
Accelerating Tensor Contractions in
High-Order FEM with MAGMA Batched	

1 Innovative Computing Laboratory, University of Tennessee, Knoxville
2 University of Paris-Sud, France
3 Lawrence Livermore National Laboratory, Livermore, CA, USA
4 University of Manchester, Manchester, UK

SIAM Conference on Computational Science and Engineering (SIAM CSE’17)
Algorithms and Libraries for Tensor Contractions (MS47)
https://www.siam.org/meetings/cse17/
Atlanta, GA, U.S.A.
February 26–March 3, 2017

Ahmad Abdelfattah1, Marc Baboulin2, Veselin Dobrev3, Jack Dongarra1,4,
Chris Earl3, Joel Falcou2, Azzam Haidar1, Ian Karlin3, Tzanio Kolev3,
Ian Masliah2, and Stan Tomov1

Outline

•  Introduction
•  Tensors in numerical libraries
•  Tensor formulation for high-order FEM
•  Tensor contractions interfaces and code generation
•  Algorithms design and tuning
•  Performance
•  Conclusions

Introduction
Numerous important applications:

•  High-order FEM simulations
•  Signal Processing
•  Numerical Linear Algebra
•  Numerical Analysis
•  Data Mining
•  Deep Learning
•  Graph Analysis
•  Neuroscience

 and more
can be expressed through tensors.

The goal is to design a:

•  High-performance package for
Tensor algebra;

•  Built-in architecture-awareness
(GPU, Xeon Phi, multicore);

•  User-friendly interface.

e.g., relational data

Item ó scalar (0)
Items ó vector (1)
Relations of pairs ó matrix (2)
Relations of 3-tuple ó 3-D array (3)
…
Relations of N-tuplesó N-D array (N)

tensors

Examples
Need of Batched and/or Tensor contraction routines in machine learning
e.g., Convolutional Neural Networks (CNNs) used in computer vision
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .

Convolution Pooling Convolution Pooling Fully Output
 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4

boat 0.3
person 0.1

dog 0.01

Examples

Multi-physics problems need small & many tensor contractions

•  Many physical systems can be modeled by a fluid dynamics plus kinetic approximation
e.g., in astrophysics, stiff equations must be integrated numerically:

•  Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library)
•  Explicitly; a new way to stabilize them with Macro- plus Microscopic equilibration
 need batched tensor contractions of variable sizes

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)

Additional acceleration achieved through MAGMA Batched

7x speedup
MKL MA48 MAGMA

0

1

2

3

4
Speedup of the solver for matrix size 150

S
p

e
e

d
u

p CUDA streams

Batched
computation

3.7x speedup

5 / 19

Reference: A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.

Tensor abstractions and
numerical dense linear algebra

Ai,j,m,n

Matrix A in tiled data-layout
as a 4th-order tensor: n

. i
j m

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

A rank-64 update as tensor contraction on index k:

for i = 0..63

 for j = 0..63

 for m = 1..8

 for n = 1..7

i, j,m,nA − = i,k,m,0A k, j,0,nA
k
∑

Matrix A
In tile data layout

Tensor abstractions and
numerical dense linear algebra …

Ai,j,m,n

 //Declare a 4th-order Tensor A on the GPU ︎
 Tensor<64, 64, 9, 8, gpu_t> A; ︎

n

. i
j m

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7

// DSEL design using Einstein notation: repeated  
// index k means a summation/contraction. ︎
// Range of the other indices is full/range as︎
// given through the left assignment operand ︎
A(i, j, m:1..8, n:1..7) -= A(i,k,m,0) * A(k, j,0,n); ︎

How to design it?

How to implement it?
•  Can be casted to BLAS ︎
•  Can be very inefficient, e.g., if implemented  

as dot-products (Level 1 BLAS) ︎
•  Better, if︎

•  Recognized as Level 2 BLAS ︎
•  Recognized as Level 3 BLAS ︎
•  Batched Level 3 BLAS, e.g., GEMM︎
•  On the fly data reshape︎
•  … ︎

Tensors formulation for high-order FEM

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

8 / 19

 A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, S. Tomov,
 High-Performance Tensor Contractions for GPUs,
 The International Conference on Computational Science (ICCS 2016), San Diego, CA, June 6—8, 2016.

Tensors formulation for high-order FEM
•  Consider the FE mass matrix ME for an

element E with weight ρ, as a 2-D tensor

• 

•  Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is dense O(pd) x O(pd) matrix.

•  If the FE basis and the quadrature rule have tensor product structure, we can decompose
dofs and quadrature point indices in logical coordinate axes
 i = (i1, ..., id), j = (j1, ..., jd), k = (k1, ..., kd)
so in 3D for example (d=3), Mij can be viewed as 6-dimensional tensor

9 / 19

 A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, Tz. Kolev, I. Masliah, S. Tomov,
 High-Performance Tensor Contractions for GPUs,
 The International Conference on Computational Science (ICCS 2016), San Diego, CA, June 6—8, 2016.

Tensor kernels for assembly/evaluation

Code Generation
C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of
generic versions are developed and parametrized for
performance. The parameters are autotuned (empirically) to find
“best” kernels for specific size.

