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ABSTRACT
The use of low-precision arithmetic in mixed-precision computing
methods has been a powerful tool to accelerate numerous scien-
tific computing applications. Artificial intelligence (AI) in particular
has pushed this to current extremes, making use of half-precision
floating-point arithmetic (FP16) in approaches based on neural net-
works. The appeal of FP16 is in the high performance that can be
achieved using it on today’s powerful manycore GPU accelerators,
e.g., like the NVIDIA V100, that can provide 120 TeraFLOPS alone
in FP16. We present an investigation showing that other HPC ap-
plications can harness this power too, and in particular, the general
HPC problem of solving Ax = b, where A is a large dense matrix,
and the solution is needed in FP32 or FP64 accuracy. Our approach
is based on the mixed-precision iterative refinement technique – we
generalize and extend prior advances into a framework, for which we
develop architecture-specific algorithms and highly-tuned implemen-
tations that resolve the main computational challenges of efficiently
parallelizing, scaling, and using FP16 arithmetic in the approach
on high-end GPUs. Subsequently, we show for a first time how
the use of FP16 arithmetic can significantly accelerate, as well as
make more energy efficient, FP32 or FP64-precision Ax = b solvers.
Our results are reproducible and the developments will be made
available through the MAGMA library. We quantify in practice the
performance, and limitations of the approach.
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1 INTRODUCTION
Hardware trends in processor designs have been a driving force for
the development of innovative high-performance numerical algo-
rithms. Often, even well established algorithms must be redesigned
to follow hardware trends and be efficient on new architectures. No-
table examples are in the area of dense linear algebra, where many
algorithms, operating with O(n3) floating point arithmetic instruc-
tions (flops) on O(n2) data, are expected to have performance close
to the machine peak. These are the cases of redesigning LINPACK
from using vector algorithms on the vector machines in the 70’s to
the popular LAPACK that uses blocked algorithms on cache-based
processors. Other, more recent examples, include the redesign of
LAPACK for multicore and heterogeneous manycore architectures,
e.g., as evident in the MAGMA library [16].

The hardware trend that we target to harness in this paper, is that
on modern architectures multiple floating-point arithmetic precisions
are supported in hardware, and lower precisions are often much faster
than the higher ones. For example, single precision 32-bit floating-
point arithmetic (FP32) is usually twice as fast as double precision
64-bit floating-point arithmetic (FP64). Indeed, on most current
multicore CPUs, high-end NVIDIA GPUs (e.g., P100), AMD GPUs
(e.g., FirePro W9100), and Intel Xeon Phi, the single precision peak
is twice the double precision peak. On some NVIDIA GPUs (e.g. the
GeForce GTX Titan Black) the ratio of single vs double precision
peak is 3×, but can go up to 32× (e.g. on Titan X) depending on the
ratio of 32-bit to 64-bit CUDA cores.

Recently, artificial intelligence (AI) neural network applications
raised the need for FP16 arithmetic (see Figure 1), and some vendors
started to accelerate it in hardware. An example is the NVIDIA P100
GPU that can reach 18.7 TeraFLOPS in FP16. Further hardware
acceleration is provided in the up-coming V100 GPU that has special

https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237


ScalA17, November 12–17, 2017, Denver, CO, USA Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack Dongarra

Tensor Cores to achieve a peak of 120 TeraFLOPS vs 15 TeraFLOPS
for FP32. Thus, getting aligned to use efficiently these hardware
trends will be highly beneficial for high-performance linear algebra
libraries.

Figure 1: IEEE 754 FP16 format. This representation leads for
example to 3.311 decimal digits of accuracy and a maximum
representable value of 65,504.

