
Optimizing GPU Kernels for Irregular Batch
Workloads: A Case Study for Cholesky

Factorization
Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra

Innovative Computing Laboratory
University of Tennessee

Knoxville, USA
{ahmad,haidar,tomov,dongarra}@icl.utk.edu

Abstract—This paper introduces several frameworks for the
design and implementation of high performance GPU kernels
that target batch workloads with irregular sizes. Such work-
loads are ubiquitous in many scientific applications, including
sparse direct solvers, astrophysics, and quantum chemistry. The
paper addresses two main categories of frameworks, taking the
Cholesky factorization as a case study. The first uses host-
side kernel launches, and the second uses device-side launches.
Within each category, different design options are introduced,
with an emphasis on the advantages and the disadvantages of
each approach. Our best performing design outperforms the
state-of-the-art CPU implementation, scoring up to 4.7× speedup
in double precision on a Pascal P100 GPU.

Index Terms—Matrix Factorization, Batch Linear Algebra,
GPU Computing

I. INTRODUCTION

A batch routine applies the same operation on many in-
dependent problems, potentially in a parallel fashion. In the
context of dense linear algebra, a batch routine applies a
basic linear algebra subprogram (BLAS) or Linear Algebra
PACKage (LAPACK) operation to an ideally large number
of relatively small independent matrices. The batch can have
problems of the same size (fixed size) or different sizes
(variable size).

Many higher-level solvers and scientific applications have
a dependency on high-performance batch dense linear algebra
software. In fact, the absence of a mature software for such
workloads has sparked some in-house developments of batch
routines for specific purposes. For example, batch LU factor-
ization has been used in subsurface transport simulation [1],
[2]. Batch Cholesky factorization and triangular solve have
been also used to accelerate an Alternating Least Square (ALS)
solver [3], [4]. Batch matrix-matrix multiplication (GEMM) is
at the core of many tensor contraction problems [5], [6].
Sparse linear algebra software, such as textSuiteSparse,1 has
huge dependencies on many batch BLAS and LAPACK rou-
tines [7], [8], including matrix multiplication, one-sided fac-
torization (LU, QR, and Cholesky), and matrix inversion [9].
The workload pattern of small independent problems is also
very important to computations on Hierarchical matrices (H-
matrices) [10].

Most numerical linear algebra libraries are specifically de-
signed and tuned to perform well on large problem sizes.
For example, the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) library2 uses a hybrid CPU-GPU
design for its implementation of most LAPACK algorithms.
This is a nearly perfect strategy for large problems. MAGMA
is built on the assumption that trailing matrix updates on
the GPU can hide both the CPU activity and the CPU-GPU
communication [11]. Such an assumption is invalid for small
problems: the computation becomes more memory bound, and
the communication turns out to be the bottleneck. Some recent
efforts, however, have investigated a GPU-only design for
large problems [12]. Such work can benefit from this paper by
using the proposed optimized GPU kernels for memory-bound
operations.

This paper introduces several design options to address
variable-size batch computation on GPUs. The paper discusses
two different design approaches. The first uses host-launch
based solutions, with an emphasis on different scheduling
policies for thread block execution. The second approach is
based on the recent dynamic parallelism technology, where
a GPU kernel can be launched from within another GPU
kernel. Further, we address different design techniques for
efficiently utilizing dynamic parallelism. Due to the lack of
competitive vendor implementations in the CUDA Toolkit, the
final performance results are compared against state-of-the-art
CPU solutions.

II. RELATED WORK

The growing demand for high-performance dense linear
algebra on large batches of small matrices has led to early
developments for batch matrix multiplication [13], [14], which
is probably the most important operation in dense linear
algebra. For higher-level algorithms that consist of calls to
many BLAS kernels, researchers have followed two different
approaches. The first uses LAPACK-style blocking, so that
high performance is extracted from an optimized batch GEMM
routine [15]–[18]. For example, Haidar et al. [19] adopt a
blocking technique that is similar to LAPACK, but uses a much
smaller range of blocking sizes.

