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CHAPTER 1

Introduction

So�ware for Linear Algebra Targeting Exascale (SLATE) 1 [1] is being developed as part of the
Exascale Computing Project (ECP) 2, which is a collaborative e�ort between two US Depart-
ment of Energy (DOE) organizations, the O�ce of Science and the National Nuclear Security
Administration (NNSA). The purpose of SLATE is to serve as a replacement for ScaLAPACK for
the upcoming pre-exascale and exascale DOE machines. SLATE will accomplish this objective
by leveraging recent progress in parallel programming models and by strongly focusing on
supporting hardware accelerators.

This report focuses on the set of SLATE routines that compute matrix norms. Speci�cally,
initial performance numbers are reported, alongside ScaLAPACK performance numbers, on
the SummitDev machine at the Oak Ridge Leadership Computing Facility (OLCF). More details
about the design of the SLATE so�ware infrastructure can be found in the report by Kurzak
et al. [1].

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org
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CHAPTER 2

Implementation

The principles of the SLATE so�ware framework were laid out in SLATE Working Note 3 1 [1].
SLATE’s design relies on the following principles:

• The matrix is represented as a set of individual tiles with no constraints on their locations
in memory with respect to one another. Any tile can reside anywhere in memory and
have any stride. Notably, a SLATE matrix can be created from a LAPACK matrix or a
ScaLAPACK matrix without making a copy of the data.

• Node-level scheduling relies on nested Open Multi Processing (OpenMP) tasking, with the
top level responsible for resolving data dependencies and the bottom level responsible for
deploying large numbers of independent tasks to multi-core processors and accelerator
devices.

• Batch BLAS is used extensively for maximum node-level performance. Most routines
spend the majority of their execution in the call to batch gemm. The norms routines, de-
scribed in this report, are a notable exception to this rule, as the BLAS does not implement
the underlying components.

• The Message Passing Interface (MPI) is used for message passing with emphasis on collec-
tive communication, with the majority of communication being cast as broadcasts.

Also, the use of a runtime scheduling system, such as the Parallel Runtime Scheduling and
Execution Controller (PaRSEC) 2 [2] or Legion 3,4 [3], is currently under investigation.

1http://www.icl.utk.edu/publications/swan-003
2http://icl.utk.edu/parsec/
3http://legion.stanford.edu
4 http://www.lanl.gov/projects/programming-models/legion.php

2

http://www.icl.utk.edu/publications/swan-003
http://icl.utk.edu/parsec/
http://legion.stanford.edu
http://www.lanl.gov/projects/programming-models/legion.php


2.1. PARALLELIZATION CHAPTER 2. IMPLEMENTATION

2.1 Parallelization

All norm routines are embarrassingly parallel and basically boil down to a sequence of reductions.
At the same time, SLATE implementations are marked by much higher complexity than
(Sca)LAPACK due to a totally di�erent representation of the matrix. Consider the following
factors:

• SLATE matrix is a “loose” collection of tiles, i.e., there are no constraints on the memory
location of any tile with respect to the other tiles.

• SLATE matrix can be partitioned to distributed memory nodes in any possible way, i.e.,
no assumptions are made about the placement of any tiles with respect to the other tiles.
The same applies to the partitioning of tiles within each node to multiple accelerators.

(1)
internal::
norm<Devices>(Norm::One, ...

(2) blas::axpy(...)

(3) MPI_Allreduce(..., MPI_SUM

(4) lapack::lange(Norm::Max, ...

dev 0

node 0

node 1

node 2

node 3

dev 2

dev 1 dev 3

Figure 2.1: Stages of the one norm using four
nodes in a 2D block cyclic arrangement and four
devices per node in a 2D block cyclic arrange-
ment.

Figure 2.1 illustrates the most complicated
case, where the matrix is spread across mul-
tiple distributed memory nodes and across
multiple accelerators in each node. The �gure
shows the stages of computing the one norm,
i.e., �nding the maximum column sum. This
means computing the sum of all elements in
each column and then �nding the maximum
sum. Figure 2.1 illustrates the case with four
nodes in a 2D block cyclic arrangement and
four devices per node, also in a 2D block cyclic
arrangement. The process consists of four
steps:

(1) Within each node, each device com-
putes column sums for each of its tiles,
using a specialized device kernel.

(2) Within each node, contributions from
all devices are summed up to a local vec-
tor of partial sums using blas::axpy.

(3) Partial sums from all the nodes are
summed up using MPI_Allreduce.

