
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing
to Big Data Algorithms

H. Anzt, J. Dongarra, M. Gates, J. Kurzak, P. Luszczek, S. Tomov
and I. Yamazaki

Abstract ���1 AQ1

1 Introduction2

1.1 High Performance Computing Meets Big Data3

High Performance Computing (HPC), meaning scientific and engineering comput-4

ing, with emphasis on simulation, offers decades of experience in crunching numbers5

at the highest speeds, using machines form the high end of the hardware spectrum.6

Big Data, meaning data analytics, has been shifted more toward the lower end of7

that spectrum, where the price/performance ratio is more favorable. Now that Big8

Data problems enter the mainstream of computing, many solutions from HPC can9

be applied to Big Data.10

H. Anzt · J. Dongarra · M. Gates · J. Kurzak (B) · P. Luszczek · S. Tomov · I. Yamazaki
Innovative Computing Laboratory, University of Tennessee,
1122 Volunteer Blvd, Knoxville, TN 37996, USA
e-mail: kurzak@icl.utk.edu

H. Anzt
e-mail: hanzt@icl.utk.edu

J. Dongarra
e-mail: dongarra@icl.utk.edu

M. Gates
e-mail: mgates3@icl.utk.edu

P. Luszczek
e-mail: luszczek@icl.utk.edu

S. Tomov
e-mail: tomov@icl.utk.edu

I. Yamazaki
e-mail: iyamazak@icl.utk.edu

© Springer International Publishing AG 2016
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_23

1

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2 H. Anzt et al.

This chapter opens with a discussion of the main differences between the hard-11

ware/software stacks of Big Data and HPC. Then two prominent HPC workloads12

are introduced, which happen to be in widespread use in the Big Data domain, the13

Alternating Least Squares (ALS) algorithm and the Singular Value Decomposition14

(SVD). Then the main techniques for maximizing the performance of the implemen-15

tations are discussed. A comprehensive discussion of the implementation details of16

the ALS algorithm follows. Then a thorough presentation of the implementation17

details of the SVD algorithm is given. The chapter is concluded with the summary18

of the most important points.19

High Performance Computing: In the 1980s, vector supercomputing dominated20

high-performance computing, as embodied in the eponymously named systems21

designed by the late Seymour Cray. The 1990s saw the rise of massively parallel22

processing (MPPs) and shared memory multiprocessors (SMPs) built by Thinking23

Machines, Silicon Graphics, and others. In turn, clusters of commodity (Intel/AMD24

x86) and purpose-built processors (such as IBM’s BlueGene), dominated the previ-25

ous decade.26

Today, these clusters are augmented with computational accelerators in the form of27

coprocessors from Intel and graphical processing units (GPUs) from NVIDIA; they28

also include high-speed, low-latency interconnects (such as InfiniBand). Storage area29

networks (SANs) are used for persistent data storage, with local disks on each node30

used only for temporary files. This hardware ecosystem is optimized for performance31

first, rather than for minimal cost.32

Atop the cluster hardware, Linux provides system services, augmented with par-33

allel file systems (such as Lustre) and batch schedulers (such as PBS and SLURM)34

for parallel job management. MPI and OpenMP are used for internode and intranode35

parallelism, augmented with libraries and tools (such as CUDA and OpenCL) for36

coprocessor use. Numerical libraries (such as LAPACK and PETSc) and domain-37

specific libraries complete the software stack. Applications are typically developed38

in Fortran, C, or C++. Figure 1 (right) shows the mainstream HPC system stack.39

Big Data: Just a few years ago, the very largest data storage systems contained only40

a few terabytes of secondary disk storage, backed by automated tape libraries. Today,41

commercial and research cloud-computing systems each contain many petabytes of42

secondary storage, and individual research laboratories routinely process terabytes43

of data produced by their own scientific instruments.44

As with high-performance computing, a rich ecosystem of hardware and soft-45

ware has emerged for big data analytics. Unlike scientific computing clusters, data-46

analytics clusters are typically based on commodity Ethernet networks and local47

storage, with cost and capacity the primary optimization criteria. However, industry48

is now turning to FPGAs and improved network designs to optimize performance.49

Atop this hardware, the Apache Hadoop system implements a MapReduce model50

for data analytics. Hadoop includes a distributed file system (HDFS) for managing51

large numbers of large files, distributed (with block replication) across the local stor-52

age of the cluster. HDFS and HBase, an open source implementation of Google’s53

BigTable key-value store, are the big data analogs of Lustre for computational sci-54

ence, albeit optimized for different hardware and access patterns.55

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 3

B
&

W
IN

PR
IN

T

Fig. 1 The mainstream big data stack (left) versus the mainstream HPC stack (right)

Atop the Hadoop storage system, tools (such as Pig) provide a high-level pro-56

gramming model for the two-phase MapReduce model. Coupled with streaming57

data (Storm and Flume), graph (Giraph), and relational data (Sqoop) support, the58

Hadoop ecosystem is designed for data analysis. Moreover, tools (such as Mahout)59

enable classification, recommendation, and prediction via supervised and unsuper-60

vised learning. Unlike scientific computing, application development for data ana-61

lytics often relies on Java and Web services tools (such as Ruby on Rails). Figure 162

(left) shows the mainstream Big Data system stack.63

1.2 Application Areas64

This chapter discusses HPC implementations of two mainstream Big Data algo-65

rithms. While the first one, Alternating Least Squares (ALS), has primarily commer-66

cial applications, the second one, Singular Value Decomposition (SVD), is uniformly67

applicable to a wide range of problems in science, engineering, and commerce.68

The Alternating Least Squares algorithm provides a classic solution for build-69

ing a recommender system for e-commerce, and was one of the more successful70

approaches to the Netflix Prize challenge. The importance of the algorithm is in71

its ability to deal with systems with implicit feedback, when the user’s preference72

towards some products or content is known, while it is unknown for others. The73

weighted regularization process employed in the ALS algorithm allows for attach-74

ing higher weights to the known values and lower weight to the unknown values,75

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4 H. Anzt et al.

therefore effectively reconstructing the unknown values, as opposed to treating them76

as lack of interest. This approach leads to much more accurate recommendations77

than the simpler similarity-based algorithms.78

One of the first open source implementations of the ALS algorithms was pro-79

duced in Java, as part of the Mahout machine learning package [48], which relied80

on the MapReduce paradigm provided by the Hadoop framework [34, 60]. As the81

MapReduce approach is being ousted by the Resilient Distributed Datasets (RDD)82

of the Spark framework [67], a faster implementation showed up in the Spark MLlib83

library [44]. Also, ALS was one of the first algorithms implemented in the GraphLab84

package [37], and also, for some time now, has been available in the Data Analytics85

Acceleration Library (DAAL) from Intel [26]. Finally, the first state of the art GPU86

implementation was produced by the authors of this chapter [16], and followed by87

similar developments from other groups [57].88

The Singular Value Decomposition is ubiquitous in statistics and scientific com-89

puting and commonly applied to problems where the matrices are large and substan-90

tial computational power is required. Prime examples of application areas include91

astrophysics, genomics, climate data analysis, and information retrieval systems. In92

astrophysics, the SVD is used on massive datasets from astronomical surveys for93

spectral classification, e.g., to predict morphological types using galaxy spectra, and94

to select quasar candidates from sky surveys. In genomics, the SVD is routinely used95

to analyze genome-wide single-nucleotide polymorphism (SNP) data, for detecting96

population structure and potential outliers. In climate data analysis, Empirical orthog-97

onal function (EOF) and the SVD are the methods of choice for analyzing spacial98

and temporal variability of geophysical data. The SVD is also the primary tools for99

latent semantic indexing (LSI) in information retrieval systems, where it is used to100

find low-rank approximations to term-document matrices, enabling computation of101

query-document similarity scores in low-rank representation, as well as automated102

document categorization.103

Randomized algorithms have been developed for the singular value decompo-104

sition [36, 42]. Great surveys of recent developments in randomization algorithms105

were published by Halko [21] and Mahoney [41]. In terms of software, singular value106

solvers are available in Skylark and Mahout. Skylark is an open-source software107

project launched by IBM Research with the objective to develop a set of random-108

ized machine learning algorithms that support distributed memory and are accessible109

through Python interfaces. Skylark uses a number of sketching transforms to imple-110

ment a few randomized linear algebra solvers, including a singular value solver based111

on the work by Halko et al. [21]. Mahout is a project of the Apache Software Foun-112

dation to produce free implementations of distributed or otherwise scalable machine113

learning algorithms focused primarily in the areas of collaborative filtering, cluster-114

ing, and classification [48]. In addition to a classic Lanczos SVD algorithm, Mahout115

also contains an implementation of a stochastic (randomized) SVD routine [40].116

