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Introduction 
Numerous important applications: 

•  High-order FEM simulations 
•  Signal Processing 
•  Numerical Linear Algebra 
•  Numerical Analysis 
•  Data Mining 
•  Deep Learning 
•  Graph Analysis 
•  Neuroscience 

            and more 
can be expressed through tensors. 
 
The goal is to design a: 

•  High-performance package for 
Tensor algebra; 

•  Built-in architecture-awareness 
(GPU, Xeon Phi, multicore); 

•  User-friendly interface. 

e.g., relational data 

Item                          ó scalar                                (0) 
Items                        ó vector                                (1) 
Relations of pairs     ó matrix                        (2) 
Relations of 3-tuple  ó 3-D array                   (3) 
… 
Relations of N-tuplesó N-D array                 (N) 

tensors 



Examples 
Need of Batched and/or Tensor contraction routines in machine learning 
e.g., Convolutional Neural Networks (CNNs) used in computer vision  
 Key computation is convolution of Filter Fi (feature detector) and input image D (data):     

Filters F 
Fn 

    Output On 

n,kO

n,kO = k,iD
i
∑ n,iF

Dk . 

Convolution                Pooling        Convolution           Pooling           Fully                      Output 
      connected               predictions  Data D 

Convolution of Filters Fi (feature detection) and input image D: 
•  For every filter Fn and every channel, the computation for 

every pixel value On,k  is a tensor contraction: 

 
•  Plenty of parallelism; small operations that must be batched 
•  With data “reshape” the computation can be transformed into  

a batched GEMM (for efficiency; among other approaches) 

chicken 0.4 

boat 0.3   
person 0.1 

dog 0.01 



Examples 

Multi-physics problems need small & many tensor contractions  

•  Many physical systems can be modeled by a fluid dynamics plus kinetic approximation 
e.g., in astrophysics, stiff equations must be integrated numerically:  

•  Implicitly; standard approach, leading to need of batched solvers (e.g., as in XNet library) 
•  Explicitly; a new way to stabilize them with  Macro- plus Microscopic equilibration 
                         need batched tensor contractions of variable sizes 

Collaboration with ORNL and UTK physics department (Mike Guidry, Jay Billings, Ben Brock, Daniel Shyles, Andrew Belt)      

Additional acceleration achieved through MAGMA Batched 
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Reference:  A. Haidar, S. Tomov, A. Abdelfattah, M. Guidry, J. Billings, and J. Dongarra,���
Optimisation Techniques Toward Accelerating Explicit Integration for Large Kinetic Networks.���
International Conference on Parallel Processing, Philadelphia, PA, USA ICPP 2016.



Tensor abstractions and 
numerical dense linear algebra 

Ai,j,m,n

Matrix A in tiled data-layout  
as a 4th-order tensor: n
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A rank-64 update as tensor contraction on index k: 
 
for i = 0..63    
 
      for j = 0..63  
   
            for m = 1..8    
 
                  for n = 1..7 

i, j,m,nA − = i,k,m,0A k, j,0,nA
k
∑

Matrix A 
In tile data layout 



Tensor abstractions and 
numerical dense linear algebra … 

Ai,j,m,n

 //Declare a 4th-order Tensor A on the GPU ︎
 Tensor<64, 64, 9, 8, gpu_t> A; ︎

n
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j m
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// DSEL design using Einstein notation: repeated  
// index k means a summation/contraction. ︎
// Range of the other indices is full/range as︎
// given through the left assignment operand ︎
A(i, j, m:1..8, n:1..7) -= A(i,k,m,0) * A(k, j,0,n); ︎

How to design it? 

