
1

Bidiagonal SVD Computation via an Associated
Tridiagonal Eigenproblem

Osni Marques∗, James Demmel† and Paulo B. Vasconcelos‡
∗Lawrence Berkeley National Laboratory, oamarques@lbl.gov
†University of California at Berkeley, demmel@cs.berkeley.edu

‡Faculdade Economia and CMUP, University of Porto, pjv@fep.up.pt

Abstract

In this paper, we present an algorithm for the singular value decomposition (SVD) of a bidiagonal matrix by
means of the eigenpairs of an associated symmetric tridiagonal matrix. The algorithm is particularly suited for the
computation of a subset of singular values and corresponding vectors. We focus on a sequential version of the
algorithm, and discuss special cases and implementation details. We use a large set of bidiagonal matrices to assess
the accuracy of the implementation in single and double precision, as well as to identify potential shortcomings. We
show that the algorithm can be up to three orders of magnitude faster than existing algorithms, which are limited
to the computation of a full SVD. We also show time comparisons of an implementation that uses the strategy
discussed in the paper as a building block for the computation of the SVD of general matrices.

I. INTRODUCTION

It is well known that the singular value decomposition (SVD) of a matrix A ∈ Rm×n, namely A =
USV T , with left singular vectors U = [u1, u2, . . . um], U ∈ Rm×m, right singular vectors V = [v1, v2, . . . vn],
V ∈ Rn×n, U and V orthogonal matrices, and singular values s1 ≥ s2 ≥ . . . sn ≥ 0 on the main diagonal of
S ∈ Rm×n, can be obtained through the eigenpairs (λ, x) of the matrices Cn×n = ATA and Cm×m = AAT ,
as long as the singular values are distinct. However, if A is square and orthogonal then Cn×n and Cm×m
are both the identity and provide little information about the singular vectors, which are not unique:
A = (AQ)I(QT) is the SVD of A for any orthogonal matrix Q. A potential difficulty for some algorithms
(e.g. the one presented in this paper) is large clusters of singular values, as this may have an impact on
the orthogonality of the computed singular vectors.

Alternatively, the SVD can be obtained through the eigenpairs of the augmented matrix

C =

[
0 A
AT 0

]
. (1)

In this paper we focus on the case m = n. Then, one can write [10]

C =

[
0 A
AT 0

]
= J

[
−S 0
0 S

]
JT , (2)

where J ∈ Rn×n is defined as
J =

[
U U
−V V

]
/
√

2, (3)

such that the eigenvalues of C are ±s and its eigenvectors are mapped into the singular vectors of A
(scaled by

√
2) in a very structured manner1.

In practical calculations, the SVD of a general matrix A involves the reduction of A to bidiagonal
form B through orthogonal transformations, i.e. A = ÛBV̂ T . The singular values are thus preserved; the
singular vectors of B need to be back transformed into those of A.

1Although this paper focuses on the real case, the discussion can be easily extended to the complex case.

2

TABLE I: LAPACK’s (bidiagonal, BD) SVD and (tridiagonal, ST) eigensolvers.

routine usage algorithm
BDSQR all s and (opt.) u and/or v implicit QL or QR
BDSDC all s and (opt.) u and v divide-and-conquer
STEQR all λ’s and (opt.) x implicit QL or QR
STEVX selected λ’s and (opt.) x bisection & inverse iteration
STEDC all λ’s and (opt.) x divide-and-conquer
STEMR selected λ’s and (opt.) x MRRR

If B is an upper bidiagonal matrix with (a1, a2, . . . an) on the main diagonal and (b1, b2, . . . bn−1) on the
superdiagonal, we can replace A with B in (1) to obtain C = P TGK P

T , where TGK is the Golub-Kahan
symmetric tridiagonal matrix,

TGK = tridiag

(
a1 b1 a2 b2 . . . bn−1 an

0 0 0 0 . . . 0 0
a1 b1 a2 b2 . . . bn−1 an

)
, (4)

with the perfect shuffle P = [en+1, e1, en+2, e2, en+3, . . . e2n], ei, i = 1, 2, . . . 2n, corresponding to the
columns of the identity matrix of dimension 2n. Then, if the eigenpairs of TGK are (±s, z), with ‖z‖ = 1,
from (2)-(3) we obtain

z = P

[
u
±v

]
1√
2
,

where u and v are the singular vectors associated with s. Thus, we can extract the SVD of B from the
eigendecomposition of TGK .

Table I lists the LAPACK [1] subroutines intended for the computation of the SVD of bidiagonal
matrices, and eigenvalues and eigenvectors of tridiagonal matrices. The trade-offs (performance, accuracy)
of the symmetric tridiagonal (ST) subroutines have been examined in [7]. We are interested in how
these subroutines could be applied to TGK in (4), specially for the computation of subsets of eigenpairs,
which in turn could reduce the computational costs when a full SVD is not needed (or for the eventual
computation of subsets of singular values and vectors in parallel). While STEDC could be potentially
redesigned to compute a subset of eigenvectors, saving some work but only at the top level of the
recursion of the divide-and-conquer algorithm (see [2]), STEVX and STEMR offer more straightforward
alternatives. STEVX performs bisection (subroutine STEBZ in LAPACK) to find selected eigenvalues
followed by inverse iteration (subroutine STEIN in LAPACK) to find the corresponding eigenvectors,
for an O(n) cost per eigenpair. STEVX may occasionally fail to provide orthogonal eigenvectors when
the eigenvalues are too closely clustered. In contrast, STEMR uses a much more sophisticated algorithm
called MRRR [8], [9] to guarantee orthogonality. In fact, the computation of the bidiagonal SVD using
MRRR, by applying MRRR to the coupled eigenvalue decompositions of BTB and BBT , has been
discussed in [11], [12], [26]. However, an implementation discussed in [26] and named BDSCR was
abandoned: unsatisfactory results (large residuals for the SVD) were obtained in a number of cases,
revealing gaps in the theory for the coupled approach. The problem was found to be related to a potential
mismatch in twisted factorizations used in MRRR in that context [24]. Subsequently, an improved version
of the MRRR algorithm targeting TGK for SVD computations was proposed in [24], [25]; however, our
experiments with an implementation given in [25] and named STEXR exposed deficiencies (inaccuracy)
for relatively simple matrices. We show one such a case in Appendix A. Therefore, we have decided to
adopt STEVX for computing eigenvalues and eigenvectors of (4), even though it also has known failure
modes. In particular, in extreme situations of tightly clustered eigenvalues bisection may potentially not
converge to the desired accuracy, or not all eigenvalues from the IL-th through the IU-th may be found,
or inverse iteration may fail to converge with the allowed number of iterations. Although our exhaustive
tests with STEVX (including the ones shown in Section V) have never detected such anomalies, we plan
to replace STEVX with a more robust implementation of MRRR for (4) when such an implementation

3

becomes available2. MRRR would dispense with reorthogonalizations that can take a good share of the
computing time for matrices with tight clusters of eigenvalues. We emphasize that it is not enough to
obtain accurate eigenpairs for (4): we also need the extracted u’s and v’s to be accurate3.

