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CHAPTER 1

Introduction and Motivation

The Basic Linear Algebra Subprograms1 (BLAS) and the Linear Algebra PACKage2 (LAPACK)
have been around for many decades and serve as de facto standards for performance-portable
and numerically robust implementations of essential linear algebra functionality. Both are
written in Fortran with C interfaces provided by CBLAS and LAPACKE, respectively.

BLAS and LAPACK will serve as building blocks for the So�ware for Linear Algebra Targeting
Exascale (SLATE) project. However, their current Fortran and C interfaces are not suitable for
SLATE’s templated C++ implementation. The primary issue is that the data type is speci�ed in
the routine name—sgemm for single, dgemm for double, cgemm for complex-single, and zgemm for
complex-double. A templated algorithm requires a consistent interface with the same function
name to be called for all data types. Therefore, we are proposing a new C++ interface layer to
run on top of the existing BLAS and LAPACK libraries.

We start with a survey of traditional BLAS and LAPACK libraries, with both the Fortran and C
interfaces. Then we review various C++ linear algebra libraries to see the trends and features
available. Finally, Chapter 3 covers our proposed C++ API for BLAS and LAPACK.

1http://www.netlib.org/blas/
2http://www.netlib.org/lapack/
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CHAPTER 2

Standards and Trends

2.1 Programming Language Fortran

2.1.1 FORTRAN 77

The original FORTRAN 1 BLAS �rst proposed level-1 BLAS routines for vector operations with
O(n) work on O(n) data. Level-2 BLAS routines were added for matrix-vector operations with
O(n2) work on O(n2) data. Finally, level-3 BLAS routines for matrix-matrix operations bene�t
from the surface-to-volume e�ect of O(n2) data to read forO(n3) work.

Routines are named to �t within the FORTRAN 77 naming scheme’s six-letter character limit.
The pre�x denotes the precision, like so:

s single (�oat)
d double
c complex-single
z complex-double

For level-2 BLAS and level-3 BLAS, a two-letter combination denotes the type of matrix, like
so:

1FORTRAN refers to FORTRAN 77 and earlier standards. The capitalized spelling has since been abandoned, and
�rst-letter-capitalized spelling is now preferred and used uniformly throughout the standard documents.
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2.1. PROGRAMMING LANGUAGE FORTRAN CHAPTER 2. STANDARDS AND TRENDS

ge general rectangular
gb general band
sy symmetric
sp symmetric, packed storage
sb symmetric band
he Hermitian
hp Hermitian, packed storage
hb Hermitian band
tr triangular
tp triangular, packed storage
tb triangular band

Finally, the root speci�es the operation:

axpy y = αx+ y
copy y = x
scal scaling x = αx
mv matrix-vector multiply, y = αAx+ βy
mm matrix-matrix multiply, C = αAB + βC
rk rank-k update, C = αAAT + βC
r2k rank-2k update, C = αABT + αBAT + βC
sv matrix-vector solve, Ax = b, A triangular
sm matrix-matrix solve, AX = B, A triangular

So, for example, dgemm would be a double-precision, general matrix-matrix multiply.

The original Fortran interfaces had a number of limitations, listed below.

• Portability issues calling Fortran: Since Fortran is case insensitive, compilers variously
use dgemm, dgemm_, and DGEMM as the actual function name in the binary object �le. Typically,
macros are used to abstract these di�erences in C/C++.

• Portability issues for routines returningnumbers, such as nrm2 and dot (normand dot
product): The Fortran standard does not specify how numbers are returned (e.g., on the
stack or as an extra hidden argument), so compilers return them in various ways. The f2c
and old g77 versions also returned singles as doubles, and this issue remains when using
macOS Accelerate, which is based on the f2c version of LAPACK/BLAS.

• Lacks mixed precision: Mixed precision (e.g., y = Ax, where A is single, and x is double)
is important for mixed-precision iterative re�nement routines.

• Lacks mixed real/complex routines: Mixed real/complex routines (e.g., y = Ax, where
A is complex, and x is real) occur in some eigenvalue routines.

• Rigid naming scheme: Since the precision is encoded in the name, the Fortran interfaces
cannot readily be used in precision-independent template code (either C++ or Fortran 90).

3



2.1. PROGRAMMING LANGUAGE FORTRAN CHAPTER 2. STANDARDS AND TRENDS

2.1.2 BLASTXBLAS

The BLAS technical forum2 (BLAST) added extended and mixed-precision BLAS routines,
called XBLAS, with su�xes added to the routine name to indicate the extended datatypes.
Using gemm as an example, the initial precision (e.g., z in zgemm) speci�ed the precision of the
output matrix C and scalars (α, β). For mixed precision, a su�x of the form _a_b was added,
where each of a and b is one of the letters s, d, c, or z indicating the types of the A and
B matrices, respectively. For example, in blas_zgemm_d_z, A is double precision (d), while B
and C are complex-double (z). For extended precision, a su�x _x was added that speci�ed it
internally used extended precision, for example, blas_sdot_x is a single-precision dot product
that accumulates internally using extended precision.

While these parameters added capabilities to the BLAS, several issues remain:

• Extended precision was internalized: Output arguments were in standard precision. For
parallel algorithms, the output matrix needed to be in higher precision for reductions.
For instance, a parallel gemv would do gemv on each node with the local matrix and then
do a parallel reduction to �nd the �nal product. To e�ectively use higher precision, the
result of the local gemv had to be in higher precision, with rounding to lower precision
only a�er the parallel reduction. XBLAS did not provide extended precision outputs.

• Super�uous routines: Many of the XBLAS routines were super�uous and not useful in
writing LAPACK and ScaLAPACK routines, therebymaking implementation of XBLAS
unnecessarily di�cult.

• Limited precision types: XBLAS had no mechanism for supporting additional precision
and did not support half-precision (16-bit); integer or quantized; �xed-point; extended
precision (e.g., double-double—two 64-bit quantities representing one value), or quad
precision (128-bit).

• Not widely adopted: The XBLAS was not widely adopted or implemented, although
LAPACK can be built using XBLAS in some routines. The Intel® Math Kernel Library
(Intel® MKL) also provides XBLAS implementations.

2.1.3 Fortran 90

TheBLASTforumalso introduced aFortran 90 interface, which includes precision-independent
wrappers around all of the routines and makes certain arguments optional with default values
(e.g., assume α = 1 or β = 0 if not given).

2http://www.netlib.org/blas/blast-forum/blast-forum.html
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2.2. PROGRAMMING LANGUAGE C CHAPTER 2. STANDARDS AND TRENDS

2.2 Programming Language C

2.2.1 Netlib CBLAS

The BLAS technical forum also introduced CBLAS, a C wrapper for the original Fortran BLAS
routines. CBLAS addresses a couple of inconveniences that a user would face when using
the Fortran interface directly from C. CBLAS allows for passing of scalar arguments by value,
rather than by reference, replaces character parameters with enumerated types, and deals with
the compiler’s mangling of the Fortran routine names. CBLAS also supports the row-major
matrix layout in addition to the standard column-major layout. Notably, this is handled without
actually transposing the matrices, but is accomplished instead by changing the transposition,
upper/lower, and dimension arguments. Netlib CBLAS declarations reside in the cblas.h
header �le. This �le contains declarations of a handful of types:

1 typedef enum {CblasRowMajor =101, CblasColMajor =102} CBLAS_LAYOUT;
2 typedef enum {CblasNoTrans =111, CblasTrans =112, CblasConjTrans =113} CBLAS_TRANSPOSE;
3 typedef enum {CblasUpper =121, CblasLower =122} CBLAS_UPLO;
4 typedef enum {CblasNonUnit =131, CblasUnit =132} CBLAS_DIAG;
5 typedef enum {CblasLeft =141, CblasRight =142} CBLAS_SIDE;

and contains signatures of all the functions:

1 void cblas_dtrsm(CBLAS_LAYOUT layout , CBLAS_SIDE Side ,
2 CBLAS_UPLO Uplo , CBLAS_TRANSPOSE TransA ,
3 CBLAS_DIAG Diag , const int M, const int N,
4 const double alpha , const double *A, const int lda ,
5 double *B, const int ldb);
6
7 void cblas_ztrsm(CBLAS_LAYOUT layout , CBLAS_SIDE Side ,
8 CBLAS_UPLO Uplo , CBLAS_TRANSPOSE TransA ,
9 CBLAS_DIAG Diag , const int M, const int N,
10 const void *alpha , const void *A, const int lda ,
11 void *B, const int ldb);

Notably, Netlib CBLAS does not introduce a complex type, due to the lack of a standard C
complex type at that time. Instead, complex parameters are declared as void*. Routines that
return a complex value in Fortran are recast as subroutines in the C interface, with the return
value being an output parameter added to the end of the argument list, which allows them to
also be of type void*. Also, the name is su�xed by _sub, as shown below.

1 void cblas_cdotu_sub(const int N, const void *X, const int incX ,
2 const void *Y, const int incY , void *dotu);
3 void cblas_cdotc_sub(const int N, const void *X, const int incX ,
4 const void *Y, const int incY , void *dotc);

CBLAS contains one function, i_amax, in 4 precision �avors, that returns an integer value used
for indexing an array. Keeping with C language conventions, it indexes from 0, instead of from
1 as the Fortran i_amax does. The type is int by default and can be changed to long by setting
the amusing �ag WeirdNEC, like so:

1 #ifdef WeirdNEC
2 #define CBLAS_INDEX long
3 #else
4 #define CBLAS_INDEX int
5 #endif
6
7 CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);

5
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8 CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);
9 CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);
10 CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);

In terms of style, CBLAS uses capital snake case for type names, lower snake case for function
names—pre�xed with cblas_—and Pascal case for constant names. In function signatures,
CBLAS uses lower case for scalars, single capital letter for arrays, and Pascal case for enu-
merations. Also, CBLAS uses const for all read-only input parameters for both scalars and
arrays.

To address the issue of Fortran name mangling, CBLAS allows for Fortran routine names
to be upper case, lower case, or lower case with an underscore (e.g., DGEMM, dgemm, or dgemm_).
Appropriate renaming is done by C preprocessor macros.

2.2.2 Intel MKLCBLAS

Intel MKL CBLAS follows most of the conventions of the Netlib CBLAS with two main ex-
ceptions. First, CBLAS_INDEX is de�ned as size_t. Second, all integer parameters are of type
MKL_INT, which can be either 32-bit or 64-bit precision. Also, header �les in Intel MKL are
pre�xed with mkl_, and, therefore, the CBLAS header �le is mkl_cblas.h.

2.2.3 Netlib lapack cwrapper

The lapack cwrapper was an initial attempt to develop a C wrapper for LAPACK, similar in
nature to the Netlib CBLAS. Like CBLAS, the lapack cwrapper replaced character parameters
with enumerated types, replaced passing of scalars by reference with passing by value, and dealt
with Fortran name mangling. The name of the main header �le was lapack.h.

Enumerated types included all of the types de�ned in CBLAS and, notably, preserved their
integer values, as shown below.

1 enum lapack_order_type {
2 lapack_rowmajor = 101,
3 lapack_colmajor = 102 };
4
5 enum lapack_trans_type {
6 lapack_no_trans = 111,
7 lapack_trans = 112,
8 lapack_conj_trans = 113 };
9
10 enum lapack_uplo_type {
11 lapack_upper = 121,
12 lapack_lower = 122,
13 lapack_upper_lower = 123 };
14
15 enum lapack_diag_type {
16 lapack_non_unit_diag = 131,
17 lapack_unit_diag = 132 };
18
19 enum lapack_side_type {
20 lapack_left_side = 141,
21 lapack_right_side = 142 };

6
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At the same time, many new types were introduced to cover all the other cases of character
constants in LAPACK, e.g.:

1 enum lapack_norm_type {
2 lapack_one_norm = 171,
3 lapack_real_one_norm = 172,
4 lapack_two_norm = 173,
5 lapack_frobenius_norm = 174,
6 lapack_inf_norm = 175,
7 lapack_real_inf_norm = 176,
8 lapack_max_norm = 177,
9 lapack_real_max_norm = 178 };
10
11 enum lapack_symmetry_type {
12 lapack_general = 231,
13 lapack_symmetric = 232,
14 lapack_hermitian = 233,
15 lapack_triangular = 234,
16 lapack_lower_triangular = 235,
17 lapack_upper_triangular = 236,
18 lapack_lower_symmetric = 237,
19 lapack_upper_symmetric = 238,

Like CBLAS, the lapack cwrapper also used the void* type for passing complex arguments and
applied the const keyword to all read-only parameters for both scalars and arrays.