How to implement it? 
•  Can be casted to BLAS ︎
•  Can be very inefficient, e.g., if implemented  

as dot-products (Level 1 BLAS) ︎
•  Better, if︎

•  Recognized as Level 2 BLAS ︎
•  Recognized as Level 3 BLAS ︎
•  Batched Level 3 BLAS, e.g., GEMM︎
•  On the fly data reshape︎
•  … ︎



Tensors formulation for high-order FEM 

 

Code Generation
C++11 features will be used as much as possible. Additional 
needs will be handled by defining a domain specific embedded 
language (DSEL). This technique is used in C++ to take advantage 
of DSL features while using the optimizations provided by a 
standard compiler. It will handle the generation of versions (index 
reordering, next) to be empirically evaluated and be part of the 
autotuning framework. 

 

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi, 
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of 
generic versions are developed and parametrized for 
performance. The parameters are autotuned (empirically) to find 
“best” kernels for specific size.  

 

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with 
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where 

Take the nq x nd matrix                          and                                          
Then,                                                       , or omitting the E subscript                       
                     .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is 
dense O(pd) x O(pd) matrix. 

If the FE basis and the quadrature rule have tensor product 
structure, we can decompose dofs and quadrature point indices in 
logical coordinate axes
                   i = (i1, …, id),    j = (j1, …, jd),    k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd. 

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below  
● Evaluations of M times V, referred as equations (3) & (4) below 

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM 
simulations, can be expressed through tensors. Examples are 
computation of FE matrices and SpMV products expressed as 
generalized tensor contractions. Contractions by the first index 
can often be represented as tensor index reordering plus gemm, 
which is a key factor to achieve high-performance. We present 
ongoing work on the design of a high-performance package in 
MAGMA for Tensor algebra that includes techniques to organize 
tensor contractions, data storage, and parametrization related to 
batched execution of large number of small tensor contractions. 
We apply auto-tuning and code generation techniques to provide 
an architecture-aware, user-friendly interface.

Motivation 
Numerous important applications can be expressed through 
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g., 

sub-vector/warp size)
● Must determine (in software) if possible to do it through 

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface 
To provide various interfaces, including one using C++11. 
Top level design to provide features similar to the 
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every 
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir  =  j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise 
contractions. There is enough complexity here to search for 
something better: code generation, index reordering, and 
autotuning will be used, e.g., contractions (3a) - (4f) can be 
implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
  Tensor<2,5,2> ts;
  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
  Tensor<2,5,5,gpu_> d_ts;
  // Call a thrust function to set values to 9
  thrust::fill(d_ts.begin() , d_ts.end() , 9);
  // Send back values to the cpu tensor
  ts = d_ts ;
  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
  view<2,10>  mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure: 
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance 
CUBLAS for “small” sizes, currently 
tuned for above 32. Current work is 
concentrated on kernels for fixed 
smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.
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Tensors formulation for high-order FEM 
•  Consider the FE mass matrix ME for an  

element E with weight ρ, as a 2-D tensor  

 

•     

•  Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is dense O(pd) x O(pd) matrix. 
 

•  If the FE basis and the quadrature rule have tensor product structure, we can decompose 
dofs and quadrature point indices in logical coordinate axes  
                             i = (i1, ..., id), j = (j1, ..., jd), k = (k1, ..., kd) 
so in 3D for example (d=3), Mij can be viewed as 6-dimensional tensor 
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Tensor kernels for assembly/evaluation 

 

Code Generation
C++11 features will be used as much as possible. Additional 
needs will be handled by defining a domain specific embedded 
language (DSEL). This technique is used in C++ to take advantage 
of DSL features while using the optimizations provided by a 
standard compiler. It will handle the generation of versions (index 
reordering, next) to be empirically evaluated and be part of the 
autotuning framework. 

 

Autotuning
We are developing fixed-size gemm kernels for GPUs, Xeon Phi, 
and multicore (see Figure on Right for a single core intel Xeon E5-
2620 and K40) through an autotuning framework. A number of 
generic versions are developed and parametrized for 
performance. The parameters are autotuned (empirically) to find 
“best” kernels for specific size.  