The second type of designs uses a one-kernel approach,
where all the computations are fused into a single GPU kernel.
Such a technique works well for very small sizes but fails
to scale on bigger sizes due to its heavy use of resources,
which limits the execution throughput. For example, Wang et
al. [20] introduced a field-programmable gate array (FPGA)-
based parallel LU factorization of large sparse matrices, where
the algorithm is reduced to factorizing many small matrices
concurrently (up to size 118). Villa et al. [1] developed a GPU-
based batched LU factorization (up to size 128) for subsurface
transport simulation. Masliah et al. developed batched GEMM
for very small sizes for both CPUs and GPUs [21]. Batch QR
factorization and singular value decompositions (SVDs) [15],
[22], [23] have been introduced to accelerate hierarchical
compression of very large dense matrices. Kim et al. also
introduced batched matrix multiplication (GEMM), triangular
solve (TRSM), and LU factorization (no pivoting) for CPUs
and Intel’s Xeon Phi architectures, based on a compact inter-
leaved data layout [24].

While most of the research effort focuses on problems
of fixed sizes, there have been few contributions to ad-
dress variable-size problems on the GPU. For example, the
MAGMA library provides a set of Batch BLAS routines that
support variable-size batch workloads [25]. Some of these
routines were used in accelerating a biconjugate gradient
stabilized (BiCGStab) solver on hierarchical matrices [26]. In
general, these MAGMA kernels require finding the maximum
size(s) across all dimensions before the kernel launch. The
kernel grid is configured to accommodate the largest matrix
in the batch. The irregularity in the batch workload is han-
dled through the Adaptive SubGrid Truncation (ASGT) tech-
nique [25] which trims subgrids assigned to smaller problems
in the batch.

This paper discusses, in depth, two different design ap-
proaches for variable-size batch computation on GPUs. The
first follows in the footsteps of the ASGT technique [25], but
further enriches it with scheduling policies that control the
execution of thread blocks inside the GPU kernel. The second
approach uses dynamic parallelism, which is a GPU technol-
ogy that enables GPU kernels to be launched from within
another GPU kernel. The latter enables easy development, and
avoids the overhead of finding the maximum sizes.

III. BACKGROUND

A. Cholesky Factorization

Symmetric positive definite (SPD) matrices are factorized
using the Cholesky factorization. The algorithm factorizes an
SPD matrix A = LLT , where L is a lower triangular matrix.
Two routines in LAPACK implement the algorithm. The first
is called (POTF2). It uses an unblocked code, which factorizes
one column at a time, and carries out the transformations
to the trailing matrix using Level 1 and Level 2 BLAS
routines. The second routine (POTRF) uses blocked code. It
calls (POTF2) to factorize a panel of certain width (nb > 1),
which leads to a compute-intensive update that utilizes Level
3 BLAS routines. According to LAPACK working notes [27],

the Cholesky factorization algorithm performs (N
3

3 + N2

2 + N
6)

floating-point operations (FLOPs).
Algorithm 1 shows a pseudocode for the unblocked

Cholesky factorization algorithm on an N×N matrix. At the ith

iteration, the algorithm inspects the diagonal element A[i,
i] to ensure positive definiteness. If passed, the algorithm
computes the square root of the diagonal element, scales
the current column below the diagonal, and then performs
a symmetric rank-1 update on the trailing submatrix to the
right. On the other hand, Algorithm 2 shows the blocked
Cholesky factorization. We adopt the left-looking variant of
the algorithm, since it is mostly dominated by the GEMM
operation, unlike the right-looking variant, which is dominated
by the often-less-optimized SYRK routine. At each iteration,
the current panel is updated first (SYRK + GEMM), then the
factorization takes place on the updated panel (POTF2 +
TRSM).

Algorithm 1: Unblocked Cholesky factorization.
for i=1 to N do

if A[i, i]≤0 then
// report error: non-SPD matrix

end
A[i, i] = sqrt(A[i, i])
A[i+1:N,i] *= (1 / A[i,i]) //(DSCAL)
// symmetric rank-1 update (DSYR)
A[i+1:N,i+1:N] -= A[i+1:N,i] × A[i+1:N, i]T

end

Algorithm 2: Blocked Cholesky factorization.
for i = 1 to N Step ib do

if (i > 0) then
// Update current panel (SYRK + GEMM)
A[i:i+ib,i:i+ib] -= A[i:i+ib,1:i] × A[i:i+ib,1:i]T ;
A[i+ib:N,i:i+ib] -= A[i+ib:N,1:i] × A[i:i+ib,1:i]T ;

