
Resilience for Stencil Computations
with Latent Errors

Aiman Fang∗, Aurélien Cavelan†, Yves Robert†‡ and Andrew A. Chien∗§
∗ University of Chicago, USA

†Ecole Normale Superieure de Lyon and Inria, France
‡University of Tennessee Knoxville, USA
§ Argonne National Laboratory, USA

Email: {aimanf, achien}@cs.uchicago.edu, {aurelien.cavelan, yves.robert}@inria.fr

Abstract—Projections and measurements of error rates in
near-exascale and exascale systems suggest a dramatic growth,
due to extreme scale (109 cores), concurrency, software complex-
ity, and deep submicron transistor scaling. Such a growth makes
resilience a critical concern, and may increase the incidence
of errors that “escape”, silently corrupting application state.
Such errors can often be revealed by application software tests
but with long latencies, and thus are known as latent errors.
We explore how to efficiently recover from latent errors, with
an approach called application-based focused recovery (ABFR).
Specifically we present a case study of stencil computations,
a widely useful computational structure, showing how ABFR
focuses recovery effort where needed, using intelligent testing
and pruning to reduce recovery effort, and enables recovery
effort to be overlapped with application computation. We analyze
and characterize the ABFR approach on stencils, creating a
performance model parameterized by error rate and detection
interval (latency). We compare projections from the model
to experimental results with the Chombo stencil application,
validating the model and showing that ABFR on stencil can
achieve a significant reductions in error recovery cost (up to
400x) and recovery latency (up to 4x). Such reductions enable
efficient execution at scale with high latent error rates.

I. INTRODUCTION

Large-scale computing is essential for addressing scientific
and engineering challenges in many areas. To meet these
needs, supercomputers have grown rapidly in scale and com-
plexity. They typically consist of millions of components [1],
with growing complexity of software services [2]. In such
systems, errors come from both software and hardware [3],
[4]; both hardware-correctable errors and latent (or so-called
silent) errors [5], [6] are projected to increase significantly,
producing mean time between failure (MTBF) as low as a few
minutes [7], [8]. Latent errors are detected as data corruption,
but some time after their occurrence.

We focus on latent errors, that escape simple system level
detection such as error-correction in memory, and can only be
exposed by sophisticated application, algorithm, and domain-
semantics checks [9], [10]. These errors are of particular con-
cern, since their data corruption, if undetected and uncorrected,
threatens the validity of computational (and scientific) results.
Such latent errors can be exposed by sophisticated software
level checks, but such checking is often computationally
expensive, so it must be infrequent. We use the term “detection
latency” to denote the time from error occurrence to detection,

which may be 103 (thousands) to 109 (billions) of cycles. This
delay allows corrupting a range of computation data. Thus, we
detect the resulting data corruption, rather than the original
error.

Checkpoint-Restart (CR) is a widely-used fault tolerance
technique, where resilience is achieved by writing periodic
checkpoints, and using rollback and recovery in case of failure.
Rising error rates require frequent checkpoints for efficient
execution, and fortunately new, low-cost techniques have
emerged [6], [11]. Paradoxically, more frequent checkpoint
increase the challenge with latent errors, as each checkpoint
must be checked for errors as well. As a result not all
checkpoints can be verified, and latent errors escape into
checkpoints. Thus, improved checkpointing does not obviously
help with latent errors. Keeping multiple checkpoints or using
multi-level checkpointing systems have been proposed [5],
[12]–[15]; for latent errors, these systems search backward
through the checkpoints, restarting, reexecuting, and retesting
for error. Such iterated recovery is expensive, making devel-
opment of alternatives desirable.

Algorithm-based fault tolerance (ABFT) exploits algorithm
features and data structures to detect and correct errors and
can be used on latent errors. ABFT has been primarily devel-
oped for linear-algebra kernels [9], [10], [16], [17], including
efficient schemes to correct single and double errors. However,
each applies only to specific algorithms and data structures.
Inspired by ABFT, we exploit application semantics to bound
error impact and further localize recovery. Our central idea
is to utilize algorithm dataflow and intermediate application
states to identify potential root causes of a latent error.
Diagnosing this data can enable recovery effort to be confined,
reducing cost. We exploit Global View Resilience (GVR) to
create inexpensive versions of application states, and utilize
them for diagnosis and recovery. In prior work [18], [19],
GVR demonstrated that versioning cost is as low as 1% of
total cost for frequent versioning under high error rates. A
range of flexible rollback and forward recovery is feasible,
exploiting convenient access to versioned state.

We propose and explore a new approach, application-based
focused recovery (ABFR), that exploits data corruption de-
tection and application data flow, to focus recovery effort on
an accurate estimate of potentially corrupted data. In many



applications, errors take time to propagate through data, so
ABFR utilizes application structure to intelligently confine er-
ror recovery effort (e.g. to a few nodes), and allow overlapped
recovery. In contrast, global recovery approaches (e.g. CR) do
neither.

We apply this approach to a model application, stencil-
based computations, a widely used paradigm for scientific
computing, such as computation simulations, solving partial
differential equations and image processing. We create an
analytical performance model to explore the potential benefits
of ABFR for stencil methods, varying dimensions such as error
rate, error latencies and error detection intervals. The model
enables us to characterize the advantages of ABFR across a
wide range of system and application parameters. To validate
the model, we perform a set of ABFR experiments, using
the Chombo heat equation kernel (2-D stencil). The empirical
results show that ABFR can improve recovery from latent
errors significantly. For example, recovery cost (consumed
CPU time) can be reduced by over 400-fold, and recovery
latency (execution runtime) can be reduced by up to four-fold.
Specific contributions of the paper include:
• A new approach to latent error recovery, algorithm-based

focused recovery (ABFR), that exploits application data
flow to focus recovery effort, thereby reducing the cost
of latent error recovery;

• An analytical performance model for ABFR on stencil
computations, and its use to highlight areas where signif-
icant performance advantages can be achieved;

• Experiments with the Chombo stencil computations, ap-
plying ABFR, both validating the model and demonstrat-
ing its practical application and effectiveness, reducing
recovery cost by up to 400x, and recovery latency by up
to 4x.