(4) Within each node, the maximum sum
is found using lapack::lange.

The same basic approach is used to imple-
ment the other types of norms (max, in�nity,
Frobenius) and to support the other types or
matrices (triangular, symmetric, Hermitian) with slightly higher complexity in the one norm
and the in�nity norm, due to the need to accumulate partial sums both along rows and columns.

The device kernels needed for step (1) are are currently implemented in CUDA. Each type
of norm requires a slightly di�erent implementation, and specialized kernels are needed for
triangular and symmetric/Hermitian matrices.
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2.2. HANDLING DIFFERENT TYPES OFMATRICES CHAPTER 2. IMPLEMENTATION

In�nity Norm: Each thread block computes the partial row sums for one tile. The thread block
is one dimensional and the number of threads is equal to to the number of rows. Each
thread sums up the elements of one row. For column major tiles, the access is naturally
coalesced.

MaxNorm: Each thread block �nds the maximum absolute value in one tile. The thread block
is one dimensional and the number of threads is equal to to the number of rows. First, each
thread �nds the maximum absolute value in one row. For column major tiles, the access
is naturally coalesced. Then all threads write their maximums to the shared memory,
and then a binary tree reduction follows to �nd the tile maximum. The kernel properly
propagates NaNs by using the expression isnan(y) || x < y ? y : x for element-wise
comparison.

Frobenius Norm: This kernel is very similar to the max norm kernel. Each thread block
computes the sum of squares for one tile. The thread block is one dimensional and the
number of threads is equal to to the number of rows. First, each thread computes the sum
of squares for one row. For column major tiles, the access is naturally coalesced. Then all
threads write their sums to the shared memory, and then the partial sums are reduced
to compute the sum of squares for the tile. To avoid unnecessary under or over�ow, the
sum of squares is computed using a scaled representation, in a similar fashion to the
lapack::lassq function.

One Norm: This kernel is somewhat similar to the in�nity norm kernel. Each thread block
computes the partial column sums for one tile. Here, however, the simple implementation,
with one thread per column, produces non coalesced memory access pattern. Therefore,
the operation is blocked with a �xed blocking factor B (currently simply one warp of
32 threads). The thread block consists of B threads, which go through the tile in B ×B
blocks. Each block is �rst loaded to the shared memory, using a coalesced access pattern,
and then read from the shared memory to compute the partial sums.

In the case of multithreaded execution, without acceleration, operations on individual tiles are
dispatched as OpenMP tasks. For a single tile, the max norm is implemented as a single call to
lapack::lange, the Frobenius norm is implemented as a single loop over lapack::lassq, and
the one and in�nity norms are implemented as double nested loops over the tile’s elements.
Otherwise, the same procedure applies for reducing local contributions within each node and
for �nding the global value across all nodes.

2.2 Handling Di�erent Types of Matrices

SLATE has a single slate::norm() function that is templated for the matrix type. Internally it
dispatches to di�erent implementations for general, trapezoid (triangular), and symmetric/Her-
mitian matrices. The implementations are similar, the di�erence being what tiles are accessed
and whether diagonal tiles are handled specially.

For trapezoid and symmetric matrices, only half of the matrix is stored, either the lower half
or the upper half. The other side is assumed to be zero for trapezoid matrices, and known by
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2.3. HANDLING OFMULTIPLE PRECISIONS CHAPTER 2. IMPLEMENTATION

symmetry for symmetric matrices. SLATE loops over tiles only in the given half, so it reads
half the data as for the same sized general matrix.

For trapezoid and triangular matrices, o�-diagonal tiles use the same kernels as for a general
matrix, but diagonal tiles require specialized kernels that access only either the lower or upper
triangle, assuming the opposite triangle is zero. The specialized kernels also deal with the diag
option that speci�es whether the matrix is assumed to have unit diagonal or not.

For symmetric matrices, the max norm is essentially identical to the triangular matrix case
(less the diag option). For the symmetric matrix Frobenius norm, o�-diagonal tiles use the
same kernel as for general matrices, the result of which is doubled to account for symmetry. A
specialized kernel is used for diagonal tiles to sum up squares of o�-diagonal entries, double
the result, then add squares of diagonal entries. The symmetric matrix one norm, which is
the same as the in�nity norm, has specialized kernels for both diagonal and o�-diagonal tiles.
The diagonal kernel computes column sums, taking symmetry of the tile into account. The
o�-diagonal kernel computes both column and row sums of the tile, the row sums being column
sums for the symmetric tile. This allows each tile to be read only once. The tile column and
row sums are then reduced into the appropriate matrix column sums. With respect to these
four norms, Hermitian matrices can be treated as symmetric matrices, since the absolute value
of each element is taken.