end
// Panel factorization
POTF2(A[i:i+ib, i:i+ib]);
A[i+ib:N,i:i+ib] *= A[i:i+ib,i:i+ib]−1 // TRSM;

end

B. Dynamic Parallelism in CUDA

Dynamic parallelism is a technology that enables launching
GPU kernels inside other GPU kernels. Since the introduction
of the Kepler architecture, the GPU has become able to gener-
ate work for itself without going back to the CPU. However,
there is always a parent kernel that is launched from the host
side. Only child kernels can be launched from the GPU side.
In general, dynamic parallelism facilitates the programming
of applications where the amount of work is determined
only during runtime. One of the most notable applications to
dynamic parallelism is adaptive mesh refinement (AMR).3

For variable-size batch computation, a parent kernel consists
of independent threads, such that each thread is assigned to
a single problem. Each parent thread reads the necessary
information about the assigned problem, and launches the

corresponding child kernel. Figure 1 shows the difference
between a host-launch–based technique, and a device-launch–
based one. Typically, a host-launch–based technique uses a
uniform subgrid size, so that each subgrid is guaranteed to fit
the size of the assigned problem. The figure shows an example
for a 4×4 subgrid configuration (left). The ASGT layer works
on the subgrid level before any computation takes place. It
detects and terminates unwanted thread blocks for a smaller
problem size (colored in grey). The cost of the ASGT layer is
the overhead of detection and termination, which depends on
the size variation in the batch. In addition, the uniform subgrid
configuration requires a search for the maximum dimensions
across the batch, which is another source of overhead.

On the other hand, dynamic parallelism launches the exact
required number of thread bocks for each problem. There
is no need to search for the maximum dimensions, and
the ASGT layer is not required. However, the overhead of
dynamic parallelism comes in the two-stage launch process.
The CPU launches a parent kernel, which does not perform any
computation. Each parent thread then independently launches
a kernel for the assigned problem.

host
thread

host
launch

main kernel

truncated
subgrids

host
thread

host
launch

parent kernel

device
launch

child kernel

(1) ASGT (2) Dynamic Parallelism

Fig. 1: The difference between a host-launch–based design (us-
ing ASGT), and a device-launch–based design (using dynamic
parallelism).

IV. EXPERIMENTAL SETUP

We illustrate our findings on a system with two 10-core
Intel Haswell processors (E5-2650 v3, running at 2.3 GHz)
and a Pascal GPU (Tesla P100). The GPU has 56 streaming
multiprocessors, running at a 1.328 GHz clock rate. The
GPU has a 16GB of CoWoS Stacked HBM2 memory, and
is attached to the host CPU through a PCIe interconnect. All
results are obtained using the CUDA 9.0RC toolkit.

Another experimental setup is the size distribution within
the test batches. In this paper, we consider two sets of dis-
tributions. Given a maximum size Nmax, the first distribution
randomly samples the interval [1:Nmax]. The distribution uses
a random number generator that follows a uniform distribution.
Figure 2 (left) shows an example for the first distribution.
The second distribution is customized to impose more load
imbalance for the designed kernels. This distribution generates
1% of the sizes that are equal to Nmax; the other 99%

matrix size
uniform distribution

matrix size
custom skewed distribution

Fig. 2: Histogram of the sizes generated in a 5000 matrices
batch using two different distributions with Nmax = 512.

are randomly sampled within the range [1:
⌊
N
10

⌋
]. Such a

distribution is a challenging test case, as the majority of sizes
are skewed within a very small size range, and there are still
very few matrices that are at the end of the size spectrum, as
shown in Figure 2 (right).

V. DESIGN DETAILS

This section discusses the different design candidates for a
variable-size batch Cholesky factorization.

A. The Building Block Kernel

All the design candidates use the same factorization kernel
as a building block. The kernel fuses the computational steps
of Algorithm 2 into one entity. Because we are using a blocked
code, the kernel performs the Cholesky factorization on a panel
of size (N − j) × nb, where N is the original size of the
matrix, j is the size of the factorized submatrix, and nb is
the blocking size. The kernel uses two main components that
are written as inlined device functions. The first component
is a symmetric rank-k update (SYRK) that is used in a left-
looking manner to update a rectangular panel, as shown in
Figure 3. The update function computes C = C − A × BT ,
where C is of size (N − j)× nb. The function performs the
update using an internal blocking size ib, so that C = C −
(a0b

T
0 + a1b

T
1 + · · ·). The function uses the register file to

store ai and bi, and incorporates double buffers to prefetch
ai+1 and bi+1 while the computation of the current product is
taking place. The update function also takes advantage of the
overlap between A and B to maximize data reuse. The panel
C is read from global memory, and updated successively in
shared memory. The second component of the building block
kernel is the panel factorization function, which implements
the unblocked Cholesky factorization according to Algorithm
1. The panel factorization function assumes that the panel is
stored in shared memory, so that the updated C is reused.

