simple interleaved batch layout.
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Fig. 8. Batch data layout with interleaved chunks.

in the NVIDIAs CUDA Deep Neural Network (cuDNN)
library for deep learning. The convolution filters in cuDNN
matrices and tensors can be stored in either the so-called
NCHW and the NHWC layouts [37] (W is width, H is
height, N is the image number in the batch, and C is the
filter index).

This new layout has the benefit of coalesced reads,
which is complicated by two new problems: one obvious
and one more subtle in nature. Clearly, divisibility by 32
is an obvious problem and there is a need for a solution
for any number of matrices in the batch. Fortunately, it can
easily be solved by padding the data set to the 32-divisible
size (round up to 32). This is trivially accomplished in
practice, and we are not going to look into it any further
by assuming that the padding is done for all the presented
results. The more subtle issue is the fact that the elements
of a single matrix would become positioned far apart in the
memory. The consequences of this are far less obvious, and
we show issues in greater detail below.

One simple solution to this problem is grouping the
matrices in a batch into chunks of 32—maybe even larger
multiples of 32 as illustrated in Fig. 8. Each chunk is stored
immediately after the previous chunk, and each chunk gets
to occupy a contiguous region of the main memory. In this
solution, all reads are coalesced, as they were before, and
the elements of each matrix reside much closer in memory.
We look at the performance consequences of using this
layout versus the original one. We will also study the
impact of using varying chunk sizes for the chunked layout.

A. Implementation of Code for Interleaved Layout

All of the code is implemented in C and uses CUDA for
GPU code. It is compiled for a specific size of the matrices
in the batch. The code is completely or almost completely
unrolled using the pyexpander preprocessor. The factor-
ization is assembled from a set of four basic operations that
deal with n; x ny tiles as shown in Fig. 9. spotrf_tile
applies the Cholesky factorization to a single tile, while
strsm_tile, ssyrk_tile, and sgemm_tile perform
their corresponding L3 BLAS operations (triangular solve,
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#define spotrf_tile(rA)\ \

$for(k in range(0, NB))\
$("rA##_%dsd = sqrtf (rA##_%dsd);
$("inv = 1.0f/rA##_%d%d; " % (k,k))\
$for(m in range(k+1, NB))\

" % (kk,KK)\

$("rA##_%dsd = inv; " % (mk))\

$endfor\

$for(n in range(k+1, NB))\
$for(m in range(n, NB))\

$("rA##_%dsd -= rA##_3dsdrrA##_%dsd; " % (m,n,n,k,m.k))\

$endfor\

$endfor\

$endfor

#define strsm_tile(rA1, rA2)\\
$for(m in range(0, NB))\
$for(k in range(0, NB))\
$("ra2##_5dsd /= rAl##_s%dsd;
$for(n in range(k+1, NB))\

" % (mk,kK)\

$("rA2##_%dsd —= (rA2##_%dsd+rAl##_%dsd); " %
(m,n,m,k,n,k))\
$endfor\
$endfor\
$endfor
#define ssyrk_tile(rA1, rA2)\\
$for(m in range(0, NB))\
$for(n in range(0, m+1))\
$for(k in range(0, NB))\
$("rA2##_%dsd —= rAl##_%d3d+rAl##_%dsd; " %
(m,n,m,k,n.k))\
$endfor\
$endfor\
$endfor

#define sgemm_tile(rA1, rA2, rA3)\\
$for(m in range(0, NB))\
$for(n in range(0, NB))\
$for(k in range(0, NB))\

$("rA3##_%dsd —= rAl##_$d3drrA2##_%d3d; " %
(m,n,m,k,n.k))\
$endfor\
$endfor\
$endfor

Fig. 9. Generalized microkernels for implementing the operations
on individual tiles.

symmetric rank-k update, and matrix—matrix multiplica-
tion). Each one is fully unrolled using pyexpander. Note
that this is the right-looking variant and the others may
be developed in a similar fashion with some reuse of the
auxiliary components, described below in more detail.

The above operations work on tiles stored in local vari-
ables that are numbered according to the elements’ loca-
tions in the tile. The assumption is that, once loaded into
the register file, the tile can be fully utilized, i.e., modified
with updates, after which it may be disposed of. This calls
for a set of specialized operations for loading and storing
the tiles into the slow memory. Fig. 10 shows these mem-
ory operations load_full and store_full for reading
and writing full (square) tiles, and load_lower and
store_lower for reading and writing diagonal (lower
triangular) tiles. In this paper, we only support lower
triangular matrices, but the upper triangular matrices can
trivially be supported in a similar fashion. Both load and
store operations are completely unrolled as well.