Notably, lapack cwrapper preserved all of the original application programming interface’s
(API’s) semantics, did not introduce support for row-major layout, did not introduce any extra
checks (e.g., NaN checks), and did not introduce automatic workspace allocation.

In terms of style, all names were snake case, including those for types, constants, and functions.
In function signatures, lapack cwrapper used small letters only. Function names were pre�xed
with lapack_. Notably, the name CLAPACK and pre�x clapack_ were not used, to avoid confu-
sion with an incarnation of LAPACK that was expressed in C, by automatically translating the
Fortran codes using the F2C tool. The confusing part was that, while being implemented in C,
CLAPACK preserved the Fortran calling convention.

2.2.4 LAPACKE

LAPACKE is another C language wrapper for LAPACK, originally developed by Intel and later
incorporated into LAPACK. Like CBLAS, LAPACKE replaces passing scalars by reference with
passing scalars by value. LAPACKE also deals with Fortran name mangling in the same manner
as CBLAS. Unlike CBLAS and lapack cwrapper, though, LAPACKE did not replace character
parameters with enumerate types.

And, unlike other C APIs for LAPACK, LAPACKE actually uses complex types for complex
parameters and introduces lapack_complex_float and lapack_complex_double, which are set
by default to float _Complex and double _Complex, respectively, relying on the de�nition of
_Complex in complex.h.

For integers, LAPACKE uses lapack_int, which is de�ned as int by default and de�ned as long
if the LAPACK_ILP64 �ag is set.

Also like CBLAS, the thematrix layout is the �rst parameter in the LAPACKE calls. Two constants
are de�ned with CBLAS compliant integer values, shown below.

7
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1 #define LAPACK_ROW_MAJOR 101
2 #define LAPACK_COL_MAJOR 102

However, unlike in CBLAS, support for row-major layout cannot be implemented by changing
the values of transposition and lower/upper arguments. Here, the matrices have to be actually
transposed.

LAPACKE o�ers two interfaces: (1) a higher-level interface with names pre�xed by LAPACKE_;
and (2) a lower-level interface with names pre�xed by LAPACKE_ and su�xed by _work.

For example:
1 lapack_int LAPACKE_zgecon( int matrix_layout , char norm , lapack_int n,
2 const lapack_complex_double* a, lapack_int lda ,
3 double anorm , double* rcond );
4
5 lapack_int LAPACKE_zgecon_work( int matrix_layout , char norm , lapack_int n,
6 const lapack_complex_double* a, lapack_int lda ,
7 double anorm , double* rcond ,
8 lapack_complex_double* work , double* rwork );

In the case of matrix_layout=LAPACK_COL_MAJOR, the lower level interface (_work su�x)
serves only as a simple wrapper with no extra functionality added. In the case of
matrix_layout=LAPACK_ROW_MAJOR, the lower-level interface performs out-of-place transpo-
sitions of all the input arrays and corresponding allocations and deallocations. At the same
time, the lower level interface preserves the LAPACK convention of leaving it up to the user to
allocate the required workspaces.

The higher-level interface (no _work su�x) eliminates the requirement for the user to allocate
workspaces. Instead, the workspace allocation is done inside the routine a�er the appropriate
query for the required size.

At the same time, the higher-level interface performs NaN checks for all of the in-
put arrays, which can be disabled if LAPACKE is compiled from source, by setting the
LAPACK_DISABLE_NAN_CHECK �ag; notably, this is not possible with the binary distribution.

2.2.5 Next-Generation BLAS: “BLAS G2”

There is a new, ongoing e�ort to develop the next generation of BLAS, called “BLAS G2.” This
BLAS G2 e�ort, �rst presented at the Batched, Reproducible, and Reduced Precision BLAS
workshop,3, 4 introduces a new naming scheme for the lower-level BLAS routines. This new
scheme, which is more �exible than the single-pre�x character scheme used in the original
BLAS and XBLAS, uses su�xes for data types:

r16 half (16-bit �oat)
r32 single
r64 double
c32 complex-single
c64 complex-double
r64x2 extended double-double

3https://docs.google.com/document/d/1DY4ImZT1coqri2382GusXgBTTTVdBDvtD5I14QHp9OE
4http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/Batched-BLAS-2017/
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2.3. C++ PROGRAMMING LANGUAGE CHAPTER 2. STANDARDS AND TRENDS

Arguments can either share the same precision (e.g., all r64 for traditional dgemm) or have mixed
precisions (e.g., blas_gemm_r32r32r64, which has two single-precision matrices [A and B] and
a double-precision matrix [C]). The new scheme also de�nes extensions for having di�erent
input and output matrices (e.g., Cin and Cout) and has reproducible accumulators that give the
same answer regardless of the runtime choices in parallelism or evaluation order.

These additions to the scheme provide amechanism to name the various routines. However, not
all names that �t the mechanism would be implemented, and a set of recommended routines
for implementation will also be de�ned.

While these low-level names are rather cumbersome (e.g., blas_gemm_r64_r64_r32), BLAS G2
also de�nes high-level interfaces in C++ and Fortran that overload the basic operations to
simplifyuse. For example, in C++, blas::gemmwould call the correct low-level routine depending
on the precisions of its arguments.

2.3 C++ Programming Language

Anumber of C++ linear algebra libraries also exist. Most of these provide actual implementations
of BLAS-like functionality in C++ rather than being simple wrappers like CBLAS and LAPACKE.
Some of these libraries can also call the high-performance, vendor-optimized (traditional)
BLAS. The following subsections describe some of these C++ libraries.

2.3.1 Boost and uBLAS

Boost is a widely used collection of C++ libraries covering many topics. Some of the features
developed in Boost have later been adopted into the C++ standard template library (STL). As one
library within Boost, uBLAS5 provides level-1, level-2, and level-3 BLAS functionality for dense,
banded, and sparse matrices. This functionality is implemented using expression templates
with lazy evaluation. Basic expressions on whole matrices are easy to specify. Example gemm
calls include:

1 // C = alpha A B
2 C = alpha * prod( A, B );
3
4 // C = alpha AˆH B + beta C
5 noalias(C) = alpha * prod( herm(A), B ) + beta * C;

Here, noalias prevents the creation of a temporary result. While using noalias in this case is a
bit dubious, since C is on the right hand side, the result appears to be correct. uBLAS can also
access submatrices, both contiguous ranges and slices with stride between rows and columns.
However, the syntax is rather cumbersome:

1 noalias( project( C, range(0,i), range(0,j) ))
2 = alpha * prod( project( A, range(0,i), range(0,k) ),
3 project( B, range(0,k), range(0,j) ) )
4 + beta * project( C, range(0,i), range(0,j) );

5http://www.boost.org/doc/libs/1 64 0/libs/numeric/ublas/doc/index.html
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2.3. C++ PROGRAMMING LANGUAGE CHAPTER 2. STANDARDS AND TRENDS

Because the code is templated, any combination of precisions and real and complex values will
work. The uBLAS interface mostly conforms with C++ STL containers and iterators. Triangular,
symmetric, and Hermitian matrices are stored in a packed con�guration, thereby saving signi�-
cant space but also making operations slower. For example, uBLAS implements spmv rather
than symv. It can also use full matrices for triangular solves to do both trmm and tpmm.

However, uBLAS is not multi-threaded, nor does it interface fully with vendor BLAS, although
there is a way to get the matrix multiply to call MKL,6 and there is an experimental binding to
work with Automatically Tuned Linear Algebra So�ware (ATLAS).

There does not appear to be a way to wrap existing matrices and vectors (i.e., existing matrices
and vectors have to be copied into new uBLAS matrices and vectors). Per the uBLAS FAQ,
development has stagnated since 2008, so it is missing the latest C++ features and is not as fast as
other libraries. Benchmarks showed it is 12–15× slower than sequential Intel MKL for n = 500
dgemm on a machine running a Linux operating system, an Intel Sandy Bridge CPU, Intel icpc
and GNU g++ compilers, -O3 and -DNDEBUG �ags, and cold cache.

Below is an example of a blocked Cholesky algorithm.

1 #include <boost/numeric/ublas/matrix.hpp >
2 #include <boost/numeric/ublas/vector.hpp >
3 #include <boost/numeric/ublas/matrix_proxy.hpp >
4 #include <boost/numeric/ublas/vector_proxy.hpp >
5 #include <boost/numeric/ublas/triangular.hpp >
6
7 using namespace boost:: numeric ::ublas;
8
9 template < typename T, typename Layout >
10 int potrf( matrix < T, Layout >& A )
11 {
12 // Assume uplo == lower. This is a left -looking version.
13 // Compute the Cholesky factorization A = L*LˆH.
14 int n = A.size1(), lda = n, nb = 8, info = 0;
15 for (int j = 0; j < n; j += nb) {
16 // Update and factorize the current diagonal block and test
17 // for non -positive -definiteness.
18 int jb = std::min( nb, n-j );
19 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
20 noalias( project( A, range(j, j+jb), range(j, j+jb) ))
21 -= prod( project( A, range(j, j+jb), range(0, j) ),
22 herm( project( A, range(j, j+jb), range(0, j) )));
23 lapack_potrf( 'l', jb, &A(j, j), lda , &info );
24 if (info != 0) {
25 info += j;
26 break;
27 }
28 if (j+jb < n) {
29 // Compute the current block column.
30 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
31 noalias( project( A, range(j+jb, n), range(j, j+jb) ))
32 -= prod( project( A, range(j+jb, n), range(0, j) ),
33 herm( project( A, range(j, j+jb), range(0, j) )));
34
35 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) / A(j:j+jb, j:j+jb)ˆH # lower
36 // ==> A(j+jb:n, j:j+jb)ˆH = A(j:j+jb, j:j+jb) \ A(j+jb:n, j:j+jb)ˆH
37 // inplace_solve doesn't compile ... don't know why
38 // out -of-place solve will create a temporary. sigh.
39 project( A, range(j+jb, n), range(j, j+jb) )
40 = solve( project( A, range(j, j+jb), range(j, j+jb) ),

6https://software.intel.com/en-us/articles/how-to-use-boost-ublas-with-intel-mkl
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41 project( A, range(j+jb, n), range(j, j+jb) ),
42 lower_tag () );
43 }
44 }
45 return info;
46 }

2.3.2 Matrix Template Library: MTL 4

Matrix Template Library 47 (MTL 4) is a C++ library that supports dense, banded, and sparse ma-
trices. For dense matrices, it supports row-major (default), column-major, andMorton recursive
layouts. MTL 4 uses parts of Boost, and the default installation even placesMTL in a subfolder of
Boost. For sparse matrices, MTL 4 supports compressed row storage (CRS)/compressed sparse
row (CSR), compressed column storage (CCS)/compressed sparse column (CSC), coordinate,
and ELLPACK formats.

Many of the functions are global functions rather than member functions. For instance, MTL 4
uses num_rows(A) instead of A.num_rows().

MTL 4 has extensive documentation with numerous example codes. Still, the documentation
is somewhat di�cult to follow, and it can be di�cult to �nd procedures on how to do certain
things or �nd out what features are explicitly supported.

MTL 4 has native C++ implementations for BLAS operations like matrix-multiply, so it is not
limited to the four precisions of traditional BLAS. By de�ning MTL_HAS_BLAS, it will interface
with traditional BLAS routines for gemm. Upon searching the code, it does not appear that other
traditional BLAS routines are called. However, benchmarks did not reveal any di�erence in
MTL 4’s matrix-multiply performance whether MTL_HAS_BLAS was de�ned or not.

As far as obtaining MTL 4, it has an MIT open-source license, as well as a commercial Super-
computing Edition with parallel and distributed support.

Compared to uBLAS, MTL 4’s syntax for accessing sub-matrices is nicer. An example is shown
below.

1 dense2D <T> Asub = sub_matrix( A, i1, i2, j1, j2 );
2 // or
3 dense2D <T> Asub = A[ irange(i1, i2) ][ irange(j1, j2) ];

Like uBLAS, MTL uses expression templates, providing e�cient implementations of BLAS
operations in a convenient syntax. The syntax is nicer than uBLAS, avoiding the noalias() and
prod() functions.