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 5

1.3 Tricks of the Trade117

Two techniques discussed here and borrowed from the field of High Performance118

Computing, are automated software tuning and randomization algorithms. The tech-119

nique of automated software tuning mostly addressed the challenges of programming120

modern computing devices, such as GPU accelerators, in a way that provides portable121

performance, i.e., not only allows getting maximum performance from a particular122

device, but also allows for porting to a new device by retuning rather than rewrit-123

ing/redesigning the code. The technique of randomization allows dealing with one124

of the most burning problems of processing Big Data, which is the lagging of IO125

capabilities behind processing capabilities in modern hardware.126

Automated Software Tuning: Although Moore’s Law has still been in effect in the127

last few years, the multicore revolution initiated the trend, in processor design, of128

going away from architectural features that do not directly contribute to processing129

throughput. This means preference towards shallow pipelines with in-order execution130

and cutting down on branch prediction and speculative execution. On top of that,131

virtually all modern architectures require some form of vectorization to achieve top132

performance, whether it being short-vector SIMD (Single Instruction Multiple Data)133

extensions of CPU cores, or SIMT (Single Instruction Multiple Thread) pipelines134

of GPU accelerators. With the landscape of future High Performance Computing135

populated with complex, hybrid, vector architectures, automated software tuning may136

provide a path towards portable performance without heroic programming efforts.137

Automated software tuning was pioneered by projects like ATLAS and Spiral,138

and is the objective of numerous academic projects, and is also practiced by hard-139

ware vendors providing libraries like BLAS for their devices. The basic premise140

is to explore a search space and find the best performers. The search space can be141

defined by a set of tunable parameters, code transformations, implementation vari-142

ants, hardware switches, etc. It can then be pruned by applying a set of constraints143

that eliminate obvious underperformers. Finally, it can be searched to find the win-144

ners. Exhaustive search, steepest descent methods, genetic algorithms are all valid145

approaches.146

Randomization Algorithms: The landscape of future High Performance Computing147

presents an explosive growth in the volume of data, and a relatively dismal growth in148

the capabilities of communication and IO systems. Under such conditions, it becomes149

increasingly important to find algorithms that communicate less, and perform IO150

operations even less. For an important set of problems in numerical computing, a class151

algorithms emerges that seem to be an answer to these challenges—randomization152

algorithms.153

The new classes of random sampling and random projection algorithms offer154

numerous advantages when dealing with large datasets coming from both scien-155

tific applications (astrophysics, genomics, climate modeling), as well as commercial156

applications (social networks, information retrieval systems, financial transactions).157

In many cases, randomized algorithms beat their classical counterparts in terms of

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6 H. Anzt et al.

accuracy, speed, and robustness. They utilize modern computer architectures bet-158

ter by exposing higher levels of parallelism than traditional numerical methods. At159

the same time, they often produce more numerically robust solvers by introducing160

implicit regularization.161

2 GPU Acceleration of Alternating Least Squares162

Web-based services such as movie databases and online retailers increasingly rely163

on recommendation systems to suggest products to their customers. Collaborative164

Filtering (CF) is a class of recommendation systems that recommends products based165

on what other customers with similar interests have enjoyed [17]. It harvests infor-166

mation collected from a large set of users, which can be either explicit feedback, such167

as “likes” or product ratings; or implicit feedback, such as purchases, time spent, or168

search patterns. This yields a large dataset to process, for instance, the Netflix Prize169

dataset has over 100 million ratings [4].170

Collaborative Filtering algorithms are based on observation data in a relation171

matrix R, where each entry denotes how a user rated or interacted with an item. As172

each user rates only a small subset of the items, most entries are unknown, i.e., the173

matrix R is sparse. The goal is to determine the unknown values in R for how a user174

would hypothetically rate every item. Thus it is an instance of the matrix completion175

problem [9], to determine the unknown entries of a sparsely sampled matrix. In recent176

years, latent feature models have assumed a small set of features—such as movie177

genres—drive users’ interest. However, these latent features are determined by the178

algorithm, without any explicit, a priori assigned meaning. This small set of features179

implies the matrix R is (approximately) low-rank.180

Besides providing an algorithm to complete R, an added benefit of the low-181

rank model is that it determines R in a compact representation, R = X T Y , taking182

O( f m + f n) space instead of O(mn) space for m users, n items, and rank f � m, n.183

For a site with millions of users and millions of products, this compact representation184

makes storing and accessing the recommendations database tractable.185

In addition to recommendation systems, the matrix completion problem occurs186

in numerous other contexts. Examples include recovery of missing pixels of an187

image [27], inferring 3D structure from motion of images [10], and determining188

sensor positions from incomplete distance measurements [8].189

Various methods exist for computing the matrix completion. Many CF systems190

used neighborhood models [30]. For low-rank models, Candès and Recht [9] used191

convex relaxation, and proved that R can be completed if sufficient entries are known.192

Stochastic gradient descent [8, 50] and alternating least squares (ALS) [27, 70] are193

popular methods. We will focus on the ALS method, which has adaptations for both194

explicit [70] and implicit feedback [23].195

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 7

We propose both multi-core CPU and GPU implementations that are able to196

exploit the computing power of state-of-the-art processors and accelerators. We197

compare performance with the open source implementations available in Mahout [1],198

GraphLab [12], and Spark MLlib [2, 44, 67], and report significant speedups for199

selected benchmark datasets.200

2.1 Explicit Feedback201

For explicit feedback, entry rui of R denotes how user u rated item i . Since users202

have not rated all items, the goal is to complete the missing entries of R. We assume203

that R is approximately low-rank, such that R ≈ X T Y , where X is f × m and Y is204

f × n for m users, n items, and rank or feature space size f . This latent feature space205

is small compared to the number of users and items, e.g., from 10 to 100, depending206

on the application. Column xu of X represents user u, and column yi of Y represents207

item i , such that their inner product yields the rating, rui ≈ xT
u yi .208

Determining X and Y is commonly expressed as an optimization problem, with209

a summation over known rui entries,210

min
X,Y

∑

u,i
rui is known

(
rui − xT

u yi
)2 + λ

(
∑

u

‖xu‖2 +
∑

i

‖yi‖2

)
. (1)211

Here, λ is a regularization term to avoid overfitting. This can be solved with stochastic212

gradient descent or alternating least squares.213

To solve using ALS, we observe that if X or Y is fixed, the cost function (1)214

becomes a linear least squares problem. ALS iterates two steps: fixing Y and solving215

for X , then fixing X and solving for Y . In the first step, fixing Y and finding where216

the gradient is zero yields217

(
Y DuY T + λI

)
xu = Yru for u = 1, . . . , m218

219

to solve for each user-factor xu . Each of the m user-factors can be solved indepen-220

dently, providing a large amount of parallelism. Here, ru is row u of the R matrix,221

and Du is a binary diagonal matrix that selects columns of Y corresponding to known222

rui values. Similarly, in the second step, fixing X yields223

(
X Di X T + λI

)
yi = Xri for i = 1, . . . , n224

225

to solve for each item-factor yi , where ri is column i of the R matrix, and Di selects226

columns of X for known rui values. Experiments have shown that the user- and227

item-factors typically converge after a few iterations of these two steps [70].228

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8 H. Anzt et al.