Finally, Fig. 11 shows how the aforementioned tile oper-
ations can be combined into a complete implementation of
the Cholesky factorization. Note in Fig. 11 that the outer
loops are not unrolled, but they also can still be completely
unrolled, and this is shown in Fig. 12. The entire factoriza-

#define load_full(_m, _n, rA)\\
dAp = dA + _m*NB*32 + _n*NB*N*32;\ \
$for(n in range(0, NB))\

$for(m in range(0, NB))\

$("rA##_%dsd = +dAp; " % (m,n))\
dAp +=32;\\
$endfor\
dAp += (N-NB)*32;\ \
$endfor

#define store_full(_m, _n, rA)\\
dAp = dA + _m*NB*32 + _n*NB*N*32;\ \
$for(n in range(0, NB))\
$for(m in range(0, NB))\
$("+dAp = rA##_sdsd;
dAp +=32;\\
$endfor\
dAp += (N-NB)*32;\\
$endfor

" % (m,n))\

#define load_lower(_m, _n, rA)\\
dAp = dA + _m*NB*32 + _n*NB*N*32;\ \
$for(n in range(0, NB))\

$for(m in range(n, NB))\

$("rA##_%dsd = dAp; " % (m,n))\
dAp +=32;\\
$endfor\
$("dAp += (N-NB+%d) *32; "% (n+1))\
$endfor

#define store_lower(_m, _n, rA)\\
dAp = dA + _m*NB*32 + _n*NB*"N*32;\ \
$for(n in range(0, NB))\

$for(m in range(n, NB))\

$("+dAp = rA##_%dd; " % (m,n))\
dAp +=32;\\
$endfor\
$("dAp += (N-NB+%d)*32; " % (n+1))\
$endfor

Fig. 10. Generalized microkernels that implement loading and
storing of individual tiles.

tion can be completely unrolled into a single block of basic
code, which may seem at first like an extreme performance
measure, but it still makes sense for the smallest matrices,
and we look into that case further in the investigation
below.

for (int kk = 0; kk < N/NB; kk++) {
for (int nn = 0; nn < kk; nn++) {
load_full(kk, nn, rA3);
for (int mm = 0; mm < nn; mm++) {
load_full(kk, mm, rA1);
load_full(nn, mm, rA2);
sgemm_tile(rA1, rA2, rA3);
load_lower(nn, nn, rA1);
strsm_tile(rA1, rA3);
store_full(kk, nn, rA3);
}
load_lower(kk, kk, rA1);

for (int nn = 0; nn < kk; nn++) {

load_full(kk, nn, rA2);
ssyrk_tile(rA2, rA1);

}

spotrf_tile(rA1);

store_lower(kk, kk, rA1);
}

Fig. 11.
top-looking Cholesky factorization.

Implementation using generalized microkernels for
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$for(kk in range(0, N/NB))\
$for(nn in range(0, kk))\

load_full($(kk), $(nn), rA3);
$for(mm in range(0, nn))\
load_full($(kk), $(mm), rA1);
load_full($(nn), $(mm), rA2);
sgemm_tile(rA1, rA2, rA3);
$endfor\

load_lower($(nn), $(nn), rA1);

strsm_tile(rA1, rA3);

store_full($(kk), $(nn
$endfor\

), rA3);

load_lower($(kk), $(kk), rA1);

$for(nn in range(0, kk))\
load_full($(kk), $(nn), rA2);
ssyrk_tile(rA2, rA1);
$endfor\

spotrf_tile(rA1);
store_lower($(kk), $(kk), rA1);
$endfor\

Fig. 12.
top-looking variant of the Cholesky factorization.

Completely unrolled microkernels that implement the

Once we ensure that the matrix dimension is divisible
by np, then the codes from Figs. 11 and 12 may readily
be used. However, we also handle the cases where the
dimension is not divisible by tile size n,. For that, we use
another set of optimized kernels for handling these corner
cases. For brevity, however, we do not show the sources
here as it is a straightforward extension of the code that
we did show. The kernels follow the same principle of fully
unrolling each operation (load, store, and compute).

X. AUTOTUNING OF THE ALTERNATIVE
DATA LAYOUT CODE

The resulting code has five tunable parameters. They are
all made into compile time parameters, except for the
chunk size, which is a runtime parameter. The following
parameters are taken into account when compiling a single
instance of the GPU kernel.