There are various ways to benefit from faster lower-precision
arithmetic. In this paper we target the acceleration of Ax = b solvers,
where A is a dense matrix. Our approach is based on the mixed-
precision iterative refinement technique. The main idea of this ap-
proach is to compute the LU factorization of A in low precision, and
use that factorization as a preconditioner in an iterative refinement in
higher-precision. The overall computation is fast, as the bulk of the
flops, O(n3), are to factorize A in fast arithmetic. The few iterative
steps, requiring O(n2) flops, refine the solution to high-precision
accuracy. These methods have been extensively studied theoreti-
cally in the past, as discussed in Section 2. While there is certain
understanding about the theory, a persistent challenge has been how
to design and develop architecture-specific algorithms and highly-
tuned implementations that resolve main computational issues, e.g.,
related to efficient parallelization, scaling, use of mixed-precision
calculations, and tuning on new architectures. Indeed, much of the
theoretical work has been restricted to Matlab or reference imple-
mentations, with numerical experiments on small problems, which
is prone to overlook computational issues towards achieving the
main goal of the technique – namely, acceleration over highly tuned
working precision solvers. To address this on GPUs, we leverage
building blocks from the MAGMA library that provides state-of-the-
art high-performance algorithms like LU and other, including a set
of highly tuned mixed-precision iterative algorithms for FP32-FP64
arithmetic [17].

2 RELATED WORK
Iterative refinement is a classic technique that dates back to Wilkin-
son in the 1940s. The idea is to improve the solution of a linear
system by solving the correction equation and adding the correction
to the original one (see Wilkinson [18], Moler [10] and Stewart [15]).
As Demmel points out [5], the non-linearity of the round-off error
makes the iterative refinement process equivalent to the Newton’s
method applied to the function f (x) = b−Ax. The choice of the stop-
ping criterion in the iterative refinement process is critical. Formulas
for the error computed at each step of the algorithm can be obtained,
e.g., in [6, 11].

Replacing the direct solve of correction equation by an itera-
tive method leads to nesting of two iterative methods. Variations of
this type of nesting, also known in the literature as an inner–outer
iteration, have been studied, both theoretically and computation-
ally [7, 12, 14], as well as used in mixed-precision computation

scenarios [1]. A recent study applied a version of these combinations
to FP16 and studied it theoretically [2], confirming a result analo-
gous to mixed FP32-FP64 iterative refinement that if the condition
of A is not too bad (κ (A) < 104) then using FP16 for the O(n3)
work (LU) and FP32/FP64 for the O(n2) work (refinement) one can
expect to achieve forward and backward error of order 10−8/10−16.
The same work also proved that when using GMRES preconditioned
by the FP16 LU as the refinement procedure, the constraint on the
condition of matrix A can be relaxed to be κ (A) < 108. The study
is theoretical with Matlab implementation and test results on small
matrices. For some of them, even though there is convergence, the
rate is slow, which would require detection and switch to faster algo-
rithm. This is a typical case for inner-outer iterations where the exact
speedup, or if any at all, depends on the convergence rate of GMRES
and the iterative refinement, which remains to be investigated and
thus subject to this study.

3 CONTRIBUTIONS
The primary goal of this paper is to propose and implement a high-
performance framework for the mixed-precision iterative refinement
technique that makes use of hardware accelerated FP16. Thus, we
address computational challenges of efficiently parallelizing, scaling,
and using FP16 arithmetic on today’s highly parallel manycore GPUs
to accelerate Ax = b solvers. Namely, we:

• Introduce a framework for exploiting mixed-precision FP16-
FP32/FP64 iterative refinement solvers and describe the path
to draw high-performance GPU implementations, and predict
the possible performance that can be achieved with these
algorithms;
• Present a detailed analysis and study of the correlation be-

tween FP16-FP32/FP64 arithmetic and performance for six
different types of iterative refinement methods that are rep-
resentative for a wide range of real scientific applications.
This provides a clear understanding about the factors that
contribute to performance;
• Provide analysis of the numerical behavior on different types

of matrices and present a collection of lessons that allow re-
searchers to understand and develop their own computational
kernels in a simple and efficient fashion;
• Investigate and show how the hardware accelerated FP16 can

be used to accelerate general Ax = b solvers;
• Describe the analysis to design a performance model that

provides an insight on the performance spectrum of iterative
refinement solvers. The main advantage of this model is that it
helps predicting more accurately the achievable performance;
• Quantify in practice the performance, and limitations of the

approach on P100 GPUs.