The remainder of the paper is organized as follows: Sec-
tion II introduces the GVR library and stencil computations.
In Section III, we describe the ABFR recovery method, applied
to stencil computations. Section IV presents an analytical
performance model for recovery, parameterized by error rate
and detection interval (error latency). In Section V, we present
experiments with Chombo that validate the model, and provide
quantitative benefits. Section VI discusses classes of promising
candidate applications of ABFR and limitations. Related work
is presented in Section VII. Finally, we summarize our work
in Section VIII, suggesting directions for future research.

II. BACKGROUND

A. Global View Resilience (GVR)

We use the GVR library to preserve application data and
enable flexible recovery. GVR provides a global view of
array data, enabling an application to easily create, version
and restore (partial or entire) arrays. In addition, GVR’s
convenient naming enables applications to flexibly compute
across versions of single or multiple arrays.

GVR users can control where (data structure) and when
(timing and rate) array versioning is done, and tune the
parameters according to the needs of the application. The

ability to create multi-version array and partially materialize
them, enables flexible recovery across versions. GVR has been
used to demonstrate flexible multi-version rollback, forward
error correction, and other creative recovery schemes [20],
[21]. Demonstrations include high-error rates, and results show
modest runtime cost (< 1%) and programming effort in full-
scale molecular dynamics, Monte Carlo, adaptive mesh, and
indirect linear solver applications [18], [19].

GVR exploits both DRAM and high bandwidth and capacity
burst buffers or other forms of non-volatile memory to enable
low-cost, frequent versioning and retention of large numbers
of versions. As needed, local disks and parallel file system
can also be exploited for additional capacity. For example,
NERSC Cori [22] supercomputer provides 1.8 PB SSDs in the
burst buffer, with 1.7 TB/s aggregate bandwidth (6 GB/s per
node). The JUQUEEN supercomputer at Jülich Supercomput-
ing Center [23] is equipped with 2 TB flash memory, providing
2 GB/s bandwidth per node. Multi-versioning performance
studies on JUQUEEN [23] showed GVR is able to create
versions at full bandwidth, demonstrating low cost versioning
is a reality [24]. In this paper, GVR’s low-cost versioning
enables flexible recovery for ABFR.

B. Stencils

Stencils are a class of iterative kernels that update array ele-
ments in a fixed pattern, called a stencil. Stencil-based kernels
are the core of a significant set of scientific applications [25],
[26], (e.g. cosmology, combustion and image processing).
Stencil codes perform a sequence of sweeps through a regular
array, with typical iterative structure as follows:

for k timesteps do
- compute each element in array
using neighbors in a fixed pattern

- exchange the new value with neighbors
end

During execution, each process computes local elements and
communicates with neighbors. The regular structure of stencils
and their communication pattern suggest that errors take time
to propagate to the whole data. Given error latency and
location, we can use the communication pattern to identify
potentially corrupted data and bound the recovery scope.
We consider 5-point 2D stencil computations in subsequent
sections, but the modeling and concepts can be extended
in a straightforward fashion to higher dimensions and more
complex stencils, see the extended version of this work for
details [28].

III. ALGORITHM-BASED FOCUSED RECOVERY (ABFR)
APPROACH

Many applications have regular, local data dependences or
well-known communication patterns. Algorithm-based focused
recovery (ABFR) exploits this knowledge to: (i) identify
potentially corrupted data and focus recovery effort on a small
subset (see Figure 1); and (ii) allow recovery to be overlapped,
reducing recovery overhead and enabling tolerance of high



t	
Error	Detected	

Rollback	 Recompute	

state	i	

state	j	

(a) Blind CR system recovery

Recompute	

t	

Use	data	flow	to	find	
poten2al	erroneous	data	

state	i	

state	j	
Error	Detected	

Excep2onal	data	point	

(b) ABFR recovery based on application knowledge

Figure 1: Checkpoint Restart (CR) vs. Algorithm-based Focused
Recovery (ABFR).

error rates. In contrast, checkpoint-restart blindly rolls back
the entire computation to the last verified checkpoint and
recomputes everything.

ABFR is a type of ABFT method [9] that can be applied
more generally. ABFR shares the ideas of overlapped, local
recovery with [27], but extends them in scope and with
sophisticated diagnosis. Specifically, ABFR’s enables only the
processes whose data is affected by errors to participate in the
recovery process, and other processes to continue computation
(overlapping recovery, subject to application data dependen-
cies). By bounding error scope, ABFR saves CPU throughput,
reducing recovery cost. Furthermore, overlapping recovery
and computation can reduce runtime overhead significantly,
enabling tolerance of high error rates.

In this paper, we describe an ABFR approach for stencil
computations subject to latent errors. We assume that a latent
error detector (or “error check”) is available. Such detectors
are application-specific and computationally expensive. In
order to keep the model general, we make the following
assumptions:
• The error detector has 100%1 coverage, finding some

manifestation whenever there is an error, but not precisely
identifying all manifestations.

• The error check detects error manifestations in the data,
namely, corrupted values and their locations.

• Because latent (“silent”) errors are complex to identify,
the detector is computationally expensive.2

1Errors that cannot be detected are beyond the ability of any error recovery
system to consider.

2Assuming expensive checks means that any improvements in checking can
be incorporated – cost is not a disqualifier.

As with other ABFT approaches, we utilize application
semantics to design error detectors. Example detectors include:
(i) temperature variation across timesteps within a threshold;
(ii) one point within a range compared to its direct neighbors;
(iii) average or total heat conservation, including fluxes; and
(iv) comparison with direct neighbors to reach a consensus.