The complete factorization of an N ×N matrix is achieved
by calling the building block kernel

⌈
N
nb

⌉
times. At each call,

the kernel updates a new panel in shared memory, performs
an unblocked factorization in shared memory, and writes the
factorized panel in global memory. For an (N−j)×nb panel,
the kernel requires one thread block of (N − j) threads. We
now describe how to use this building block kernel to handle
a batch of matrices of different sizes.

nb

N-j

ib

j

nb

N

a0 a1 a2 a3

b0 b1 b2 b3

Fig. 3: The design of the Cholesky factorization kernel.

B. Batching Using Host-Launch

As mentioned before, a host-launch kernel is organized
as an array of subgrids, where each subgrid handles a sin-
gle problem. Since the CUDA programming model enforces
homogeneous subgrid configurations, the host must use a
configuration that fits the largest matrix size. A preparatory
step involves launching a GPU kernel that searches the size
array for the maximum matrix size Nmax, which is then passed
to the CPU to configure the kernel.

The ASGT layer is implemented on top of the building
block kernel of Section V-A. For each matrix having a size
N < Nmax, the ASGT layer terminates all the extra threads.
Recalling that the kernel is called multiple times to perform
the factorization, smaller matrices in the batch require fewer
calls to the kernel than bigger ones. Because the kernel does
not keep track of matrices that have been fully factorized in
previous calls, some thread blocks can be entirely terminated
upon launch if the assigned matrix is fully factorized.

Another design point is the scheduling of smaller matrices
in the batch. In general, we need

⌈
Nmax

nb

⌉
iterations to factorize

the entire batch. Factorization on smaller matrices can start at
iteration 0, or at a later iteration provided that the total number
of iterations remains

⌈
Nmax

nb

⌉
. In this regard, we discuss two

scheduling policies. The first is called Same Start Different
Ends (SSDE), and the second one is called Different Starts
Same End (DSSE). An SSDE scheduling policy starts on all
matrices at the first iteration. As the computation carries on,
smaller matrices are entirely factorized and require no further
processing. Table I shows an example for a batch of 4 matrices
that requires a total of 7 iterations, where the blocking size nb
is set to 8. The SSDE scheduling policy is easy to implement,
but it suffers from low occupancy near the end of computation.
It also produces significant variations in the sizes at each
iteration.

The DSSE policy considers fewer matrices at the beginning,
which correspond to matrices with the biggest set of sizes in
the batch. Factorizations of different matrices begin at different

Org. size Panel size per iteration
iter 0 iter 1 iter 2 iter 3 iter 4 iter 5 iter 6

50× 50 50× 8 42× 8 34× 8 26× 8 18× 8 10× 8 2× 2
32× 32 32× 8 24× 8 16× 8 8× 8 — — —
17× 17 17× 8 9× 8 1× 1 — — — —
5× 5 5× 5 — — — — — —

TABLE I: The SSDE scheduling policy. A blank cell means
that the corresponding matrix has been fully factorized.

iterations, but they all finish at the last iteration. As shown
in Table II, the small number of matrices encountered at the
beginning is mitigated by the fact that the sizes are relatively
large and create enough work for the GPU. The DSSE policy
also results in fewer size variations per iteration: at each
iteration, it considers a maximum size range equal to nb.
Table II shows the scheduling of factorization on the same
four matrices mentioned above.

Org. size Panel size per iteration
iter 0 iter 1 iter 2 iter 3 iter 4 iter 5 iter 6

50× 50 50× 8 42× 8 34× 8 26× 8 18× 8 10× 8 2× 2
32× 32 — — — 32× 8 24× 8 16× 8 8× 8
17× 17 — — — — 17× 8 9× 8 1× 1
5× 5 — — — — — — 5× 5

TABLE II: The DSSE scheduling policy. A blank cell means
that the corresponding matrix has been delayed to start at a
later iteration.