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where

Take the nq x nd matrix and
Then, , or omitting the E subscript
 .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is
dense O(pd) x O(pd) matrix.

If the FE basis and the quadrature rule have tensor product
structure, we can decompose dofs and quadrature point indices in
logical coordinate axes
 i = (i1, …, id), j = (j1, …, jd), k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd.

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below
● Evaluations of M times V, referred as equations (3) & (4) below

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index
can often be represented as tensor index reordering plus gemm,
which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in
MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide
an architecture-aware, user-friendly interface.

Motivation
Numerous important applications can be expressed through
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g.,

sub-vector/warp size)
● Must determine (in software) if possible to do it through

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface
To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir = j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for
something better: code generation, index reordering, and
autotuning will be used, e.g., contractions (3a) - (4f) can be
implemented as tensor index-reordering plus gemm A, B -> ATB.

 // Our current interface :

 // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
 Tensor<2,5,2> ts;
 // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
 Tensor<2,5,5,gpu_> d_ts;
 // Call a thrust function to set values to 9
 thrust::fill(d_ts.begin() , d_ts.end() , 9);
 // Send back values to the cpu tensor
 ts = d_ts ;
 // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
 view<2,10> mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2] http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).

[2] A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block Householder transformations. ISC High Performance 2015, Frankfurt,
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure:
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance
CUBLAS for “small” sizes, currently
tuned for above 32. Current work is
concentrated on kernels for fixed
smaller (sub-warp) sizes.

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

For example:

Can be written as
Reshape(C)nd1×(nd2nd3) =
 AT Reshape(B)nq1×(nd2nd3)

Tensor contraction interfaces and
code generation

•  Design
•  Convenience of use (dimension and data layout abstraction)
•  Readability (considered DSEL; decided C++14 is expressive enough)
•  Performance (reshape to GEMMs, design, autotuning, compiler – code gen/templates)

•  Use C++14 standard and in particular constexpr specifier
(to evaluate value of function or variable at compile time)

Algorithm designs

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

16
	

64
	

11
2	

16
0	

20
8	

25
6	

30
4	

35
2	

40
0	

44
8	

49
6	

GPU	
 batched	

GPU	
 nonbatched	

G
flo

p/
s

DGEMM (NN), batch_count = 500, 1 Tesla K40c GPU

Matrix size M = N, K = 32

DAXPY, batch_count = 500, 1 Tesla K40c GPU

Matrix size M = N

0	

2	

4	

6	

8	

10	

12	

16
	

64
	

11
2	

16
0	

20
8	

25
6	

30
4	

35
2	

40
0	

44
8	

49
6	

GPU	
 batched	

GPU	
 nonbatched	

•  Importance of reshaping to GEMMs: as illustrated, not all flops are equal

Batched routines released in MAGMA

REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16		

INTERCONNECT	
CRAY	GEMINI	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Haswell	
E5-2650	v3		

KNL	7250	
DDR5|MCDRAM	

ARM	 K40c	 P100	

10	cores	 68	cores	 4	cores	
15	SM	x		
192	cores	

56	SM	x		
64	cores	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 64	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 1.5	MB	 4	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 12	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 26	GB/s	 288	GB/s	 720	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	

6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		
Implementation on

current hardware
is becoming challenging

Draft Reports
Batched BLAS Draft Reports:
https://www.dropbox.com/s/olocmipyxfvcaui/batched_api_03_30_2016.pdf?dl=0

Batched BLAS Poster:
https://www.dropbox.com/s/ddkym76fapddf5c/Batched%20BLAS%20Poster%2012.pdf?dl=0

Batched BLAS Slides:
https://www.dropbox.com/s/kz4fhcipz3e56ju/BatchedBLAS-1.pptx?dl=0

Webpage on ReproBLAS:
http://bebop.cs.berkeley.edu/reproblas/

Efficient Reproducible Floating Point Summation and BLAS:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.pdf

Workshop on Batched, Reproducible,
and Reduced Precision BLAS

Georgia Tech
 Computational Science and Engineering

Atlanta, GA
February 23—25, 2017

http://bit.ly/Batch-BLAS-2017

Algorithm designs …

BLKN

BLKk

BLKk

BLKM BLKM

BLKN

M

K

K

N

A C

B

•  Reshape to GEMMs
•  GEMM is multilevel blocked

code from MAGMA to map to
GPU’s hierarchical memory

•  Parametrized for
autotuning

•  Use Batched execution
•  In general 1 TB per matrix
•  Use vectorization across matrices in

a TB for very small matrices;
we denote by TB Concurrency (tbc)

•  Templates and constexpr to avoid param.
checking and compiler-unrolled code

•  No pointers to batched matrices: passed
through formulas in the tensor abstraction

•  General kernel organization:
1) Read A and B (or parts if blocking) in fast memory
 - through functions in the tensor abstraction for layout
 - allows for on-the-fly reshape (data for indices in the
 operation may not be in standard GEMM form)
2) Compute, e.g., A B
3) Update C