 

Tensor operations in high-order FEM
Consider the FE mass matrix ME for an element/zone E with 
weight ρ, as a 2-dimensional tensor:

i, j = 1,..., nd , where 

Take the nq x nd matrix                          and                                          
Then,                                                       , or omitting the E subscript                       
                     .

Using FE of order p, we have nd = O(pd) and nq = O(pd), so B is 
dense O(pd) x O(pd) matrix. 

If the FE basis and the quadrature rule have tensor product 
structure, we can decompose dofs and quadrature point indices in 
logical coordinate axes
                   i = (i1, …, id),    j = (j1, …, jd),    k = (k1, …, kd)
so Mij can be viewed as 2d-dimensional tensor Mi1, …, id, j1, …, jd. 

Summary of kernels needed:
● Assembly of M, referred as equations (1) & (2) below  
● Evaluations of M times V, referred as equations (3) & (4) below 

Towards a High-Performance Tensor Algebra Package for Accelerators
M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev, I. Masliah, and S. Tomov

Abstract
Numerous important applications, e.g., high-order FEM 
simulations, can be expressed through tensors. Examples are 
computation of FE matrices and SpMV products expressed as 
generalized tensor contractions. Contractions by the first index 
can often be represented as tensor index reordering plus gemm, 
which is a key factor to achieve high-performance. We present 
ongoing work on the design of a high-performance package in 
MAGMA for Tensor algebra that includes techniques to organize 
tensor contractions, data storage, and parametrization related to 
batched execution of large number of small tensor contractions. 
We apply auto-tuning and code generation techniques to provide 
an architecture-aware, user-friendly interface.

Motivation 
Numerous important applications can be expressed through 
tensors:
● High-order FEM simulations
● Signal Processing
● Numerical Linear Algebra
● Numerical Analysis

The goal is to design a:
● High-performance package for Tensor algebra
● Built-in architecture-awareness (GPU, Xeon Phi, multicore)
● User-friendly interface

Example cases

Numerical linear algebra:
● A 4-dimensional tensor contraction
● rank-k update on matrices in tile format (k can be small, e.g., 

sub-vector/warp size)
● Must determine (in software) if possible to do it through 

batched GEMM kernels

[1] V. Dobrev, T.Kolev, R.Rieben. High order curvilinear finite element methods for Lagrangian 
hydrodynamics. SIAM J.Sci.Comp.34(5), B606–B641. (36 pages)

APPROACH AND RESULTS

User-friendly interface 
To provide various interfaces, including one using C++11. 
Top level design to provide features similar to the 
mshadow library. https://github.com/dmlc/mshadow

Index reordering/reshape 
If we store tensors as column-wise 1D arrays,                                                                                      

, i.e., M can be interpreted as a 4th order tensor, a nd x nd matrix, or 
a vector of size nd2, without changing the storage. We can define

as long as n1...nr = m1…mq and for every 
i1..r , j1..qi1 + n1i2 + … + n1n2...nr-1ir  =  j1 + m1j2 + … + m1m2…mq-1jq.

Contractions can be implemented as a sequence of pairwise 
contractions. There is enough complexity here to search for 
something better: code generation, index reordering, and 
autotuning will be used, e.g., contractions (3a) - (4f) can be 
implemented as tensor index-reordering plus gemm A, B -> ATB.

  // Our current interface :

  // create a 2 x 5 x 2 float tensor , default locality is cpu using std::vector as default backend for data
  Tensor<2,5,2> ts;
  // create a 2 x 5 x 2 tensor on the gpu using thrust as the default backend for data
  Tensor<2,5,5,gpu_> d_ts;
  // Call a thrust function to set values to 9
  thrust::fill(d_ts.begin() , d_ts.end() , 9);
  // Send back values to the cpu tensor
  ts = d_ts ;
  // Reorder the 2 x 5 x 2 tensor to a matrix 2 x 10 using views
  view<2,10>  mat = ts ;

● Data Mining
● Deep Learning
● Graph Analysis
● Neuroscience and more

Batched LA 
Tensor contractions are transformed through reshapes to batched LA operations, many of which available in MAGMA[2]  http://icl.cs.utk.
edu/magma/ (including LU, QR, Cholesky, GEMM, GEMV, TRSM, SYRK).  