We conducted two performance tests to compare the SSDE
and DSSE scheduling policies. The first test uses a uniform
distribution similar to Figure 2 (left), while the second uses
the custom distribution of Figure 2 (right). Recall that both
policies share the same computational kernel, such that dif-
ferences in performance are due to the scheduling of thread
block execution. Figure 4 shows a performance comparison
of both distributions. Both scheduling policies have similar
performances for the uniform distribution. A typical uniform
distribution, especially using large batches, introduces small
variations in the matrix sizes. This is why such a distribution
cannot distinguish between the two scheduling policies, except
for a slight advantage on the part of the DSSE policy that is
up to 7.8%. Such an advantage decreases consistently as the
size become larger.

Figure 4 also shows the performance against the customized
distribution. This is a test case where we see a consistent ad-
vantage for the DSSE policy. Unlike the uniform distribution,
which has a nicely balanced workload, the custom distribution
of Figure 2 (right) imposes a more challenging range of sizes.
In fact, the DSSE policy is always faster than the SSDE policy,
scoring speedups that range between 5% and 20%. The main
reason for such speedups is the shared memory requirements—
the DSSE policy reduces the amount of unused shared memory
by reducing the size variations per kernel launch, which has a
positive effect on the kernel’s overall occupancy. As mentioned
before, the DSSE policy balances workloads at each iteration,
and also increases the occupancy near the end of computation
to compensate for the decreasing amount of work per matrix.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500

G
f
o
p
/s

Maximum size in the batch

 magma-dsse (uniform)
 magma-ssde (uniform)
 magma-dsse (skewed)
 magma-ssde (skewed)

Fig. 4: Performance comparison between the SSDE/DSSE
scheduling policies against two different size distributions for
5000 matrices using double precision on a P100 GPU.

Therefore, the DSSE policy is a more robust scheduling policy
for different size distributions.

C. Batching Using Device-Launch

The device-launch–based design uses the CUDA dynamic
parallelism. It invokes the same computational kernel de-
scribed in Section V-A. We begin with a simple design where
the parent kernel is configured with as many threads as the
number of matrices in the batch (batchCount). We call
this design the brute-force design. Each parent thread reads
the necessary information about the assigned problem, and
configures and launches the child kernel accordingly.

��

���

����

����

����

����

����

����

����

����

����

�� ���� ���� ���� ���� �����

�
�
�
�
��

����������

���������������
���������������
���������������
����������������
����������������

Fig. 5: The impact of the pending launch count on performance
of dynamic parallelism kenels. Results are shown for Nmax =
512 using double precision on a P100 GPU.

The initial design exposes an important limitation of dy-
namic parallelism, which is called the Pending Launch Count
Limit (PLC limit). The CUDA runtime system keeps a buffer in
global memory for setting up the arguments and the launching
of child kernels. Such a buffer has a default limit of 2k
pending launches. If the buffer is full, and more pending
launches are generated, the runtime resizes the buffer while
the kernel is running, resulting in a severe performance penalty
that looks like a cliff in the performance graph. The CUDA

runtime system allows the buffer to be resized at an initial-
ization step. Figure 5 shows the effect of the PLC limit on
performance. The experiment uses Nmax = 512, and shows
the observed performance while increasing the number of
matrices (batchCount). It is clear that enlarging the buffer
beforehand helps delaying the cliff point. However, it does not
completely prevent it, as the maximum PLC limit is 64k. Note
that enlarging the buffer results in less available memory for
the user’s program. We also point out that the cliff points
encountered in single precision (not shown) were exact to
those encountered in double precision. This is due to the fact
that size of the kernel arguments (mostly integers and pointers)
do not differ from one precision to another, thus leading to the
same behavior regardless of the precision.

The brute-force design can be modified to delay the en-
counter of the cliff point, so that we can use the same PLC
buffer size for a greater number of problems while maintaining
the same performance. The modified design adopts a round
robin design by launching a finite number of parent threads
regardless of the value of batchCount. Parent threads loop
over the problem in a round-robin style, and launch child
kernels accordingly. This modification helps delay, but not
prevent, the cliff effect. As an example, when the PLC limit
is set to 16k, the brute-force kernels encounter the cliff point
at batches of size 550. Using the round-robin approach, the
kernel can now process batches of a thousand matrices using
the same PLC limit.