2.2 Implicit Feedback229

For implicit feedback, Hu et al. [23] note that a large rui value does not necessarily230

indicate a higher preference, but instead gives a higher confidence. For instance, a231

user may enjoy watching a moderately good TV show every week, yielding a large232

rui value, but watch a beloved movie just once or twice, yielding a small rui value,233

despite its stronger preference. Therefore, they propose a preference matrix P with234

binary values,235

pui =
{

1 if rui > 0,

0 if rui = 0,
236

237

to indicate whether user u has a preference for item i . Larger rui values indicate238

greater confidence in this preference, so a matrix C with entries cui = 1 + αrui is239

introduced that measures the confidence of the preference pui . Here some minimal240

confidence is given even to zero entries, while α weights known values more. Hu et al.241

found α = 40 to work well. For implicit feedback, instead of completing the relation242

matrix R, the goal is to complete the preference matrix as P ≈ X T Y . Again, X and243

Y can be computed by minimizing a cost function,244

min
X,Y

∑

u,i

cui
(

pui − xT
u yi

)2 + λ

(
∑

u

‖xu‖2 +
∑

i

‖yi‖2

)
. (2)245

246

The major difference compared to explicit feedback is that the sum is over all u and i ,247

not just those with nonzero rui values, since some minimal confidence is given even248

to zero entries. This means there are mn terms, making stochastic gradient descent249

prohibitively expensive for implicit feedback, whereas for explicit feedback only the250

nonzero rui values have terms in (1). Therefore, we apply the alternating least squares251

algorithm, similar to the explicit feedback case above, yielding252

(
Y CuY T + λI

)
xu = Y Cu pu for u = 1, . . . , m;253

(
XCi X T + λI

)
yi = XCi pi for i = 1, . . . , n;254

255

to solve for each xu and for each yi , where Cu is a diagonal matrix of row u of the256

confidence matrix C , Ci is a diagonal matrix of column i of C , pu is row u of the257

preference matrix P , and pi is column i of P . Pseudocode is given in Algorithm 1.258

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 9

Algorithm 1 Pseudocode of alternating least square algorithm iterating user-factors
and item-factors.

function als( input: α, λ, R; output: X, Y )
set Y to random initial guess
while not converged

// update user-factors X
for u = 1, . . . , m

solve
(
Y CuY T + λI

)
xu = Y Cu pu for xu

end
// update item-factors Y
for i = 1, . . . , n

solve
(
XCi X T + λI

)
yi = XCi pi for yi

end
end

end function

The two steps, updating the user-factors and the item-factors, are identical except259

for swapping the input and output matrices. Therefore, we will subsequently focus260

on updating the user-factors, and the item-factors will follow similarly. The explicit261

and implicit feedback ALS algorithms are also very similar; we will concentrate on262

implicit feedback.263

For computational efficiency, the product can be factored as264

Y CuY T = Y Y T + αY RuY T ,265

where Ru is a diagonal matrix of row u of R, as shown schematically in Fig. 2.266

Since Y Y T is the same for all users, it can be computed once per iteration [23],267

which is done efficiently using the syrk (symmetric rank-k update) BLAS routine.268

(Explicit feedback lacks the Y Y T term.) The remaining term, αY RuY T , involves269
B

&
W

IN
PR

IN
T

Au

f  f
=

Ai

f  f =

for users u = 1, ..., m

for items i = 1, ..., n

Ri

m  m

Ru

n  nY
f  n

YT

n  f
+ YYT +  I

X
f  m

XT

m  f
+ XXT +  I

m
  u

se
rs

n  items

R

Fig. 2 Diagram of computation of user-factors and item-factors. R is general sparse, Ru and Ri

are sparse diagonal, X, Y, Au , Ai are dense

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 H. Anzt et al.

B
&

W
IN

PR
IN

TFig. 3 Schematic of
Au = Y RuY T and
b = Y Cu pu . Shaded boxes
in row ru represent nonzeros;
only corresponding shaded
columns of Y and rows of
Y T contribute to Au and b

Y

ru

YT

Au = V T + W

V = Ru

b = (1 + ru)

a dense matrix Y and the sparse diagonal matrix Ru , which will require a custom270

kernel. Under mild assumptions, Y CuY T + λI is symmetric positive definite (SPD),271

allowing us to solve it with the Cholesky factorization.272

2.3 CPU Implementation273

In the product Y RuY T , the sparse diagonal matrix Ru selects and scales a few columns274

of Y , as shown in Fig. 3. Columns of Y corresponding to zeros in Ru are ignored.275

As k, the number of nonzeros in Ru , is typically much less than n, the number of276

columns of Y , the kernel should take advantage of this sparsity, reducing the cost277

from a rank-n update to a rank-k update, with k � n.278

For instance, with the Netflix dataset and f = 64, the problem is to generate279

and solve m = 480190 systems, each formed by a 64 × 64 rank-k update, with280

the average k = 209 (see Fig. 5). There is not enough parallelism in computing a281

single system for an efficient multi-core implementation. Instead, we do a batched282

implementation that generates and solves the m systems in parallel. For this, we use283

OpenMP to parallelize the loops in Algorithm 2.284

High efficiency can be attained by relying on optimized Level 3 BLAS routines,285

which operate on matrices instead of individual vectors, enabling data reuse and286

optimizations for cache efficiency, improving performance to be compute-bound287

instead of memory-bound. To use Level 3 BLAS, we copy the relevant columns of Y288

to workspaces Ŷ and V , with the Ru column scaling included in V , as shown in Fig. 3,289

then use a gemm (general matrix-matrix multiply) BLAS call. Since A is symmetric,290

work could be reduced by using an extended BLAS routine such as gemmt in Intel291

MKL [25] or syrkx in NVIDIA cuBLAS [46] instead of gemm.292

Updating the item-factors is exactly the same, except it uses columns of R instead293

of rows of R. For updating the user-factors, we store R in CSR (compressed sparse294

row) format, which gives efficient, contiguous access to each row of R, but slow295

access to columns of R. For efficiency in updating the item-factors, we also store R296

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 11

Algorithm 2 Multi-core CPU ALS algorithm.
function als_cpu( input: α, λ, R; output: X, Y )

set Y to random initial guess
while not converged

// update user-factors X
W = Y Y T + λI using syrk BLAS
parallel for u = 1, . . . , m

copy columns of Y corresponding to nonzeros in ru to Ŷ
copy and scale columns of Ŷ as V = Ŷ Ru

accumulate scaled columns of Ŷ as bu = Ŷ (1 + αru)

Au = αV Ŷ + W using gemm BLAS (single-threaded)
solve Au xu = bu using Cholesky (single-threaded)

end
// update item-factors Y
W = X X T + λI using syrk BLAS
parallel for i = 1, . . . , n

copy columns of X corresponding to nonzeros in ri to X̂
copy and scale columns of X̂ as V = X̂ Ri

accumulate scaled columns of X̂ as bi = X̂(1 + αri )

Ai = αV X̂ + W using gemm BLAS (single-threaded)
solve Ai yi = bi using Cholesky (single-threaded)

end
end

end function

in CSC (compressed sparse column) format, which gives efficient, contiguous access297

to each column of R.298

Because the number of nonzeros per row can vary significantly (see Fig. 5), there299

will be a load imbalance between different processors. This is easily solved by using300

the OpenMP dynamic scheduler, adding schedule(dynamic,NB), with a block301

size NB. We set NB=200, but performance is not sensitive to the exact value.302

2.4 GPU Implementation303

A brief summary of the GPU architecture will help to understand the GPU implemen-304

tation. A GPU kernel divides its computation into a grid of thread blocks, and each305

thread block into a grid of threads. Within each thread block, threads are not indepen-306

dent, but execute the same instructions on different data. Threads can synchronize307

and communicate via shared memory, which is a kind of fast, user-controlled cache.308

Each thread’s local variables are stored in a large register file. Different thread blocks309

execute asynchronously, without an easy way to synchronize or communicate. An310

NVIDIA Kepler GPU contains up to 15 multiprocessors, each with 192 cores.311

Due to this GPU architecture, the GPU implementation shown in Algorithm 3312

is structured differently than the CPU implementation in Algorithm 2. Each thread313

block computes one tile of a matrix Au and its right-hand side bu . As with the CPU314

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

12 H. Anzt et al.

implementation, a single system has insufficient parallelism to fully occupy all the315

GPU’s cores. Filling a GPU requires hundreds of thread blocks and tens of thousands316

of threads. Therefore, we use a batched implementation, where a single GPU kernel317

generates a batch of s matrices using the batched_sparse_syrk routine, then a318

batched Cholesky routine factors them, and finally batched triangular solvers solve319

the resulting systems. We use the batched Cholesky and triangular solves from the320

BEAST project [33]. We used a batch size of s = 4096 to balance parallelism with321

GPU memory requirements. However, performance is not sensitive to the exact batch322

size.323

Algorithm 3 GPU implementation of ALS, using batched operations.
function als_gpu( input: α, λ, R; output: X, Y )

// workspaces: A is f × f × s, B is f × s
set Y to random initial guess
while not converged

// update user-factors X
W = Y Y T + λI using syrk from cuBLAS
for k = 1, . . . , m by batch size s

batched_sparse_syrk computes Au = αY RuY T + W and bu = Y Cu pu
for u = k, . . . , k + s

batched_cholesky factors Au for u = k, . . . , k + s
batched_solve solves Au xu = bu for u = k, . . . , k + s

end
// update item-factors Y
W = X X T + λI using syrk from cuBLAS
for i = 1, . . . , n by batch size s

batched_sparse_syrk computes Ai = αX Ri X T + W and bi = XCi pi
for i = k, . . . , k + s

batched_cholesky factors Ai for i = k, . . . , k + s
batched_solve solves Ai yi = bi for i = k, . . . , k + s

end
end

end function

The implementation of the batched_sparse_syrk GPU kernel is conceptually324

similar to the CPU kernel. Like the CPU kernel, it copies the relevant columns of Y325

to a workspace Ŷ , in this case stored in GPU shared memory. Instead of copying all326

the relevant columns at once, it copies just one block of kb columns at a time and327

multiplies these, storing the results in registers, then continues with the next block.328