The algorithms are described in detail to make them independently
reproducible. Moreover, the codes, and driver routines that can be
used as benchmarks, will be released and made available through
the open-source MAGMA library.

4 FRAMEWORK
We develop a framework that unifies Iterative Refinement (IR) and
preconditioned Krylov solvers from both a theoretical and practical
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point of view. We begin by examining two well developed strate-
gies in solving linear systems – classic IR and Generalized Minimal
RESidual (GMRES) with preconditioning. These two methods are
typically applied to different matrices, the former to dense and the
latter to sparse. Dense system is usually solved with a direct solver
while iterative solvers are usually used for sparse systems. We will
see that IR gives dense linear solver some iterative flavor as sug-
gested in the name, and preconditioning gives sparse iterative solver
some direct flavor. We will also see how these methods fit in our
framework that has an even broader scope as it is rich in capabilities
to generate more innovative, fast, and accurate solvers that adapt
to different problem domains and the rapidly changing hardware
landscapes.

4.1 Background
We begin by introducing two well known methods: Classic iterative
refinement and preconditioned GMRES.

4.1.1 Classic Iterative Refinement. IR is a technique for improv-
ing a computed solution x̂ to a linear system of equations Ax = b.
One iteration of the refinement consists of three steps:

(1) Compute the residual r = b−Ax̂
(2) Solve the correction equation Ad = r (typically using the LU

factors produced by the initial solve)
(3) Correct the current solution x̂ = x̂+d.

It can be seen that if the correction equation is solved exactly, one
iteration of the refinement will produce the exact solution. In re-
ality, due to various factors (round-off errors, inexact solvers) the
correction equation can only be solved approximately, and the above
iteration must be repeated until a satisfactory solution is obtained.

Traditionally, IR was used with Gaussian elimination with the
residual computation (step 1) using higher precision than the work-
ing precision. This is called mixed-precision IR [4], in contrast to
fixed-precision IR where all arithmetic is in the same precision.
IR has been working well in this way: more precisely, if double
precision is used in computing the residual (step 1) and all other
arithmetic is in single precision, and the condition number of A is not
too large, then IR converges to a solution correct to single precision
(see Chapter 12 in [8]). IR can be used to improve the accuracy
of an already stable algorithm, or it can be used to stabilize a less
stable solver. In this paper, we are primarily interested in using IR to
improve the solution of a low-precision (such as FP16 LU) solver.

The economics of IR using low-precision LU depends on how
fast the low-precision initial solver can be and the relative cost of
the refinement process and the number of iterations of refinement
required. It is therefore a function of the executing hardware, the
exact configuration of the process (different precisions and solver
types), and also of the property of the matrix A (condition number).
Note that in contrast, for a direct solver such as LU the speed does
not depend on the spectral property of the matrix.

4.1.2 Preconditioned GMRES. Generalized Minimal RESidual
(GMRES) is a popular Krylov space iterative solver for a general
matrix, although it is most often used for large and sparse matrices.
It was proposed by Y. Saad and M. Schultz [13] in 1986. The main
idea is to find an approximate solution in the Krylov space at each
iteration that has the minimal residual. The GMRES method works

as a series of iterations where each iteration consists of the three
steps (at iteration n):

(1) Compute qn (⊥ to q1 . . .qn−1) using Arnoldi Iteration
(2) Solve yn which minimizes ||rn|| using least square solver
(3) Compute xn = Qnyn, where Qn = (q1| . . . |qn)
(4) (Repeat if the residual is not small enough)

The Arnoldi Iteration (step 1) finds successively an orthogonal
matrix Qn and a Hessenberg matrix Hn such that AQn = Qn+1Hn. It
follows that

||Axn−b|| = ||Hnyn−QT
n+1b|| (1)

which can be solved rather cheaply exploiting the Hessenberg struc-
ture of Hn and also updating the QR factorization of Hn+1 based on
the QR factorization of Hn.