The round-robin kernel uses a fixed number of threads,
which can be a tuning parameter for the kernel. We conducted
a tuning experiment for the number of threads on 5000
matrices with a uniform size distribution. We tried kernel
configurations with 32, 64, 96, and 128 threads. We also
considered 56 and 112 thread configurations, since the GPU
has 56 multiprocessors. The experiment shows that as long
as the number of parent threads is ≤ 112, the performance
gets better with more parent threads. Beyond this threshold
we observe a performance decay, until a dramatic drop in
performance is encountered for more than 128 parent threads.
The bottom line with device-based launches is to closely
monitor the number of pending launch counts that can be
generated. The round-robin design is a partial solution. The
number of parent threads must be tuned according to the GPU
architecture, and to the launch pattern of child kernels.

VI. FINAL PERFORMANCE RESULTS

The vendor library (cuBLAS [28]) does not provide
variable-size batch routines. This is why the final performance
results are compared against a parallel CPU implementation
that calls the Intel MKL library (version 2017.0.3) within a
dynamically scheduled parallel for loop. All results are
reported using double-precision arithmetic.

The first experiment assesses the overheads of using host-
launches and device-launches. Figure 6 shows the perfor-
mance on batches of fixed-size matrices. The performance of
both approaches is compared against the MAGMA fixed-size
batch routine, which can be considered as an upper bound

��

����

����

����

����

�����

�����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�������������������������

�����������������

������������

������������������

Fig. 6: Performance on a batch of fixed-size matrices. Results
are for 5000 matrices using double precision on a P100 GPU.

for performance. The performance of the host-launch–based
implementation using the DSSE policy is very close to the
performance of the fixed-size batch routine. This implies that
the overheads associated with the ASGT layer are almost
negligible, especially when the sizes grow. On the other hand,
the dynamic parallelism approach using the round-robin design
suffers from a huge overhead, although it uses the same
computational kernel. In fact, Figure 6 shows an overhead
that is up to 90%. The overheads consistently decrease as the
matrix sizes increase, which means that the overheads due to
device-launches are independent from the matrix sizes. As the
size grows bigger, more time is spent on the child kernels than
on launching them.

The second experiment compares the final performance on a
uniform distribution identical to Figure 2. Similarly, Figure 7a
shows that the MAGMA-DSSE kernel is a clear winner, with
speedups between 2.4×-4.7× against the CPU implementa-
tion. The MAGMA-DSSE kernel is also much faster than the
dynamic parallelism approach. It scores speedups in the range
of 1.8×-15×. Finally, Figure 7b shows a performance test
which uses the customized size distribution. This is a scenario
where we observe a much smaller asymptotic gap between
the MAGMA-DSSE routine and the CPU implementation. The
MAGMA-DSSE performance has an advantage in the range
of 1.08×-4.4× against MKL running over OpenMP. There
are two reasons for this behavior: firstly, the distribution of
Figure 2 (right) causes the MAGMA-DSSE kernel to launch
many extra thread blocks that are terminated through the
ASGT layer, which is a considerable overhead on a majority of
small size; secondly, most of the matrices are small enough to
fit the CPU cache, making CPU performance very competitive
with GPU performance. The MAGMA–round-robin kernel is
at least 2× slower than the MAGMA-DSSE kernel. This is
an expected behavior, since the overhead of a device-launch
is huge for small matrices.

��

����

����

����

����

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�������������������������

������������

������������������

������������

(a) Uniform distribution

��

���

����

����

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�������������������������

������������

������������������

������������

(b) Custom distribution

Fig. 7: Final performance against two different distributions.
Results are shown using double precision on a P100 GPU.

VII. CONCLUSION AND FUTURE WORK

We introduced several design techniques to optimize GPU
kernels for variable-size batch workloads. The paper intro-
duced a single computational kernel that can be launched
in two different ways (host side vs. device side). Both ap-
proaches are thoroughly discussed and evaluated. While the
device-launch–based approach did not prove competitive, it
is a promising approach if the technology behind dynamic
parallelism sufficiently improves in the future. The host-launch
design is the winning approach to date, and thanks to an
optimized scheduling of thread blocks, it is able to outperform
high-performance CPU based solutions, even on unbalanced
workloads.