[2]  A.Haidar, T.Dong, S.Tomov, P.Luszczek, and J.Dongarra. A framework for batched and GPU-resident factorization algorithms applied to block  Householder transformations. ISC High Performance 2015, Frankfurt, 
Germany, July 12-16, 2015.

Conclusions and Future directions
● High-performance package on Tensor Algebra has the potential for high-impact on a number of important applications
● Multidisciplinary effort
● Current results show promising performance, where various components will be leveraged from autotuning MAGMA Batched linear 

algebra kernels, and BLAST from LLNL
● This is an ongoing work

Figure: 
Batched dgemms on K40 GPU.
Batch count is 2,000.

MAGMA exceeds in performance 
CUBLAS for “small” sizes, currently 
tuned for above 32. Current work is 
concentrated on kernels for fixed 
smaller (sub-warp) sizes. 

Gatlinburg, Tennessee, Aug 31- Sept 2, 2015
http://computing.ornl.gov/workshops/SMC15/

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 
LLNL release number LLNL-POST-676632

ICL's work on this material was supported by the National Science Foundation under Grant ACI-1339822, the Department of Energy, and NVIDIA.

i1,i2,i3C = k,i1A k,i2,i3B
k
∑

For example: 

Can be written as  
Reshape(C)nd1×(nd2nd3) =  
                         AT Reshape(B)nq1×(nd2nd3)  



Tensor contraction interfaces and 
code generation 

•  Design 
•  Convenience of use (dimension and data layout abstraction) 
•  Readability (considered DSEL; decided C++14 is expressive enough) 
•  Performance (reshape to GEMMs, design, autotuning, compiler – code gen/templates) 

•  Use C++14 standard and in particular constexpr specifier 
(to evaluate value of function or variable at compile time) 



Algorithm designs 
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•  Importance of reshaping to GEMMs: as illustrated, not all flops are equal 



Batched routines released in MAGMA 



REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16		

INTERCONNECT	
CRAY	GEMINI	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Haswell	
E5-2650	v3		

KNL	7250	
DDR5|MCDRAM	

ARM	 K40c	 P100	

10	cores	 68	cores	 4	cores	
15	SM	x		
192	cores	

56	SM	x		
64	cores	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 64	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 1.5	MB	 4	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 12	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 26	GB/s	 288	GB/s	 720	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	

6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		
Implementation on  

current hardware 
is becoming challenging  

 

Draft Reports 
Batched BLAS Draft Reports:
https://www.dropbox.com/s/olocmipyxfvcaui/batched_api_03_30_2016.pdf?dl=0 
  
Batched BLAS Poster: 
https://www.dropbox.com/s/ddkym76fapddf5c/Batched%20BLAS%20Poster%2012.pdf?dl=0 
  
Batched BLAS Slides: 
https://www.dropbox.com/s/kz4fhcipz3e56ju/BatchedBLAS-1.pptx?dl=0 
  
Webpage on ReproBLAS: 
http://bebop.cs.berkeley.edu/reproblas/ 
  
Efficient Reproducible Floating Point Summation and BLAS: 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-229.pdf  

Workshop on Batched, Reproducible,  
and Reduced Precision BLAS 

 

Georgia Tech 
 Computational Science and Engineering 

Atlanta, GA 
February 23—25, 2017 

http://bit.ly/Batch-BLAS-2017 



Algorithm designs … 

BLKN 

BLKk 

BLKk 

BLKM BLKM 

BLKN 

M

K

K
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B 

•  Reshape to GEMMs 
•  GEMM is multilevel blocked 

code from MAGMA to map to 
GPU’s hierarchical memory 

•  Parametrized for  
autotuning 

•  Use Batched execution 
•  In general 1 TB per matrix 
•  Use vectorization across matrices in 

a TB for very small matrices; 
we denote by TB Concurrency (tbc) 