GMRES by itself might converge slowly on certain matrices with
unfavorable spectral distribution or non-normal matrices. Precondi-
tioning is thus an important technique that improves the property
of the matrix A such that the GMRES can converge fast. Conceptu-
ally, the preconditioner is a matrix M−1 such that M−1A is close to
identity. A crucial tradeoff in choosing a preconditioner is between
the computation cost of calculating and applying M−1 and the close-
ness to identity. In practice, M−1 is never formed but whenever A is
multiplied by a vector v (step 1,4) the preconditioner is applied as
M−1Ax. Note that the application of the preconditioner is a linear
solve for matrix M and right hand side vector Ax.

4.2 The conceptual framework
By looking at the classic IR and preconditioned GMRES we can
see the common structure: a linear solver inside a linear solver. In
the classic IR, it is a correction equation inside, usually solved by
LU triangular solve; in the preconditioned GMRES case, it is the
application of preconditioner in every iteration. Our most interesting
assumption is that there is a low precision (FP16) factorized A≈ LU
available and we would like to devise a linear solver that achieves at
least single precision accuracy. If we follow the IR, we would use
the low precision LU to get an initial solution, and use LU triangular
solves to refine the solution iteratively. We categorize this method
as IR (Iterative Refinement using triangular solve). On the other
hand, we can use GMRES with low precision M = LU ≈ A as the
preconditioner. We categorize this method as GM (GMRES using
triangular solve preconditioner application). Furthermore we could
see more innovative combinations of solver types and precisions
within the “solver inside solver” framework. For example, in iterative
refinement we could use GMRES to solve the correction equation
instead of the triangular solve, resulting in a new type of solver
IR-GM (Iterative Refinement using GMRES preconditioned by M =
LU to solve correction equation). This idea has been proposed and
analyzed by Erin Carson and Nick Higham in [2, 3]. On the other
hand, we can also use GMRES as a preconditioner inside an “outer”
GMRES iteration, which would be categorized as GM-GM. This
formulation can be further instantiated by using a different “outer”
solver type, such as CG, and also for the “inner” solver type. We
will however restrict our focus in the four general configurations:
1) IR; 2) IR-GM; 3) GM; 4) GM-GM. To make this concrete, we
illustrate the four algorithms separately, as shown in algorithms 1-2.
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Data: An n×n matrix A, and size n vector b
Result: A solution vector x(i) approximating x in Ax = b, and a

LU factorization of A = LU .
(FP16) Solve Ax(1) = b using FP16 LU factorization and

triangular solve;
i← 1;
repeat

(FP64) Compute residual r(i) ← Ax(i)−b;
(FP64) Solve Ad = r(i) using triangular solve using the LU

factors or using GMRES preconditioned by M = LU ;
(FP64) Update x(i+1) = x(i)−d;
i← i+1;

until x(i) is accurate enough;

Algorithm 1: IR: classic (mixed precision) Iterative Refinement
using triangular solve. IR-GM: iterative refinement with GM-
RES to solve correction equation.

Data: An n×n matrix A, size n vector b
Result: A solution vector xk
(FP16) Solve Ax0 = b using A≈ LU →M factorization and

triangular solve ;
Compute r←M−1 (Ax0−b),β = ||r0||,q1← r0/β ,b←M−1b;
for j = 1, . . . ,k do

(FP64) Compute hi, j← (M−1Aq j,qi), i = 1,2, . . . , j;
(FP64) Compute q j+1←M−1Aq j−∑

j
i=1 hi, jqi,

h j+1, j← ||q j+1||, q j+1← q j+1/h j+1, j;

xk = x0 +Qkyk, where yk solves min ||βe1−Hkyk||;
Algorithm 2: GM: GMres iterations using triangular solve to
apply FP16 LU preconditioner. M−1 means triangular solve.
GM-GM: GMres iterations using GMres to solve with LU pre-
conditioner. M−1 means GMRES solve with M = LU as precon-
ditioner.