(a) 3-point 1D (b) 5-point 2D (c) 7-point 3D

Figure 2: Stencil patterns: an error propagates to direct neighbors
(blue) in a timestep.

The interval between two consecutive error detections
bounds the error latency. Given error location and timing,
application logic and dataflow (see Figure 2) – is used to invert
worst-case error propagation, identifying all data points in past
that could have contributed to this error manifestation. These
data points are called potential root causes (PRC). To bound
error impact more precisely, PRCs can be tested (diagnosis),
eliminating many of the initial PRCs (see Figure 3); for
stencils, this can accomplished by recomputing intermediate
states from versions (courtesy of GVR) and comparing to
previously saved results. If the values match, the PRC can be
pruned. At last, recovery is applied to the reduced set of PRCs
and their downstream error propagation paths. In Section IV,
we develop a model, quantifying the PRCs for a given error
latency. It takes thousands of timesteps to corrupt even 1%
of the data, but traditional CR assumes all application data is
corrupted.

Explaining our example in detail (Figure 3), there are five
ranks in the stencil computation. Each box in the figure
represents the data of a rank. Each rank exchanges data with its
two neighbors at each timestep, using the incoming data at the
next step. At a certain timestep, an error is detected. Inverse
propagation identifies all potential root causes (PRCs) of the
error (purple boxes). Diagnosis of the PRCs eliminates most
of them, leaving the only viable one (the red box). Recovering
the red box and its neighbors produces the correct application.

IV. ANALYTICAL PERFORMANCE MODEL

Suppose the stencil works on M elements, each updated
every timestep. Every D timesteps, an error detector is invoked
to examine the state of M elements. Therefore the error
latency bound is D timesteps. Then, a version of the state
is stored. For ABFR, additional versions of data are created
every V timesteps between two error detections. In order to
simplify the model, we make the following assumptions:
• Errors occur randomly in space and time.
• Only a single error occurs between two error detections.
• Only a single manifestation of the error is detected.

Note that these assumptions are commonly used to model CR.
The implications are as follows: since no other error can occur



Rank	0	

Rank	1	

Rank	2	

Rank	3	

Rank	4	

t	

Check	
Version	Version	

Detected	
Error	

Check	
Version	

Error	Latency	Bound:	D	=mesteps	

Detected	Error	

i=D-1	 i=0	

(a) Error Detection

Rank	0	

Rank	1	

Rank	2	

Rank	3	

Rank	4	

t	

Check	
Version	Version	

Check	
Version	

Error	Latency	Bound:	D	=mesteps	

inverse	propaga=on	

Poten=al	Root	Cause	

i=D-1	 i=0	

(b) Inverse Propagation

Rank	0	

Rank	1	

Rank	2	

Rank	3	

Rank	4	

t	

Check	
Version	Version	

Check	
Version	

Error	Latency	Bound:	D	=mesteps	

Diagnosis	

Root	Cause	

Root	Cause	

i=D-1	 i=0	

(c) Diagnosis

Rank	0	

Rank	1	

Rank	2	

Rank	3	

Rank	4	

t	

Check	
Version	Version	

Check	
Version	

Error	Latency	Bound:	D	=mesteps	

Recovery	

i=D-1	 i=0	

(d) Recovery

Figure 3: ABFR in a 3-point 1D Stencil.

between two checks, only one recovery is needed (no error
strikes during recovery). Although these assumptions cover
most cases in practice, it is possible to extend the analysis to
handle additional errors (see Section VI for a discussion).

If an error is detected, we first identify the potential root
causes based on stencil pattern. Let step(j) be the number of
additional elements that got corrupted after j timesteps. This
typically depends on the dimension of the grid, and the number
of neighbors involved in the computation for one timestep.
We define root(i) as the number of potential root causes i
timesteps ago and AllRoot as the total number of potential
root causes over the past D timesteps as follows:

root(i) = 1 +

i∑
j=1

step(j), AllRoot =

D−1∑
i=0

root(i) .

Table II shows the expressions for step, root and AllRoot
for 1D, 2D, and 3D stencils. Diagnosis is done by recomputing
elements from the last correct version, which was D timesteps
ago, and by comparing the results against intermediate ver-
sions. If the recomputed data differs from the version, then
the error occurred between the last two versions. Note that
with a version at every step, we can narrow the root cause

Variable Definitions Units
M Application size (number of elements × element size) bytes
m Box Size (number of elements in one box × element size ) bytes
n Number of boxes assigned to one process -
p Number of processes in computation -
t Time to advance one element by one timestep seconds/byte
d Time to run the detector on one element seconds/byte
s Time to store one element (versioning) seconds/byte
r Time to reload one element seconds/byte
c Time to compare one element with a previous version seconds/byte
D Detection interval, Error Latency Bound timesteps
V Versioning interval timesteps
α Ratio of versioning interval to detection interval, V = αD -
B Number of versions between two detections, B = D

V
= 1

α
-

λ Error rate errors/(second*byte)
λM System error rate errors/second
(1− e−λM ) Probability of having an error in one second -
E Expected cost of completing computation of D timesteps (cpu) seconds
Rec Recovery cost: the amount of work required to recover (cpu) seconds
T Expected runtime of completing computation of D timesteps seconds
RecLat Recovery latency: runtime critical path for recovery seconds

Table I: Table of Notations

1D 2D 3D
step(i) 2 4i 4i2 + 2
root(i) 2i+ 1 2i2 + 2i+ 1 1 + 4

3
i3 + 2i2 + 8

3
i

AllRoot D2 2
3
D3 + 1

3
D 1

3
D4 + 2

3
D2

Table II: Expressions for step, root, and AllRoot functions for 1, 2
and 3 dimensional grids, assuming an element interacts only with its
direct neighbors.



of an error to a single point. Suppose the error occurred j
timesteps ago, then the time required for diagnosis is the time
to reload the last correct version, r · root(D) and the time to
recompute, reload and check (t+ r+ c) each element against
the version from iteration D−1 to j as illustrated in Figure 3c:

diag(i) = r · root(D) + (t+ r + c)

D−1∑
j=i

root(j) .