Here are some example calls:

1 C = alpha*A*B;
2
3 // gemm: C = alpha AˆT B + beta C
4 C = alpha * trans(A)*B + beta * C;
5
6 // gemv
7 y = alpha*A*x + beta*y;

7http://new.simunova.com/index.html#en-mtl4-index-html
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MTL 4 uses “move semantics” to more e�ciently return matrices from functions (i.e., it does a
shallow copy when returning matrices). Aliasing arguments can be an issue, however, and if
MLT 4 detects some aliasing methods, it will throw an exception (e.g., in A = A*B). However, if
there is partial overlap, aliasing will not be detected, and this must be resolved by the user by
adding a temporarymatrix for the intermediate result. It should be noted that traditional BLAS
will not detect aliasing either. MTL 4 also throws exceptions if matrix sizes are incompatible.
The user can disable exceptions by de�ning NDEBUG.

MTL 4 has triangular-vector solves (trsv) available in upper_trisolve and lower_trisolve, but
it does not appear to support a triangular-matrix solve (trsm). This is an impediment to even
a simple blocked Cholesky implementation. However, MTL 4 provides a recursive Cholesky
implementation example. It supports recursive algorithms by providing an mtl::recursator
that divides a matrix into quadrants (A11, A12, A21, and A22), named north_west, north_east,
south_west, and south_east, respectively.

MTL 4 also supports symmetric eigenvalue problems, but it is otherwise unclear if it supports
operations on symmetric matrices like symm, syrk, syr2k, etc. Outside of the symmetric eigen-
value problem, there is little mention of symmetric matrices, but there is an mtl::symmetric
tag. MTL 4 interfaces with UMFPACK for sparse non-symmetric systems.

MTL also includes the following matrix solver capabilities:

• LU, with and without pivoting;
• QR orthogonalization;
• eigenvalue problems (QR iteration);
• SVD; and
• ILU(0), IC(0), IMF(s) incomplete LU, Cholesky, and multi-frontal sparse solvers.

MTL 4 optionally supports some modern C++ 11 features, including:

• move semantics (std::move, std::forward);
• static asserts (static_assert) for compile-time checks of templates (e.g., that a template
type is compatible);

• initializer lists: dense2D<T> A = {{ 3, 4 }, { 5, 6 }}; and
• for loops using range: for (int i : irange(size(v))) { ... }.

Similar to uBLAS, benchmarks showed MTL 4 is around 14× slower than sequential Intel MKL
for n = 500 dgemm on a machine running a Linux operating system, an Intel Sandy Bridge CPU,
Intel icpc and GNU g++ compilers, -O3 and -DNDEBUG �ags, and cold cache.

Below is an example of a blocked-Cholesky algorithm lacking trsm.

1 #include <boost/numeric/mtl/mtl.hpp >
2
3 template < typename T, typename Layout >
4 int potrf( mtl::dense2D < T, Layout >& A )
5 {
6 // Assume uplo == lower. This is a left -looking version.
7 // Compute the Cholesky factorization A = L*LˆH.
8 int n = num_rows(A), lda = n, nb = 8, info = 0;
9 for (int j = 0; j < n; j += nb) {
10 // Update and factorize the current diagonal block and test
11 // for non -positive -definiteness.
12 int jb = std::min( nb, n-j );
13 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
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14 if (j > 0) { // throws exception on empty matrices
15 sub_matrix( A, j, j+jb, j, j+jb )
16 -= sub_matrix( A, j, j+jb, 0, j ) *
17 adjoint( sub_matrix( A, j, j+jb, 0, j ));
18 }
19 lapack_potrf( 'l', jb, &A(j, j), lda , &info );
20 if (info != 0) {
21 info += j;
22 break;
23 }
24 if (j+jb < n) {
25 // Compute the current block column.
26 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
27 if (j > 0) {
28 sub_matrix( A, j+jb, n, j, j+jb )
29 -= sub_matrix( A, j+jb, n, 0, j ) *
30 adjoint( sub_matrix( A, j, j+jb, 0, j ));
31 }
32 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) / A(j:j+jb, j:j+jb)ˆH # lower
33 // ==> A(j+jb:n, j:j+jb)ˆH = A(j:j+jb, j:j+jb) \ A(j+jb:n, j:j+jb)ˆH
34 // This solve doesn't compile: ambiguous (perhaps a bug in their API).
35 // Also , only trsv is supported , not trsm.
36 // lower_trisolve( sub_matrix( A, j, j+jb, j, j+jb ),
37 // sub_matrix( A, j+jb, n, j, j+jb ),
38 // sub_matrix( A, j+jb, n, j, j+jb ) );
39 }
40 }
41 return info;
42 }

2.3.3 Eigen

Like uBLAS and MTL4, Eigen8, another C++ template library for linear algebra, is based on C++
expression templates. Eigen seems to be a more mature product than uBLAS and MTL 4.

In addition to BLAS-type expressions, the Eigen library includes: (1) linear solvers (e.g., LU
with partial pivoting or full pivoting, Cholesky, Cholesky with pivoting [for semide�nite],
QR, QR with column pivoting (rank revealing), and QR with full pivoting); (2) eigensolvers
(e.g., Hermitian [“Self Adjoint”], generalized Hermitian [Ax = λBx where B is HPD], and
non-symmetric); and (3) SVD solvers (e.g., two-sided Jacobi and bidiagonalization).

Eigen does not include a symmetric-inde�nite solver (e.g., Bunch-Kaufman pivoting, Rook
pivoting, or Aasen’s algorithm).

Eigen’s block syntax is more succinct than other libraries:

uBLAS: project( A, range( i, i+mb ), range( j, j+nb ))
MTL 4: sub_matrix( A, i, i+mb, j, j+nb )
Eigen: A.block( i, j, mb, nb )

8http://eigen.tuxfamily.org/
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However, when using member functions in a template context, the syntax requires extra
“template” keywords, which are annoying and clutter the code:

Eigen: A.template block( i, j, mb, nb )

Eigen also provides both triangular and Hermitian (self-adjoint) views on matrices, though it
does not appear to o�er complex-symmetric views, which are less frequently used but do occur
in some applications.

As with uBLAS and MTL 4, aliasing can be an issue in Eigen. Component-wise operations,
where the C(i, j) output entry depends only on the C(i, j) input entry of C and other matrices,
are una�ected by aliasing. Some operations like transpose have an in-place version available,
and Eigen detects obvious cases of aliasing in debug mode. Like in uBLAS, Eigen assumes
matrix-multiply uses an alias and generates a temporary intermediate matrix unless the user
adds the .noalias() call.

Therefore, while it makes expressions like C = A*B simple, more complex expressions are
quickly bogged down by extra function calls (e.g., block, triangularView, selfadjointView,
solveInPlace, noalias) and C++ syntax.

Eigen has a single class that covers both matrices and vectors. This single class also covers
compile-time �xed size (good for small matrices) and runtime dynamic sizes. Rows or columns,
or both, can be �xed at compile-time. Default storage is column-wise, but the user can change
that via a template parameter. Eigen also has an array class for component-wise operations,
like x .* y (in Matlab notation), and an easy conversion between matrix and array classes, as
shown below.

1 VectorXd x(n), y(n);
2 double r = x.transpose () * y; // dot product
3 VectorXd w = x * y; // assertion error: invalid matrix product
4 VectorXd z = x.array() * y.array (); // component -wise product

Incompatible matrix dimensions in matrix-multiply are detected, at runtime, with an assert in
debug mode. Other errors like aliasing are (sometimes) detected, and execution is then aborted
with an assert. If desired, these errors can be rede�ned to throw C++ exceptions.

Unlike uBLAS and the open-source MTL 4 release, Eigen supports multi-threading through the
Open Multi-Processing (OpenMP) API. Eigen’s performance is also better than uBlas, though it
is still outperformed by the vendor-optimized code in Intel’s MKL. For single-threaded dgemm,
Intel’s MKL is about 2× faster than Eigen for n = 500 (compared to MKL being 14×–15× faster
than uBLAS and MTL 4), while for multi-threaded runs, MKL is 2×–4× faster than Eigen on a
machine running a Linux operating system, an Intel Sandy Bridge CPU, GNU g++ compiler, -O3
and -DNDEBUG �ags, and cold cache. Performance is notably worse with the Intel icpc compiler.

However, Eigen can directly call BLAS and LAPACK functions by setting EIGEN_USE_MKL_ALL,
EIGEN_USE_BLAS, or EIGEN_USE_LAPACKE. With these options, Eigen’s performance ranges from
nearly the same as Intel’s MKL to 2× slower.

Below is an example of a Cholesky factorization using the Eigen template.

1 #include <Eigen >
2
3 template < typename T, int Rows , int Cols , int Layout >
4 int potrf( Eigen::Matrix < T, Rows , Cols , Layout >& A )
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5 {
6 // Assume uplo == lower. This is a left -looking version.
7 // Compute the Cholesky factorization A = L*LˆH.
8 int n = A.rows(), lda = n, nb = 8, info = 0;
9 for (int j = 0; j < n; j += nb) {
10 // Update and factorize the current diagonal block and test
11 // for non -positive -definiteness.
12 int jb = std::min( nb, n-j );
13 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
14 A.template block( j, j, jb, jb )
15 .template selfadjointView < Eigen::Lower >()
16 .rankUpdate( A.template block( j, 0, jb, j ), -1.0 );
17 lapack_potrf( 'l', jb, &A(j, j), lda , &info );
18 if (info != 0) {
19 info += j;
20 break;
21 }
22 if (j+jb < n) {
23 // Compute the current block column.
24 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
25 A.template block( j+jb, j, n - (j + jb), jb ) -=
26 A.template block( j+jb, 0, n - (j + jb), j ) *
27 A.template block( j, 0, jb, j ). adjoint ();
28 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) * A(j:j+jb, j:j+jb)ˆ{-H} # lower
29 A.template block( j, j, jb, jb )
30 .template triangularView < Eigen::Lower >(). adjoint ()
31 .template solveInPlace < Eigen:: OnTheRight >(
32 A.template block( j+jb, j, n - (j + jb), jb ) );
33 }
34 }
35 return info;
36 }

2.3.4 Elemental

Elemental9 is a Message Passing Interface (MPI) based, distributed-memory linear algebra
library that includes a C++ interface for BLAS (excluding band and packed formats) and a
selection of LAPACK routines. Elemental’s BLAS interface is in the El::blas namespace, and
functions are named a�er the traditional BLAS routines, with the exception of the precision
pre�x, in Pascal case. For the four standard precisions (single, double, complex-single, and
complex-double), Elemental calls an optimized BLAS library. It also o�ers a templated C++
reference implementation for arbitrary numeric datatypes like int or double-double.

Hermitian and symmetric routines are extended to all precisions. For example, Herk (C =
αAAH + βC, C is Hermitian) and Syrk (C = αAAT + βC, C is symmetric) are both available
for real and complex data types. Dot products are also de�ned for both real and complex. This
allows for templated code to use the same name for all data types.

Arguments in the Elemental wrappers are similar to the traditional BLAS and LAPACK argu-
ments, including options, dimensions, leading dimensions, and scalars. Dimensions use int, and
there is experimental support for 64-bit integers. Options are a single character, corresponding
to the traditional BLAS options; this di�ers from CBLAS, which uses enums for options. For
instance, a NoTrans, Transmatrix-matrix multiply (C = αABT + βC) is expressed as:

1 El::blas::Gemm( 'N', 'T', m, n, k, alpha , A, lda , B, ldb , beta , C, ldc );

9http://libelemental.org/
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Elemental wraps a handful of LAPACK routines, with most of these dealing with eigenvalue and
singular value problems. Instead of functions using the LAPACK acronym names (e.g., syevr),
Elemental uses descriptive English names (e.g., HermitianEig).

In LAPACK, eigenvalue routines have a job parameter that speci�es whether to compute just
eigenvalues or to also compute eigenvectors. Some routines also have range parameters to
specify computing only a portion of the eigen/singular value spectrum. In Elemental’s wrappers,
these di�erent jobs are provided by overloaded functions, thereby avoiding the need to specify
the job parameter and unused dummy arguments. See below.