4.3 Convergence and performance consideration
This subsection discusses the convergence condition, rate, and eco-
nomics in performance of the four solvers for a variety of matrix
types and sizes.

4.3.1 Convergence. The robustness of the solvers depends on the
convergence condition, and the performance of the solvers on the
convergence rate. Unfortunately while some convergence conditions
are known for iterative refinement and preconditioned results, the
convergence rate is hard to predict.

For the mixed precision iterative refinement the latest analysis
can be found in [2, 3]. Assuming that LU factorization is done in
FP16, the working precision is FP32, and the residual is computed
in FP64, the IR is going to converge if the condition number of A is
relatively small: κ2 (A) < 104. Using GMRES to solve the correction
equation (IR-GM), the condition on A can be relaxed: κ2 (A) < 108.
For GMRES-based solvers, in theory GMRES will converge in n
steps, preferably much less than n, if no rounding errors are present.
However it is very hard to predict how fast the convergence will be
now that we have a preconditioner that is FP16 accurate M = LU ≈A.
For normal matrix A the iterations needed to converge in GMRES

increase as the condition number of A increases; for non-normal
matrix the convergence rate cannot be entirely predicted by condition
number only. In practice, the convergence and convergence rate
depend on the matrix type, condition number, and matrix size. We
will present empirical investigations in the next section covering
the four algorithms on matrices with different spectrum, sizes, and
types.

4.3.2 Performance. Our main motivation in utilizing FP16 is its
high performance vs. performance in higher precisions, e.g., illus-
trated for the NVIDIA P100 GPU in figure 2. The P100 has peak
FP16 performance of 18.7 TFLOPS and indeed figure 2a shows the
FP16 matrix-matrix multiplication routine (hgemm) achieves close
to 15 TFLOPS on a tall-skinny matrix multiplication which con-
stitutes the main computation load in LU factorization (Xgetrf).
As expected, the achieved performance of FP16 hgemm is about 2×
that of FP32 sgemm and 4× of FP64 dgemm on P100. Further, from
figure 2b we see that FP16 LU factorization Xgetrf follows roughly
the same trend as Xgemm when the matrix is large; when the matrix
size is small the performance advantage of FP16 hgetrf vs. FP32
sgetrf or FP64 dgetrf is not so pronounced. This is partly due
to an implementation choice we made in hgetrf where the matrix
multiplication is done in FP16 but the panel factorization is done in
FP32 as optimized FP16 panel factorization is not readily available.
All the precision conversions are accounted for in the figure. The
situation for smaller matrix can be improved by implementing a high
performance panel factorization in FP16 which will be left as future
work.

4.4 Performance model
This section is dedicated to the theoretical performance analysis of
the mixed precision (MP) algorithms for linear solvers. A detailed
study of linear solver based on LU factorization algorithms is used
for the sake of illustration. The idea is to provide a model that allows
us to understand and define when iterative refinement techniques
can be used in a beneficial fashion. From a performance point of
view, an algorithm is beneficial when it reaches the solution in a
time faster than the reference one (which is the FP64 dgesv routine
in our case).

The LU factorization requires 2n3

3 operations and O(n3) of them
are compute intensive. Thus, it should behave like a compute inten-
sive routine. We mention that the LU factorization can reach about
85% of the Xgemm kernel which is the most compute intensive ker-
nel. The iterative refinement solvers consist of an LU factorization
in particular precision εFPXX < εFP64, and then, iterative refinement
based on classical IR or GMRES (as described above) can be used to
improve the solution to εFP64 which is comparable to the reference
LUFP64 arithmetic. Thus, let us define:

time for MP =
2n3

3PXgetr f
+ k(

2n2

Pdgemv
+

2n2

PXtrsv
) (2)

time for FP64 =
2n3

3Pdgetr f
+

2n2

Pdtrsv
, (3)

where P denotes the performance of the corresponding routine, and
k denotes the number of iterations required by the MP solver to
achieve the double precision solutions.
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(a) Performance of the rank-k update (Xgemm function) used in Xgetrf. (b) Performance of the Xgetrf routine.