The main contribution of this paper is to present and discuss an implementation of an algorithm for the
SVD of a bidiagonal matrix obtained from eigenpairs of a tridiagonal matrix TGK . This implementation
is called BDSVDX, which was first introduced in LAPACK 3.6.0 [15], with preliminary results reported
in [18]. While the associated formulation is not necessarily new, as mentioned above, its actual imple-
mentation requires care in order to deal correctly with multiple or tightly clustered singular values. To the
best of our knowledge, no such implementation has been done and exhaustively tested. In concert with
BDSVDX we have also developed GESVDX (real and complex versions), which takes a general matrix A,
reduces it to bidiagonal form B, invokes BDSVDX, and then maps the output of BDSVDX into the SVD
of A. In LAPACK, the current counterparts of GESVDX are GESVD and GESDD, which are based on
the BD subroutines listed in Table I and can only compute all singular values (and optionally singular
vectors). This can be much more expensive if only a few singular values and vectors are desired. For
example, our experiments showed that BDSVDX can be 3 orders of magnitude faster than its counterparts,
and GESVDX can be 10 times faster than its counterparts.

The rest of the paper is organized as follows. First, we discuss how singular values are mapped into the
eigenvalue spectrum. Then, we discuss special cases, the criterion for splitting a bidiagonal matrix, and
other implementation details. Next, we show the results of our tests with BDSVDX using a large set of
bidiagonal matrices, to assess both its accuracy (in single and double precisions) and its performance with
respect to BDSQR and BDSDC4. We also compare the performance of GESVDX with those of GESVD and
GESDD (in double precision, real and complex), and show how the time is spent in the various phases of
GESVDX. Finally, we discuss limitations of the algorithm and opportunities for future work.

II. MAPPING SINGULAR VALUES INTO EIGENVALUES

Similarly to BDSQR and BDSDC, BDSVDX allows the computation of singular values only or singu-
lar values and the corresponding singular vectors5. Borrowing features from STEVX, BDSVDX can be
used in three modes, through a character variable RANGE. If RANGE=“A”, all singular values will be
found: BDSVDX will compute the smallest (negative or zero) n eigenvalues of the corresponding TGK . If
RANGE=“V”, all singular values in the half-open interval [VL,VU) will be found: BDSVDX will compute
the eigenvalues of the corresponding TGK in the interval (-VU,-VL]. If RANGE=“I”, the IL-th through IU-
th singular values will be found: the indices IL and IU are mapped into values (appropriate VL and VU) by
subroutine STEBZ, which applies bisection to TGK . VL, VU, IL and IU are arguments of BDSVDX (which
are mapped into similar arguments for STEVX).

For a bidiagonal matrix B of dimension n, if singular vectors are requested, BDSVDX returns an array
Z of dimension 2n× p, where p ≤ n is a function of RANGE. Each column of Z will contain (uTk , v

T
k)T

corresponding to singular value sk, i.e.

Z =

[
U
V

]
, (5)

where U = [uk, uk+1, . . . uk+p−1], V = [vk, vk+1, . . . vk+p−1], with k depending on RANGE and possibly
also VL, VU, IL and IU.
STEVX returns eigenvalues (and corresponding vectors) in ascending order, so we target the negative

part of the eigenvalue spectrum (i.e. −S) in (2). Therefore, the absolute values of the returned eigenvalues

2At the time of this writing, [15] lists two issues (bugs) related to STEMR. The issues are related to safeguards mechanisms against NaNs,
which may lead to an early termination of STEMR even for some relatively benign matrices.

3We note that [3] discusses the computation of singular values by spectrum slicing, but not the corresponding singular vectors.
4A modified and potentially faster version of BDSDC exploiting low-rank properties of broken arrow matrices has been proposed in [16];

see also [23].
5The returned singular values are the same in both cases since STEVX is invoked in a way that forces the use of bisection, instead of QR

or the Pal-Walker-Kahan variant of the QL or QR algorithm, for computing the eigenvalues of TGK .

4

give us the singular values in the desired order, s1 ≥ s2 ≥ . . . sn ≥ 0. We only need to change the signs
of the entries in the eigenvectors that are reloaded to V . We note that BDSVDX inherits the shortcomings
of STEVX mentioned in the Introduction (i.e. bisection may fail to converge, not all eigenvalues in a given
interval may be found, or inverse iteration may fail to converge).

III. SPLITTING: SPECIAL CASES

Our code must deal properly with cases when one, or more, of the 2n−1 parameters (ai, bi) vanish. Most
presentations just take the case when the bidiagonal matrix B is square. However, when aj = 0, 1 < j < n,
then B may be written

B =

[
B1 0
0 B2

]
(6)

where B1 is (j−1)×j and B2 is (n−j+1)×(n−j). Thus, neither B1 nor B2 is square. In particular, B1

must have a normalized column null vector v̂, B1v̂ = 0(j−1)×1, which exhibits the linear dependence of
B1’s columns. Likewise, there must be a null vector û, ûTB2 = 01×(n−j), exhibiting the dependence among
B2’s rows. In general, B1’s rows and B2’s columns are linearly independent sets if no other diagonal or
superdiagonal entries are zero.

The Golub-Kahan matrix T (1)
GK for B1 comes from the (2j − 1)× (2j − 1) matrix[

0 B1

BT
1 0

]
= P1T

(1)
GKP

T
1

where

T
(1)
GK = tridiag

 a1 b1 a2 b2 . . . aj−1 bj−1

0 0 0 0 . . . 0 0
a1 b1 a2 b2 . . . aj−1 bj−1

,

and P1 is the perfect shuffle of appropriate dimension. In this case, T (1)
GK is of odd order and must be

singular because T (1)
GK is similar to −T (1)

GK , so its nonzero eigenvalues come in plus-minus pairs, and the
sum of all the eigenvalues is zero. By the observation above, the corresponding null vector must be

P T
1

[
0(j−1)×1

v̂

]
,

because
T

(1)
GKP

T
1

[
0(j−1)×1

v̂

]
= P T

1

[
0 B1

BT
1 0

]
P1P

T
1

[
0(j−1)×1

v̂

]
= P T

1

[
0(j−1)×1

0j×1

]
since B1v̂ = 0(j−1)×1.