A. Tile Size Parameter

This parameter, referred to as np, defines the size of tiles
used in the factorization. The Cholesky factorization exe-
cutes in three alternating steps of loading tiles, computing
on tiles, and storing tiles. Matrix tiling defines the size of
code for each operation in Figs. 9 and 10.

B. Looking Parameter

This tuning parameter decides the order in which the tile
operations are evaluated in the Cholesky factorization and
provides the choice of the right-looking (aggressive eval-
uation) factorization, the left-looking (lazy) factorization,
and the top-looking (the most delayed) evaluation.
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C. Chunking Parameter

This tuning parameter defines the data layout feature
and enables a switch from the simple layout without
chunking (Fig. 7) to the more complex layout with chunk-
ing (Fig. 8).

D. Chunk Size Parameter

This tuning parameter controls the size of chunks. It is
not clear to us at this point if using the warp size is always
optimal, and, therefore, we investigated larger multiples of
32 here (64, 128, 256, 512).

E. Unrolling Parameter

This tuning parameter decides if the outer compute
loops are also unrolled in addition to the inner loops of tile
operations that are unrolled by default. If the outer loops
are not unrolled, then the code looks simply like the code
in Fig. 11. Conversely, if the outer loops are unrolled, the
code looks like the code in Fig. 12. The inner loops of tile
operations (Figs. 9 and 10) are always unrolled.

XI. HARDWARE AND SOFTWARE SETUP

We used two GPU systems in our tests: the NVIDIA
Kepler K40c card (15 SM multiprocessors, each containing
192 CUDA cores) and the NVIDIA Pascal P100 (56 SM
multiprocessors, each containing 64 CUDA cores).

The theoretical peak floating-point performance of the
Kepler card in single precision is 4.7 teraFLOP/s and
10.6 teraFLOP/s for the Pascal card. The Kepler GPU
features 11.25 GB of error-correcting code (ECC) protected
DRAM with a theoretical bandwidth in excess of 288
GB/s. Each multiprocessor has 64 KB of shared mem-
ory/L1 fast cache with a theoretical peak bandwidth of
216 GB/s. The Pascal card, on the other hand, features
16 GiB of HBM2 with theoretical bandwidth of about
0.5 TB/s. Other important hardware characteristics for the
Kepler card include the following: maximum number of
active threads per each multiprocessor (2048), maximum
number of thread blocks per each multiprocessor (16),
maximum number of threads per thread block (1024),
maximum number of registers per thread (256), total size
of the shared memory is fixed at the software level and is
configurable to 16, 32, or 48 KB at the expense of L1 cache.
CUDA toolkit version 7.0 [38] comprised the software
stack and was used for compiling all Kepler card codes
and producing MAGMA performance numbers. The Pascal
results use version 8 of the CUDA toolkit. Based on our
prior experience, such a mixed-software setup guarantees
no performance regressions.

The Kepler system used an Intel Sandy Bridge
Xeon E5-2670 running at 2.6 GHz as the host CPU, in
a two-socket configuration featuring 8 cores (octa-core)
in each socket, and the theoretical peak of all cores was
666 gigaFLOP/s in single precision. Each core has a 32 KiB
Ll 1 data cache, 32 KiB L1 instruction cache, and shared
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Fig. 13. Batched Cholesky factorization and the relative

contribution of forward substitution and backward substitution to
the overall runtime while solving a set of 10000
symmetric-positive-definite matrices on the Kepler card.

256 KiB L2 cache. Per socket the L3 cache was 20480 KiB
and was shareable socket-wide. The main memory was
64 GiB (globally accessible) with a theoretical bandwidth
of 51 GiB/s. The CPU software implementation of tested
codes was based on the vendor routines from Intel MKL
version 11.1.2 [39].

A more comprehensive comparison of the tested hard-
ware and NVIDIA Maxwell is given in Table 1.

XII. PERFORMANCE OF SOLVING A
SEQUENCE OF LINEAR SPD PROBLEMS
FOR DENSE MATRICES

A sequence of SPD linear systems and their complete
solution process is done by calling the following as three
separate kernels: the batched Cholesky factorization, the
batched forward substitution, and the batched backward
substitution. In Fig. 13, we show the size-dependent contri-
butions to overall execution time coming from the distinct
kernels when solving a set of 10 000 randomly generated
SPD matrices. One may observe that the execution time
of the batched Cholesky factorization increases faster with
the problem size than the execution time for the batched
solves: the solves taking from about 35% for smaller sizes
down to about 15% for larger sizes. To an extent, this is
expected as the factorization is cubic in complexity O(n?),
while the solves are square in complexity O(n?).