Once potential root causes are pruned, recovery is done by
recomputing the reduced set of potential root causes and
affected data , as illustrated in Figure 3d:

recomp(i) = (t+ s)

i∑
j=1

root(j) .

As discussed in Section III, ABFR allows overlapping recov-
ery. In that case, the recovery cost (work needed) is the critical
metric. If recovery cannot be overlapped, then recovery latency
(parallel time) is appropriate. We model both of these for 2D
stencils. We refer the reader to the extended version of this
paper [28] for the analysis of 1D and 3D stencils.

A. Recovery Cost

Let EABFR denote the total cost (amount of work due to
computation, detection, versioning and recovery, counted in
CPU time) of the ABFR approach, as a function of error
rate λ (errors per second per byte) and detection interval
D. In this section, we compare it with the classical CR
(Checkpoint/Restart) approach, denoted by ECR.

Program execution is divided into equal-size segments of D
timesteps. The time needed to complete one segment with p
processes is DtM

p , and the total CPU time on computation is
DtM . Similarly, we spend a total of dM time on detection and
BsM time on versioning, where B is the number of versions
taken between two detections. For CR, we use B = 1, as
CR creates a version every D timesteps. Then, we assume
that errors occur following an exponential distribution, and
the probability of having an error during the execution of
one segment is denoted by 1 − e−λM

DtM
p , where λM is

the application error rate. Therefore, we can write ECR and
EABFR as functions of D and λM as follows:

ECR = DtM + dM + sM +
(

1− e−λM
DtM

p

)
RecCR , (1)

EABFR = DtM+dM+BsM+
(

1− e−λM
DtM

p

)
RecABFR .

(2)
The main difference between both approaches lies in recovery
cost. Recovery of CR includes reloading data and full recom-
putation, while ABFR includes diagnosis cost, different data
reloading, and reduced recomputation cost. For CR, we have:

RecCR = rM +DtM . (3)

For ABFR, let B = D
V denote the number of versions taken

between two detections. We number versions backwards, from
j = 0 (timestep 0) up to j = B− 1 (timestep (B− 1)V ). The
last checked version (timestep D) has been versioned too (j =

B). We introduce the notation A(j), which is the total number
of potential root causes between two versioned timesteps jV
and (j + 1)V , excluding (j + 1)V but including jV :

A(j) =

(j+1)V−1∑
k=jV

root(k) .

Therefore, A(j)
AllRoot denotes the probability that the error oc-

curred between version j and j + 1, and we can write:

RecABFR =

B−1∑
j=0

A(j)

AllRoot
(diag(j) + recomp(j)) .

The diagnosis is done by recomputing all potential root causes
from timesteps D− 1 up to version j, that is timestep jV . In
addition, we need to pay (r+ c)root(kV ) for every version k
that passed the diagnosis test, that is from version B − 1 to j
included. Therefore, we can write:

diag(j) = r · root(D) + t
D−1∑
k=jV

root(k) + (r + c)

B−1∑
k=j

root(kV ) .

Because we may have gaps in-between versions, we do
not know the exact location of the root cause of the error.
Therefore, we recompute starting from version j + 1 instead
of j. We must recompute all potential affected elements from
timestep (j+1)V −1 to 0. At timestep (j+1)V −1, there are
root((j+1)V −1) potential root causes elements to recompute.
At every timestep, the number of elements to recompute
increases by step(j), so that there are a total of root(2(j+1)V )
elements to recompute at timestep 0. Therefore, we can write:

recomp(j) = t

2(j+1)V∑
k=(j+1)V−1

root(k) + s

2(j+1)∑
k=j+1

root(kV ) .

Simplifying the above equation, and keeping higher order
terms only (w.r.t. D), we obtain the following recovery cost
as a function of the detection interval D:

RecABFR =
8

15
t(α5 − 5α3 + 9α+ 5)D3 +O(D2),

where α =
1

B
.

(4)

Recovery Cost Comparison The dominant cost in recovery
is recomputation. It is O(DM) for CR in Equation 3 and
O(D3) for ABFR in Equation 4. Suppose the number of
elements in one dimension of stencil is U , we have M = U ,
M = U2 and M = U3 for 1D, 2D, and 3D stencil respectively.
Since CR always recomputes all the data, the corresponding
recomputation cost is O(DU), O(DU2) and O(DU3). In
constrast, ABFR only need to recompute a small fraction
of the M elements. The corresponding recomputation cost is
O(D2), O(D3) and O(D4) respectively (see [28]). Note that
the detection interval D (or error latency) is much smaller than
the number of elements in one dimension U .

We plot the recovery cost of CR and ABFR as a function
of detection interval (error latency) in Figure 4 (note that CR
creates 1 version during D timesteps, while ABFR creates B



Figure 4: Recovery Cost vs. Detection Interval (M = 327682, t =
10−8, d = 100t, r = 10−9, s = 10−8, α = 1

4
)

Figure 5: Optimal Detection Interval vs. Error Rate (M =
327682, p = 4096, t = 10−8, r = 10−9, s = 10−8, α = 1

4
)

versions. The plot uses B = 1
α = 4). We observe that CR

grows linearly with detection interval. While ABFR increases
slowly for less than 9,000 and outperforms CR for error
latencies up to 17,000 timesteps. This range of 1,000 to 17,000
time steps corresponds to 3 seconds to about 1 minute. After
that, most data are corrupted, hence ABFR cannot further
improve the performance by bounding error impact.