1 // factor A = Z lambda ZˆH, eigenvalues lambda and eigenvectors Z
2 HermitianEig( uplo , n, A, lda , lambda , tol=0 ) // lambda only
3 HermitianEig( uplo , n, A, lda , lambda , Z, ldz , tol=0 ) // lambda and Z
4 HermitianEig( uplo , n, A, lda , lambda , il, iu, tol=0 ) // il-th to iu-th lambda
5 HermitianEig( uplo , n, A, lda , lambda , Z, ldz , il, iu, tol=0 ) // il-th to iu-th lambda and Z
6 HermitianEig( uplo , n, A, lda , lambda , vl, vu, tol=0 ) // lambda in (vl, vu]
7 HermitianEig( uplo , n, A, lda , lambda , Z, ldz , vl, vu, tol=0 ) // lambda in (vl, vu] and Z

Elemental also provides wrappers around certain functionalities provided in MPI, the Scal-
able Linear Algebra PACKage (ScaLAPACK), Basic Linear Algebra Communication Subpro-
grams (BLACS), Parallel Basic Linear Algebra Subprograms (PBLAS), libFLAME, and the Parallel
Multiple Relatively Robust Representations (PMRRR) library.

Elemental throws the (SingularMatrixException and NonHPDMatrixException) C++ exceptions
for runtime numerical issues.

Elemental de�nes a densematrix class (Matrix), a distributed-memorymatrix class (DistMatrix),
and sparse matrix classes (SparseMatrix and DistSparseMatrix). The Matrix class is templated
on data type only. Elemental uses a column-major LAPACKmatrix layout, with a leading di-
mension that may be explicitly speci�ed as an option—unlike most other C++ libraries reviewed
here.

AMatrix can also be constructed as a view to an existing memory bu�er, as shown below.

1 Matrix <double > A( m, n, data , lda );

Numerous BLAS, BLAS-like, LAPACK, and other algorithms are de�ned for Elemental’s matrix
types. In contrast to the lightweight wrappers described above, the dimensions are implicitly
known frommatrix objects, rather than being passed explicitly. Options are speci�ed by enums
instead of by character values; however, the enums are named di�erently than they are in
CBLAS. In particular, Elemental has an Orientation enum instead of Transpose, with values
El::NORMAL, El::TRANSPOSE, and El::ADJOINT corresponding to NoTrans, Trans, and ConjTrans,
respectively. In addition to standard BLAS routines, Elemental provides the following routines,
among others.
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Adjoint out-of-place conjugate transpose, B = AH

Axpy add matrices, Y = αX + Y
Broadcast parallel broadcast
DiagonalScale X = op(D)X
Dot matrix Hilbert-Schmidt inner product, vec(A)Hvec(B)
Hadamard element-wise product, C = A ◦B
QuasiTrsm Schur-form quasi-triangular solve
Reduce parallel reduction
Transpose out-of-place transpose, B = AT

Trrk Rank-k update limited to triangular portion (e.g., useful for syrk-like update
C = αAB + βC when AB is known to be symmetric; cf. syrkx in cuBLAS
and gemmt in Intel MKL)

TwoSidedTrmm A = LHAL
TwoSidedTrsm A = L−1AL−H

In addition to standard LAPACKalgorithms, Elemental provides pivotedCholesky, non-pivoting
LU, and complete-pivoting LU. It also has a number of other matrix factorizations and ap-
plications like as pseudospectra, polar decomposition, matrix square root, and matrix sign
function.

The syntax for accessing submatrices is very concise, using the IR( low, hi ) integer range
class, which provides the half-open range (low, hi), shown below.

1 Matrix <double > A( m, n );
2 auto Asub = A( IR(j, j+jb), IR(j, n) );

Because C++ cannot take a non-const reference of a temporary, the output submatrix of each
call must be a local variable. For example, one cannot write:

1 El::Herk( El::LOWER , El::NORMAL ,
2 -1.0, A( IR(j,j+jb), IR(0,j) ),
3 1.0, A( IR(j,j+jb), IR(j,j+jb) ) );

Instead, one must make the local variable Ajj:

1 auto Ajj = A( IR(j,j+jb), IR(j,j+jb) );
2 El::Herk( El::LOWER , El::NORMAL ,
3 -1.0, A( IR(j,j+jb), IR(0,j) ),
4 1.0, Ajj );

Elemental could resolve this issue by adding an overloaded version of Herk and other routines
using a C++ 11 rvalue reference (&&) for the output matrix. Thanks to Vincent Picaud for
pointing this out.

Below is an example of a Cholesky factorization in Elemental.

1 #include <El.h>
2
3 // throws NonHPDMatrixException
4 template < typename T >
5 void potrf( El::Matrix <T>& A )
6 {
7 assert( A.Height () == A.Width() );
8 int n = A.Height ();
9 int nb = 8;
10
11 using El::IR;
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12 // Assume uplo == lower. This is a left -looking version.
13 // Compute the Cholesky factorization A = L*LˆH.
14 for (int j = 0; j < n; j += nb) {
15 // Update and factorize the current diagonal block and test
16 // for non -positive -definiteness.
17 int jb = std::min( nb, n-j );
18 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
19 auto Ajj = A( IR(j,j+jb), IR(j,j+jb) );
20 El::Herk( El::LOWER , El::NORMAL ,
21 -1.0, A( IR(j,j+jb), IR(0,j) ),
22 1.0, Ajj );
23 El:: Cholesky( El::LOWER , Ajj );
24 if (j+jb < n) {
25 // Compute the current block column.
26 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
27 auto Acol = A( IR(j+jb,n), IR(j,j+jb) );
28 El::Gemm( El::NORMAL , El::ADJOINT ,
29 -1.0, A( IR(j+jb,n), IR(0,j) ),
30 A( IR(j,j+jb), IR(0,j) ),
31 1.0, Acol );
32 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) * A(j:j+jb, j:j+jb)ˆ{-H} # lower
33 El::Trsm( El::RIGHT , El::LOWER , El::ADJOINT , El::UNIT ,
34 1.0, A( IR(j,j+jb), IR(j,j+jb) ),
35 Acol );
36 }
37 }
38 }

2.3.5 Intel DAAL

Intel’s Data Analytics Acceleration Library (DAAL)10 provides highly optimized algorithmic
building blocks for data analysis and includes provisions for preprocessing, transformation,
analysis, modeling, and validation. DAAL also provides routines for principal component
analysis, linear regression, classi�cation, and clustering. DAAL is designed to handle data that is
too big to �t in memory, and, instead, it processes data as chunks—amode of operation that can
be referred to as “out-of-core.” DAAL is also designed for distributed processing using popular
data analytics platforms like Hadoop, Spark, R, and Matlab, and can access data from memory,
�les, and Structured Query Language (SQL) databases.

Intel DAAL calls BLAS through wrappers, which are de�ned as static members of the Blas
class template. For example, a call to the SYRK function in the computeXtX method of the
ImplicitALSTrainKernelCommon class looks like this:

1 #include "service_blas.h"
2 template <typename algorithmFPType , CpuType cpu >
3 void computeXtX(size_t *nRows , size_t *nCols , algorithmFPType *beta ,
4 algorithmFPType *x, size_t *ldx ,
5 algorithmFPType *xtx , size_t *ldxtx)
6 {
7 char uplo = 'U';
8 char trans = 'N';
9 algorithmFPType alpha = 1.0;
10 Blas <algorithmFPType , cpu >:: xsyrk(&uplo , &trans ,
11 (DAAL_INT *)nCols , (DAAL_INT *)nRows ,
12 &alpha , x, (DAAL_INT *)ldx ,
13 beta , xtx , (DAAL_INT *)ldxtx);
14 }

10https://software.intel.com/en-us/intel-daal
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The service_blas.h header �le (shown below) contains the de�nition of the Blas class template.

1 #include "service_blas_mkl.h"
2 template <typename fpType , CpuType cpu , template <typename , CpuType > class _impl=mkl::MklBlas >
3 struct Blas
4 {
5 typedef typename _impl <fpType ,cpu >:: SizeType SizeType;
6 static void xsyrk(char *uplo , char *trans , SizeType *p, SizeType *n,
7 fpType *alpha , fpType *a, SizeType *lda ,
8 fpType *beta , fpType *ata , SizeType *ldata)
9 {
10 _impl <fpType ,cpu >:: xsyrk(uplo , trans , p, n, alpha , a, lda , beta , ata , ldata);
11 }

This �le, in turn, relies on the mkl::MklBlas class template, de�ned in service_blas_mkl.h,
which contains partial specializations of the BLAS routines for double precision and single
precision.

Double precision:

1 template <CpuType cpu >
2 struct MklBlas <double , cpu >
3 {
4 typedef DAAL_INT SizeType;
5 static void xsyrk(char *uplo , char *trans , DAAL_INT *p, DAAL_INT *n,
6 double *alpha , double *a, DAAL_INT *lda ,
7 double *beta , double *ata , DAAL_INT *ldata)
8 {
9 __DAAL_MKLFN_CALL(blas_ , dsyrk , (uplo , trans , p, n, alpha , a, lda , beta , ata , ldata ));
10 }

Single precision:

1 template <CpuType cpu >
2 struct MklBlas <float , cpu >
3 {
4 typedef DAAL_INT SizeType;
5 static void xsyrk(char *uplo , char *trans , DAAL_INT *p, DAAL_INT *n,
6 float *alpha , float *a, DAAL_INT *lda ,
7 float *beta , float *ata , DAAL_INT *ldata)
8 {
9 __DAAL_MKLFN_CALL(blas_ , ssyrk , (uplo , trans , p, n, alpha , a, lda , beta , ata , ldata ));
10 }

The call passes through a couple of macro de�nitions, as shown below.

1 #define __DAAL_MKLFN_CALL(f_pref ,f_name ,f_args) __DAAL_MKLFN_CALL1(f_pref ,f_name ,f_args)
2
3 #define __DAAL_MKLFN_CALL1(f_pref ,f_name ,f_args) \
4 if(avx512 == cpu) \
5 { \
6 __DAAL_MKLFN(avx512_ ,f_pref ,f_name) f_args; \
7 } \
8
9 #define __DAAL_MKLFN(f_cpu ,f_pref ,f_name) __DAAL_CONCAT4(fpk_ ,f_pref ,f_cpu ,f_name)
10
11 #if !defined(__DAAL_CONCAT4)
12 #define __DAAL_CONCAT4(a,b,c,d) __DAAL_CONCAT41(a,b,c,d)
13 #define __DAAL_CONCAT41(a,b,c,d) a##b##c##d
14 #endif

The call then reaches the actual reference to an Intel MKL function (e.g., avx512_blas_syrk()).
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Calls to LAPACK are handled in a similar manner. Intel DAAL calls LAPACK through wrappers,
which are de�ned as static members of the Lapack class template.

For example, a call to the POTRF function in the solve method of the
ImplicitALSTrainKernelBase class looks like this:

1 #include "service_lapack.h"
2 template <typename algorithmFPType , CpuType cpu >
3 void ImplicitALSTrainKernelBase <algorithmFPType , cpu >:: solve(
4 size_t *nCols ,
5 algorithmFPType *a, size_t *lda ,
6 algorithmFPType *b, size_t *ldb)
7 {
8 char uplo = 'U';
9 DAAL_INT iOne = 1;
10 DAAL_INT info = 0;
11 Lapack <algorithmFPType , cpu >:: xxpotrf (&uplo , (DAAL_INT *)nCols ,
12 a, (DAAL_INT *)lda , &info);

The service_lapack.h header �le (shown below) contains the de�nition of the Lapack class
template.

1 #include "service_lapack_mkl.h"
2 template <typename fpType , CpuType cpu , template <typename , CpuType > class _impl=mkl::MklLapack >
3 struct Lapack
4 {
5 typedef typename _impl <fpType ,cpu >:: SizeType SizeType;
6 static void xxpotrf(char *uplo , SizeType *p,
7 fpType *ata , SizeType *ldata , SizeType *info)
8 {
9 _impl <fpType ,cpu >:: xxpotrf(uplo , p, ata , ldata , info);
10 }

This, in turn, relies on the mkl::MklLapack class template, de�ned in service_lapack_mkl.h,
which contains partial specializations of the LAPACK routines for double precision and single
precision.