Fig. 14 presents the performance results for the IEEE-
compliant batched Cholesky factorization that writes the
triangular factors to the main memory twice (as opposed to
classical implementation that writes it once), the batched
triangular matrix solves, and the resulting performance of
the overall time of the solution process, combining the
factorization execution with the execution of forward and
backward substitutions. The performance results for the
batched solves show much less variance when compared
against the batched factorization. In fact, in an asymptotic
sense they approach 30 Gflop/s, with some isolated per-
formance peaks exceeding 40 Gflop/s. For the overall per-
formance when the algorithm combines the three kernels,
with each handling the most of floating-point operations

160+
-0 -spotrf \
|| —strsv NT A
140 -=--strsv T .', ,'. ::
? 1
120l ——sposv aoor o "‘,\'n "
100+
Y
2 sor
O]
60+
40+
201
0 L L L L I
0 20 40 60 80 100
Matrix size
Fig. 14. Performance of the IEEE compliant batched Cholesky

factorization, the batched triangular solves, and the solution
process combining the factorization with the forward and backward
substitutions on the Kepler card. The target problem is a batch of
10000 SPD matrices.

in the local multiprocessor memory, up to 100 Gflop/s is
achieved for larger linear system sizes, with one isolated
peak exceeding 120 Gflop/s for the matrix size 96 x 96.

Next, we proceed with the results of our experiments on
two generations of GPU compute cards: Kepler and Pascal.
The following figures will focus on studying the effects of
changing one specific parameter—e.g., tiling factor—while
varying all other parameters to maximize the resulting
performance rate. Consequently, every point on a single
line in the following charts corresponds to one fixed value
of a given parameter with all the other parameters being
potentially different. Also, between two different lines on
a single chart, at least one parameter is different. Due to
a wide range of variability of all the parameters between
different points and lines, we do not include exact settings
in the figures.

Fig. 15 shows the best performance of the interleaved
implementation for varying tiling factors. For sizes smaller
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Fig. 15.
the interleaved variant for different tiling factors on the Kepler card.

The best performance results of the code implementing
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Fig. 16. The best performance of the interleaved implementation

for different orders of evaluation of the outer loops on the Kepler
card.

than 20, the tiling implementation makes no difference
for performance because the system is able, for the most
part, to preserve data in registers throughout the factor-
ization. This behavior shows deteriorated results between
sizes 20 and 40. After that, past 40, lack of blocking
(np = 1) produces no data reuse and then the code
becomes mostly memory bound. By introducing blocking
optimization (n, > 1), performance gradually increases,
until it eventually levels off around size 8.

Fig. 16 presents the best performance of the interleaved
data layout, implemented for changing orders of code
evaluation—reordering of the outer loops. Up to the size
of about 20, there is no observable difference in the
performance results. In that range, this is mostly due to the
fastest codes likely being fully unrolled, and the resulting
order of evaluation in the source code well optimized by
the NVIDIA compiler at the stage of instruction scheduling.
Past the size of about 20, the full unrolling feature stops
exerting beneficial influence, and the tile operations are
executed according to the order given in the source code.
At that point, the implementation with the least memory
traffic would win. While we observe no difference in the
total number of memory reads, the more lazy the order
of evaluation is, the less data writes there are. Hence, the
right looking implementation turns out to be the slowest,
the left-looking becomes faster, and the top-looking one
ends up being the fastest.

Fig. 17 illustrates the best performance of the inter-
leaved data layout implementation with and without
chunking. It may be observed that chunking is very benefi-
cial to the resulting performance. While we cannot explain
fully why this is in fact the case, intuitively, it is the
outcome one would expect. The principle of maximizing
spatial locality takes a leading role at some levels of the
memory hierarchy.

Fig. 18 features the chart with the best performance of
the interleaved data layout implementation with chunking,
with varying chunk size. It is interesting to observe how
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Fig. 17. The best performance results of the code implementing

interleaved data layout either with and without chunking on the the
Kepler card.

this parameter has the property of defining the number
of threads in a thread block. It seems that 32 is the best
choice. Obviously, for this kind of workload and on this
particular hardware platform, it is perfectly acceptable to
have thread blocks with only a single warp. The configu-
ration with 64 performs almost equally well, but then the
execution performance drops slightly for 128 and 256, and
much more significantly diminishes for 512.