The expressions for B2’s singular triples (σ, u, vT) follow a similar pattern, provided that we write the
augmented (2(n− j) + 1)× (2(n− j) + 1) matrix as[

0 BT
2

B2 0

]
= P2T

(2)
GKP

T
2

since B2 has more rows than columns, where

T
(2)
GK = tridiag

 aj+1 bj+1 aj+2 . . . bn−1 an
0 0 0 . . . 0 0

aj+1 bj+1 aj+2 . . . bn−1 an


and P2 is the perfect shuffle of appropriate dimension. The row null vector for B2 must be (01×(n−j), û

T)P2,
because

(01×(n−j), û
T)P2T

(2)
GK = (01×(n−j), û

T)P2P
T
2

[
0 BT

2

B2 0

]
P2 = (01×(n−j), 01×(n−j+1))P2

5

since ûTB2 = 01×(n−j).
The other mappings between singular vectors of B1 and B2 and eigenvectors of T (1)

GK and T (2)
GK are the

same as in the square case. We include them here for completeness. Consider B1v = uσ, uTB1 = σvT ,
σ > 0, ‖u‖ = ‖v‖ = 1. Then,[

u
±v

]
σ =

[
0 B1

BT
1 0

] [
u
±v

]
= P1T

(1)
GKP

T
1

[
u
±v

]
,

which reveals that
P T
1

[
u
±v

]
1√
2

are T (1)
GK’s normalized eigenvectors for eigenvalues +σ and −σ.

In practice, and as mentioned before, we choose to compute only the wanted nonpositive eigenpairs in
monotone increasing order because that delivers the wanted singular triples in the conventional monotone
decreasing order of singular values. When T

(1)
GK’s spectrum is labeled λ1 ≤ λ2 ≤ . . . λj−1 ≤ λj ≤

λj+1 · · · ≤ λ2j−1, λj = 0, then σ1 = |λmin| = |λ1|. Finally, we note that the case j = 1 fits the general
pattern of (6) with no first row (0 B2), and the case j = n fits with no second row (B1 0).

Splitting and the output array Z
As discussed above, if, for a given i, bi = 0 (or it is tiny enough to be set to zero, as discussed later) the

matrix B splits and the SVD for each resulting (square) submatrix of B can be obtained independently.
In the following, we use small matrices B to illustrate the splitting in the main diagonal and its effect on
Z .

a) Zero in the interior: Let us assume that n = 5 and a3 = 0. Then, we have the following SVD:

B =


a1 b1

a2 b2
0 b3

a4 b4
a5

 =

[
U1

U2

] [
S1

S2

] [
V T
1

V T
2

]
,

where U1 and V2 are 2-by-2, U2 and V1 are 3-by-3, S1 is 2-by-3 (its third column contains only zeros),
and S2 is 3-by-2 (its third row contains only zeros). The first three columns of the eigenvector matrices
of T (1)

GK and T (2)
GK are

Z
(1)
5×3 =



v
(1)
1,1 v

(1)
1,2 v

(1)
1,3

u
(1)
1,1 u

(1)
1,2 0

v
(1)
2,1 v

(1)
2,2 v

(1)
2,3

u
(1)
2,1 u

(1)
2,2 0

v
(1)
3,1 v

(1)
3,2 v

(1)
3,3


D−1, Z

(2)
5×3 =



u
(2)
1,1 u

(2)
1,2 u

(2)
1,3

v
(2)
1,1 v

(2)
1,2 0

u
(2)
2,1 u

(2)
2,2 u

(2)
2,3

v
(2)
2,1 v

(2)
2,2 0

u
(2)
3,1 u

(2)
3,2 u

(2)
3,3


D−1,

where Z
(1)
5×3 and Z

(2)
5×3 show how the entries of the eigenvectors corresponding to the three smallest

eigenvalues of T (1)
GK , λ(1)1 < λ

(1)
2 < λ

(1)
3 , and T (2)

GK , λ(2)1 < λ
(2)
2 < λ

(2)
3 relate to the entries of U1, U2, V1 and

V2, where v(1)ij are the entries of V1 and so on. Note that the left and right singular vectors corresponding
to s3 are in different Z matrices, and D is a diagonal matrix with entries (

√
2,
√

2, 1). In this case, the
10-by-5 array Z (see (5)) returned by BDSVDX is

Z = P

[
Z

(1a)
5×2 Z

(1b)
5×3

0 Z
(2)
5×3

]
,

where P is the perfect shuffle of appropriate dimension, Z(1a)
5×2 contains the first two columns of Z(1)

5×3,
and Z(1b)

5×3 contains zeros in its two first columns and the last column of Z(1)
5×3 in its third column.

6

b) Zero at the top: If n = 4 and a1 = 0, then

B =


0 b1

a2 b2
a3 b3

a4

 =
[
U
] [0

S

][
1

V T

]
,

where the left singular vector matrix U is 4-by-4, S is 3-by-3, and the right singular vector matrix V
is 3-by-3. If we construct a TGK from B, its first row and column will be zero, and the entries of the
eigenvectors corresponding to the five smallest eigenvalues of TGK (again, related explicitly to singular
values of B) relate to the entries of U and V as follows:

Z8×5 =



1 0 0 0 0
0 u1,1 u1,2 u1,3 u1,4

0 v1,1 v1,2 v1,3 0
0 u2,1 u2,2 u2,3 u2,4

0 v2,1 v2,2 v2,3 0
0 u3,1 u3,2 u3,3 u3,4

0 v3,1 v3,2 v3,3 0
0 u4,1 u4,2 u4,3 u4,4


D−1,

where D is a diagonal matrix with entries (1,
√

2,
√

2,
√

2, 1). In this case, the array Z (see (5)) returned
by BDSVDX is formed by taking the last four columns of Z8×5, and its last column is concatenated with
the first column of Z8×5.

c) Zero at the bottom: If n = 4 and a4 = 0, then

B =


a1 b1

a2 b2
a3 b3

0

 =

[
U

1

] [
S

0

] [
V T

]
,

where the left singular vector matrix U is 3-by-3, S is 3-by-3, and the right singular vector matrix V is
4-by-4. If we construct a TGK from B, its last row and column will be zero, the entries of the eigenvectors
corresponding to the five smallest eigenvalues of TGK (again, related explicitly to singular values of B)
relate to the entries of U and V as follows:

Z8×5 =



v1,1 v1,2 v1,3 v1,4 0
u1,1 u1,2 u1,3 0 0
v2,1 v2,2 v2,3 v2,4 0
u2,1 u2,2 u2,3 0 0
v3,1 v3,2 v3,3 v3,4 0
u3,1 u3,2 u3,3 0 0
v4,1 v4,2 v4,3 v4,4 0
0 0 0 0 1


D−1,

where D is a diagonal matrix with entries (
√

2,
√

2,
√

2, 1, 1). In this case, the array Z (see (5)) returned
by BDSVDX is formed by taking the first four columns of Z8×5, and its last column is concatenated with
the last column of Z8×5.