Figure 2: Performance of the three arithmetic precisions obtained on a Nvidia P100 GPU.

From theoretical and practical point of view, the performance
of the half and the single precision is about 4× and 2× the one of
double precision, respectively. This means that Phgetr f = 2Psgetr f =

4Pdgetr f and that Psgetr f = 2Pdgetr f . The dgemv performance on
a P100 GPU is about 130 Gflop/s, while both dtrsv and strsv,
which are also memory bound kernels, achieve around 120 and
140 Gflop/s, respectively. Thus, for simplicity, we can consider that
Pdgemv = Pdtrsv = Pstrsv. Also, when the LU factorization routine
(e.g., Xgetrf) is well implemented and optimized, its performance
is considered to be about 85% of the Xgemm routine. On most of
the new architectures (multicore, GPUs, KNL) the performance of
the Xgemm routine is close to the peak of the machine and is about
30× higher than both the Xgemv and the Xtrsv routines that are
both memory bound kernels, meaning that PXgetr f ≈ 30PXgemv (see
figure 2a for the Xgemm performance). Thus, from a theoretical
point of view we can compute the maximum speedup that a method
will bring by:
for the FP32→FP64:

SFP32→FP64 =
time FP64

time FP32→ FP64
=

2n3

3Pdgetr f
+ 2n2

Pdgemv

n3

3Pdgetr f
+ k( 2n2

Pdgemv
+ 2n2

Pdgemv
)

=

2n3

3∗30Pdgemv
+ 2n2

Pdgemv

n3

3∗30Pdgemv
+ 4kn2

Pdgemv

=
2n+180
n+360k

(4)

SFP16→FP64 =

2n3

3Pdgetr f
+ 2n2

Pdtrsv

2n3

3Phgetr f
+ k( 2n2

Pdgemv
+ 2n2

Pstrsv
)
=

2n+360
n+720k

(5)

From a practical point of view, the cost of the refinement iteration
is slightly larger than one Xgemv and one Xtrsv. It involves piv-
oting, residual check, synchronizations and orthogonalization (for
GMRES). Thus, to have a more realistic upper bound speedup, the
factor of the number of iterations should be multiplied by 1.4 (value
obtained from experiments).

SFP32→FP64 =
2n+180
n+500k

SFP16→FP64 =
2n+360
n+1080k

(6)

5 NUMERICAL BEHAVIOR DISCUSSION
All our experiments are performed on a computer equipped with two
Intel(R) Xeon(R) E5-2650 v3 @ 2.30GHz CPUs and one NVIDIA
P100 PCIe GPU accelerator. We developed LU factorization, solve,
and iterative refinement routines to support FP16 and FP32. The
GMRES routines were adapted from R. Li and Y. Saad [9] to work
with MAGMA [16].

Figure 3 illustrates the convergence history of our four proposed
algorithms using the FP16 LU factorization in addition to two simi-
lar variants with FP32 LU instead of FP16 LU. They are labeled as
FP32→64 IR and FP32→64 GM. Figure 3a represents the most nu-
merically favorable type of matrix to solve—the diagonal dominant
matrix. We can see that every method converges within 5 iterations,
and all the FP16 based methods perform similarly. Not surprisingly,
FP32 based method converges in fewer iterations because of its
higher precision. Figure 3b represents a less favorable matrix type
that has positive eigenvalues and singular values whose logarithms
are uniformly distributed. Among FP16 methods, GM and IR_GM
converge fastest. Figure 3c shows a more difficult matrix for FP16
methods. This type of matrix has positive eigenvalues and all singu-
lar values being 1, except one, being 0.01. Among FP16 methods the
classic IR converges very slowly, while GM converges fastest in 7
iterations. Again, FP32 based methods have no problem converging.
Figure 3d shows the convergence for a matrix that has the same
singular value distribution but not necessarily positive eigenvalues.
Now all FP16 methods converge in around 30 iterations, and still
GM converges fastest—in 24 iterations. Figure 3e is another easy
type of matrix to solve for FP16 methods, and again GM converges
fastest (in 6 iterations). Figure 3f is the most difficult matrix where
the fastest FP16 method – the GM – converges in around 200 iter-
ations while the worst IR_GM converges in 900 iterations. For all
the matrices we considered here, FP16→64 GM is the most robust
one and fastest in convergence among the FP16 based methods. This
observation suggests the surprising effectiveness of a traditionally
sparse iterative solver GM, which might be robust enough for dense
linear systems and also economical coupled with proportionally fast
FP16 arithmetic.
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(a) matrix with diagonal dominant. (b) matrix with positive λ and where σi is random
number between 1