Double precision:

1 template <CpuType cpu >
2 struct MklLapack <double , cpu >
3 {
4 typedef DAAL_INT SizeType;
5 static void xpotrf(char *uplo , DAAL_INT *p, double *ata , DAAL_INT *ldata , DAAL_INT *info)
6 {
7 __DAAL_MKLFN_CALL(lapack_ , dpotrf , (uplo , p, ata , ldata , info ));
8 }

Single precision:

1 template <CpuType cpu >
2 struct MklLapack <float , cpu >
3 {
4 typedef DAAL_INT SizeType;
5 static void xpotrf(char *uplo , DAAL_INT *p, float *ata , DAAL_INT *ldata , DAAL_INT *info)
6 {
7 __DAAL_MKLFN_CALL(lapack_ , spotrf , (uplo , p, ata , ldata , info ));
8 }

In summary, Intel DAAL calls BLAS and LAPACK through static member functions of the Blas
and Lapack class templates. Also, Intel DAAL uses the legacy BLAS calling convention (Fortran),
where parameters are passed by reference, and there is no parameter to specify the layout
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(column-major or row-major). Finally, Intel DAAL only contains templates for the BLAS and
LAPACK functions that it actually uses, and it only contains specializations for single precision
and double precision.

One potential problem with making the datatype a class template parameter is supporting
mixed or extended precision—the class has only one datatype, and it is unclear how to extend
it to multiple datatypes.

2.3.6 Trilinos

Trilinos11 is a collection of open-source so�ware libraries, called packages, linked together by
a common infrastructure and intended to be used as building blocks for the development of
scienti�c applications. Trilinos was developed at SandiaNational Laboratories from a core group
of existing algorithms and utilities. Trilinos supports distributed-memory parallel computation
through MPI and has growing support for shared-memory parallel computation and GPUs.
This happens by the means of the Kokkos package, which provides a common C++ interface
over various parallel programming models, including OpenMP, POSIX threads (pthreads), and
CUDA.

Trilinos provides two sets of wrappers that interface with BLAS and LAPACK. The more generic
interface is contained in the Teuchos package, while a much more concrete implementation is
included in the Epetra package. One worthwhile feature of both of these interfaces is that the
actual BLAS or LAPACK function call is nearly identical between the two. The only di�erence
is the instantiation of the library object. That object serves as a pseudo namespace for all the
subsequent calls to the wrapper functions. See the examples below for more details.

Another shared aspect of both packages is that only the column-major order of matrix elements
is supported, and no provisions are made for a row-major layout.

Teuchos

Teuchos is main package within Trilinos that provides the BLAS and LAPACK interfaces.
More precisely, there are two subpackages that constitute an interface: (1) Teuchos::BLAS and
(2) Teuchos::LAPACK. These two subpackages constitute a rather thin layer on top of the existing
linear algebra libraries, especially when compared with the rest of the features and so�ware
services that Teuchos provides (e.g., memory management, message passing, operating system
portability).

The interface is heavily templated. The �rst two template parameters refer to (1) the numeric
data type for matrix/vector elements and (2) the integral type for dimensions. In addition, traits
are used throughout Teuchos in a manner similar to the string character traits in the standard
C++ library. MagnitudeType corresponds to the magnitude of scalars, with a corresponding
trait method, squareroot, that enforces non-negative arguments through the type system.
ScalarType is used for scalars, and its trait methods include magnitude and conjugate.

In addition to a generic interface and the wrappers around low-level BLAS and LAPACK

11https://trilinos.org/
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routines, Teuchos also contains reference implementations of a majority of BLAS routines. The
implementations are vector-oriented and unlikely to yield e�cient code, but they are useful
for instantiation of Teuchos for more exotic data types that are not necessarily supported by
hardware.

An example code that calls level-1 BLAS is shown below.
1 #include "Teuchos_BLAS.hpp"
2 int example(int n, double alpha , double *x, int incx) {
3 // instantiate BLAS class for integer dimensions and double -precision numerics
4 Teuchos ::BLAS <int , double > blas;
5 blas.SCAL( n, alpha , x, incx );
6 return blas.IAMAX( n, x, incx );
7 }

Below is an example code that invokes dense solver routines for a system of linear equations
given by a square matrix.

1 #include "Teuchos_LAPACK.hpp"
2 void example(int n, int nrhs , double *A, int ldA , int *piv , double *B, int& info) {
3 Teuchos ::LAPACK <int , double > lapack;
4 lapack.GETRF(n, n, A, ldA , piv , &info);
5 lapack.GETRS('N', n, nrhs , A, ldA , piv , B, ldB , &info);
6 }

Note the use of character integral types instead of enumerated types for standard LAPACK
enumeration parameters. Also, the error handling requires explicit use of an integral type
commonly referred to as info.

The LAPACK routines available in the Teuchos::LAPACK class are called through member func-
tions that are not “inlined.”

1 // File Teuchos_LAPACK.hpp
2 namespace Teuchos {
3 template <typename OrdinalType , typename ScalarType >
4 class LAPACK
5 {
6 public:
7 void POTRF(const char UPLO , const OrdinalType n,
8 ScalarType* A, const OrdinalType lda , OrdinalType* info) const;
9 }
10 }

This separates declaration from the implementation and adds the additional overhead of a
non-virtual member call (see below).

1 // File Teuchos_LAPACK.cpp
2 namespace Teuchos {
3 void LAPACK <int , float >:: POTRF(const char UPLO , const int n,
4 float* A, const int lda , int* info) const {
5 SPOTRF_F77(CHAR_MACRO(UPLO), &n, A, &lda , info);
6 }
7 }

Note that the implementation contains a macro that resolves the name-mangling scheme
generated by the FORTRAN 77 compiler. This creates an implicit coupling at link time between
Teuchos and the LAPACK implementation that depends on the name-mangling scheme. As
a result, multiple implementations of the Teuchos LAPACK wrapper must exist on the target
platform for every name mangling scheme of interest—unless only one mangling scheme is
enforced across all LAPACK implementations.
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The Teuchos::LAPACK class is templated with dimension template types (OrdinalType) and
storage template types (ScalarType) for LAPACKmatrices, vectors, and scalars. This may lead
to a problem with excessive growth of the compiler-generated object code: consider all integral
types available in the C/C++ languages (short, int, long, and long long) combined with three
�oating-point precisions (single, double, and extended) combined with real or complex values.
This would lead to 4× 3× 2 = 24 implementations that may be instantiated by the sparse solver
that uses Teuchos. The standard implementations of BLAS and LAPACK are only available for
32-bit and 64-bit integers/pointers in two precisions for real and complex values (eight versions
in total).

The Teuchos::LAPACK class has to be instantiated explicitly before any linear algebra routines can
be called. The cost of construction could be optimized by using static methods, but the support
for such optimization might only be supported in the newer C++ standards and the compilers
that implement them. More speci�cally, the two optimization choices could be a non-template
static function in a templated class versus a templated static function in a non-templated class.
Neither of these choices are available in Teuchos, which uses non-templated member methods
to invoke the LAPACK implementation routines. To reduce the overhead of constructing a
Teuchos::LAPACK class object for every calling scope, the usermay choose to keep a global object
for all calls. It is worth considering that—because the constructor is empty and de�ned in the
header �le—a simple code inlining would likely eliminate the construction overhead altogether.

A similar argument applies to the object destruction, with the caveat that the destructor was
made virtual, which might trigger the creation of the vtable. This is despite the fact that it is hard
to imagine the need for a virtual destructor, because deriving from the base Teuchos::LAPACK
class is an unlikely route—owing to the lack of internal state and the fact that the LAPACK
interface is stable in syntax and semantics, with only occasional additions of new routines.
However, Teuchos contains an additional abstract interface layer that derives from the base
Teuchos::LAPACK class to accommodate various matrix and vector objects. More concretely, the
band, dense, QR, and SPD (symmetric positive de�nite) solvers derive from the base class to
call the speci�c LAPACK routines’ wrappers (see below).

1 namespace Teuchos {
2 template <typename OrdinalType , typename ScalarType > class SerialBandDenseSolver
3 : public CompObject ,
4 public Object ,
5 public BLAS <OrdinalType , ScalarType >,
6 public LAPACK <OrdinalType , ScalarType > ;
7 template <typename OrdinalType , typename ScalarType > class SerialDenseSolver
8 : public CompObject ,
9 public Object ,
10 public BLAS <OrdinalType , ScalarType >,
11 public LAPACK <OrdinalType , ScalarType > ;
12 template <typename OrdinalType , typename ScalarType > class SerialQRDenseSolver
13 : public CompObject ,
14 public Object ,
15 public BLAS <OrdinalType , ScalarType >,
16 public LAPACK <OrdinalType , ScalarType > ;
17 template <typename OrdinalType , typename ScalarType > class SerialSpdDenseSolver
18 : public CompObject ,
19 public Object ,
20 public BLAS <OrdinalType , ScalarType >,
21 public LAPACK <OrdinalType , ScalarType > ;
22 }

These derived classes contain generic methods for factorization (using factor()), solving-
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with-factors (using solve()), and inversion (using invert()). Additional methods may include
equilibration, error estimation, and conditioning estimation.

For completeness, it should bementioned that Teuchos includes additional objects and functions
that could be used to perform linear algebra operations. This additional interface layer is above
the level of abstraction, which is the aim of the present document. An example code that calls a
linear solve is shown below.

1 #include "Teuchos_SerialDenseMatrix.hpp"
2 #include "Teuchos_SerialDenseSolver.hpp"
3 #include "Teuchos_RCP.hpp" // reference -counted pointer
4 #include "Teuchos_Version.hpp"
5
6 void example(int n) {
7 Teuchos :: SerialDenseMatrix <int ,double > A(n, n);
8 Teuchos :: SerialDenseMatrix <int ,double > X(n,1), B(n,1);
9 Teuchos :: SerialDenseSolver <int ,double > solver;
10 solver.setMatrix( Teuchos ::rcp( &A, false ) );
11 solver.setVectors( Teuchos ::rcp( &X, false ), Teuchos ::rcp( &B, false ) );
12
13 A.random ();
14 X.putScalar (1.0); // set X to all 1's
15 B.multiply( Teuchos ::NO_TRANS , Teuchos ::NO_TRANS , 1.0, A, X, 0.0 );
16 X.putScalar (0.0); // set X to all 0's
17
18 info = solver.factor ();
19 info = solver.solve ();
20 }

Epetra

Epetra abbreviates “essential Petra,” the foundational functionality of Trilinos that aims, above
all else, for portability across hardware platforms and compiler versions. As such, Epetra shuns
the use of templates, and thus its code is much closer to hardware and implementation artifacts.

Complex valued matrix elements are not supported by either Epetra_BLAS or Epetra_LAPACK.
Only single-precision and double-precision real interfaces are provided.

An example is provided below.

1 #include <Epetra_BLAS.h>
2 void example(int n, float *fx, double *dx, int inc , float& fsum , double& dsum) {
3 Epetra_BLAS () blas;
4 fsum = blas.ASUM(n, fx, inc);
5 dsum = blas.ASUM(n, dx, inc);
6 }

An example code that invokes dense solver routines for a system of linear equations given by a
square matrix is shown below.

1 #include <Epetra_LAPACK.h>
2 void example(int n, int nrhs , double *A, int ldA , int *piv , double *B, int& info) {
3 Epetra_LAPACK () lapack;
4 lapack.GETRF(n, n, A, ldA , piv , &info);
5 lapack.GETRS('N', n, nrhs , A, ldA , piv , B, ldB , &info);
6 }
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CHAPTER 3

C++ API Design

3.1 Stateless Interface

The proposed API shall be stateless, and any implementation-speci�c setting will be handled
outside of this interface. Initialization and library cleanup will be performed with calls that are
speci�c to the BLAS and LAPACK implementations, if any such operations are required.

Rationale: It is possible to include the state within the layer of the C++ interface, which could
then be manipulated with calls not available in the original BLAS and LAPACK libraries. How-
ever, this creates confusion when the same call with the same call arguments behaves di�erently
due to the hidden state, and so this idea was not implemented. The only way for the user to
ensure consistent behavior for every call would be to switch the internal state to the desired
setting. Even then, there is still the issue of threaded and asynchronous calls that could alter the
internal state in between the state reset and, for example, the factorization call.

3.2 Supported BLAS and LAPACK Storage Types

In order to support templated algorithms, BLAS and LAPACK need to have precision-
independent names (e.g., gemm instead of sgemm, dgemm, cgemm, or zgemm). This will also provide
future compatibility with mixed and extended precisions, where the arguments have di�erent
precisions as proposed by the Next Generation BLAS (Section 2.2.5). A further goal is to make
function calls consistent across all data types, thereby resolving any di�erences that currently
exist.