Unlike the CPU version, here the copy and multiply are fused into one kernel. The329

multiply is based an optimized gemm GPU kernel [32], which sub-tiles the output330

matrix Au , with each GPU thread computing one entry in each sub-tile (Fig. 4).AQ2331

A few optimizations can be made. Since Au is symmetric, only the tiles on or332

below the diagonal need to be computed; tiles above the diagonal are known by333

symmetry. Also, since matrix Y is read-only, it is beneficial to bind its memory334

to GPU texture memory, which has optimized caching for read-only data. Texture335

memory also simplifies the code by dealing with out-of-bounds memory accesses336

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 13

B
&

W
IN

PR
IN

T

Y

YT

{nb

{ kb

ru

T

tile of 

Au

Au = Ru T + W

fast shared memory
and registers

main GPU memory

Fig. 4 Schematic of sparse-syrk GPU kernel. Au is divided into nb × nb tiles. Block of kb relevant
columns are loaded into shared memory and multiplied in registers at a time. At end, tile of Au in
registers is written back to main GPU memory. bu is also computed (not shown)

in hardware—the software can pretend that Y is bigger than it actually is. This337

allows for fixed loop bounds and eliminates cleanup code, enabling more compiler338

optimizations.339

2.5 Setup and Datasets340

For performance comparison, we chose three ALS implementations from popular341

data analytics software packages: Mahout version 0.9 [1, 48], GraphLab version342

1.3 [12, 37, 38], and Spark MLlib version 1.5 [2]. All results used single precision and343

were obtained on a two-socket 2.6 GHz Intel Sandy Bridge E5-2670 with 8 cores per344

socket. CPU implementations were linked with Intel’s Math Kernel Library (MKL)345

version 11.1.2 [25]. Our GPU implementation ran on an NVIDIA Kepler K40c GPU346

with CUDA version 7.0 [47].347

To compare performance, we target several recommendation datasets that are348

available online: Netflix Prize [4], Million Song [6], and Yahoo! Song [53]. For349

tuning parameters of the GPU implementation, we employ an autotuning sweep350

using the BEAST framework [24], with the EachMovie dataset [43, 53], a smaller351

dataset that permits executing a comprehensive set of kernel configurations in a352

moderate runtime. Table 1 summarizes properties of the datasets.353

For the Netflix Prize dataset, we show histograms in Fig. 5 of the number of354

nonzeros per row (left) and per column (right). The minimum, median, mean, and355

maximum number of nonzeros per row and column are annotated in each graph. As356

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

14 H. Anzt et al.

Table 1 Dataset properties

Dataset # users # items # nonzeros

Netflix prize 480,190 17,771 100,480,508

Million song 1,019,318 384,546 48,373,586

Yahoo! song 130,558 136,736 49,770,695

EachMovie 1,623 61,265 2,811,717

B
&

W
IN

PR
IN

T

Fig. 5 Nonzero distribution of rows (left) and columns (right) of Netflix Prize dataset

previously noted, the wide range of nonzeros per row and column means different357

users and items incur widely different costs in computing Y CuY T and XCi X T ,358

potentially leading to load imbalance.359

2.6 Auto Tuning360

The sparse-syrk GPU kernel has four tunable parameters: tile size nb, block size361

kb, and thread block dimensions dx and dy. The kernel is generalized so that any362

value of nb can be used for any feature space size f . The optimal parameters are not363

obvious and not easy to derive by an analytical formula. Therefore the factorization364

calls for a real autotuning sweep. To achieve high performance, classic heuristic365

automatic software tuning methodology is applied, where a large number of kernels366

are generated and run, and the fastest ones identified.367

The BEAST autotuning framework [39] enumerates and tests all possible kernel368

configurations. Various constraints are applied to limit the search space. Configu-369

rations violating correctness constraints—such as exceeding the maximum shared370

memory, or nb not divisible by the thread block dimensions—are eliminated. Sev-371

eral heuristic constraints are also applied, for instance, ensuring a compute-intensive372

kernel by requiring the ratio of multiply-add instructions to load instructions is at373

least 2. While kernels that violate these soft constraints will run correctly, they will374

not keep the GPU fully occupied, leading to lower performance.375

After applying these constraints, BEAST generated 330 kernel configurations to376

test. The kernels were tested on the modest sized EachMovie dataset, timing the377

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 15

B
&

W
IN

PR
IN

T

10 20 30 40 50 60 70 80 90 100

feature space size f

0

50

100

150

200

250

300

350

400

450
G
flo
p/
s

Y CuY T

10 20 30 40 50 60 70 80 90 100

feature space size f

0

50

100

150

200

250

300

G
flo
p/
s

XCiXT
nb, kb, dx, dy
16, 8, 8, 8
16, 4, 20, 8
24, 4, 8, 8
24, 8, 8, 8
24, 8, 24, 8
32, 8, 8, 8
32, 8, 8, 16
32, 8, 16, 16
32, 8, 32, 16
40, 8, 8, 8
48, 8, 8, 16
48, 8, 16, 16
64, 8, 8, 16
80, 8, 16, 16

Fig. 6 Performance of all kernels (gray lines), highlighting ones that are best for some size. Circled
kernel is chosen as best for each size(color figure online)

sparse-syrk for both the user-factor and the item-factor matrix generation. Due to378

differences in the size of Y and X and the sparsity of Ru and Ri , the performance379

was not identical between these two. We ran tests for sizes of f that are multiples of380

8 and multiples of 10, from 8 to 100.381

The performance of all these kernels is plotted in gray in Fig. 6. Kernels that were382

best for some size are highlighted with colored markers. For each size f , the circled383

kernel was chosen as the best overall kernel.384

Inspecting the data reveals that no one configuration was optimal across all feature385

space sizes. Taking the yellow diamond (80, 8, 16, 16)kernel as an example: for small386

f it is a poor performer, but the performance increases as f increases, until it is the387

best kernel for f = 80, where f = nb. For the next size, f = 88, its performance388

plummets to less than half the optimal performance. This occurs because it goes from389

one tile to four tiles covering each matrix A, wasting three large tiles to cover the390

extra 8 rows and columns. This saw tooth pattern is evident for all the configurations.391

While often the best kernel for user-factors (left in Fig. 6) and item-factors (right)392

is the same, there are several instances where this is not true due to the difference in393

sparsity patterns. In these cases, the kernel with the best geometric mean performance394

is chosen as the best compromise between the two.395

This analysis highlights the need for autotuning. The performance difference396

between the best and worst kernels is dramatic—between a factor of 6 and 72 times397

for a particular f . Also, the optimal kernel configuration depends heavily on the398

size f , and to a lesser extent on the actual dataset. While some kernel configurations399

make sense in retrospect, it was infeasible to predict optimal kernels in all cases.400

2.7 Performance Evaluation401

Execution time of a single ALS iteration (updating user-factors and item-factors402

once) for the three large benchmark databases—Netflix, Million Song, and Yahoo!403

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

16 H. Anzt et al.

B
&

W
IN

PR
IN

T
Fig. 7 Time in log scale (top) and linear scale (bottom) for single ALS iteration, using 16 CPU
cores or GPU

Song—is presented in Fig. 7, in both log and linear scale. This covers a range of404

feature space sizes, all using 16 CPU cores or the GPU. A large performance dif-405

ference between implements is evident. Mahout is nearly two orders-of-magnitude406

slower than GraphLab and Spark. This is not surprising, as Mahout is written in407

Java while GraphLab is a newer implementation written in C++. Spark, while writ-408

ten in Scala/Java, links with native optimized BLAS to achieve good performance.409

For f ≥ 50 with the Yahoo and Netflix datasets, Spark had performance compara-410

ble to GraphLab. However, with the Million Song dataset, the Spark execution time411

increased markedly for f ≥ 50, and it encountered an exception for f ≥ 80. Our412

CPU implementation is 10 times faster than GraphLab and 19 times faster than Spark413

MLlib, on average.414

The speedup of our GPU implementation over Mahout, GraphLab, Spark, and our415

CPU implementation is given in Fig. 8. The GPU achieves an average speedup of 2.1416