Autotuning

16 / 57

1) Kernel variants: performance parameters are exposed through a templated kernel interface
 template< typename T, int DIM_X, int DIM_Y,
 int BLK_M, int BLK_N, int BLK_K,
 int DIM_XA, int DIM_YA, int DIM_XB, int DIM_YB,
 int THR_M, int THR_N, int CONJA, int CONJB >
 static __device__ void tensor_template_device_gemm_nn(int M, int N, int K, …

2) CPU interfaces that call the GPU kernels as a Batched computation
 template<typename T, int DIM_X, int DIM_Y, … >
 void tensor_template_batched_gemm_nn(int m, int n, int k, …) {
 …
 tensor_template_device_gemm _nn<T, DIM_X, DIM_Y, … ><<<dimGrid, dimBlock, 0, queue>>>(m, n, k,…);
 }

3) Python scripts that generate the search space for the
 parameters DIM_X, DIM_Y …
 index, DIM_X, DIM_Y, …
 #define NN_V_0 4, 8, 8, 24, 8, 1, 4, 8, 4, 8
 #define NN_V_1 4, 8, 8, 32, 8, 1, 4, 8, 4, 8
 #define NN_V_2 4, 8, 8, 40, 8, 1, 4, 8, 4, 8
 …

4) Scripts that run all versions in the search space, analyze the
 results, and return the best combination of parameters, which
 is stored in the library for subsequent use.

Performance model

 F
Pmax =
 Tmin

Flops for the computation

Fastest time to solution

•  For square matrices
 F ≈ 2n3, Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C))

•  Need to read/write 4 n2 elements, i.e., 32n2 Bytes in DP

=> if max bandwidth is B, we can take Tmin = 32 n2 / B in DP. Thus,

•  With ECC on, peak on B on a K40c is ≈180 GB/s, so when n=16 for example,
we expect theoretical max performance of 180 Gflop/s in DP

Performance results

���

�

��

���

����

� � �� �� �� �� �� ��
�
��
�
��

��	
��
���

	�� � �
	�� � �

	�� � �
	�� � �

	�� ���

�
��
��
��
��
��
��
��
	�

�
���

� � � � 	 ��

G
fl

o
p

/s

Performance comparison of tensor contraction versions using
batched C = αAB + βC on 100,000 square matrices of size n on a
K40c GPU and 16 cores of Intel Xeon E5-2670, 2.60 GHz CPUs.

Effect of a Thread Block Concurrency (tbc) techniques
where several DGEMMs are performed on one TB
simultaneously

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300

350

400
Nvidia K40 / Intel Xeon E5-2650 v3 (Haswell) 10 cores

Our design MAGMA K40
Cublas K40
Rocache design
MKL+openMP on CPU
Roofline bound

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

100

200

300

400

500

600

700

800

900

1000

1100
Nvidia P100

Magma tensor dgemm predefined size at compile time
Magma batched dgemm generic small
cuBLAS v8.0

Performance results

Performance results

0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

u

p

p

e

r

b

o

u

n

d

Matrix Size

G
fl
o
p
/
s

magma

openblas

ijk loop

ikj loop

Batched DGEMM on Tegra ARM

Performance …

Batched DGEMM on CPUs

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

u

p

p

e

r

b

o

u

n

d

Matrix Size

G
fl
o
p
s
/
s

gen code

mkl code

ijk code

ikj code

mkl batched

0 5 10 15 20 25 30 35

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

u

p

p

e

r

b

o

u

n

d

Matrix Size

G
fl
o
p
s
/
s

20 cores custom numa

20 cores interleave all

20 cores

10 cores

Intel Xeon E5-2650 v3 (Haswell), 10 cores 2 x Intel Xeon E5-2650 v3 (Haswell), 20 cores

I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Falcou, and J. Dongarra,
High-performance matrix-matrix multiplications of very small matrices,
Euro-Par’16, Grenoble, France, August 22-26, 2016.

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

20

40

60

80

100

120

140

Intel Xeon Phi KNC 7120 60 cores
batch dgemm 10000 matrices

Performance results

Batched DGEMM on Intel Xeon Phi

Matrix Size
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

G
flo

p/
s

0

50

100

150

200

250

300
Intel Xeon Phi KNL 7250 68 cores

batch dgemm 10000 matrices

Conclusions and future work

•  Developed tensor abstractions for high-order FEM
•  Multidisciplinary effort
•  Achieve 90+% of theoretical maximum on GPUs and multicore CPUs
•  Use on-the-fly tensor reshaping to cast tensor contractions as

small but many GEMMs, executed using batched approaches
•  Custom designed GEMM kernels for small matrices and autotuning

In conclusion:

Future directions:
•  To release a tensor contractions package through the MAGMA library
•  Integrate developments in BLAST
•  Complete autotuning and develop all kernels

Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http://icl.cs.utk.edu/plasma

Collaborating partners
University of Tennessee, Knoxville
University of Manchester, Manchester, UK
University of Paris-Sud, France
Lawrence Livermore National Laboratory,
 Livermore, CA
University of California, Berkeley
University of Colorado, Denver
INRIA, France (StarPU team)
KAUST, Saudi Arabia