Our C++ API de�nes a set of overloaded wrappers that call the traditional vendor-optimized

25



3.3. ACCEPTABLE LANGUAGE CONSTRUCTS CHAPTER 3. C++ API DESIGN

BLAS and LAPACK routines. Our initial implementation focuses on full matrices (with “ge,” “sy,”
“he,” and “tr” pre�xes). It is also readily extendable to band matrices (with “gb,” “sb,” and “hb”
pre�xes) and packed matrices (with “sp,” “hp,” and “tp” pre�xes).

3.3 Acceptable Constructs and C++ Language Standard

The C++ language standard has a long history, which results in practical considerations that
we try to adapt into this document. In short, the very latest version of the standard is rarely
implemented across the majority of compilers and supporting tools. Consequently, it is wise to
restrict the range of constructs and limit the syntax in a working code to a subset of one of the
standard versions. Accordingly, we will use only the features from the C++11 standard due to its
wide acceptance by the so�ware and hardware platforms that we target.

3.4 Naming Conventions

C++ interfaces to BLAS routines and associated constants are in the blas namespace, and they
are made available by including the blas.hh header, as shown below.

1 #include <blas.hh>
2
3 using namespace blas;

TheC++ interfaces to LAPACKroutines are in the lapacknamespace, and theyaremade available
by including the lapack.hh header, as shown below.

1 #include <lapack.hh>
2
3 using namespace lapack;

Most C++ routines use the same names as they do in traditional BLAS and LAPACK, with the
exception of precision, and are all lowercase (e.g., blas::gemm, lapack::posv). Arguments also
use the same names as they do in BLAS and LAPACK. In general, matrices are uppercase (e.g.,
A, B), vectors are lowercase (e.g., x, y), and scalars are lower-case Greek letters spelled out in
English (e.g., alpha, beta), following common math notation.

Rationale: The lowercase namespace convention was chosen per usage in standard libraries
(std namespace), Boost (boost namespace), and other common use cases such as the Google
style guide. For C++ only headers, the �le extension .hh was chosen to distinguish it from C
only .h headers. This goes against some HPC libraries such as Kokkos and Trilinos, which
capitalize the �rst letter, but that naming does not �t any of the standards that are followed in
our so�ware.

3.5 Real vs. Complex Routines: The Case for Uni�ed Syntax

Some routines in the traditional BLAS have di�erent names for real and complex matrices (e.g.,
herk for complex Hermitian matrices and syrk for real symmetric matrices). This prevents
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templating algorithms for both real and complex matrices. So, in these cases, both names are
extended to apply to both real and complex matrices. For real matrices, herk and syrk are
synonyms, with both meaning C = αAAH + βC = αAAT + βC, where C is symmetric. For
complex matrices, herkmeans C = αAAH + βC, where C is complex Hermitian, while syrk
means C = αAAT + βC, where C is complex symmetric. Some complex-symmetric routines,
such as csymv and csyr, are not in the traditional BLAS standard but are provided by LAPACK.
Some complex-symmetric routines are missing from BLAS and LAPACK, such as [cz]syr2,
which can be performed using [cz]syr2k, albeit suboptimally. For consistency, we provide all
of these routines in C++ BLAS. LAPACK routines pre�xed with sy and he are handled similarly.

The dot product has di�erent names for real and complex. We extend dot to mean dotc in
complex, and extend both dotc and dotu to mean dot in real.

Additionally, in LAPACK the un pre�x denotes a complex unitary matrix, and the or pre�x
denotes a real orthogonal matrix. For these cases, we extend the un-pre�xed names to real
matrices. The term “orthogonal” is not applicable to complex matrices, so or-pre�xed routines
apply only to real matrices.

Below is chart of the generic C++ names mapped to their respective traditional BLAS names.

C++ Name Real Complex
blas::hemv [sd]symv [cz]hemv
blas::symv [sd]symv [cz]symv †
blas::her [sd]syr [cz]her
blas::syr [sd]syr [cz]syr †
blas::her2 [sd]syr2 [cz]her2
blas::syr2 [sd]syr2 [cz]syr2 ‡
blas::herk [sd]syrk [cz]herk
blas::syrk [sd]syrk [cz]syrk
blas::her2k [sd]syr2k [cz]her2k
blas::syr2k [sd]syr2k [cz]syr2k
blas::hemm [sd]symm [cz]hemm
blas::symm [sd]symm [cz]symm

blas::dot [sd]dot [cz]dotc
blas::dotc [sd]dot [cz]dotc
blas::dotu [sd]dot [cz]dotu

†[cz]symv and [cz]syr are provided by LAPACK instead of BLAS.
‡[cz]syr2 is not available; can substitute [cz]syr2k with k = 1.

Below is chart of the generic C++ names mapped to their respective traditional LAPACK names.
Note that this is not an exhaustive list.

C++ Name Real Complex
lapack::hesv [sd]sysv [cz]hesv
lapack::sysv [sd]sysv [cz]sysv

lapack::unmqr [sd]ormqr [cz]unmqr
lapack::ormqr [sd]ormqr —
lapack::ungqr [sd]orgqr [cz]ungqr
lapack::orgqr [sd]orgqr —
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Where applicable, options that apply conjugate-transpose in complex are interpreted to apply
transpose in real. For instance, in LAPACK’s zlarfb, trans takes NoTrans and ConjTrans but not
Trans, while in dlarfb it takes NoTrans and Trans but not ConjTrans. We extend this to allow
ConjTrans in the real case to mean Trans. This is already true for BLAS routines such as dgemm,
where ConjTrans and Trans have the same meaning.

In LAPACK, for non-symmetric eigenvalues, dgeev takes a split complex representation with
two double-precision vectors for eigenvalues, one vector for real components, and one for
imaginary components, while zgeev takes single vector of complex values. In C++, geev follows
the complex routine in taking a single vector of complex values in both the real and complex
cases.

Other instances where there are di�erences between real and complex matrices will be resolved
to provide a consistent interface across all data types.

3.6 Use of const Speci�er

Array arguments (matrices and vectors) that are read-only are declared const in the interface.
Dimension-related arguments and scalar arguments are passed by value and are therefore not
declared const, as there is no bene�t at the call site.

3.7 Enum Constants

As in CBLAS, options like transpose, uplo (upper-lower), etc. are provided by enums. Strongly
typed C++ 11 enums are used, where each enum has its own scope and does not implicitly
convert to integer. Constants have similar names to those in CBLAS, minus the Cblas pre�x,
but the value is le� unspeci�ed and implementation dependent. Enums and constants are title
case (e.g., ColMajor).

Enums for BLAS are listed below. Note that these values are for example only; also see imple-
mentation note below.

1 enum class Layout : char { ColMajor='C', RowMajor='R' };
2 enum class Op : char { NoTrans ='N', Trans ='T', ConjTrans='C' };
3 enum class Uplo : char { Upper ='U', Lower ='L' };
4 enum class Diag : char { NonUnit ='N', Unit ='U' };
5 enum class Side : char { Left ='L', Right ='R' };

Note that CBLAS_ORDER was renamed CBLAS_LAYOUT in LAPACK 3.6.0+.

In most cases, the name of the enum is also similar to the name in CBLAS. However, for
transpose, because Transpose::NoTrans could easily be misread as transposed rather than not
transposed, the enum is named Op, which is already frequently used in the documentation (e.g.,
for zgemm).

1 TRANSA = 'N' or 'n', op( A ) = A.
2 TRANSA = 'T' or 't', op( A ) = AˆT.
3 TRANSA = 'C' or 'c', op( A ) = AˆH.
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In some cases, BLAS and LAPACK take identical options (e.g., uplo). For consistency within
each library, typedef aliases for the �ve BLAS enums above are provided.

For some routines, LAPACK supports a wider set of values for an enum category than what
is provided by BLAS. For instance, in BLAS, uplo = Lower or Upper, while in LAPACK, laset
and lacpy take uplo = Lower, Upper, or General; and lascl takes eight di�erent matrix types.
Instead of having an extended enum, the C++ API consistently uses the standard pre�xes (ge, he,
tr, etc.) to indicate the matrix type, rather than using the la auxiliary pre�x and di�erentiating
matrix types based on an argument.

Below we introduce these new names and their mapping to the respective LAPACK names.

C++ API LAPACK Matrix Type
gescl lascl with type=G general
trscl( uplo ) lascl with type=uplo triangular or Hermitian
gbscl lascl with type=Z general band
hbscl( uplo ) lascl with type=B (Lower) or Q (Upper) Hermitian band
hsscl lascl with type=H Hessenberg
gecpy lacpy with uplo=G general
trcpy( uplo ) lacpy with same uplo triangular or Hermitian
geset laset with uplo=G general
trset( uplo ) laset with same uplo triangular or Hermitian

Implementation note: Three potential implementations are readily apparent. Enumeration
values could be:

1. default values (0, 1, ...); this is used by cuBLAS;
2. same value as in CBLAS (e.g., NoTrans = 111); or
3. character values used in Fortran (e.g., NoTrans = 'n', as shown above).

If the C++ API calls Fortran BLAS, then the �rst two options require a switch, if-then, or a
lookup table to determine the equivalent character constant (e.g., NoTrans=111maps to 'n').
The third option is trivially converted using a cast and is easier to understand if printed out for
debugging.

If the C++ API calls CBLAS, obviously option 2 is the easiest.

If the C++ API calls some other BLAS library, such as cuBLAS or clBLAS, a switch, if-then, or
lookup table is probably required in all three cases.

We leave the enumeration values unspeci�ed and implementation dependent.

Rationale: In C++, the old style enumeration type, which was borrowed from C, is of integral
type without exact size speci�ed. This may cause problems for binary interfaces when the C
compiler uses the default int representation, and the C++ compiler uses a di�erent storage size.
We do not face this issue here, as we only target C++ as the calling language and C or Fortran as
the likely implementation language.
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3.8 Workspaces

Many LAPACK routines take workspaces with both minimum and optimal sizes. These are
typically of size O(n× nb) for a matrix of dimension n and an optimal block size nb. Notable
exceptions are eigenvalue and singular value routines, which o�en take workspaces of size
O(n2). As memory allocation is typically quick, the C++ LAPACK interface allocates optimal
workspace sizes internally, thereby removing workspaces from the interface. Traditional BLAS
routines do not take workspaces.

If this becomes a performance bottleneck, workspaces could be added as optional arguments—
with a default value of nullptr indicating that the wrapper should allocate workspace—without
breaking code written with the C++ LAPACK API.

Rationale: As needed, there is a possibility of adding an overloaded function call that takes a
user-de�ned memory allocator as an argument. This may serve memory-constrained imple-
mentations that insist on controlled memory usage.

3.9 Errors

Traditional BLAS routines call xerbla when an error occurs. All errors that BLAS detects are
bugs. LAPACK likewise calls xerbla for invalid parameters (which are bugs), but not for runtime
numerical errors like a singular matrix in getrf or an inde�nite matrix in potrf. The default
implementation of xerbla aborts execution.1

Instead, we adopt C++ exceptions for errors, such as invalid arguments. Two new exceptions are
also introduced: (1) blas::error and (2) lapack::error, which are subclasses of std::exception.
The what()member function yields a description of the error.

For runtime numerical errors, the traditional info value is returned. A zero indicates success.
Note that these are o�en not fatal errors. For example, an applicationmaywant to knowwhether
a matrix is positive de�nite, and the easiest, fastest test is to attempt a Cholesky factorization,
which will return an error when it is not positive de�nite.

We do not implement NaN or Inf checks. These add O(n2) work and memory tra�c with
little added bene�t. Ideally, a robust BLAS library would ensure that NaN and Inf values are
propagated, meaning that if there is a NaN or Inf in the input, there is one in the output. Though,
this might not be the case for optimizations where alpha=0 or beta=0. In gemm, for instance, if
beta=0, then it is speci�cally documented in the reference BLAS that C need not be initialized.
The current reference BLAS implementation does not always propagate NaN and Inf; see the
Next Generation BLAS (Section 2.2.5) for examples and proposed routines that are guaranteed
to propagate NaN and Inf values.