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 17

B
&

W
IN

PR
IN

T

Fig. 8 Speedup in log scale of GPU implementation over Mahout, GraphLab, Spark, and CPU
implementations using 16 cores

times over our CPU implementation. Compared to GraphLab, the GPU is on average417

20.9 times faster, and compared to Spark it is 35.3 times faster. Mahout performs418

poorly, taking 1684 times longer, on average, to compute a single ALS iteration.419

While speedups are similar across datasets, our GPU implementation consistently420

gets the best speedups for the Netflix dataset and the least speedups for the Million421

Song dataset. This may be because the Million Song dataset has the smallest average422

nonzeros-per-row and nonzeros-per-column, with a mean of 47 nonzeros per row and423

126 per column, compared to 209 and 5654 for the Netflix dataset (Fig. 5). Having424

more nonzeros means a higher floating point operation count in the sparse-syrk425

routine to amortize memory reads.426

We have presented both a multi-core CPU and a GPU implementation for the427

alternating least-squares algorithm to compute recommendations based on implicit428

feedback datasets. The central kernel involved is sparse_syrk, an algorithm-specific429

kernel achieving compute-bound performance for multiplying two dense matrices430

scaled by a sparse diagonal matrix. Our results demonstrate the advantage of fully431

exploiting the available parallelism by using a batched implementation, along with432

using optimized kernels, either from the vendor’s BLAS library or custom auto-tuned433

kernels. This yields good performance over several different datasets and a range of434

feature space sizes.435

3 GPU Acceleration of Singular Value Decomposition436

3.1 Introduction437

A partial singular value decomposition (SVD) [18] of a sparse matrix is a power-438

ful tool for data analysis, where the data is represented as the sparse matrix. The439

ability of the SVD to filter out noise and extract the underlying features of the data440

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

18 H. Anzt et al.

has been demonstrated in many applications, including Latent Semantic Indexing441

(LSI) [5, 13], recommendation systems [13, 55], population clustering [49], and442

subspace tracking [28]. The SVD is also used to compute the leverage scores – sta-443

tistical measurements for sampling the data in order to reduce the cost of the data444

analysis [21].445

In recent years, the amount of data being generated from the observations,446

experiments, and simulations has been growing at unprecedented paces in many447

areas of studies, e.g., science, engineering, medicine, finance, social media, and448

e-commerce [11, 14]. The algorithmic challenges to analyze such “Big Data” are449

exacerbated by its massive volume and wide variety as well as its high veracity and450

velocity [35]. Though the SVD has the potential to address the variety and veracity of451

the modern data sets, the traditional approaches to computing the partial SVD access452

the data repeatedly, e.g., block Lanczos [19]. This is a significant drawback on a453

modern computer, where the data access has become significantly more expensive454

compared to arithmetic operations, both in terms of time and energy consumptions.455

The gap between the communication and computation costs is expected to further456

grow on future computers [15, 20], and this high cost of the communication is exac-457

erbated by the Big Data. This hardware trend is certainly true for the GPU.458

3.2 Randomized Algorithms to Compute SVD459

To address this hardware trend, a randomized algorithm [21] has been gaining atten-460

tion since compared to the traditional algorithms, it may require fewer data accesses461

to compute the SVD of the matrices arising from the modern applications (see Fig. 9462

for an illustration of the algorithm). To compare the performance of different algo-463

rithms for computing the truncated SVD, we implemented the framework, which464

encapsulates these algorithms on multicore CPUs with multiple GPUs [64]. This465

framework not only allows us to develop software whose performance can be tuned466

based on domain specific knowledge, but it also allows a user from one discipline467

to test an algorithm from another, or to combine the techniques from different algo-468

rithms (see Fig. 10 for the list of the algorithms). For example, we studied the per-469

formance of a block Lanczos, combining it with communication-avoiding [22, 62]470

and thick-restarting [3, 61]; two techniques developed by two different disciplines471

B
&

W
IN

PR
IN

T

Fig. 9 Randomized algorithm to compute truncated SVD

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 19

B
&

W
IN

PR
IN

TFig. 10 Algorithms to
compute truncated SVD

– computer science and numerical linear algebra. These two techniques allow us to472

build the projection subspace with the minimum data access and accelerate the solu-473

tion convergence by retaining the useful information when restarting the iteration,474

respectively. Hence, compared to the randomized algorithm, Lanczos could build a475

projection subspace of the same dimension, which is richer in useful information476

with fewer communication phases, and potentially with about the same amount of477

data access. Unfortunately, this is possible only when the matrix can be partitioned478

well, while many of the matrices from the modern applications cannot be partitioned479

in such a way, leading to the significant overheads of the communication-avoiding480

technique in term of the computation and storage requirements, as well as the com-481

munication volume. Hence, there is a growing interest in a novel algorithm that can482

more efficiently compute the SVD of the massive data that are being generated from483

many modern applications, and the randomized algorithm is one of such algorithms484

with the potential.485

3.3 Hybrid CPU/GPU Implementation486

Figure 11 shows the pseudocode of a randomized algorithm to compute the SVD.487

Since the computational cost of the randomized algorithm is dominated by the cost488

of generating the projection basis vectors, P̂ and Q̂, we accelerate this step using489

GPUs, while the SVD of the projected matrix B is redundantly computed by each MPI490

process on CPU. To generate the basis vectors, the two main computational kernels491

of the randomized algorithm are the sparse-matrix dense-matrix multiply (SpMM)492

and the orthogonalization. In this subsections, we describe our implementations of493

these two kernels on a hybrid CPU/GPU cluster.494

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20 H. Anzt et al.

for j = 1,2, . . . ,s do
1. Orthogonalize ̂Q

QR := ̂Q
2. Sample range of A

̂P := AQ
3. Orthogonalize ̂P

PB := ̂P
4. Prepare to iterate

if j < s then
̂Q := AT P

end if
end for

(a) Power iteration to
generate subspace.

1. Generate ̂Pk+� and ̂Qk+� that approximate ̂A,
̂A ≈ ̂P ̂QT .

2. Compute SVD of the projected matrix B,
B = X ̂ΣY T ,

where B = ̂PT
̂A ̂Q.

3. Compute approximate partial SVD of ̂A,
̂Ak ≈ ̂Uk

̂Σk ̂V T
k ,

where ̂Uk = ̂PXk and ̂Vk = ̂QYk.

(b) Projection method to compute partial
SVD.

Fig. 11 Randomized algorithm to compute partial SVD based on power iteration

3.3.1 Sparse Matrix Matrix Multiply495

To perform SpMM with the matrix A on a hybrid CPU/GPU cluster, we distribute496

A among the GPUs in a 1D block row format (e.g., using a graph or hypergraph497

partitioning algorithm). The basis vectors P̂ and Q̂ are then distributed in the same498

formats. Then, to perform SpMM, each GPU first exchanges the required non-local499

vector elements with its neighboring GPUs. This is done by first copying the required500

local elements from the GPU to the CPU, then performing the point-to-point com-501

munication among the neighbors using the non-blocking MPI (i.e., MPI_Isend502

and MPI_Irecv), and finally copying the non-local vector elements back to the503

GPU. Then, each GPU computes the local part of the next basis vectors using the504

CuSPARSE SpMM in the compressed sparse row (CSR) format. This was an effi-505

cient communication scheme in our previous studies to develop a linear solver [65],506

where the coefficient matrix A arising from a scientific or engineering simulation is507

often sparse and structured, e.g., with three-dimensional embedding. Unfortunately,508

sparse matrices originating from the modern data sets such as social networks and/or509

commercial applications have irregular sparsity structures, and have wide ranges510

of nonzero counts per row. In fact, they often exhibit power-law distributions of511

nonzeros as they result from scale-free graphs. As a result, this point-to-point com-512

munication with all the neighbors at once could be inefficient (in term of time and513

buffer storage). To alleviate the problem, our current implementation is based on a514

collective communication scheme. For example, using MPI_Allgatherv, each515

process sends its local vector elements, which are needed by at least one of its neigh-516

bors, to all the processes. Though this all-to-all approach requires the buffer to store517

the receiving messages from all the processes at once, it could obtain a significant518

speedup over the point-to-point communication, especially when the nonzeros of the519

matrix follows the power-law distribution.520

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 21

B
&

W
IN

PR
IN

T

(a) 1DBR with neighborhood-
collective before local SpMM.

(b) 1DBC with all-reduce after local SpMM.