ACKNOWLEDGMENTS

This work is partially supported by NSF grant No. OAC-
1740250 and CSR 1514286, NVIDIA, and by the Exascale
Computing Project (17-SC-20-SC).

REFERENCES

[1] O. Villa, M. Fatica, N. Gawande, and A. Tumeo, Power/Performance
Trade-Offs of Small Batched LU Based Solvers on GPUs. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 813–825.

[2] O. Villa, N. Gawande, and A. Tumeo, “Accelerating subsurface transport
simulation on heterogeneous clusters,” in 2013 IEEE International
Conference on Cluster Computing, CLUSTER 2013, Indianapolis, IN,
USA, September 23-27, 2013, 2013, pp. 1–8. [Online]. Available:
https://doi.org/10.1109/CLUSTER.2013.6702656

[3] M. Gates, H. Anzt, J. Kurzak, and J. J. Dongarra, “Accelerating
collaborative filtering using concepts from high performance
computing,” in 2015 IEEE International Conference on Big
Data, Big Data 2015, Santa Clara, CA, USA, October 29
- November 1, 2015, 2015, pp. 667–676. [Online]. Available:
https://doi.org/10.1109/BigData.2015.7363811

[4] J. Kurzak, H. Anzt, M. Gates, and J. J. Dongarra,
“Implementation and Tuning of Batched Cholesky Factorization
and Solve for NVIDIA GPUs,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 7, pp. 2036–2048, 2016. [Online]. Available:
https://doi.org/10.1109/TPDS.2015.2481890

[5] A. Abdelfattah, M. Baboulin, V. Dobrev, J. J. Dongarra, C. W. Earl,
J. Falcou, A. Haidar, I. Karlin, T. V. Kolev, I. Masliah, and S. Tomov,
“High-Performance Tensor Contractions for GPUs,” in International
Conference on Computational Science 2016, ICCS 2016, 6-8 June
2016, San Diego, California, USA, 2016, pp. 108–118. [Online].
Available: https://doi.org/10.1016/j.procs.2016.05.302

[6] Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka, “Tensor
Contractions with Extended BLAS Kernels on CPU and GPU,” in 23rd
IEEE International Conference on High Performance Computing, HiPC
2016, Hyderabad, India, December 19-22, 2016, 2016, pp. 193–202.
[Online]. Available: https://doi.org/10.1109/HiPC.2016.031

[7] S. N. Yeralan, T. A. Davis, W. M. Sid-Lakhdar, and S. Ranka,
“Algorithm 980: Sparse QR Factorization on the GPU,” ACM Trans.
Math. Softw., vol. 44, no. 2, pp. 17:1–17:29, Aug. 2017. [Online].
Available: http://doi.acm.org/10.1145/3065870

[8] S. C. Rennich, D. Stosic, and T. A. Davis, “Accelerating sparse Cholesky
factorization on GPUs,” Parallel Computing, vol. 59, pp. 140–150,
2016. [Online]. Available: https://doi.org/10.1016/j.parco.2016.06.004

[9] H. Anzt, J. J. Dongarra, G. Flegar, and E. S. Quintana-Ortı́, “Batched
Gauss-Jordan Elimination for Block-Jacobi Preconditioner Generation
on GPUs,” in Proceedings of the 8th International Workshop on
Programming Models and Applications for Multicores and Manycores,
PMAM@PPoPP 2017, Austin, TX, USA, February 5, 2017, 2017, pp.
1–10. [Online]. Available: http://doi.acm.org/10.1145/3026937.3026940

[10] W. Hackbusch, “A Sparse Matrix Arithmetic Based on H-
matrices. Part I: Introduction to H-matrices,” Computing,
vol. 62, no. 2, pp. 89–108, May 1999. [Online]. Available:
http://dx.doi.org/10.1007/s006070050015

[11] S. Tomov, J. J. Dongarra, and M. Baboulin, “Towards dense linear
algebra for hybrid GPU accelerated manycore systems,” Parallel
Computing, vol. 36, no. 5-6, pp. 232–240, 2010. [Online]. Available:
https://doi.org/10.1016/j.parco.2009.12.005