Criterion for splitting
In our implementation, we first form the matrix TGK and then check for splitting in two phases, first

the superdiagonal entries of TGK with row indexes 2, 4, . . . (i.e. bi). If a submatrix is found (or the bottom
of the matrix B is reached) we check the superdiagonal entries of TGK with row indices 1, 3, . . . (i.e. ai).
Thus, if the matrix splits in a, the problem can be reduced to one of the three special cases described
above. The criterion that BDSVDX uses for splitting is the same that is used in BDSQR; it is discussed in
[6]. We note that the LAPACK subroutine that performs bisection, STEBZ, also checks for potential splits,
using a different criterion. However, in our tests we have not noticed any additional splits performed in
STEBZ. Our testing infrastructure contains matrices to trigger the cases of splitting discussed above. The
infrastructure also allows the setting of a percentage of entries of B that will be randomly set to 0, thus
enabling the testing of a variety of splitting patterns.

7

IV. REFINEMENT OF VECTORS

As discussed earlier, an eigenvector zi of TGK , i ≤ 1 ≤ n, corresponds to zi = P (uTi ,−vTi)T/
√

2.
This means that we could simply create a vector ûi with the even entries of zi and a vector v̂i with
the odd entries of zi and multiply those vectors by

√
2 in order to obtain ui and vi. However, in our

implementation we explicitly normalize ûi and v̂i. This allows us to check how far the norms of ûi and
v̂i are from 1√

2
, which may be the case if zi is associated with a small eigenvalue. In fact, in [26] the

authors observe that there may be a deviation of orthogonality in the singular vectors extracted from the
eigenvectors of TGK for some bidiagonals with tight clusters or very small singular values. This is related
to the minors of TGK with an odd dimension, which are all singular.

As a safeguard, if necessary, we apply a Gram-Schmidt reorthogonalization to ûi and v̂i against the
previous vectors. The test we have implemented to trigger reorthogonalization is based on |‖û‖− 1√

2
| ≥ tol,

similarly for v̂, where tol =
√
ε and ε is the machine precision. While this refinement seems to work

well for most cases, we have found situations for which the test based on ‖û‖ (and ‖v̂‖) is not sufficient.
This is the case of the bidiagonal matrix B8×8 (n = 8) defined as6

ai = 10−(2i−1), i = 1, 2, . . . n,

bi = 10−(2i−2), i = 1, 2, . . . n− 1,

whose norm is ≈ 1.005, condition number is O(1022), and the three smallest singular values are s6 =
O(10−10), s7 = O(10−12) and s8 = O(10−22). For B8×8, |‖ûi‖ − 1√

2
| < 10ε, i = 1, 2, . . . n. Similarly

for vi, i = 1, 2, . . . n. However, taking the output U, S, V of BDSVDX in double precision for B8×8, we
obtain ‖UTB8×8V − S‖/(‖B8×8‖nε) < 1.0, while ‖I − UTU‖/(nε) and ‖I − V TV ‖/(nε) are O(105).
To illustrate, Figs. 1a-1b show the orthogonality levels of U and V . If we compare the entries of U and
V obtained with BDSVDX with the ones obtained with BDSQR7 we observe that the largest differences in
those entries are in the 7th entry of u8 and in the 1st entry of v8: the output from BDSVDX agrees with
the output from BDSQR in 10 and 9 digits, respectively, in those particular entries.

The eigenvectors z7 and z8 of the TGK obtained from B8×8, i.e. the eigenvectors associated with
eigenvalues −s7 and −s8, have small reciprocal condition numbers [1, p. 103], O(10−12), leading to
singular vectors that are not orthogonal to machine precision. Yet, the eigenvectors z of TGK as computed
by STEVX are orthogonal to working precision; specifically, ‖I−ZTZ‖/(2nε) = 0.125, Z = [z1, z2 . . . zn].
Experiments have shown that if we force the reorthogonalization of u8 against ui, i = 4, . . . 7, we obtain
‖I − UTU‖/(nε) < 1.0. Similarly, if we reorthogonalize v8 against vi, i = 4, . . . 7, we obtain ‖I −
V TV ‖/(nε) < 1.0. This suggests that the strategy for triggering reorthogonalization needs also to take
into account the separation and magnitude of the eigenvalues and not only ‖û‖ and ‖v̂‖ (as in the
current LAPACK implementation) or simply a tighter tol. However, such a strategy remains to be further
investigated.

V. NUMERICAL EXPERIMENTS

We have used a large set of bidiagonal matrices8 to test BDSVDX, on a computer with a 4-core Intel
Core i7-7700K processor at 4.2 GHz, 256 KB of L1 cache (64 KB per core), 1 MB of L2 cache (256 KB
per core), 8 MB of L3 cache, 32 GB of memory, in double and single precisions, using the Intel and GNU
Fortran compilers. We show results obtained with the Intel compiler [13], with flags -O2 -fp-model
strict, using Intel’s MKL (BLAS) [14], and LAPACK 3.7.09. Most of the test matrices in our testbed
are derived from symmetric tridiagonal matrices described in [17] (also used in [7]). In this case, we
factor T − νI = LLT (Cholesky) for a proper value of ν (obtained from the Gerschgorin bounds of T),

6This matrix is not included in the tests in Section V.
7BDSQR returns U and V that are orthogonal to machine precision.
8All matrices used in our experiments are available upon request. The matrices will be included in a future release of LAPACK.
9The results may vary for the more difficult cases, depending on the compiler and compilation flags.

8

1 1

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

3
2 2

3

4
5

6
7

8

4
5

6
7

8

(a)
∣∣∣I − UTU

∣∣∣ /(nε)
3

4
5

6
7

8

10

2
1 1

2

-1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

3
4

5
6

7
8

(b)
∣∣∣I − V TV

∣∣∣ /(nε)
Fig. 1: Orthogonality level (surface mesh, log scale) of U and V for B8×8.

then set B = LT . The testbed also includes random bidiagonal matrices, with entries obtained from a
standard normal distribution and a uniform distribution, generated by LAPACK’s functions LARND and
LARNV.

To test the accuracy of BDSVDX, we compute

resid = ‖UTBV − S‖/(‖B‖nε)
orthU = ‖I − UTU‖/(nε)
orthV = ‖I − V TV ‖/(nε)

where n is the dimension of B and ε is the machine precision. To test the features RANGE=“I” and
RANGE=“V” for a given B, we build the corresponding TGK prior to invoking BDSVDX and compute
its eigenvalues using bisection (i.e. STEBZ). Then, for RANGE=“V” we generate nV pairs of random
indexes IL and IU, map those indexes into the eigenvalues of TGK , perturb the eigenvalues slightly to
obtain corresponding pairs VL and VU, and then invoke BDSVDX nV times with the corresponding pair of
values. We need VL<VU, a requirement for STEVX when RANGE=“V”, motivating the small perturbations
in the eigenvalues of TGK . For RANGE=“I” we simply generate nI pairs of random indexes IL and IU, and
then invoke BDSVDX nI times with the corresponding pair of indexes. We recall that in BDSVDX indices
IL and IU are mapped into values (as in STEVX). This mapping can produce values that differ from the
ones obtained by simply perturbing the eigenvalues.