Let H = E
DtM denote the expected overhead with respect

to the computation cost without errors. Using Taylor series to
approximate

(
1− e−λM

DtM
p

)
to λM DtM

p (up to first-order
terms), we obtain:

HCR = 1 +
d+ s

Dt
+
λM

p
(rM +DtM),

HABFR = 1 +
b

D
+
λM

p
aD3,

where a =
8

15
t(α5 − 5α3 + 9α+ 5) and b =

αd+ s

αt
.

(5)

Optimal Detection Interval Minimizing the overhead, we
derive the following optimal detection interval for Checkpoint-
Restart and ABFR:

D∗CR =

√
(d+ s)p

λM2t2
, and D∗ABFR =

4

√
bp

3aλM
. (6)

Empirical studies of petascale systems have shown MTBF’s
of three hours at deployment [3], and allowing for the greater
scale of exascale systems [6], [7], future HPC system MTBFs
have been projected as low as 20 minutes [29]. To explore
possibilities for a broad range of future systems (including
cloud), we consider system error rates (errors/second) ranging
from 0 (infinite MTBF) to 0.01 (1 minute MTBF). We assume
the application runs on the entire system, setting λM to the
system error rate.

We plot the optimal detection interval as a function of
the error rate λM in Figure 5. We observe that as error
rate increases, the optimal detection interval of CR drops
faster than ABFR for varied error detector cost, indicating

CR demands more frequent error detection in high error rate
environments. So, here the goal is to be lazy in error detection
checking, because deep application-semantics are assumed to
be expensive. Higher numbers for optimal detection interval
are good. Plugging D∗ back into H , we derive that

H∗CR = 1 + 2M

√
(d+ s)

p

√
λ+ rM2λ , (7)

H∗ABFR = 1 +
4

3
4

√
3ab3λM

p
. (8)

We plot the overhead as a function of error rate, when
using the optimal detection interval, in Figure 6. With growing
error rates, CR incurs high overhead. In contrast, ABFR
significantly reduces overhead and performs stably even for
high error rates.

B. Recovery Latency

We model recovery latency (parallel execution runtime).
Large-scale simulations overly decompose a grid into boxes,
enabling parallelism and load balance. As in Figure 8, each
process is assigned a set of boxes; each of which is associated
with a halo of ghost cells. The square grid of

√
M ×

√
M

elements is partitioned into square boxes of size
√
m×

√
m.

We have M
m boxes mapped on to p processes.

Recovery latency, RecLat, is determined by the process
with the most work. For CR, we assume perfect load balance;
each process has n boxes, so npm = M . Thus RecLatCR
reloads n boxes and recomputes them for D timesteps:

RecLatCR = n(rm+Dtm) . (9)

For ABFR, recovery latency is determined by the process
with the most corrupted boxes. For simplicity, we recompute
entire box even it is partially corrupted in ABFR. In an
ideal case, the actual corrupted boxes are owned by processes
uniformly, making the number of corrupted boxes of each
process, equal to nideal = root(D)

mp = 2D2

mp + O(D). For



Figure 6: Overhead vs. Error Rate Using Optimal Detection Interval
(M = 327682, p = 4096, t = 10−8, r = 10−9, s = 10−8, α = 1

4
)

Figure 7: Recovery Latency vs. Detection Interval (M =
327682,m = 65536, p = 4096, n = 4, t = 10−8, d = 100t, r =
10−9, s = 10−8, α = 1

4
)

the interleaved mapping (see Figure 8), there are
√
M/m

boxes in one row, so the vertical distance between two boxes
assigned to the same rank is p√

M/m
(box). The length 2D

is the range of error spread. The slowest process would have
ninter = 2D√

m
/ p√

M/m
= 2D

√
M

mp corrupted boxes. Then, for

an error at step j, we have:

diag(j) = rm+ t

D−1∑
k=jV

m+ (r + c)

B−1∑
k=j

m,

recomp(j) = t

(j+1)V∑
k=0

m+ s

j+1∑
k=0

m .

To compute the recovery latency Recbox per box, we
proceed as before:

Recbox =

B−1∑
j=0

A(j)

AllRoot
(diag(j) + recomp(j))

= tmαD + o(D).

Multiplying Recbox by the corresponding number of boxes
in the ideal and interleaved scenarios, we obtain

RecLatideal =
2tα

p
D3 +O(D2), (10)

RecLatinter =
2tα
√
M

p
D2 +O(D) . (11)

Comparing Equations (9) and (10), we conclude that as long
as the latency is not long enough to infect all assigned boxes
of one process, ABFR would produce better performance. We
plot RecLatCR and RecLatinter as a function of detection
interval in Figure 7. Similar as in Figure 4, CR increases
linearly with detection interval. And ABFR outperforms CR
for the detection interval from 0 to 17,000 timesteps. But
the gap between their recovery latencies is smaller compared
with that in recovery cost. The gap between recovery latencies

mainly depends on the difference in the number of boxes that
the slowest process needs to work on. Therefore ABFR is at
most n = 4 times better in the plot configuration.

Optimal Detection Interval. We derive the expected run-
time of CR and ABFR to successfully compute D timesteps.

TCR = Dnmt+ dnm+ snm+ (1− e−λMDnmt)RecLatCR

TABFR = Dnmt+ dnm+Bsnm+ (1− e−λMDnmt)RecLatABFR

The overhead H = T
Dnmt of CR and ABFR are given by

HCR = 1 +
d+ s

Dt
+ λMn(rm+Dtm),

Hideal = 1 +
αd+ s

αDt
+ λM

2tα

p
D3,

Hinter = 1 +
αd+ s

αDt
+ λM

2tα
√
M

p
D2 .