Fig. 12 Illustration of matrix and vector distributions for SpMM with A and AT . The submatrices
distributed to the same GPU are colored in the same color. In Figure (a) or (b), the sparse matrices
A and AT are distributed either in 1D block row or block column (1DBR or 1DBC in short),
respectively

Sine many matrices of our interests are tall-skinny, to perform SpMM with AT ,521

our current implementation keeps the input and output vectors, P̂ and Q̂, in the522

1D block row distribution, but distribute AT in the 1D block column (see Fig. 12b).523

Since the columns of AT are the same as the rows of A on each GPU, we do not524

need to separately store AT and A. In this implementation, each GPU first computes525

SpMM with its local parts of AT and P̂ , and then copies the partial result to the526

CPU. Then, the MPI process computes the final result Q̂ by a global all-reduce, and527

copies its local part back to the GPU. Hence, this requires each MPI process to store528

the global vectors Q̂. However, when AT has the power-law distribution, performing529

SpMM with AT in the 1D block row requires each GPU to store the much longer530

global vectors P̂ . Our performance results have demonstrated the advantage of this531

all-reduce communication. Furthermore, partitioning AT in the 1D block column532

often led to a higher performance of SpMM on each GPU as the local submatrix533

becomes more square than tall-skinny.534

3.3.2 Orthogonalization535

For our experiments in this paper, we used the block classical Gram-Schmidt (CGS)536

[18] to orthogonalize a set of vectors against another set of vectors (block orthogonal-537

ization, or BOrth in short) and the Cholesky QR (CholQR) [56] to orthogonalize the538

set of vectors against each other. In our previous studies, these algorithms obtained539

great performance on multiple GPUs on a single compute node [63] or on a hybrid540

CPU/GPU cluster [65]. This is because these algorithms can orthogonalize the basis541

vectors with a low communication cost. For example, CholQR requires only one542

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

22 H. Anzt et al.

global reduction between the GPUs, while most of the local computation is based on543

BLAS-3 kernels on the GPU.544

3.4 Randomized Algorithms to Update SVD545

Though the randomized algorithms have the potential to efficiently compute the SVD546

on the GPUs, there are several obstacles that need to be overcome. In particular, the547

randomized algorithm may require only a small number of data accesses, but each548

data access can be expensive due to the irregular sparsity pattern of the matrix and549

the power-law distribution of its nonzeros. Though several techniques to avoid such550

communication have been proposed [22], these techniques may not be effective for551

computing the SVD of the modern data because they often require a significant552

computational or communication overhead due to the particular sparsity structure of553

the matrix [64].554

To address this challenge, we studied randomized algorithms to update (rather than555

recompute) the partial SVD as the changes are made to the data set [66]. This is an556

attractive approach because compared to recomputing it from scratch, the SVD may557

be updated more efficiently, while in modern applications, the existing data are being558

constantly updated and new data is being added. Moreover, in some applications,559

recomputing the SVD may not be possible because the original data, for which the560

SVD has been already computed, is no longer available. At the same time, in modern561

applications, the size of the update is significant even though it is much smaller than562

the massive data that has been already compressed. Therefore, an efficient updating563

algorithm is needed to address the large volume and high velocity of the modern data564

sets. Such applications with the rapidly changing data include the communication565

and electric grids, transportation and financial systems, personalized services on the566

internet, particle physics, astrophysics, and genome sequencing [11].567

3.4.1 Case Studies568

To study the potential of the randomized algorithm, we studied its performance for a569

popular statistical analysis tool, the principal component analysis (PCA) [7]. In PCA,570

a multidimensional dataset is projected onto a low-dimensional subspace given by the571

partial SVD such that related items are close to each other in the projected subspace.572

Here, we show the results from two particular applications of PCA, Latent Semantic573

Indexing (LSI) and population clustering.574

For information retrieval by text mining [54], a variant of PCA, Latent Semantic575

Indexing (LSI) [13], has been shown to effectively address the ambiguity caused576

by the synonymy or polysemy, which are difficult to address using a traditional577

lexical-matching [31]. Figure 13a compares the average 11-point interpolated preci-578

sions [29] after adding different numbers of documents from the MEDLINE matrix.579

Our test matrices are the term-document matrices generated using the Text to Matrix580

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 23

B
&

W
IN

PR
IN

TFig. 13 Case studies with
randomized algorithms for
LSI (k = 50)

532 582 632 682 732 782 832 882 932 982 1032
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Number of documents

A
ve

ra
ge

 p
re

ci
si

on

Recompute
Update
Update−inc
Random−2

(a) Latent semantic indexing.

Total number of documents, n+d
Method 700 800 900 1000 1100 1200 1300 1400
Recompute 26.7 30.9 32.0 32.5 32.7 31.3 30.8 29.8
Update 26.7 29.8 30.1 30.7 31.5 30.7 30.4 29.7
Update-inc 26.7 29.8 30.1 30.6 30.9 30.1 29.8 29.5
Random-1 26.7 29.0 29.9 31.9 31.9 30.9 29.5 28.6
Random-2 26.7 29.6 29.6 30.0 31.0 30.1 30.0 29.7
Random-3 26.7 29.6 28.2 28.2 27.9 27.4 26.8 25.8

(b) Average 11-point interpolated precision for 6916-by-
1400 CRANFIELD matrix with 225 queries, n = 700.

Generator (TMG)1 and the TREC dataset,2 and are preprocessed using thelxn.bpx581

weighing scheme [29]. These are the standard test matrices and were used in the pre-582

vious studies [59, 68]. For our studies, we first performed 20 power iterations of583

the randomized algorithm to compute the rank-k approximation of the matrix Â584

representing the first 700 documents Then, the figure shows the average precision585

after new columns are added (e.g., under the column labeled “1000,” 300 docu-586

ments were added). To recompute the partial SVD of the matrix, we performed 20587

power iterations, while the randomized algorithm used the oversampling parameter588

set to be � = k (i.e., r = 2k), and performed two iterations that access the matrix589

three times. Since the basis vectors P̂ and Q̂ approximate the ranges of Â and ÂT ,590

respectively, the randomized algorithm accesses the matrix at least twice. Then, they591

access the matrix one more time to compute the projected matrix B. We let the592

incremental update algorithm (Update-inc) add k + � columns at a time such that it593

requires about the same amount of memory as the randomized algorithm. We see that594

with only three data passes, the randomized algorithm obtained similar precisions as595

those of the updating algorithm. In some cases, the updating and randomized algo-596

rithms obtained higher precisions than recomputing the SVD, while the precisions of597

1http://scgroup20.ceid.upatras.gr:8000/tmg.
2http://ir.dcs.gla.ac.uk/resources.

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

http://scgroup20.ceid.upatras.gr:8000/tmg
http://ir.dcs.gla.ac.uk/resources


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

24 H. Anzt et al.

B
&

W
IN

PR
IN

TFig. 14 Case studies with
randomized algorithms for
population clustering

−0.058 −0.056 −0.054
0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04
JPT
CHB
CHD

−0.055 −0.05 −0.045
−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07
MEX

Average Clustering Correlation Coefficient = 0.85

(a) Population clustering.

JPT+MEX + ASW + GIH + CEU
Recompute 1.00 1.00 1.00 0.97
No update 1.00 0.81 0.84 0.67
Update-inc 1.00 1.00 0.89 0.70
Random-1 1.00 0.95 0.92 0.86

(b) Average correlation coefficients of popula-
tion clustering based on the five dominant singu-
lar vectors, where 83 African ancestry in south
west USA (ASW), 88 Gujarati Indian in Hous-
ton (GIH), and 165 European ancestry in Utah
(CEU) were incrementally added to the 116,565
SNP matrix of 86 Japanese in Tokyo and 77
Mexican ancestry in Los Angeles, USA (JPT and
MEX). Random-1 iterated twice with � = k.

the incremental update slightly deteriorated at the end. Such phenomena were also598

reported in the previous studies [58, 68].599

PCA has been also successfully used to extract the underlying genetic structure of600

human populations [45, 51, 52]. To study the potential of the randomized algorithm,601

we used it to update the SVD, when a new population is added to the population602

dataset from the HapMap project.3 Figure 14 shows the correlation coefficient of603

the resulting population cluster, which is computed using the k-mean algorithm604

of MATLAB in the low-dimensional subspace given by the dominant left singular605

vectors. We randomly filled in the missing data with either −1, 0, or 1 with the606

probabilities based on the available information for the SNP. We let the randomized607

algorithm iterate twice, and with only the three data passes, the randomized algorithm608

3http://hapmap.ncbi.nlm.nih.gov.