We are also interested in the time BDSVDX takes to compute all singular values and vectors and, most
importantly, subsets of singular values and vectors. We compare these times with the times taken by
BDSQR and BDSDC. One of our goals is to identify a breakpoint in which the computation of a full SVD
would be preferable to a subset. We extend this analysis by comparing GESVDX, which is built on top
of BDSVDX, to its counterparts GESVD and GESDD, in double and double precision complex, using a set
of random matrices with a varying number of rows and columns.

Accuracy in double precision
Fig. 2 shows the accuracy of BDSVDX in double precision. Figs. 2a-2c correspond to the computation

of all singular values and vectors (RANGE=“A”), for 250 bidiagonal matrices with dimensions ranging
from 9 to 4006. Figs. 2d-2i show the accuracy of BDSVDX for the same matrices of RANGE=“A”, but with
nI = 10 (random) pairs of IL, IU (RANGE=“I”), and nV = 10 (random) pairs of VL, VU (RANGE=“V”)
for each matrix. In the figures, the matrices (y-axis) are ordered according to their condition numbers
(lowest to highest), which range from 1.0 to > 10200 (using singular values computed by BDSQR). For

9

the sake of clarity, we use floor and ceiling functions to bound the results in the x-axis, setting its limits
to 10−1 and 104. In other words, for plotting purposes we use max(10−1, resid), and min(104, resid) as
limits; similarly for orthU and orthV . We discuss the cases for which the results are bigger than the axis
limit. To assist in the interpretation of the results, Fig. 3 shows a histogram of the symbols displayed in
Fig. 2.

For RANGE=“A”, as can be seen in Figs. 2a-2c and Fig. 3a, the majority of the results are adequately
below 1.0. There are three to five cases with results above 10.0, and we consider the outliers to be the
ones above 100. Specifically, in Fig. 2a:

a) Matrix 36 is a bidiagonal matrix of dimension 1260 obtained from a tridiagonal matrix computed by
running the Lanczos algorithm [5] without reorthogonalization 3×n0 steps, where n0 is the dimension
of the original (sparse) matrix (BCSSTK07, from the BCSSTRUC1 set in [19]). This strategy leads to
tridiagonal matrices with very close eigenvalues: for example, the largest 138 eigenvalues of matrix
36 agree to 12 digits (4.52093556010× 10−3).

b) Matrix 225 is a bidiagonal matrix of dimension 396 generated from a singular value distribution with
large clusters: the largest 41 singular values, for example, agree to 13 digits (2.311336378236×10−2).

c) Matrices 248-250 (outliers) are notoriously difficult (they are borrowed from the LAPACK SVD
tester, CHKBD): their entries are defined as ex, where x is chosen uniformly on [2 log ε,−2 log ε],
therefore ranging from ε−2 to ε2. The dimensions of those matrices are 125, 250 and 500, respectively.
For n = 500, s1 ≈ O(10+31) and sn ≈ O(10−284) (as computed by BDSQR). For these matrices,
resid is O(10−2) but orthU and orthV are O(10+13).

As expected, the effect of large clusters of singular values of matrices 36 and 225, and the oddities of
matrices 248-250 in Figs. 2a-2c, are propagated to Figs. 2d-2i. However, Figs. 2g-2i contain additional
results above 10.0. In these figures, case 966 (matrix 97 in Figs. 2a-2c) is a bidiagonal matrix of dimension
2100 obtained from a tridiagonal matrix formed by gluing 100 copies of the Wilkinson matrix W21+10

with glue factor 10−11, so its eigenvalues (and therefore singular values) are highly clustered. (The values
set to VL and VU in case 966 lead to the computation of 1657 singular values and vectors.)

Accuracy in single precision
Fig. 4 shows the accuracy of BDSVDX in single precision. To assist in the interpretation of the results,

Fig. 5 shows a histogram of the symbols displayed in Fig. 4. Most of 250 the matrices used in Fig. 2 are
read from files and are also used for the experiments in single precision. The matrices that are generated
at execution time in Fig. 2 are regenerated in single precision arithmetic.

Figs. 4a-4c correspond to the computation of all singular values and vectors (RANGE=“A”). Figs. 4d-4i
show the accuracy of BDSVDX for the same matrices of Fig. 4a, with nI = 10 (random) pairs of IL, IU
(RANGE=“I”), and nV = 10 (random) pairs of VL, VU (RANGE=“V”) for each matrix. As in the double
precision case, the matrices (y-axis) are ordered according to their condition numbers. For convenience,
we use floor and ceiling functions to bound the results in the x-axis, setting its limits to 10−1 and 104.

The matrices that lead to results larger than 1000 in single precision are similar to the ones in double
precision. Matrix 129 in Figs. 4a-4c has dimension 1083, and it is another case of a bidiagonal obtained
from a tridiagonal matrix computed by running the Lanczos algorithm [5] without reorthogonalization. In
double precision, its 139 largest eigenvalues agree to 12 digits, 3.44013410743 × 10−8. There are more
results larger than 100 in single precision than in double precision for RANGE=“I” and RANGE=“V”.
For example, cases 1030 and 1501 in Figs. 4d-4f (matrices 103 and 151 in Figs. 4a-4c) are instances of
bidiagonal matrices of dimension 2100 obtained from tridiagonal matrices formed by gluing 100 copies of
the Wilkinson matrix W21+. As noted before, these matrices have large clusters of tight singular values,
and the single precision version exhibits a slightly different behavior for RANGE=“I” and RANGE=“V”.

10Its diagonal entries are (10, 9, 8, . . . , 0, . . . 8, 9, 10) and its off-diagonal entries are all 1.

10

Refinement of vectors
The strategy for refinement of vectors discussed in Section IV was set off for matrices 248-250 in

Fig. 2a, but it was not sufficient to produce orthogonal vectors. As mentioned before, the entries of those
matrices range from ε−2 to ε2, and we have observed that almost all their singular vectors are perturbations
of ei, the columns of the identity matrix of appropriate dimension. Taking matrix 250 as an example,
n = 500, u126 ≈ e80 and u144 ≈ e78, and we have verified that these are the only two vectors that are not
fully orthogonal: their inner product is O(10−10). On the other hand, the strategy for refinement was set off
for matrices 108, 242-245, and 249-250 in Fig. 4a. For all these matrices the resulting orthogonality level
is smaller than 10. We note that the characteristics of the jth matrix in Fig. 4a may differ significantly
from the characteristics of the jth matrix in Fig. 2a due to way the matrices are generated, and also
differences in the condition numbers in single and double precisions.