Minimizing the overhead, we derive the optimal detection in-
terval for CR, ideal ABFR and interleaved ABFR respectively:

D∗CR =

√
(d+ s)p

λM2t2
, D∗ideal =

4

√
(αd+ s)p

6α2t2λM
,D∗inter = 3

√
(αd+ s)p

4α2λM
3
2 t2

.

The optimal interval D∗CR of CR is the same as in Equa-
tion (6). The optimal interval for ideal-ABFR is D∗ideal =

Θ(λ
−1
4 ) , the same order of magnitude as D∗ABFR, the optimal

value of Equation (6) for the recovery cost. D∗inter is different
due to imbalanced recovery.

V. MODEL VALIDATION: EXPERIMENTS

A. Methodology

Workload We use Chombo 2D heat equation codes as
the testbed to validate the model. Chombo [30] is a library
that implements block-structured adaptive mesh refinement
technique. The 2D heat equation codes, implemented with
Chombo library, solve a parabolic partial differential equation
that describes the distribution of heat in a given region over



Rank	4	 Rank	5	 Rank	6	 Rank	7	

Rank	0	 Rank	1	 Rank	2	 Rank	3	

Rank	4	 Rank	5	 Rank	6	 Rank	7	

Rank	0	 Rank	1	 Rank	2	 Rank	3	

Domain	

size:	64	

Box	

size:	16	

Interleaved	
assignment	

Poten@al	Root	Causes	
length=2D	

Figure 8: Interleaved domain decomposition

Number of ranks 4096
Domain size 109 (32768x32768)
Number of boxes 16384 (128x128)
Box size 65536 (256x256)
#Box per process 4

Table III: Experiment Configurations

time. It is a 5-point 2D stencil program and deploys an
interleaved domain decomposition method. An example of
such decomposition for a 64x64 domain and 8 ranks is shown
in Figure 8.

We enhanced Chombo with two recovery schemes – CR
(baseline) and ABFR. The CR scheme saves a version in
memory after each error check. When an error is detected,
CR rolls back to the last checked version and recomputes.
Note that it is a improved version of classical CR because
it avoids iterative rollback and recompute until the error is
corrected. ABFR creates 3 additional versions between two
error checks, i.e. 4 versioning intervals in 1 detection interval.
In recovery, ABFR diagnoses potential root causes using
application knowledge and intermediate versions, then only
recomputes corrupted data.

Experiment Design We explore the performance of CR and
ABFR for varied error detection intervals and error latencies.
The configuration of experiments is listed in Table III. We
run 4,096 ranks and solve the heat equation for a domain of
109 elements. With this problem size, we vary the detection
interval from 1,000 timesteps to 13,000 timesteps, producing
potential corrupted data fractions that range from 0.2% to 32%.
ABFR always creates 4 versions, the interval between versions
increases with the detection interval. For each detection inter-
val, we sample error latencies uniformly, injecting an error
in each versioning interval. We measure the performance for
each error latency and calculate the average results to produce
performance for the detection interval length.

All experiments were conducted on Edison, the Cray XC30
at NERSC (5576 nodes, dual 12-core Intel IvyBridge 2.4 GHz,
64GB memory). We use 4,096 ranks, typically spread over 342
nodes. The results are an average of three trials.

Metrics We use metrics – recovery cost, recovery latency
and data read (IO) for comparison. Recovery cost is the total

amount of work (CPU time) required to recover. Recovery
latency is the runtime critical path for application recovery.
Data read is the amount of data restored during recovery,
representing I/O cost.

B. Results

0	

30,000	

60,000	

90,000	

120,000	

150,000	

180,000	

210,000	

240,000	

1000	 3000	 5000	 7000	 9000	 11000	13000	

Re
co
ve
ry
	C
os
t	(
CP

U
	se

co
nd

s)
	

Detec3on	Interval	(3mesteps)	

CR	

ABFR	

CR-Model	

ABFR-Model	

Figure 9: Recovery Cost vs. Detection Interval (Model plotted for
experiment configuration and measured t = 1.5 ∗ 10−8second)

Recovery Cost Figure 9 plots the recovery cost for varied
detection intervals (1000 to 13,000 timesteps). Recovery cost
for CR grows linearly with detection interval (error latency).
The recovery cost of ABFR is initially 400x lower (62 vs.
25,700 CPU seconds at 1000 timesteps), and it grows slowly.
The gap between them increases steadily but the ratio de-
creases. Even at 13000 timesteps, ABFR has 2x lower recovery
cost. In contrast to CR, ABFR effectively focuses recovery
effort on a few nodes (e.g. 41 ranks at 1000 timesteps), using
diagnosis to reduce cost.

Figure 9 also plots the performance model (dotted and
dashed lines), showing a close match (for broader comparison
see Figure 4). As expected, ABFR cost starts lower and grows
polynomially with the detection interval.

0	

10	

20	

30	

40	

50	

60	

1000	 3000	 5000	 7000	 9000	 11000	 13000	

Re
co
ve
ry
	L
at
en

cy
	(s
ec
on

ds
)	

Detec2on	Interval	(2mesteps)	

CR	

ABFR	

CR-Model	

ABFR-Model	

Figure 10: Recovery Latency vs. Detection Interval (Model plotted
for experiment configuration and measured t = 1.5 ∗ 10−8second)

Recovery Latency Figure 10 compares the recovery latency
with a range of detection intervals. For shorter intervals (1000
timesteps), ABFR reduces recovery latency by up to 4x. The
recovery latency is determined by the slowest process. In



CR, each process recomputes all 4 boxes assigned to it at
every timestep. In ABFR, for 1,000 timesteps, only 41 boxes
are identified potentially corrupted and processes involved in
recovery work on one box at most. As detection interval
increases, the error may propagate to a larger area, making
it more likely that each process has more boxes to handle. At
detection interval (error latency) of 13,000 timesteps, ABFR
has same performance as CR.