Rationale: Occasionally, users express concern about the overhead of error checks. For even
modestly sized matrices, error checks take negligible time. However, for very small matrices,
with n < 20 or so, there can be noticeable overhead. Intel introduced MKL_DIRECT_CALL to

1See explanation inC++API forBatchBLAS, SLATEworking note 4 as to whyand how xerbla is a hideousmonstrosity
for parallel codes or multiple libraries. http://www.icl.utk.edu/publications/swan-004
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disable error checks in these cases.2 However, libraries compiled for speci�c sizes, either via
templating or just-in-time (JIT) compilation, provide an even larger performance boost for
these small sizes; for instance, Intel’s libxsmm3 for extra-small matrix-multiply or batched
BLAS for sets of small matrices. Thus, users with such small matrices are encouraged to use
special purpose interfaces rather than try to optimize overheads in a general purpose interface.

3.10 Return Values

Most C++ BLAS routines are void. The exceptions are asum, nrm2, dot*, and iamax, which return
their result—as is also done in the traditional Fortran interface. The dot routine returns a
complex value in the complex case (unlike CBLAS, where the complex result is an output
argument). This makes the interface consistent across real and complex data types.

Most C++ LAPACK routines return an integer status code that corresponds to positive info
values in LAPACK, thereby indicating numerical errors such as a singular matrix in getrf. A
zero indicates success. LAPACK norm functions return their result.

3.11 Complex Numbers

C++ std::complex is used. Unlike CBLAS, complex scalars are passed by value, which is the
same for real scalars. This avoids inconsistencies that would prevent templated code from
calling BLAS. For type safety, arguments are speci�ed as std::complex rather than as void*,
which is what CBLAS uses.

3.12 Object Dimensions as 64-bit Integers

The interface will require 64-bit integers to specify object sizes using the cstdint header and
the int64_t integral data type.

In recent years, 32-bit so�ware has been in decline with both vendors and open-source projects
dropping support for 32-bit versions and opting exclusively for 64-bit implementations. In fact,
32-bit so�ware is more of a legacy issue with the increasing memory sizes and the demand of
larger models that require large matrices and vectors.

BLAS and LAPACK libraries can easily address this issue, because sizing dense matrices and
vectors has negligible cost. Even on a 32-bit system, an overhead of using 64-bit integers is
not an issue—with the exception of storage for pivots, which arises in LU, pivoted QR, and
accompanying routines that operate on these pivots (e.g., laswp). The overhead for those could
be O(n), where n is the number of swapped rows.

2https://software.intel.com/en-us/articles/improve-intel-mkl-performance-for-small-problems-the-use-of-mkl-direct-call
3https://github.com/hfp/libxsmm
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3.13 Matrix Layout

Traditional Fortran BLAS assumes column-major matrices, and CBLAS added support for row-
major matrices. In many cases, this can be accomplished with essentially no overhead by swap-
ping matrices, dimensions, upper-lower, and transposes, and then calling the column-major
routine. For instance, cblas_dgemv simply changes trans=NoTrans to Trans or trans=Trans to
NoTrans, swaps m <=> n, and then calls (column-major) dgemv. However, some routines require
a little extra e�ort for complex matrices. For cblas_zgemv, trans=ConjTrans can be changed
to NoTrans, but then the matrix isn’t conjugated. This can be resolved by conjugating y and
a copy of x, calling zgemv with m <=> n swapped and trans=NoTrans, and then conjugating y
again. Several other level-2 BLAS routines have similar solutions. So, with minimal overhead,
row-major matrices can be supported in BLAS.

We propose the same mechanism for the C++ BLAS API, either by calling CBLAS and relying
on the row-major support in CBLAS or by reimplementing similar solutions in C++ and calling
the Fortran BLAS.

We also build the same option into the C++ LAPACKAPI, for future support. However, this would
not be implemented initially, which would cause an exception to be thrown. This is because,
for some routines like getrf, there can be substantial overhead in calling the traditional Fortran
LAPACK implementation, because a transpose is required. Other routines such as matrix norms,
QR, LQ, SVD, and operations on symmetric matrices can be readily translated to LAPACK calls
with essentially no overhead and without physically transposing the matrix in memory.

Row-major layout is speci�ed the same way it is in CBLAS, using the blas::Layout or
lapack::Layout enum as the �rst parameter of C++ BLAS and LAPACK functions. It could
maybe be moved to the end to make it an optional argument with a default value of ColMajor.

3.14 Templated versions

As a future extension, in addition to overloaded wrappers around traditional BLAS routines,
generic templated versions that work for any data type could be provided. For instance, these
would support half, double-double, or quad precision and integer types. The data types need
only basic arithmetic operations (e.g., +− ∗/) and functions (e.g., conj, sqrt, abs, real, imag) to
be de�ned. Initially, such templated versions could be based on the reference BLAS, but these
can be optimized using well-known techniques like blocking and vectorization.

3.15 Prototype implementation

To make our proposal concrete, we include a prototype implementation of wrappers for
blas::gemm matrix-matrix multiply and lapack::potrf Cholesky factorization. For brevity,
only the complex<double> datatype is shown; code for other precisions is similar. The only
compile-time parameters are the Fortran name-mangling convention (here assumed to be
lowercase with an appended underscore, “ ”) and BLAS_ILP64, which indicates it will be linked
with an ILP64 (64-bit integer) BLAS/LAPACK library version.
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blas.hh

1 #ifndef BLAS_HH
2 #define BLAS_HH
3
4 #include <cstdint >
5 #include <exception >
6 #include <complex >
7 #include <string >
8
9 namespace blas {
10
11 // -----------------------------------------------------------------------------
12 // Fortran name mangling depends on compiler , generally one of:
13 // UPPER
14 // lower
15 // lower ## _
16 #ifndef BLAS_FORTRAN_NAME
17 #define BLAS_FORTRAN_NAME( lower , UPPER ) lower ## _
18 #endif
19
20 // -----------------------------------------------------------------------------
21 // blas_int is the integer type of the underlying Fortran BLAS library.
22 // BLAS wrappers take int64_t and check for overflow before casting to blas_int.
23 #ifdef BLAS_ILP64
24 typedef long long blas_int;
25 #else
26 typedef int blas_int;
27 #endif
28
29 // -----------------------------------------------------------------------------
30 enum class Layout : char { ColMajor='C', RowMajor='R' };
31 enum class Op : char { NoTrans ='N', Trans ='T', ConjTrans='C' };
32 enum class Uplo : char { Upper ='U', Lower ='L' };
33 enum class Diag : char { NonUnit ='N', Unit ='U' };
34 enum class Side : char { Left ='L', Right ='R' };
35
36 // -----------------------------------------------------------------------------
37 class Error: public std:: exception
38 {
39 public:
40 Error (): std:: exception () {}
41 Error( const char* msg ): std:: exception(), msg_( msg ) {}
42 virtual const char* what() { return msg_.c_str (); }
43 private:
44 std:: string msg_;
45 };
46
47 // -----------------------------------------------------------------------------
48 // internal helper function; throws Error if cond is true
49 // called by blas_throw_if macro
50 inline void throw_if( bool cond , const char* condstr )
51 {
52 if (cond) {
53 throw Error( condstr );
54 }
55 }
56
57 // internal macro to get string #cond; throws Error if cond is true
58 #define blas_throw_if( cond ) \
59 throw_if( cond , #cond )
60
61 // -----------------------------------------------------------------------------
62 // Fortran prototypes
63 // sgemm , dgemm , cgemm omitted for brevity
64 #define BLAS_zgemm BLAS_FORTRAN_NAME( zgemm , ZGEMM )
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65
66 extern "C"
67 void BLAS_zgemm( char const* transA , char const* transB ,
68 blas_int const* m, blas_int const* n, blas_int const* k,
69 std::complex <double > const* alpha ,
70 std::complex <double > const* A, blas_int const* lda ,
71 std::complex <double > const* B, blas_int const* ldb ,
72 std::complex <double > const* beta ,
73 std::complex <double >* C, blas_int const* ldc );
74
75 // -----------------------------------------------------------------------------
76 // lightweight overloaded wrappers: converts C to Fortran calling convention.
77 // calls to sgemm , dgemm , cgemm omitted for brevity
78 inline void gemm_( char transA , char transB ,
79 blas_int m, blas_int n, blas_int k,
80 std::complex <double > alpha ,
81 std::complex <double > const* A, blas_int lda ,
82 std::complex <double > const* B, blas_int ldb ,
83 std::complex <double > beta ,
84 std::complex <double >* C, blas_int ldc )
85 {
86 BLAS_zgemm( &transA , &transB , &m, &n, &k,
87 &alpha , A, &lda , B, &ldb , &beta , C, &ldc );
88 }
89
90 // -----------------------------------------------------------------------------
91 // templated wrapper checks arguments , handles row -major to col -major translation
92 template < typename T >
93 void gemm( Layout layout , Op transA , Op transB ,
94 int64_t m, int64_t n, int64_t k,
95 T alpha ,
96 T const* A, int64_t lda ,
97 T const* B, int64_t ldb ,
98 T beta ,
99 T* C, int64_t ldc )
100 {
101 // determine minimum size of leading dimensions
102 int64_t Am, Bm, Cm;
103 if (layout == Layout :: ColMajor) {
104 Am = (transA == Op:: NoTrans ? m : k);
105 Bm = (transB == Op:: NoTrans ? k : n);
106 Cm = m;
107 }
108 else {
109 // RowMajor
110 Am = (transA == Op:: NoTrans ? k : m);
111 Bm = (transB == Op:: NoTrans ? n : k);
112 Cm = n;
113 }
114
115 // check arguments
116 blas_throw_if( layout != Layout :: RowMajor && layout != Layout :: ColMajor );
117 blas_throw_if( transA != Op:: NoTrans && transA != Op::Trans && transA != Op:: ConjTrans );
118 blas_throw_if( transB != Op:: NoTrans && transB != Op::Trans && transB != Op:: ConjTrans );
119 blas_throw_if( m < 0 );
120 blas_throw_if( n < 0 );
121 blas_throw_if( k < 0 );
122 blas_throw_if( lda < Am );
123 blas_throw_if( ldb < Bm );
124 blas_throw_if( ldc < Cm );
125
126 // check for overflow in native BLAS integer type , if smaller than int64_t
127 if (sizeof(int64_t) > sizeof(blas_int )) {
128 blas_throw_if( m > std:: numeric_limits <blas_int >::max() );
129 blas_throw_if( n > std:: numeric_limits <blas_int >::max() );
130 blas_throw_if( k > std:: numeric_limits <blas_int >::max() );
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131 blas_throw_if( lda > std:: numeric_limits <blas_int >::max() );
132 blas_throw_if( ldb > std:: numeric_limits <blas_int >::max() );
133 blas_throw_if( ldc > std:: numeric_limits <blas_int >::max() );
134 }
135
136 if (layout == Layout :: ColMajor) {
137 gemm_( (char) transA , (char) transB ,
138 (blas_int) m, (blas_int) n, (blas_int) k,
139 alpha ,
140 A, (blas_int) lda ,
141 B, (blas_int) ldb ,
142 beta ,
143 C, (blas_int) ldc );
144 }
145 else {
146 // RowMajor: swap (transA , transB), (m, n), and (A, B)
147 gemm_( (char) transB , (char) transA ,
148 (blas_int) n, (blas_int) m, (blas_int) k,
149 alpha ,
150 B, (blas_int) ldb ,
151 A, (blas_int) lda ,
152 beta ,
153 C, (blas_int) ldc );
154 }
155 }
156
157 } // namespace blas
158
159 #endif // #ifndef BLAS_HH

lapack.hh

1 #ifndef LAPACK_HH
2 #define LAPACK_HH
3
4 #include <cstdint >
5 #include <exception >
6 #include <complex >
7
8 #include "blas.hh"
9
10 namespace lapack {
11
12 // assume same int_type as BLAS
13 typedef blas:: int_type int_type;
14
15 // alias types from BLAS
16 typedef blas:: Layout Layout;
17 typedef blas::Op Op;
18 typedef blas::Uplo Uplo;
19 typedef blas::Diag Diag;
20 typedef blas::Side Side;
21
22 // omitted for brevity: lapack ::Error , blas_throw_if similar to blas.hh
23
24 // -----------------------------------------------------------------------------
25 // Fortran prototypes
26 // spotrf , dpotrf , cpotrf omitted for brevity
27 #define LAPACK_zpotrf BLAS_FORTRAN_NAME( zpotrf , ZPOTRF )
28
29 extern "C"
30 void LAPACK_zpotrf( char const* uplo , int_type const* n,
31 std::complex <double >* A, int_type const* lda ,
32 int_type* info );
33
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34 // -----------------------------------------------------------------------------
35 // lightweight overloaded wrappers: converts C to Fortran calling convention.
36 // calls to spotrf , dpotrf , cpotrf omitted for brevity
37 inline void potrf_( char uplo , int_type n,
38 std::complex <double >* A, int_type lda ,
39 int_type* info )
40 {
41 LAPACK_zpotrf( &uplo , &n, A, &lda , info );
42 }
43
44 // -----------------------------------------------------------------------------
45 // templated wrapper checks arguments , handles row -major to col -major translation
46 template < typename T >
47 int64_t potrf( Layout layout , Uplo uplo , int64_t n, T* A, int64_t lda )
48 {
49 // check arguments
50 blas_throw_if( layout != Layout :: RowMajor && layout != Layout :: ColMajor );
51 blas_throw_if( uplo != Uplo::Upper && uplo != Uplo::Lower );
52 blas_throw_if( n < 0 );
53 blas_throw_if( lda < n );
54
55 // check for overflow in native BLAS integer type , if smaller than int64_t
56 if (sizeof(int64_t) > sizeof(int_type )) {
57 blas_throw_if( n > std:: numeric_limits <int_type >::max() );
58 blas_throw_if( lda > std:: numeric_limits <int_type >::max() );
59 }
60
61 int_type info = 0;
62 if (layout == Layout :: ColMajor) {
63 potrf_( (char) uplo , n, A, lda , &info );
64 }
65 else {
66 // RowMajor: change upper <=> lower; no need to conjugate
67 Uplo uplo_swap = (uplo == Uplo::Lower ? Uplo::Upper : Uplo::Lower);
68 potrf_( (char) uplo_swap , (int_type) n, A, (int_type) lda , &info );
69 }
70 return info;
71 }
72
73 } // namespace lapack
74
75 #endif // #ifndef LAPACK_HH