Performance
Fig. 6 shows the times taken by BDSQR, BDSDC and BDSVDX on 12 bidiagonal matrices (a sample

from Fig. 2a) with dimensions ranging from 675 to 4006, in double precision. In our experiments, we ask
BDSQR to compute all left and right singular vectors. In turn, BDSDC has an option for returning the left and
right singular vectors in a compact form but we ask BDSDC to compute the left and right singular vectors
explicitly. The matrices are ordered according to their sizes (x-axis), and exhibit a variety of singular
value distributions: they are related to applications in power systems and structural engineering (from the
PSADMIT and BCSSTRUC1 sets in [19]) and computational chemistry11. For BDSVDX, we ask for all
singular values/vectors, the largest 20% singular values/vectors, the largest 10% singular values/vectors,
and the largest 5 singular values/vectors. For each matrix, the timings are normalized with respect to the
time taken by BDSQR. As somehow expected, BDSVDX is not competitive for all or a relatively large
set of singular values and vectors. The gains can be noticed for 10% (or less) singular values/vectors; in
particular, BDSVDX is about 3 orders of magnitude faster than BDSQR and 2 orders of magnitude faster
than BDSDC for the computation of the largest 5 singular values and vectors of the largest matrix.

Note that the computation of the largest 10% singular values/vectors and the largest 5 singular val-
ues/vectors for matrix 6 takes about the same time; similarly for matrix 11. Those bidiagonal matrices
are obtained from tridiagonal matrices (related to matrices in the BCSSTRUC1 set in [19]) computed by
running the Lanczos algorithm without reorthogonalization, as mentioned before. Matrix 6 in Fig. 6 is
matrix 36 in Fig. 2a: its largest 138 eigenvalues agree to 12 digits (4.52093556010× 10−3). Matrix 11 in
Fig. 6 is matrix 129 in Fig. 2a: its largest 325 eigenvalues agree to 13 digits (1.307880412385× 107). For
these two matrices, the mapping of IL=1 and IU=5 (for the largest 5 singular values) into VL and VU
results in intervals with a large number of very close singular values, intervals with 138 and 325 singular
values, respectively. The additional computed values and vectors are later discarded (to conform to the
input values for IL and IU, as implemented in STEVX).

In terms of memory footprint, BDSDC is typically the most demanding, requiring more than what is
available in the three levels of cache of the computer used for the experiments. The footprint of BDSQR and
BDSVDX (A) are similar, less than 50% of the footprint of BDSDC, and fitting in the cache for the three
smallest matrices. In contrast, the memory needed by BDSVDX (5) can be accommodated in the first two
levels of cache for the smallest matrices; it requires a fraction of the third level for some of the largest
matrices. The exception are the matrices with very tight clusters of eigenvalues, as mentioned above, since
BDSVDX may end by computing a large set of vectors.

Fig. 7 shows the performance of BDSVDX for the matrices in Fig. 6, for the computation of the largest
20%, the largest 10% and the largest 5 singular values/vectors. The data points in Fig. 7 correspond
to the computing time in each of those three scenarios normalized with respect to tA, where tA is
the time required for the computation of all singular values/vectors. The figure clearly shows how the

11Matrices provided to us by George Fann.

11

performance of BDSVDX may be affected by the distribution of the singular values, as discussed in the
previous paragraph. We have used TAU [21] to profile BDSVDX while computing the largest 5 singular
values/vectors for a sample of the matrices. For matrices 6 and 11, for example, most of the time is spent
with reorthogonalization of the vectors (modified Gram-Schmidt, up to 80% of the total time) followed
by solves (inverse iteration). For matrix 9, bisection takes ≈ 10% of the total time while a combination
of other operations (e.g. normalizations in BDSVDX, etc.) dominate.

Fig. 8 compares the times taken by GESVD, GESDD and GESVDX in double precision, on random
dense m × n matrices with m,n = 500, 1000, 1500, 2000. GESVDX is used to compute the largest 20%,
the largest 10% and the largest 5 singular values/vectors. It is consistently faster than its counterparts,
which are limited to a full SVD, for 10% or less singular values/vectors. In the double precision case,
Fig. 8a, GESVDX is up to 14 times faster than GESVD and 2 times faster than GESDD. (We observe that
for all matrices in Fig. 8a BDSVDX is faster than BDSDC since the singular value of those matrices are
relatively well separated, in contrast to some of the matrices in Fig. 6.) In the double precision complex
case, Fig. 8b, GESVDX is up to 5.6 times faster than GESVD and 1.7 times faster than GESDD. We note
that the performance of GESDD may be greatly penalized if a non-optimized BLAS library is used, and
recall that in our experiments we use Intel’s MKL.

Finally, Fig. 9 shows how the time is spent by GESVDX for the matrices of Fig. 8, for the 5 largest
singular values/vectors scenario. The relevant calculations are reduction of the input matrix to bidiagonal
form B, computation of the singular values/vectors of B with BDSVDX, and back transformation of the
singular vectors of B to those of the input matrix. The bars in the figure are normalized with respect
to the time taken by the reduction to bidiagonal form, which typically dominates the costs. As it can be
observed, the computation of the singular values/vectors and the back transformation phases are much
faster than bidiagonal reduction.

VI. CONCLUSIONS

This paper presents an algorithm for the computation of the SVD of a bidiagonal matrix by means
of the eigenpairs of an associated tridiagonal matrix. The implementation, BDSVDX (first included in
the LAPACK 3.6.0 release), provides for the computation of a subset of singular values/vectors, which
is important for many large dimensional problems that do not require the full set. Our experiments
revealed that this feature can lead to significant gains in computing times, when compared with existing
implementations that are limited to the computation of the full SVD. These gains are transmitted to a
higher level routine intended for the computation of a subset of singular values/vectors of a general matrix.

Numerical results on a large set of test matrices substantiated the accuracy of the implementation; the
few exceptions are related to matrices with very large condition numbers or highly clustered singular
values. We have also identified pathological cases (typically matrices with very small singular values) for
which the computed singular vectors may not be orthogonal to machine precision. A more robust strategy
to identify and cope with such cases remains to be investigated.

For a parallel implementation of the algorithm presented here, we can built upon the workflow of the
parallel subroutines PDSYEVX or PDSYEVR that are implemented in ScaLAPACK [4], [20]. The former
is based on bisection and inverse iteration, with the caveat that it does not do reorthogonalization with
vectors on distinct processes, so the returned vectors may not be orthogonal in the case of tight clusters of
values. The latter is based on the MRRR algorithm and presumably delivers more satisfactory results and
scalability [22]. Specific tests will be required (e.g. with cases similar to the difficult ones in Fig. 2) to
assess the best alternative. We observe that once a matrix similar to (5) is obtained, the back transformation
of the singular vectors of B to those of the input matrix can be then parallelized in different ways.

Acknowledgments: The authors thank Beresford N. Parlett for his comments and suggestions on
earlier versions of the manuscript. This work was partially supported by the National Science Foundation
under grant No. 1339676 (SI2 SSI: Collaborative Research), Sustained Innovations for Linear Algebra
Software (SILAS).

12

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, third edition, 1999.

[2] T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, and P. R. Willems. Parallel Solution
of Partial Symmetric Eigenvalue Problems from Electronic Structure Calculations. Parallel Comput., 37:783–794, 2011.