0	

2000	

4000	

6000	

8000	

10000	

1000	 3000	 5000	 7000	 9000	 11000	 13000	

Da
ta
	R
ea
d	
(M

B)
	

Detec-on	Interval	(-mesteps)	

CR	
ABFR	

Figure 11: Data Read (MB) vs. Detection Interval

The dotted and dash lines in Figure 10 are performance
model results using parameter values of our experiments (see
also Figure 7). Our experiment results have similar curves as
the model. The recovery latency of CR grows almost linearly
with detection intervals. While ABFR produces low recovery
latencies for short detection intervals and then chases up with
CR with expanding detection intervals. The measured ABFR
performance are slightly worse than the model because we
only keep the highest order terms in the model for simplifica-
tion but omit some other costs.

Data Read (IO) An important cost for recovery is the
reading of stored version data from the IO system. Figure 11
presents the data read versus detection intervals. In general,
the data read increases with detection interval as on average
the actual error latency is greater, causing ABFR to read parts
of more versions. In contrast, CR always reloads the entire
grid. Because ABFR intelligently bounds the error impact and
loads the required data to recover all potential errors, it reduces
data read by as much as 1000-fold.

VI. DISCUSSION

Generality of ABFR As a type of ABFT, ABFR requires
sufficient application knowledge to design inverse error prop-
agation, diagnose and focus recovery. However, this knowl-
edge can be coarse-grained. Our studies show that ABFR is
helpful for several classes of applications. Applications that
have regular data dependencies, such as stencils and adaptive
mesh refinement (AMR) can easily adopt ABFR to bound
error effect and confine recovery. Some applications have
dependency tables or graphs that can be exploited by ABFR.
Such examples include broad graph processing algorithms and
task-parallel applications. Some applications have properties
that limit the spread of errors. For instance, N-Body tree codes

have numerical cutoff that confine erroneous regions to some
subtrees. Monte Carlo applications do not propagate errors
across sampled batches. We plan to extend ABFR to these
applications in future work.

Multiple Errors For simplicity we only model single errors.
This assumption is common and underlies much of CR prac-
tice. There are several potential avenues for extension. First,
multiple errors within a detection interval could trigger mul-
tiple ABFR responses. Alternatively, diagnosis and recovery
could be extended to deal with multiple errors concurrently.
These are promising directions for future work.

VII. RELATED WORK

Soft errors and data corruption for extreme-scale systems
have been the target of numerous studies. A considerable num-
ber of researchers have already looked at error vulnerability.
Some focus on error detection but rely on other methods to
recover. Others work on designing recovery techniques. We
classify related work into three categories: system-level re-
silience, ABFT (Algorithm-based Fault Tolerance) techniques
and resilience for stencils.

System-level Resilience With the growing error rates, it
has been recognized that single checkpoint cannot handle
latent errors, as the rising frequency shrinks the optimal
checkpoint interval [11], increasing the incidence of escaped
errors. To address this reality at extreme scale, researchers
have proposed multi-level checkpointing systems and multiple
checkpoint-restart (MCR) approaches [13]–[15]. Such systems
exploit fast storage (DRAM, NVRAM) to reduce I/O cost
and keep multiple checkpoints around. Inexpensive but less-
resilient checkpoints are kept in fast, volatile storage, and
expensive but most-resilient checkpoints in parallel file system.
When a latent error is detected, applications must search these
checkpoints, attempting to find one that doesn’t contain latent
errors. The typical algorithm is to start from the more recent
checkpoint, reexecute, then see if the latent error recurs. If
it does, repeat with the next older checkpoint. This blind
search and global recovery incurs high overhead especially
in case of errors with long latency, making MCR unsuitable
for high error rates. In contrast, our ABFR approach exploits
application-knowledge to narrow down the corrupted state, and
only recompute that.

Algorithm-Based Fault-Tolerance Huang and Abraham
[9] proposed a checksum-based ABFT for linear algebra
kernels to detect, locate and correct single error in matrix
operations. Other researchers extended Huang and Abraham’s
work for specialized linear system algorithms, such as PCG
for sparse linear system [16], dense matrix factorization [17],
Krylov subspace iterative methods [10]. We address ABFT
methods for stencils. Our work is similar to ABFT , exploiting
application knowledge for error detection, but adding the use
of application knowledge to diagnose what state is potentially
corrupted, limiting recomputation, and thereby achieve effi-
cient recovery from latent errors.

Resilience for Stencil Computations Researchers have
explored error detection in stencil computations, for example



exploiting the smoothness of the evolution of a particular
dataset in the iterative methods to detect errors. Berrocal et al.
[31] showed that an interval of normal values for the evolution
of the datasets can be predicted, therefore any errors that make
the corrupted data point outside the interval can be detected.
Benson et al. [32] proposed an error check that uses a cheap
auxiliary algorithm to repeat the computation at the same time
with original algorithm, and compare the difference with the
results produced by the original algorithm. These work relied
on Checkpoint-Restart to correct errors. Our ABFR approach
can benefit from these efforts on application error checks.

Other studies have also explored resilience approaches for
stencils. Gamell et al. [27] studied the feasibility of local
recovery for stencil-based parallel applications. When a failure
occurs, only the failed process is substituted with a spare one
and rollbacks to the last saved state for the failed process
and resumes computation. The rest of the domain continues
communication. This approach assumes errors do not spread
across processes, limiting recovery scope to a single process.
ABFR is more general, exploiting application knowledge to
create an accurate estimate of potentially corrupted data across
processes. Sharma et al. [33] proposed an error detection
method for stencil-based applications using the predicted val-
ues by a regression model. Dubey et al. [34] explored local
recovery schemes for applications using structured adaptive
mesh refinement (AMR). Exploiting the inherent structure
within applications, recovery granularities can be controlled
at cell, box, and level depending on failure modes. This work
also assumes immediate error detection. We share the context
of stencils and attempts to confine error recovery scope, but
our work is clearly different with its focus on latent errors.