cond , and 1 such that their loga-
rithms are uniformly distributed.

(c) matrix with positive λ and with clustered singular
values, σi=(1, · · · , 1, 1

cond )

(d) matrix with clustered singular values, σi=(1, · · · ,
1, 1

cond )
(e) matrix with positive eigenvalues and arithmetic
distribution of its singular values σi = 1− ( i−1

n−1 ) (1−
1

cond ).

(f) matrix with arithmetic distribution of its singular
values σi = 1− ( i−1

n−1 ) (1−
1

cond ).

Figure 3: Convergence history of the 6 proposed refinement algorithms for different type of matrices all of size 10240 and generated
with condition number equal to 102.

6 EXPERIMENTAL RESULTS DISCUSSION
This section presents the performance results obtained by 1) our two
proposed iterative refinement methods, dhgesv (FP16) and dsgesv
(FP32), using the GMRES method, and 2) the reference FP64 dgesv
solver. We note that when the IR method converges, its behavior
is similar to GM within 2-3% +/- difference in performance. The
IR-GM method was slightly 5-10% slower. Figure 4 illustrates the
performance results for the three routines for different types of
matrices, as well as, we depict the number of iterations required
by each of the two refinement methods (dsgesv and dhgesv) in
order to achieve the FP64 solution. In each figure, there are three
performance curves that refer to: 1) the reference dgesv routine that
uses the double precision (FP64) arithmetic in all its computational
steps; 2) the dsgesv routine which performs the LU factorization in
single precision (FP32) and uses the preconditioned FGMRES (GM
method) to achieve the FP64 solution; and 3) the dhgesv routine
that performs the LU factorization in half precision (FP32) and uses
the preconditioned FGMRES (GM method) to achieve the FP64
solution.

In Figure 4a, the matrix is diagonally dominant and thus both
dsgesv and dhgesv converge very fast within small number of itera-
tions. Thus, based on Equation (6) from Section 4.4, one can expect

very good speedup over the reference dgesv routine. The perfor-
mance illustrated in Figure 4a runs alongside with the expectation
model – the dhgesv (FP16→FP64) routine depicted in green color
is about 3× faster than the reference dgesv depicted in blue. Also by
looking at the dsgesv (FP32→FP64) depicted in red color, we can
see that it is about 1.8× faster than dgesv. In other term, this means
that for diagonal dominant matrices, using the refinement techniques
provide a large gain, 1.8× to 3× speedup.

Similarly to Figure 4a, Figure 4b shows the performance and
the number of iterations of our methods for matrices with positive
eigenvalue and logarithmic uniform distribution of their singular
values. As shown in the figure, the number of iterations does not
increase with the matrix size for both methods and is slightly higher
than the one with diagonal dominant matrices for the dhgesv routine,
while it remain around 3 iterations for the dsgesv routine. Thus
one can expect that the performance gain will be roughly similar to
diagonal dominant. The dhgesv (FP16→FP64) routine achieves the
same solution as the dgesv FP64 but is about 2.6× faster, and the
dsgesv (FP32→FP64) keeps the same speedup ratio of being 1.7×
faster.