[3] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1996.
[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,

D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.
[5] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000. Bai, Zhaojun (Ed.).
[6] J. Demmel and W. Kahan. Accurate Singular Values of Bidiagonal Matrices. SIAM J. Sci. and Stat. Comput., 11:873–912, 1990.
[7] J. Demmel, O. Marques, C. Voemel, and B. Parlett. Performance and Accuracy of LAPACK’s Symmetric Tridiagonal Eigensolvers.

SIAM J. Sci. Comput., 30:1508–1526, 2008.
[8] I. Dhillon and B. Parlett. Multiple Representations to Compute Orthogonal Eigenvectors of Symmetric Tridiagonal Matrices. Linear

Algebra Appl., 387:1–28, 2004.
[9] I. Dhillon, B. Parlett, and C. Voemel. The Design and Implementation of the MRRR Algorithm. ACM Trans. Math. Softw., 32:533–560,

2006.
[10] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Industrial and

Applied Mathematics Series B Numerical Analysis, 2(2):205–224, 1965.
[11] B. Grosser and B. Lang. An O(n2) Algorithm for the Bidiagonal SVD. Linear Algebra Appl., 358(1):45–70, 2003.
[12] B. Grosser and B. Lang. On Symmetric Eigenproblems Induced by the Bidiagonal SVD. SIAM. J. Matrix Anal. and Appl., 26(3):599–

620, 2005.
[13] Intel. Intel(R) Fortran Compiler 2018 Update 1 for Linux, 2017.
[14] Intel. Intel(R) Math Kernel Library 2018 Update 1 for Linux, 2017.
[15] LAPACK. LAPACK - Linear Algebra PACKage. https://github.com/Reference-LAPACK, 2018.
[16] S. Li, M. Gu, L. Cheng, X. Chi, and M. Sun. An Accelerated Divide-and-Conquer Algorithm for the Bidiagonal SVD Problem. SIAM.

J. Matrix Anal. and Appl., 35:1038–1057, 2014.
[17] O. Marques, J. Demmel, C. Voemel, and B. Parlett. A Testing Infrastructure for Symmetric Tridiagonal Eigensolvers. ACM Trans.

Math. Softw., 35:8:1–8:13, 2008.
[18] O. Marques and P. B. Vasconcelos. Computing the Bidiagonal SVD Through an Associated Tridiagonal Eigenproblem. In High

Performance Computing for Computational Science - VECPAR 2016 - 12th International Conference, Porto, Portugal, June 28-30,
2016, Revised Selected Papers, pages 64–74, Heildeberg, Germany, 2016. Springer.

[19] MatrixMarket. Matrix Market. http://math.nist.gov/MatrixMarket, 2018.
[20] ScaLAPACK. ScaLAPACK, version 2.0.2. http://www.netlib.org/scalapack, 2012.
[21] TAU. TAU Performance System. https://www.cs.uoregon.edu/research/tau, 2018.
[22] C. Voemel. ScaLAPACK’s MRRR algorithm. ACM Trans. Math. Softw., 37:1–35, 2010.
[23] J. Vogel, J. Xia, S. Cauley, and V. Balakrishnan. Superfast Divide-and-Conquer Method and Perturbation Analysis for Structured

Eigenvalue Solutions. SIAM J. Sci. Comput., 38(3):A1358–A1382, 2016.
[24] P. Willems. On MR3-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the Bidiagonal SVD. PhD thesis, University of

Wuppertal, 2010.
[25] P. Willems and B. Lang. A Framework for the MR3 Algorithm: Theory and Implementation. SIAM J. Sci. Comput., 35:740–766, 2013.
[26] P. Willems, B. Lang, and C. Voemel. Computing the Bidiagonal SVD using Multiple Relatively Robust Representations. SIAM. J.

Matrix Anal. and Appl., 28:907–926, 2006.

13

0

50

100

150

200

250

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(a) “A”: resid

0

50

100

150

200

250

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(b) “A”: orthU

0

50

100

150

200

250

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(c) “A”: orthV

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(d) “I”: resid

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(e) “I”: orthU

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(f) “I”: orthV

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(g) “V”: resid

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(h) “V”: orthU

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(i) “V”: orthV

Fig. 2: resid , orthU , orthV (x-axis, log scale) for RANGE=“A”, “I” and “V”, double precision. (2a)-(2c)
250 matrices (y-axis), increasing condition numbers; (2d)-(2f) nI = 10 for each matrix of RANGE=“A”;
(2g)-(2i) nV = 10 for each matrix of RANGE=“A”.

14

24
2

5

2

1

24
0

5

2

3

24
1

4

2

3

1

10

100

[1e ‐1 ,1e+0) [1e+0 ,1e+1) [1e+1 ,1e+2) [1e+2 ,1/ε]

resid orthU orthV

(a) “A”

24
27

58

8 7

24
47

32

8

13

24
47

32

9 12
1

10

100

1000

[1e ‐1 ,1e+0) [1e+0 ,1e+1) [1e+1 ,1e+2) [1e+2 ,1/ε]

resid orthU orthV

(b) “I”

24
46

45

5 4

24
41

27

4

28

24
40

28

4

28

1

10

100

1000

[1e ‐1 ,1e+0) [1e+0 ,1e+1) [1e+1 ,1e+2) [1e+2 ,1/ε]

resid orthU orthV

(c) “V”

Fig. 3: Number of occurrences of resid , orthU , orthV (y-axis, log scale) for RANGE=“A”,“I” and“V”,
double precision, in the intervals [10−1, 100), [100, 101), [101, 102) and [102, 1/ε], ε ≈ 1.11× 10−16. Note
that RANGE=“I” and“V” have 10 times more data points than RANGE=“A”, i.e. for each case in (a) there
are 10 intervals in (b) and (c).

15

0

50

100

150

200

250

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(a) “A”: resid

0

50

100

150

200

250

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(b) “A”: orthU

0

50

100

150

200

250

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(c) “A”: orthV

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(d) “I”: resid

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(e) “I”: orthU

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(f) “I”: orthV

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(g) “V”: resid

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(h) “V”: orthU

0

500

1000

1500

2000

2500

1E‐1 1E+0 1E+1 1E+2 1E+3 1E+4

(i) “V”: orthV

Fig. 4: resid , orthU , orthV (x-axis, log scale) for RANGE=“A”,“I” and“V”, single precision. (4a)-(4c)
250 matrices (y-axis), increasing condition numbers; (4d)-(4f) nI = 10 for each matrix of RANGE=“A”;
(4g)-(4i) nV = 10 for each matrix of RANGE=“A”.