Finally, Fig. 19 shows the best performance results of
the interleaved data layout implementation with partial
unrolling (for tile operations only) and full loop unrolling
(the whole factorization). Full unrolling pays off, but only
up to the size of 20, and then the benefits progressively
diminish, and the partial unrolling takes over in terms of
performance. As an explanation, we may offer a comment
that either the number of instructions overwhelms the opti-
mizing compiler from NVIDIA, or the instruction-fetching
process combined with data caching become a primary
problem, or perhaps both.
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Fig. 18. The best performance results of the code implementing

interleaved data layout with chunking, for varying chunk sizes on
the Kepler card.
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Fig. 19. The best performance of the implementation for

interleaved data lout with partial unrolling (tile operations only) and
full unrolling (the whole factorization) on the Kepler card.

Fig. 20 shows the overall performance for a batch of
size 16384 using the NVIDIA P100 (Pascal) card with
CUDA 8.0. When computing the flop/s value, the stan-
dard formula (1/3)n® + O(n?) is always used for the
number of floating-point operations. The figure shows
performance when using IEEE-compliant arithmetic, and
when using the -use_fast_math option, which relaxes
the IEEE compliance for the square root and division
operations, and flushes denormalized numbers to zero. For
smaller matrices, the code achieves 600 Gflop/s for the
IEEE-compliant case, and approaches 800 Gflop/s for the
-use_fast_math case, and substantially outperforms
the traditional implementation in MAGMA 2.2.0. Fig. 21
shows the speedup over MAGMA.

XIII. GENERAL COMMENTS AND
DISCUSSION OF RESULTS

Overall, we can draw some very clear conclusions substan-
tiated by our results, and none of these seem to us all that
unexpected.
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Fig. 20. Top performance of the interleaved implementation, with
IEEE compliant arithmetic and with the -use fast _math option on the
Pascal card.

9 T T I

sl e—e interleaved, fast math (]
E 7L =—a interleaved |
)]
g6
o)
>
4
S
5 3
o
a 2

1

O 1 1 1 1

0 20 40 60 80 100
matrix dimension (n)
Fig. 21. Speedup of the interleaved implementation over the

traditional implementation in MAGMA on the Pascal card.

e For very small sizes of matrices in the batch mode,
the interleaved data code outperforms all traditional
implementations because it allows the GPU load/store
units to transfer data with perfect coalescing, regard-
less of the matrix dimension.

e Tiling data and code is a critical optimization for
dense matrix operations, unless of course the dimen-
sion is so small that the matrix can fit entirely inside
the register file.

e The most lazy evaluation order is the most beneficial
from the standpoint of optimal memory traffic, as it
minimizes the number of write operations.

e Chunking of matrix data is beneficial to overall per-
formance because the hardware is able to fully exploit
the spatial data locality principle.

e The newest compute GPU generations from NVIDIA
perform very well with a large number of small thread
blocks.

e Complete (or almost complete) unrolling of the
source code works well—but only up to a certain
point. At larger matrix sizes, the benefits visibly
diminish.

Also, it is important to point out here that the execution
performance of the interleaved data implementation does
tend to level off, and it is eventually surpassed by the per-
formance of the traditional implementation in the MAGMA
software library, especially for larger sizes. This is due to
the interleaved data code’s reliance on the data reuse in
the register file only. But data reuse only happens within
the context of a single thread. While there are no data to be
shared by distinct threads, there is no reuse in the shared
memory space. In this context, the cache memories only
serve as streaming data buffers.

XIV. CONCLUSION AND FUTURE
RESEARCH

This paper presented a batched Cholesky factorization for
GPUs that handle most of the factorization and solve tasks
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in fast multiprocessor memory. By using our autotuning
framework, called BONSAI [30], we arrived at optimal
(within the confines of the initial template and paral-
lelization strategy) kernel configurations as they were
identified automatically. The achieved performance was
significantly higher than its CPU counterpart and similar
routines taken from the MAGMA software library. In this
context, a set of specialized routines were produced for
efficient handling of the forward and backward substi-
tutions (the triangular solves). By comparing our pro-
posed implementations to the equivalent routines from the
MAGMA library, we show significant performance advan-
tages. The resulting performance of the complete solu-
tion execution—where the factorization and the forward
and backward substitutions are available in three distinct
kernels—exceeds 120 gigaFLOP/s on state-of-the-art GPU

cards, when matrix sizes do not exceed 100 x 100. Our
future research will correlate the observed performance of
all the kernel configurations to the available GPU metrics,
such as hardware occupancy, achieved memory bandwidth,
and the rate of instruction execution. Also, the QR and LU
factorization will be treated in the same framework and
methodology. Finally, a related research effort will dive
into the overall hardware resource efficiency by taking the
energy balance into account in addition to performance
alone. [ ]
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