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

http://hapmap.ncbi.nlm.nih.gov


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 25

improved the clustering results, potentially reducing the number of times the SVD609

must be recomputed. AQ3610

3.4.2 Performance Studies611

We now study the performance of the randomized algorithm on the Tsubame Com-612

puter at the Tokyo Institute of Technology.4 Each of its compute nodes consists of613

two six-core Intel Xeon CPUs and three NVIDIA Tesla K20Xm GPUs. We com-614

piled our code using the GNU gcc version 4.3.4 compiler and the CUDA nvcc615

version 6.0 compiler with the optimization flag -O3, and linked it with Intel’s Math616

Kernel Library (MKL) version xe2013.1.046.617

Figure 15a compares the strong parallel scaling of the randomized algorithm with618

that of the current state-of-the-art updating algorithm [68]. Clearly, the state-of-the-619

art algorithm can spend significantly longer time in the orthogonalization, leading620

to a great speedup obtained by the randomized algorithm (i.e., the speedups of up to621

14.1). At the same time, the speedup decreased on a larger number of GPUs. This622

is because the execution time of the randomized algorithm is dominated by SpMM,623

whose strong parallel scaling suffered from the increasing inter-GPU communication624

cost for this relatively small-scale matrix that was used for this study. On the other625

hand, the updating algorithm was still spending a significant amount of its execution626

time for the orthogonalization which was still compute intensive and scaled over627

the small number of the GPUs. On a larger number of GPUs, compared to the628

randomized algorithm, the updating algorithm is expected to suffer from the greater629

communication latency.630

Figure 15b shows the weak parallel scaling results for the document-document631

matrix used in a previous LSI study [69]. The matrix row contains 2,559,430 doc-632

uments, and each column contains about 4, 176 nonzero entries. The weak parallel633

scaling results, in particular, show the advantages of the randomized algorithm due634

to its ability to compress the desired information into a small projection subspace635

using a small number of data passes. For the updating algorithm, the accumulated636

cost of the SVDs of the projected matrices also became significant.637

4 Conclusions638

In this chapter, two mainstream Big Data algorithms were discussed: the Alternating639

Least Squares algorithm for solving the matrix completion problem and the Singular640

Value Decomposition algorithm for computing a low-rank approximation of a matrix,641

both of which pose significant challenges when offloading to a GPU or a computing642

cluster with multiple GPUs.643

4http://tsubame.gsic.titech.ac.jp.

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

http://tsubame.gsic.titech.ac.jp


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

26 H. Anzt et al.

B
&

W
IN

PR
IN

TFig. 15 Performance studies
with randomized algorithms

Update Random−1 Update Random−1 Update Random−1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
im

e 
(s

)

Other
SVD
TSQR
GEMM
SpMM

13.4x on
3 GPUs

14.1x on
12 GPUs

7.7x on
48 GPUs

(a) Strong parallel scaling.

Update Random Update Random Update Random Update Random
0

2

4

6

8

10

12

14

T
im

e 
(s

)

Other
SVD
TSQR
GEMM
SpMM

21.9x
on 12GPUs

29.7x
on 24GPUs

38.9x
on 48GPUs

37.6x
on 96GPUs

(b) Weak parallel scaling.

In the case of the ALS algorithm, the technique of automatic software tuning644

was used to achieve top performance, leading to an order of magnitude performance645

advantage over mainstream open source packages, GraphLab and Spark MLlib, and646

three orders of magnitude advantage over Mahout (Hadoop), when using a single647

GPU as opposed to a multicore CPU (16 cores).648

In the case of the SVD algorithm, the technique of random projection was applied649

to implement the algorithm efficiently on a computing cluster with up to 48 GPUs,650

and also to implement an algorithm for updating a previously computed factorization651

upon arrival of new data. In this case, the algorithmic innovations also lead to an order652

of magnitude performance advantage.653

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 27

Both case studies show the kind of impact that cutting-edge HPC techniques can654

have on the world of Big Data by enabling efficient use of accelerators, which leads655

to massive performance improvements.656

References657

1. Apache, Mahout version 0.9 (2015a). https://mahout.apache.org/658

2. Apache, Spark version 1.5 (2015b). http://spark.apache.org/659

3. J. Baglama, L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods.660

SIAM J. Sci. Comput. 27, 19–42 (2005)661

4. J. Bennett, S. Lanning, The netflix prize, in Proceedings of the KDD Cup Workshop 2007662

(ACM, New York, 2007), pp 3–6. http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-663

description.pdf664

5. M.W. Berry, Large scale sparse singular value computations. Int. J. Supercomput. Appl. 6,665

13–49 (1992)666

6. T. Bertin-Mahieux, D.P. Ellis, B. Whitman, P. Lamere, The million song dataset, in Proceedings667

of the 12th International Conference on Music Information Retrieval (ISMIR) (2011)668

7. C. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)669

8. P. Biswas, T.C. Lian, T.C. Wang, Y. Ye, Semidefinite programming based algorithms for sensor670

network localization. ACM Trans. Sensor Networks (TOSN) 2(2), 188–220 (2006)671

9. E.J. Candès, B. Recht, Exact matrix completion via convex optimization. Found. Comput.672

Math. 9(6), 717–772 (2009)673

10. P. Chen, D. Suter, Recovering the missing components in a large noisy low-rank matrix: appli-674

cation to SFM. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1051–1063 (2004)675

11. Committee on the Analysis of Massive Data, Committee on Applied and Theoretical Statistics,676

Board on Mathematical Sciences and Their Applications, Division on Engineering and Physical677

Sciences, National Research Council (2013). Frontiers in Massive Data Analysis. The National678

Academies Press679

12. Dato, GraphLab version 1.3 (2015). https://dato.com/products/create/open_source.html680

13. S. Deerwester, S. Dumais, G. Furnas, T. Landauer, R. Harshman, Indexing by latent semantic681

analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990)682

14. DOE Office of Science, Synergistic challenges in data-intensive science and exascale com-683

puting. DOE Advanced Scientific Computing Advisory Committee (ASCAC) (2013). Data684

Subcommittee Report685

15. S.H. Fuller, L.I. Millett, The Future of Computing Performance: Game Over Or Next Level?686

(National Academy Press, Washington, DC, 2011)687

16. M. Gates, H. Anzt, J. Kurzak, J. Dongarra, Accelerating collaborative filtering using concepts688

from high performance computing, in 2015 IEEE International Conference on Big Data (Big689

Data) (IEEE, 2015), pp. 667–676690

17. D. Goldberg, D. Nichols, B.M. Oki, D. Terry, Using collaborative filtering to weave an infor-691

mation tapestry. Commun. ACM 35(12), 61–70 (1992)692

18. G. Golub, C. van Loan, Matrix Computations, 4th edn. (The Johns Hopkins University Press,693

Baltimore, 2012)694

19. G. Golub, F. Luk, M. Overton, A block Lanczos method for computing the singular values and695

corresponding singular vectors of a matrix. ACM Trans. Math. Softw. 7, 149–169 (1981)696

20. S. Graham, M. Snir, C. Patterson, Getting Up to Speed: The Future of Supercomputing (The697

National Academies Press, Washington, DC, 2004)698

21. N. Halko, P. Martinsson, J. Tropp, Finding structure with randomness: probabilistic algorithms699

for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)700

22. M. Hoemmen, Communication-avoiding Krylov subspace methods. Ph.D. thesis, University701

of California, Berkeley (2010)702

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

https://mahout.apache.org/
http://spark.apache.org/
http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
http://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
https://dato.com/products/create/open_source.html


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

28 H. Anzt et al.

23. Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feedback datasets, in IEEE703

International Conference on Data Mining (ICDM) (2008), pp. 263–272704

24. Innovative Computing Lab, BEAST (2015). http://icl.utk.edu/beast/705

25. Intel Corp, Developer Reference for Intel Math Kernel Library (2015). https://software.intel.706

com/en-us/articles/mkl-reference-manual707

26. Intel Corp, Intel Data Analytics Acceleration Library 2016, Developer Guide (2016)708

27. P. Jain, P. Netrapalli, S. Sanghavi, Low-rank matrix completion using alternating minimization,709

in Proceedings of the Forty-Fifth annual ACM Symposium on Theory of Computing (ACM,710

2013), pp 665–674711

28. I. Karasalo, Estimating the covariance matrix by signal subspace averaging. IEEE Trans.712

Acoust. Speech Signal Process. 34(1), 8–12 (1986)713

29. T. Kolda, D. O’Leary, A semidiscrete matrix decomposition for latent semantic indexing infor-714

mation retrieval. ACM Trans. Inf. Syst. 16(4), 322–346 (1998)715

30. Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model,716

in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery717

and Data Mining, KDD’08 (ACM, New York, 2008), pp. 426–434718

31. R. Krovetz, W.B. Croft, Lexical ambiguity and information retrieval. ACM Trans. Inf. Syst.719

10(2), 115–141 (1992)720

32. J. Kurzak, S. Tomov, J. Dongarra, Autotuning gemm kernels for the Fermi GPU. IEEE Trans.721

Parallel Distrib. Syst. 23(11), 2045–2057 (2012)722

33. J. Kurzak, H. Anzt, M. Gates, J. Dongarra, Implementation and tuning of batched Cholesky723

factorization and solve for NVIDIA GPUs. Trans. Parallel Distrib. Syst. (2015). doi:10.1109/724