16

23
1

13

1

5

23
7

11

1 1

23
7

11

1 1

1

10

100

[1e ‐ 1 , 1e+0) [1e+0 , 1e+1) [1e+1 , 1e+2) [1e+2 , 1 / ε]

resid orthU orthV

(a) “A”

23
20

10
9

16

55

24
23

59

17

1

24
21

61

17

1
1

10

100

1000

[1e ‐1 ,1e+0) [1e+0 ,1e+1) [1e+1 ,1e+2) [1e+2 ,1/ε]

resid orthU orthV

(b) “I”

23
44

83

18

55

24
23

59

17

1

24
04

50

17

29

1

10

100

1000

[1e ‐1 ,1e+0) [1e+0 ,1e+1) [1e+1 ,1e+2) [1e+2 ,1/ε]

resid orthU orthV

(c) “V”

Fig. 5: Number of occurrences of resid , orthU , orthV (y-axis, log scale) for RANGE=“A”, “I” and “V”,
single precision, in the intervals [10−1, 100), [100, 101), [101, 102) and [102, 1/ε], ε ≈ 5.96 × 10−8. Note
that RANGE=“I” and“V” have 10 times more data points than RANGE=“A”, i.e. for each case in (a) there
are 10 intervals in (b) and (c).

17

1E‐5

1E‐4

1E‐3

1E‐2

1E‐1

1E+0

1 2 3 4 5 6 7 8 9 10 11 12

(675) (685) (729) (966) (1138) (1260) (1473) (1687) (2003) (2946) (3258) (4006)

no
rm

al
iz
ed

 t
im

e

BDSQR BDSDC BDSVDX (A) BDSVDX (I,20%) BDSVDX (I,10%) BDSVDX (I,5)

Fig. 6: Timings for BDSQR, BDSDC and BDSVDX on 12 bidiagonal matrices with dimensions ranging
from 675 to 4006 (x-axis, dimensions in parentheses), in double precision, average time over 10 runs per
matrix. BDSVDX: all singular values/vectors, the largest 20%, the largest 10% and the largest 5 singular
values/vectors. For each matrix, the timings (y-axis) are normalized with respect to the largest time and
are plotted in log scale.

1E‐3

1E‐2

1E‐1

1E+0

1 2 3 4 5 6 7 8 9 10 11 12

no
rm

al
iz
ed

 ti
m
e

20% 10% 5

Fig. 7: Performance of BDSVDX for the matrices in Fig. 6. The data points (y-axis, log scale) correspond
to the computing times for the three subset scenarions (20%, 10%, largest 5) normalized with respect to
tA, where tA is the time required for the computation of all singular values/vectors.

18

0.0

0.1

0.2

0.3

0.4

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000

no
rm

al
iz
ed

 t
im

e

GESDD GESVDX (I,20%) GESVDX (I,10%) GESVDX (I,5)

n

m

(a) double precision

0.0

0.1

0.2

0.3

0.4

0.5

0.6

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000

no
rm

al
iz
ed

 t
im

e

GESDD GESVDX (I,20%) GESVDX (I,10%) GESVDX (I,5)

n

m

(b) double precision complex

Fig. 8: Timings for GESVD, GESDD and GESVDX on 16 random dense m × n matrices with m,n =
500, 1000, 1500, 2000. GESVDX: the largest 20%, the largest 10% and the largest 5 singular values/vectors.
For each matrix, the timings are normalized with respect to the time taken by GESVD. Average time over
10 runs per matrix.

19

0.00

0.02

0.04

0.06

0.08

0.10

0.12

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000

no
rm

al
ize

d
 ti
m
e

bdsvdx U and V

n

m

(a) double precision

0.00

0.02

0.04

0.06

0.08

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000

no
rm

al
iz
ed

 t
im

e

bdsvdx U and V

n

m

(b) double precision complex

Fig. 9: Time breakdown for GESVDX, for the matrices used in Figs. 8a and 8b; 5 largest singular
values/vectors. bdsvdx: computation of the singular values and vectors of B; U and V: back transformation
of the singular vectors of B to those of the input matrix. The bars are normalized with respect to the time
taken by reduction of the input matrix to bidiagonal form B. Average time over 10 runs per matrix.

20

APPENDIX A
A CASE OF FAILURE IN STEXR

We show here a case of misbehavior of STEXR (double precision) introduced in [25], by using a
tridiagonal matrix T generated with the prescribed eigenvalue distribution λi = c−

(i−1)
(n−1) , c = 1/

√
ε, i =

1, 2, . . . n, n = 10 (i.e. λ1 ≈ 1.49 × 10−8, . . . λn = 1.00). We call the LAPACK subroutine LATMS to
generate a random symmetric matrix with those eigenvalues followed by SYTRD to tridiagonalize the
matrix. Table A.1 lists the entries of T used in the test. Here, we have used the GNU Fortran compiler
because the distribution in [25] does not provide a configuration for the Intel Fortran compiler. Although
not shown, the eigenvalues of T computed with the eigensolvers listed in Table I and also STEXR are in
very good agreement. Specifically, ‖T −ZXRΛXRZ

T
XR‖/(‖T‖nε) ≈ 0.6, where ΛXR contains the eigenvalues

returned by STEXR on its main diagonal, and ZXR is the matrix of eigenvectors returned by STEXR.
However, ‖I − ZT

XRZXR‖/(nε) ≈ 3.95 × 104; see Fig. A.1. In contrast, ‖I − ZT
VXZVX‖/(nε) ≈ 0.9 and

‖I−ZT
MRZMR‖/(nε) ≈ 0.1, where ZVX and ZMR are the vectors returned by STEVX and STEMR, respectively.

We have identified other matrices for which STEXR failed to produce orthogonal eigenvectors, for
example the Wilkinson matrix W21+ mentioned earlier. Our exhaustive tests revealed that STEMR may
also fail for matrices with very close eigenvalues (e.g. matrices formed by gluing Wilkinson-type matrices).
To the best of our knowledge, STEXR is no longer maintained, justifying our choice of STEVX for the
first implementation of BDSVDX.

TABLE A.1: Entries of T , λi = c−
(i−1)
(n−1) , c = 1√

ε
, i = 1, 2, . . . n, n = 10.

i ti,i ti,i+1 = ti+1,i

1 1.893161597943482E-01 3.880873104122968E-01
2 8.128005558065539E-01 -3.516122075663728E-02
3 1.258328488738520E-01 3.077875339462724E-02
4 2.448430650126851E-02 -4.746410482563373E-03
5 3.268662131212184E-03 -6.983851144411338E-05
6 2.759036513821439E-04 -1.142712831766173E-04
7 9.443722972151846E-05 6.941905362025514E-06
8 6.149112437832172E-06 -7.426637317219540E-07
9 2.117627370984594E-07 1.892470326809461E-08

10 1.071603546505181E-07 -

10 0

0

10 1

2

10 2

0

10 3

4 2

10 4

46

10 5

68
8

10 10

Fig. A.1: Surface plot of |I −ZT
XRZXR|/(nε) in log scale, where ZXR contains the eigenvectors returned by

STEXR for the tridiagonal matrix given in Table A.1. The first four columns of ZXR are linearly dependent:
those columns correspond to λ1 ≈ 1.49×10−8, λ2 ≈ 1.10×10−7, λ3 ≈ 8.17×10−7 and λ4 ≈ 6.06×10−6.