2.3 Handling of Multiple Precisions

SLATE handles multiple precisions by C++ templating, so there is only one precision-
independent version of the code, which is then instantiated for the desired precisions. SLATE’s
LAPACK++ component [4] provides overloaded, precision-independent wrappers for all the
underlying LAPACK routines, which SLATE’s parallel norms are built on top of. For instance,
lapack::lange in LAPACK++ maps to the classical slange, dlange, clange, or zlange LAPACK
routines, depending on the precision of its arguments.

Where a data type is always real, blas::real_type<scalar_t> is a C++ type trait to provide the
real type associated with the type scalar_t, so blas::real_type< std::complex<double> > is
double. Since norms of complex matrices are real values, this is used across the norms routines.

Currently, the SLATE library has explicit instantiations of the four main data types: float,
double, std::complex<float>, and std::complex<double>. The SLATE norms code should be
able to accommodate other data types, such as quad precision, given appropriate implementa-
tions of the elemental operations.
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CHAPTER 3

Experiments

3.1 Environment

Performance numbers were collected using the SummitDev system 1 at the OLCF, which is
intended to mimic the OLCF’s next supercomputer, Summit. SummitDev is based on IBM
POWER8 processors and NVIDIA P100 (Pascal) accelerators, and is one generation behind
Summit, which will be based on IBM POWER9 processors and NVIDIA V100 (Volta) accelerators.

The SummitDev system contains three racks, each with eighteen IBM POWER8 S822LC nodes,
for a total of ��y-four nodes. Each node contains two POWER8 CPUs, ten cores each, and four
P100 GPUs. Each node has 256 GB of DDR4 memory. Each GPU has 16 GB of HBM2 memory.
The GPUs are connected by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree
enhanced data rate (EDR) In�niBand.

The so�ware environment used for the experiments included GNU Compiler Collection
(GCC) 7.1.0, CUDA 9.0.69, Engineering Scienti�c Subroutine Library (ESSL) 5.5.0, Spec-
trum MPI 10.1.0.4, Netlib LAPACK 3.6.1, and Netlib ScaLAPACK 2.0.2—i.e., the output of
module list included:

gcc /7.1.0
cuda /9.0.69
essl /5.5.0 -20161110
spectrum -mpi /10.1.0.4 -20170915
netlib -lapack /3.6.1
netlib -scalapack /2.0.2

1https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/
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3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

3.2 Performance

In order to avoid excessive numbers of run, while still getting the complete picture, we asses
the performance of SLATE norms in the following way. First, in Section 3.2.1, we look at the
performance of di�erent kinds of norms for general matrices in double precision. Then, in
Section 3.2.2, we present the performance of the max norm for general matrices in di�erent
precisions. Finally, in Section 3.2.3 we show the performance of the max norm for di�erent
types of matrices in double precision.

All runs were performed using sixteen nodes of the SummitDev system, which provides
16 nodes × 2 sockets × 10 cores = 320 IBM POWER8 cores and 16 nodes × 4 devices = 64
NVIDIA P100 accelerators. SLATE was run with one process per node, while ScaLAPACK
was run with one process per core, which is still the prevailing method of getting the best
performance from ScaLAPACK. Only rudimentary performance tuning was done in both cases.

3.2.1 Di�erent Kinds of Norms

Figure 3.1 show the performance of di�erent kinds of norms for general matrices in double
precision. SLATE runs were made with and without acceleration, while no acceleration was
used for ScaLAPACK runs. We are not aware of a viable solution for accelerating ScaLAPACK.
All runs used 16 nodes of the SummiDev system. For the accelerated runs, this translates to 64
accelerators.

Figure 3.1: Performance for di�erent types of norms (double precision, general matrix) without
acceleration (le�) and with acceleration (right).

In the cases of multithreaded runs, SLATE delivers superior performance for the max norm and
the Frobenius norm, while the SLATE’s implementations of the one norm and the in�nity norm
clearly su�er from a performance de�ciency. In the case of accelerated runs, SLATE delivers
superior performance across all norms, with the performance of the one norm signi�cantly
below the performance of other norms.
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3.2. PERFORMANCE CHAPTER 3. EXPERIMENTS

3.2.2 Di�erent Precisions

Figure 3.2 shows the performance of the max norm for general matrices in di�erent precisions.
SLATE delivers superior performance for all cases, with huge performance bene�t for the
accelerated runs. At the same time, it is surprising that di�erent precisions deliver di�erent per-
formance. In principle, norm calculations are memory bound, regardless of the precision, and
should be saturating the bandwidth equally well. This outcome calls for further investigation.