[12] A. Haidar, A. Abdelfatah, S. Tomov, and J. Dongarra, “High-
performance Cholesky Factorization for GPU-only Execution,” in
Proceedings of the General Purpose GPUs, ser. GPGPU-10. New
York, NY, USA: ACM, 2017, pp. 42–52. [Online]. Available:
http://doi.acm.org/10.1145/3038228.3038237

[13] L. Ng, K. Wong, A. Haidar, S. Tomov, and J. Dongarra,
“Magmadnn high-performance data analytics for manycore gpus
and cpus,” December 2017, magma-DNN, 2017 Summer Research
Experiences for Undergraduate (REU), Knoxville, TN. [Online].
Available: http://icl.cs.utk.edu/magma/software/

[14] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Performance,
Design, and Autotuning of Batched GEMM for GPUs,” in High
Performance Computing - 31st International Conference, ISC High
Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings,
2016, pp. 21–38.

[15] A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra, “A frame-
work for batched and GPU-resident factorization algorithms applied to
block householder transformations,” in High Performance Computing,
ser. Lecture Notes in Computer Science, J. M. Kunkel and T. Ludwig,
Eds. Springer International Publishing, 2015, vol. 9137, pp. 31–47.

[16] T. Dong, A. Haidar, S. Tomov, and J. Dongarra, “A Fast Batched
Cholesky Factorization on a GPU,” in Proc. of 2014 International
Conference on Parallel Processing (ICPP-2014), September 2014.

[17] T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov, and J. Dongarra,
“LU Factorization of Small Matrices: Accelerating Batched DGETRF

on the GPU,” in Proceedings of 16th IEEE International Conference on
High Performance and Communications (HPCC 2014), August 2014.

[18] A. Haidar, P. Luszczek, S. Tomov, and J. Dongarra, “Towards batched
linear solvers on accelerated hardware platforms,” in Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP 2015, ACM. San Francisco, CA: ACM,
02/2015 2015.

[19] A. Haidar, T. Dong, P. Luszczek, S. Tomov, and J. Dongarra, “Batched
Matrix Computations on Hardware Accelerators Based on GPUs,”
IJHPCA, vol. 29, no. 2, pp. 193–208, 2015.

[20] X. Wang and S. G. Ziavras, “Parallel LU Factorization
of Sparse Matrices on FPGA-based Configurable Computing
Engines,” Concurrency and Computation: Practice and Experience,
vol. 16, no. 4, pp. 319–343, 2004. [Online]. Available:
http://dx.doi.org/10.1002/cpe.748

[21] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou,
and J. J. Dongarra, “High-Performance Matrix-Matrix Multiplications
of Very Small Matrices,” in Euro-Par 2016: Parallel Processing -
22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proceedings, 2016, pp. 659–671.

[22] W. H. Boukaram, G. Turkiyyah, H. Ltaief, and D. E. Keyes, “Batched
QR and SVD algorithms on GPUs with applications in hierarchical
matrix compression,” Parallel Computing, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819117301461

[23] T. Dong, A. Haidar, S. Tomov, and J. Dongarra, “Accelerating
the svd bi-diagonalization of a batch of small matrices using
gpus,” Journal of Computational Science, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S187775031731150X

[24] K. Kim, T. B. Costa, M. Deveci, A. M. Bradley, S. D. Hammond,
M. E. Guney, S. Knepper, S. Story, and S. Rajamanickam,
“Designing Vector-friendly Compact BLAS and LAPACK Kernels,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 55:1–55:12. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126941

[25] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra,
“Novel HPC Techniques to Batch Execution of Many Variable
Size BLAS Computations on GPUs,” in Proceedings of the
International Conference on Supercomputing, ser. ICS ’17. New
York, NY, USA: ACM, 2017, pp. 5:1–5:10. [Online]. Available:
http://doi.acm.org/10.1145/3079079.3079103

[26] I. Yamazaki, A. Abdelfattah, A. Ida, S. Ohshima, S. Tomov, R. Yoko-
tax, and J. Dongarra, “Performance of Hierarchical-matrix BiCGStab
Solver on GPU Clusters,” in IEEE International Parallel & Distributed
Processing Symposium (IPDPS), 2018, (accepted).

[27] “LAPACK Working Note 41: Installation Guide for LAPACK,” 1999,
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf.

[28] “NVIDIA CUDA Basic Linear Algebra Subroutines (CUBLAS),” avail-
able at https://developer.nvidia.com/cublas.