TPDS.2015.2481890725

34. C. Lam, Hadoop in Action (Manning Publications Co., Stamford, 2010)726

35. D. Laney, 3D data management: controlling data volume, velocity, and variety. Application727

Delivery Strategies by META Group Inc., File: 949 (2001)728

36. E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M. Tygert, Randomized algorithms for the729

low-rank approximation of matrices. Proc. National Acad. Sci. 104(51), 20167–20172 (2007)730

37. Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, j.M. Hellerstein, GraphLab: a new731

framework for parallel machine learning. CoRR abs/1006.4990 (2010). http://arxiv.org/abs/732

1006.4990733

38. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein, Distributed734

GraphLab: a framework for machine learning and data mining in the cloud. Proc. VLDB735

Endow. 5(8), 716–727 (2012)736

39. P. Luszczek, M. Gates, J. Kurzak, A. Danalis, J. Dongarra, Search space generation and pruning737

system for autotuners, in International Workshop on Automatic Performance Tuning (iWAPT738

2016) (2016, submitted)739

40. D. Lyubimov, Command line interface, stochastic SVD. Technical report, The Apache Soft-740

ware Foundation (2014). https://mahout.apache.org/users/dim-reduction/ssvd.page/SSVD-741

CLI.pdf742

41. M.W. Mahoney, Randomized algorithms for matrices and data. Found. Trends® Mach. Learn.743

3(2), 123–224 (2011)744

42. P.G. Martinsson, V. Rockhlin, M. Tygert, A randomized algorithm for the approximation of745

matrices. Technical report, DTIC Document (2006)746

43. P. McJones, Eachmovie collaborative filtering data set. DEC Systems Research Center 249747

(1997)748

44. X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,749

M. Amde, S. Owen et al., MLlib: Machine learning in Apache Spark (2015). arXiv preprint750

arXiv:150506807751

45. P. Menozzi, A. Piazza, L. C-Sforza, Synthetic maps of human gene frequencies in Europeans.752

Science 201, 786–792 (1978)753

46. NVIDIA Corp, cuBLAS Library User Guide, v7.0 (2015a)754

47. NVIDIA Corp, CUDA C Programming Guide, v7.0 (2015b)755

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

http://icl.utk.edu/beast/
https://software.intel.com/en-us/articles/mkl-reference-manual
https://software.intel.com/en-us/articles/mkl-reference-manual
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://arxiv.org/abs/1006.4990
http://arxiv.org/abs/1006.4990
https://mahout.apache.org/users/dim-reduction/ssvd.page/SSVD-CLI.pdf
https://mahout.apache.org/users/dim-reduction/ssvd.page/SSVD-CLI.pdf
http://arxiv.org/abs/150506807


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Bringing High Performance Computing to Big Data Algorithms 29

48. S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action (Manning Publications Co.,756

Greenwich, 2011)757

49. P. Paschou, E. Ziv, E. Burchard, S. Choudhry, W. R-Cintron, M. Mahoney, P. Drineas, PCA-758

correlated SNPs for structure identification in worldwide human populations. PLoS Genet. 3,759

1672–1686 (2007)760

50. A. Paterek, Improving regularized singular value decomposition for collaborative filtering, in761

Proceedings of KDD Cup and Workshop (2007), pp. 39–42762

51. N. Patterson, A. Price, D. Reich, Population structure and eigenanalysis. PLoS Genet. 2(12),763

2074–2093 (2006)764

52. A. Price, N. Patterson, R. Plenge, M. Weinblatt, N. Shadick, D. Reich, Principal components765

analysis corrects for stratification in genome-wide association studies. Nature Genet. 38(8),766

904–909 (2006)767

53. R.A. Rossi, N.K. Ahmed, The network data repository with interactive graph analytics and768

visualization, in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence769

(2015). http://networkrepository.com770

54. G. Salton, M. McGill, Introduction to Modern Information Retrieval (McGraw-Hill, New York,771

1983)772

55. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Analysis of recommendation algorithms for e-773

commerce, in Proceedings of the 2nd ACM Conference on Electronic Commerce (2000), pp774

158–167775

56. A. Stathopoulos, K. Wu, A block orthogonalization procedure with constant synchronization776

requirements. SIAM J. Sci. Comput. 23(6), 2165–2182 (2002)777

57. W. Tan, L. Cao, L.L. Fong, Faster and cheaper: Parallelizing large-scale matrix factorization778

on gpus. CoRR abs/1603.03820 (2016). http://arxiv.org/abs/1603.03820779

58. J. Tougas, R. Spiteri, Updating the partial singular value decomposition in latent semantic780

indexing. Comput. Statist. Data Anal. 52, 174–183 (2007)781

59. E. Vecharynski, Y. Saad, Fast updating algorithms for latent semantic indexing. SIAM J. Matrix782

Anal. Appl. 35(3), 1105–1131 (2014)783

60. T. White, Hadoop: The Definitive Guide (O’Reilly Media, Inc., Sebastopol, 2012)784

61. K. Wu, H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems.785

SIAM J. Matrix Anal. Appl. 22(2), 602–616 (2000)786

62. I. Yamazaki, K. Wu, A communication-avoiding thick-restart lanczos method on a distributed-787

memory system, in Proceedings of the 2011 International Conference on Parallel Processing,788

Euro-Par’11 (Springer, Berlin, 2012), pp. 345–354789

63. I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, J. Dongarra Improving the performance of790

CA-GMRES on multicores with multiple GPUs, in Proceedings of the IEEE International791

Parallel and Distributed Symposium (IPDPS) (2014a), pp. 382–391792

64. I. Yamazaki, T. Mary, J. Kurzak, S. Tomov, Access-averse framework for computing low-rank793

matrix approximations, in Proceedings of the International Workshop on High Performance794

Big Graph Data Management, Analysis, and Minig (2014b), pp. 70–77795

65. I. Yamazaki, S. Rajamanickam, E. Boman, M. Hoemmen, M. Heroux, S. Tomov, Domain796

decomposition preconditioners for communication-avoiding Krylov methods on a hybrid797

CPU/GPU cluster, in Proceedings of the International Conference for High Performance Com-798

puting, Networking, Storage and Analysis (SC) (2014c), pp. 933–944799

66. I. Yamazaki, J. Kurzak, P. Luszczek, J. Dongarra, Randomized algorithms to update partial800

singular value decomposition on a hybrid CPU/GPU cluster, in Proceedings of the International801

Conference for High Performance Computing, Networking, Storage and Analysis (SC) (2015),802

pp. 345–354803

67. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing804

with working sets, in Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud805

Computing, vol. 10 (2010), p.10806

68. H. Zha, H. Simon, On updating problems in latent semantic indexing. SIAM J. Sci. Comput.807

21(2), 782–791 (1999)808

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

http://networkrepository.com
http://arxiv.org/abs/1603.03820


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

30 H. Anzt et al.

69. H. Zha, O. Marques, H. Simon, Large-scale SVD and subspace-based methods for information809

retrieval, in Solving Irregularly Structured Problems in Parallel, vol. 1457, Lecture Notes in810

Computer Science, ed. by A. Ferreira, J. Rolim, H. Simon, S.-H. Teng (Springer, Heidelberg,811

1998), pp. 29–42812

70. Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan, Large-scale parallel collaborative filtering for813

the netflix prize in Proceedings of the 4th International Conference on Algorithmic Aspects in814

Information and Management, AAIM’08 (Springer, Berlin, 2008), pp. 337–348815

371253_1_En_23_Chapter � TYPESET DISK LE � CP Disp.:26/11/2016 Pages: 31 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Author Queries

Chapter 23

Query Refs. Details Required Author’s response

AQ1 As abstract is mandatory for this chapter, please provide.

AQ2 Please check and confirm if the inserted citation of Fig. 4 is correct.
If not, please suggest an alternate citation. Please note that figures
should be cited sequentially in the text.

AQ3 Please note that mismatch has been found between author tex and
pdf regarding the figure citation “Figure 14a”. Hence, we have
followed author tex. Kindly check and confirm.

A
u

th
o

r 
P

ro
o

f



MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