Figure 3.2: Performance for di�erent precisions (max norm, general matrix) without accelera-
tion (le�) and with acceleration (right).

3.2.3 Di�erent Types of Matrices

Figure 3.3 shows the performance of the max norm for di�erent types of matrices in dou-
ble precision. SLATE delivers superior performance for all cases, with huge performance
bene�t for the accelerated runs. At this point, we do not have an explanation for the spikes
in the multithreaded performance of SLATE. They are reproducible. This calls for further
investigation.

Figure 3.3: Performance for di�erent types of matrices (double precision, max norm) without
acceleration (le�) and with acceleration (right).
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CHAPTER 4

Summary

Due to the complexity of the target hardware, the implementations of norms are non trivial,
despite the simplicity of their mathematical de�nitions. More complexity is caused by removing
ScaLAPACK constraints on the arrangement of the matrix in the memory and the mapping of
the matrix to the distributed memory nodes. This results in multiple reduction stages across
multiple levels of the memory system.

Despite the complexity of the implementation, SLATE delivers superior performance across
all accelerated runs. The remaining area of concern is SLATE’s multithreaded performance for
the one norm and in�nity norm. The follow-up performance engineering e�ort by the SLATE
team should result in a swi� resolution of these issues.
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APPENDIX A

Function Signature

SLATE has a single slate::norm() function that is templated for the matrix type. Internally it
dispatches to di�erent implementations for general, trapezoid (triangular), and symmetric/Her-
mitian matrices. The norm_type option speci�es whether to compute the max, in�nity, one, or
Frobenius norm. The optional opts argument speci�es additional options, such as where the
computation should be done as Target::Host or Target::Devices.

template <typename matrix_type >
blas::real_type <typename matrix_type ::value_type >
norm(Norm norm_type , matrix_type& A,

const std::map <Option , Value >& opts = std::map <Option , Value >());
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APPENDIX B

Discovered ScaLAPACK Problems

B.1 Indexing Bugs

In testing SLATE, it was discovered that the trapezoid norm, p*lantr, in ScaLAPACK had several
indexing bugs in the one, in�nity, and Frobenius norms. This lead to ScaLAPACK including
either one extra row or one less row than ought to be included in the norm calculation. For
testing purposes, SLATE has local copies of these routines with corrections, and a bug report
has been sent to the ScaLAPACK maintainers.

B.2 Accuracy Problems

The Frobenius norm uses a sum-of-squares. Ignoring scaling, a simpli�ed implementation is
(in Matlab notation):

sum = 0;
for j = 1:n

for i = 1:m
sum = sum + abs(A(i, j))ˆ2;

end
end
result = sqrt(sum);

As is well known [5], summing a large number of elements in the above naı̈ve fashion can lead
to signi�cant error in �oating point, since sum � abs(A(i, j))ˆ2. Summation using a blocked
algorithm is more accurate, since the numbers that are added are of similar magnitude. SLATE
naturally sums numbers in a blocked fashion: each tile is summed, and then the tile sums are
reduced to the �nal result. While testing SLATE’s Frobenius norms, the single precision results

13



B.2. ACCURACY PROBLEMS APPENDIX B. DISCOVERED SCALAPACK PROBLEMS

showed large di�erences compared to ScaLAPACK. Within each process, ScaLAPACK does a
simple summation, leading to an error that grows with the matrix size, becoming noticeable
for n ≥ 1000. This is easily �xed with a modi�cation in ScaLAPACK to sum each column
individually, and accumulate the column sums. This adds trivial overhead, so does not change
the performance of ScaLAPACK.

sum = 0;
for j = 1:n

colsum = 0;
for i = 1:m

colsum = colsum + abs(A(i, j))ˆ2;
end
sum = sum + colsum;

end
result = sqrt(sum);

For testing purposes, SLATE has local copies of ScaLAPACK’s norm routines
(p*lange, p*lansy, p*lantr) with this modi�cation. The issue likewise a�ects LAPACK. An
issue report has been sent to the (Sca)LAPACK maintainers 1.

1https://github.com/Reference-LAPACK/lapack/issues/261
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