VIII. SUMMARY AND FUTURE WORK

We propose an application-based focused recovery (ABFR)
for stencil computations to efficiently recover from latent
errors. This approach exploits stencil semantics and inex-
pensive versioned states to bound error impact and confine
recovery scope. This focused recovery approach can yield
significant performance benefits. We analyze and character-
ize the ABFR approach on stencils, creating a performance
model parameterized by error rate and detection interval (error
latency). Experiments with the Chombo heat equation applica-
tion show promising results, reducing both recovery cost (up
to 400x) and recovery latency (up to 4x), and validating the
model. Future directions include (1) building a framework that
generalizes ABFR ideas and defines requirements to exploit
ABFR in other applications; (2) demonstrating an application-
agnostic ABFR runtime that supports portable and scalable
performance; (3) and the analytical study of optimal versioning
intervals and detection intervals.

REFERENCES

[1] K. Bergman et al., “Exascale computing study: Technology challenges
in achieving exascale systems,” Defense Advanced Research Projects
Agency Information Processing Techniques Office (DARPA IPTO),
Tech. Rep. TR-2008-13, 2008.

[2] S. Amarasinghe et al., “Exascale software study: Software challenges in
extreme scale systems,” DARPA IPTO, Air Force Research Labs, Tech.
Rep, Tech. Rep., 2009.

[3] C. Martino et al., “Lessons learned from the analysis of system failures
at petascale: The case of blue waters,” in DSN ’14, 2014.

[4] C. D. Martino et al., “Measuring and understanding extreme-scale
application resilience: A field study of 5,000,000 hpc application runs,”
in DSN ’15, 2015.

[5] G. Lu et al., “When is multi-version checkpointing needed?” in FTXS
’13, 2013.

[6] F. Cappello et al., “Toward exascale resilience: 2014 update,” Super-
comput. Front. Innov, 2014.

[7] M. Snir et al., “Addressing failures in exascale computing,” Int. J. High
Performance Computing Applications, 2014.

[8] F. Cappello, “Fault tolerance in petascale/exascale systems: Current
knowledge, challenges and research opportunities,” Int. J. High Perfor-
mance Computing Applications, 2009.

[9] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Computers, 1984.

[10] Z. Chen, “Online-abft: An online algorithm based fault tolerance scheme
for soft error detection in iterative methods,” in PPoPP ’13, 2013.

[11] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Gener. Comput. Syst., 2006.

[12] G. Aupy, A. Benoit, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni,
“On the combination of silent error detection and checkpointing,” in
2013 IEEE 19th Pacific Rim International Symposium on Dependable
Computing, Dec 2013, pp. 11–20.

[13] E. Gelenbe, “A model of roll-back recovery with multiple checkpoints,”
in Proc. 2nd Int. Conf. on Software Engineering, 1976.

[14] L. Bautista-Gomez et al., “Fti: High performance fault tolerance inter-
face for hybrid systems,” in SC ’11, 2011.

[15] A. Moody et al., “Design, modeling, and evaluation of a scalable multi-
level checkpointing system,” in SC ’10, 2010.

[16] M. Shantharam et al., “Fault tolerant preconditioned conjugate gradient
for sparse linear system solution,” in ICS ’12, 2012.

[17] P. Du et al., “Algorithm-based fault tolerance for dense matrix factor-
izations,” in PPoPP ’12, 2012.

[18] A. Chien, et al., “Versioned distributed arrays for resilience in scientific
applications: Global view resilience,” Procedia Computer Science, 2015.

[19] A. Chien et al., “Exploring versioned distributed arrays for resilience in
scientific applications: global view resilience,” Int. J. High Performance
Computing Applications, 2016.

[20] N. Dun et al., “Data decomposition in monte carlo neutron transport
simulations using global view arrays,” Int. J. High Performance Com-
puting Applications, 2015.

[21] A. Fang and A. A. Chien, “Applying gvr to molecular dynamics:
Enabling resilience for scientific computations,” University of Chicago,
Tech. Rep. TR-2014-04, 2014.

[22] “Nersc cori,” https://www.nersc.gov/users/computational-systems/cori/.
[23] “Juqueen,” http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/

JUQUEEN/JUQUEEN_node.html.
[24] N. Dun et al., “Multi-versioning performance opportunities in bgas

system for resilience,” in Int. Conf. High Performance Computing.
Springer, 2016.

[25] K. Datta et al., “Optimization and performance modeling of stencil
computations on modern microprocessors,” SIAM Rev., 2009.

[26] J. F. Epperson, An introduction to numerical methods and analysis. John
Wiley & Sons, 2013.

[27] A. Fang et al., “Resilience for stencil computations with latent errors
(extended report),” INRIA, Research report RR-9042, 2017.

[28] M. Gamell et al., “Local recovery and failure masking for stencil-based
applications at extreme scales,” in SC ’15, 2015.

[29] K. Ferreira et al., “Evaluating the viability of process replication
reliability for exascale systems,” in SC’11, 2011.

[30] P. Colella et al., “Chombo software package for AMR applications
design document,” LBNL, Tech. Rep., 2009.

[31] E. Berrocal et al., “Lightweight silent data corruption detection based
on runtime data analysis for hpc applications,” in HPDC ’15, 2015.

[32] A. R. Benson et al., “Silent error detection in numerical time-stepping
schemes,” Int. J. High Performance Computing Applications, 2014.

[33] V. C. Sharma, G. Gopalakrishnan, and G. Bronevetsky, “Detecting soft
errors in stencil based computations,” Geophysics, 1983.

[34] A. Dubey et al., “Granularity and the cost of error recovery in resilient
amr scientific applications,” in SC ’16, 2016.