Figure 4c presents our study for matrices with clustered singu-
lar values and positive eigenvalues. The behavior observed here
is similar to the previous one where both dhgesv and dsgesv are
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(a) matrix with diagonal dominant. (b) matrix with positive λ and where σi is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.

(c) matrix with positive λ and with clustered singular values, σi=(1, · · · , 1, 1
cond ) (d) matrix with clustered singular values, σi=(1, · · · , 1, 1

cond )

(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
σi = 1− ( i−1

n−1 ) (1−
1

cond ).
(f) matrix with arithmetic distribution of its singular values σi = 1− ( i−1

n−1 ) (1−
1

cond ).

Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.
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advantageous and can provide 1.7× to 2.6× speedup. In contrast
to Figure 4c, Figure 4d shows the performance and the number of
iterations for matrices that have similar clustered singular value
distribution but when the eigenvalues are with imaginary part. The
observation that we made here is interesting. The behavior of the ds-
gesv (FP32→FP64) remains the same as in the previous experiments,
meaning that the number of iterations is not strongly dependent on
the matrix size or on the matrix type. The dsgesv requires about
3 iterations and thus we can always see a factor of 1.7× speedup.
For the dhgesv, the convergence is matrix type and also matrix size
dependent. The number of iterations increases dramatically with
the matrix size and is larger than what is observed in Figure 4c. In
this case, the rounding error of the FP16 computation for the LU
factorization, and possibly the range of the representative numbers
for FP16 arithmetic, disturb the system and the convergence rate de-
creases dramatically, and thus affecting the performance. In this case
we can see that the half precision dhgesv routine is not beneficial
at all and can be even slower than the FP64 one. For such type of
matrices, the best is to use the dsgesv (FP32→FP64) routine.

Figure 4e corresponds to the results obtained for matrices with
positive eigenvalues and arithmetic distribution of its singular values.
The dsgesv behavior stays the same as the one shown in the previous
graph. It requires about 3 iterations and thus brings a factor of
1.7× speedup over the dgesv. Also, we can notice that the dsgesv
routine acts similarly to all matrices with positive eigenvalues and it
converges in about 7-8 iterations, making it an attractive routine to
use in such cases, offering a factor of 2.7× speedup.

Figure 4f represents the arithmetic singular values distribution
without the constraint that the eigenvalues are positive, thus, the
eigenvalues are in the complex plane. Here we can notice that the
dsgesv still converges with about 3-4 iterations for any matrix size,
leading to the observed 1.7× speedup while the dhgesv fails to
converge within 300 iterations for most of the large matrices, making
it useless.

7 CONCLUSIONS AND FUTURE
DIRECTIONS

We developed a framework for accelerating the general Ax = b solver
using hardware-accelerated FP16 arithmetic on GPUs. The approach,
based on the mixed-precision iterative refinement technique, was
extended from prior developments for FP16 arithmetic and we devel-
oped architecture-specific algorithms and highly-tuned implementa-
tions that resolve the main computational challenges of efficiently
parallelizing, scaling, and using FP16 arithmetic in the approach on
high-end GPUs. We quantified in practice the performance and the
limitations of the approach. In particular, we can conclude that the
dsgesv (FP32→FP64) routine can be used for all matrix types and for
any sizes, and it provides a speedup of about 1.7×, which also means
about the same factor gain in energy. The dhgesv (FP16→FP64) is
advantageous when the matrix has nice properties, such as diagonal
dominance, or when eigenvalues are always positive. In this later
case we can expect a factor of 2.5 to 2.7× speedup, and thus also en-
ergy saving. Based on our analysis, we think that the (FP16→FP64)
will be always beneficial in the case of the Cholesky factorization
which, will be considered in future work.

Other future work includes releasing the software through MAGMA
and tuning it for the up-coming V100 GPU to use the Tensor Cores
acceleration. Of interest is also to investigate the energy-efficiency
of the approach compared to working precision implementations
and other architectures.
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