•  Templates and constexpr to avoid param. 
checking and compiler-unrolled code 

•  No pointers to batched matrices: passed 
through formulas in the tensor abstraction  

•  General kernel organization: 
1) Read A and B (or parts if blocking) in fast memory 
    - through functions in the tensor abstraction for layout 
    - allows for on-the-fly reshape (data for indices in the 
      operation may not be in standard GEMM form)  
2) Compute, e.g.,  A B 
3) Update C 



Autotuning 
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1) Kernel variants: performance parameters are exposed through a templated kernel interface 
    template< typename T,  int     DIM_X,   int    DIM_Y,  
                                          int     BLK_M,   int   BLK_N,   int    BLK_K, 
                                          int   DIM_XA,   int  DIM_YA,   int  DIM_XB,   int  DIM_YB,  
                                          int    THR_M,   int   THR_N,   int    CONJA,   int   CONJB  > 
    static __device__ void  tensor_template_device_gemm_nn( int  M,  int  N,  int  K, …  

2) CPU interfaces that call the GPU kernels as a Batched computation 
    template<typename T,  int    DIM_X,  int   DIM_Y, … > 
    void tensor_template_batched_gemm_nn( int m, int n, int k, … ) { 
           … 
       tensor_template_device_gemm _nn<T, DIM_X, DIM_Y, … ><<<dimGrid, dimBlock, 0, queue>>>(m, n, k,…);    
    } 

3) Python scripts that generate the search space for the  
    parameters DIM_X, DIM_Y … 
                   index,     DIM_X,   DIM_Y,  … 
     #define NN_V_0               4,            8,   8,   24,   8,   1,   4,   8,   4,   8 
     #define NN_V_1               4,            8,   8,   32,   8,   1,   4,   8,   4,   8 
     #define NN_V_2               4,            8,   8,   40,   8,   1,   4,   8,   4,   8 
     … 

4) Scripts that run all versions in the search space, analyze the  
    results, and return the best combination of parameters, which  
    is stored in the library for subsequent use. 



Performance model 

               F 
Pmax =   
             Tmin 

Flops for the computation 

Fastest time to solution 

•  For square matrices  
                F ≈ 2n3,        Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C) ) 
 
•  Need to read/write 4 n2 elements, i.e., 32n2 Bytes in DP  

=> if max bandwidth is B, we can take Tmin = 32 n2 / B  in DP. Thus, 

•  With ECC on, peak on B on a K40c is ≈180 GB/s, so when n=16 for example, 
we expect  theoretical max performance of 180 Gflop/s in DP 

                                                
 



Performance results 
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Performance comparison of tensor contraction versions using 
batched C = αAB + βC on 100,000 square matrices of size n on a 
K40c GPU and 16 cores of Intel Xeon E5-2670, 2.60 GHz CPUs. 

Effect of a Thread Block Concurrency (tbc) techniques 
where several DGEMMs are performed on one TB 
simultaneously 
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Performance … 

Batched DGEMM on CPUs 
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Batched DGEMM on Intel Xeon Phi 
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Conclusions and future work 

•  Developed tensor abstractions for high-order FEM 
•  Multidisciplinary effort 
•  Achieve 90+% of theoretical maximum on GPUs and multicore CPUs 
•  Use on-the-fly tensor reshaping to cast tensor contractions as 

small but many GEMMs, executed using batched approaches 
•  Custom designed GEMM kernels for small matrices and autotuning 

In conclusion: 

Future directions: 
•  To release a tensor contractions package through the MAGMA library 
•  Integrate developments in BLAST 
•  Complete autotuning and develop all kernels 
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