3.16 Support for Graphics Processing Units

So far, the proposed C++ API does not address any speci�c architecture. The prototype imple-
mentation shown in Section 3.15 works well for most CPU architectures. A question now arises:
can we use the same API to provide a prototype implementation that supports accelerators (e.g.,
graphics processing units [GPUs] and similar devices)? It turns out that, while possible, using
the same exact API hides a lot of GPU-speci�c features and takes away some useful controls
that should be exposed to the user. Using the same API also creates confusion about targeting a
certain hardware for execution. Such shortcomings are summarized below.

1. While it is possible to determine the memory space of a data pointer (i.e., whether it is
in the CPU memory space or in the GPU memory space), it is confusing to the use the
exact same API for both CPUs and GPUs. The semantics of calling the API become hidden
within the pointer attributes, which leads to so�ware readability issues, since a reader
cannot determine whether a BLAS/LAPACK call is being executed on the CPU or on the
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GPU.

2. There are issues with the behavior speci�cations of the routine based on the location of
the data pointers. For example, we can assume that the routine automatically o�oads the
computation to the accelerator if only GPU pointers are passed to the routine. However,
the behavior is unde�ned if the user passes a mix of CPU and GPU pointers.

3. Most of the GPU vendor libraries use handles to maintain some sort of context on the
device. It is inconvenient to create and destroy the handle each time a BLAS/LAPACK
routine is called. This might also lead to performance issues.

4. GPU accelerators introduce the notion of “queues” or “streams.” A GPU kernel is always
submitted to a queue; these queues can be the default (synchronous) queues used in
NVIDIA GPUs, or they can be user de�ned. Queues are also used to launch concurrent
workloads on the GPU by submitting these workloads into independent queues. The API
shown in Section 3.15 does not expose such a control to the user, since a queue must be
created and destroyed internally. This means that the user cannot express dependencies
correctly among several GPU kernels. The use of the default queue, if it exists, is not a
solution, because it is synchronous with respect to other queues.

5. In a multi-GPU environment, one must specify the GPU that will execute a certain kernel.
This is enabled by some vendor runtime APIs that allow the user to set current active device.
Such a control cannot be exposed through the proposed API.

Overloaded APIs for GPUs

Based on the aforementioned reasons, we decided to provide dedicated interfaces for GPUs.
These interfaces have the same exact names speci�ed in Section 3.5 but use a longer list of
arguments. We take advantage of the C++ overloading capabilities and propose that the GPU
interfaces for BLAS and LAPACK should contain an extra parameter that takes care of many
GPU-speci�c details. The extra argument is a C++ class called Queue, which lives in the blas
namespace. The code below shows the GPU interface for the GEMM routine.

1 template < typename T >
2 void gemm ( Layout layout , Op transA , Op transB ,
3 int64_t m, int64_t n, int64_t k,
4 T alpha ,
5 T const * A, int64_t lda ,
6 T const * B, int64_t ldb ,
7 T beta ,
8 T* C, int64_t ldc ,
9 Queue &queue );

OnlyGPU pointers are assumed for the device interfaces, and in case the user decides to compile
the source with GPU support, the declaration of the device interfaces will be implicitly included
in the blas.hh header.
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The Queue Class

The Queue class encapsulates several functionalities that facilitate execution on the GPU. These
include handling GPU-speci�c errors, encapsulating runtime calls, and initializing the vendor-
supplied BLAS library. For now, the plan is to support cuBLAS for NVIDIA GPUs, and rocBLAS
for AMD GPUs. Below is a simple implementation of the Queue class with the cuBLAS backend.
The code shows some very basic functionalities. The �nal product will eventually expose
signi�cantly more controls to the end user.

1 namespace blas {
2
3 class Queue
4 {
5 public:
6 // default constructor
7 Queue (){
8 blas:: get_device( &device_ );
9 device_error_check( cudaStreamCreate (& stream_) );
10 device_blas_check( cublasCreate (& handle_) );
11 device_blas_check( cublasSetStream( handle_ , stream_ ) );
12 }
13
14 // constructor for a given device id
15 Queue(blas:: Device device ){
16 device_ = device;
17 blas:: set_device( device_ );
18 device_error_check( cudaStreamCreate (& stream_) );
19 device_blas_check( cublasCreate (& handle_) );
20 device_blas_check( cublasSetStream( handle_ , stream_ ) );
21 }
22
23 // member function to retrieve queue data members
24 blas:: Device device () { return device_; }
25 device_blas_handle_t handle () { return handle_; }
26
27 // member function to synchronize
28 void sync (){
29 device_error_check( cudaStreamSynchronize(this ->stream ()) );
30 }
31
32 // destructor
33 ˜Queue (){
34 device_blas_check( cublasDestroy(handle_) );
35 device_error_check( cudaStreamDestroy(stream_) );
36 }
37
38
39 private:
40 blas:: Device device_; // associated device ID
41 cudaStream_t stream_; // associated CUDA stream
42 device_blas_handle_t handle_; // associated device blas handle
43
44 };
45
46 } // namespace blas

Some data types, such as device_blas_handle_t and others, encapsulate the vendor-speci�c
data types. Similarly, device_error_check() and device_blas_check() are used to encapsulate
device-speci�c errors and throw exceptions to the user if any are encountered.
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Encapsulating Vendor Libraries

Most BLAS and LAPACK libraries that target CPU architectures agree, with minimal di�erences,
on the routine naming conventions, data types, and constants. However, the corresponding
libraries for GPUs have drastically di�erent naming conventions and use vendor-de�ned data
types and constants. This is why we build a simple abstraction layer that directly invokes device
BLAS and LAPACK routines and wraps the vendor data types and constants. Such a layer
prevents code changes to the high-level routine—the API of which is exposed to the user. It
also facilitates adding interfaces to other libraries in the future as needed. As an example, the
code below encapsulates the device dgemm routine.

1 void DEVICE_BLAS_dgemm(
2 device_blas_handle_t handle ,
3 device_trans_t transA , device_trans_t transB ,
4 device_blas_int m, device_blas_int n, device_blas_int k,
5 double alpha ,
6 double const *dA, device_blas_int ldda ,
7 double const *dB, device_blas_int lddb ,
8 double beta ,
9 double *dC, device_blas_int lddc)
10 {
11 #ifdef HAVE_CUBLAS
12 cublasDgemm( handle , transA , transB ,
13 m, n, k,
14 &alpha , dA, ldda , dB, lddb ,
15 &beta , dC, lddc );
16 #elif defined(HAVE_ROCBLAS)
17 /* equivalent rocBLAS call goes here */
18 #endif
19 }

The types device_blas_handle_t, device_trans_t, and others are compiled to cuBLAS types if
the �ag HAVE_CUBLAS is enabled and are compiled to rocBLAS types if the �ag HAVE_ROCBLAS is
true. By building this simple layer, the device version of the blas::gemm routine always calls the
DEVICE_BLAS_xgemm, regardless of the backend used for the vendor BLAS library.

Prototype Implementation

The code below shows a complete prototype for a device dgemm routine. The routine shares
the same error checks shown in the CPU version. It also converts the input arguments from
the types de�ned in the blas namespace to those de�ned in the vendor library. The routine
automatically selects the GPU on which the routine is to be executed, so that the user does not
have to explicitly manage the active device in the application code.

1 void gemm(
2 blas:: Layout layout ,
3 blas::Op transA ,
4 blas::Op transB ,
5 int64_t m, int64_t n, int64_t k,
6 double alpha ,
7 double const *dA, int64_t ldda ,
8 double const *dB, int64_t lddb ,
9 double beta ,
10 double *dC, int64_t lddc ,
11 blas:: Queue &queue )
12 {
13 // check arguments
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14 blas_error_if( layout != Layout :: ColMajor &&
15 layout != Layout :: RowMajor );
16 blas_error_if( transA != Op:: NoTrans &&
17 transA != Op:: Trans &&
18 transA != Op:: ConjTrans );
19
20
21
22 blas_error_if( transB != Op:: NoTrans &&
23 transB != Op:: Trans &&
24 transB != Op:: ConjTrans );
25
26 blas_error_if( m < 0 );
27 blas_error_if( n < 0 );
28 blas_error_if( k < 0 );
29
30 if (layout == Layout :: ColMajor) {
31 if (transA == Op:: NoTrans)
32 blas_error_if( ldda < m );
33 else
34 blas_error_if( ldda < k );
35
36 if (transB == Op:: NoTrans)
37 blas_error_if( lddb < k );
38 else
39 blas_error_if( lddb < n );
40
41 blas_error_if( lddc < m );
42 }
43 else {
44 if (transA != Op:: NoTrans)
45 blas_error_if( ldda < m );
46 else
47 blas_error_if( ldda < k );
48
49 if (transB != Op:: NoTrans)
50 blas_error_if( lddb < k );
51 else
52 blas_error_if( lddb < n );
53
54 blas_error_if( lddc < n );
55 }
56
57 // check for overflow in native BLAS integer type , if smaller than int64_t
58 if (sizeof(int64_t) > sizeof(device_blas_int )) {
59 blas_error_if( m > std:: numeric_limits <device_blas_int >::max() );
60 blas_error_if( n > std:: numeric_limits <device_blas_int >::max() );
61 blas_error_if( k > std:: numeric_limits <device_blas_int >::max() );
62 blas_error_if( ldda > std:: numeric_limits <device_blas_int >::max() );
63 blas_error_if( lddb > std:: numeric_limits <device_blas_int >::max() );
64 blas_error_if( lddc > std:: numeric_limits <device_blas_int >::max() );
65 }
66
67 device_trans_t transA_ = blas:: device_trans_const( transA );
68 device_trans_t transB_ = blas:: device_trans_const( transB );
69 device_blas_int m_ = (device_blas_int) m;
70 device_blas_int n_ = (device_blas_int) n;
71 device_blas_int k_ = (device_blas_int) k;
72 device_blas_int ldda_ = (device_blas_int) ldda;
73 device_blas_int lddb_ = (device_blas_int) lddb;
74 device_blas_int lddc_ = (device_blas_int) lddc;
75
76 blas:: set_device( queue.device () );
77 if (layout == Layout :: RowMajor) {
78 // swap transA <=> transB , m <=> n, B <=> A
79 DEVICE_BLAS_dgemm(

40
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80 queue.handle(), transB_ , transA_ ,
81 n_, m_, k_,
82 alpha , dB, lddb_ , dA, ldda_ ,
83 beta , dC, lddc_);
84 }
85 else {
86
87 DEVICE_BLAS_dgemm(
88 queue.handle(), transA_ , transB_ ,
89 m_, n_, k_,
90 alpha , dA, ldda_ , dB, lddb_ ,
91 beta , dC, lddc_);
92 }
93 }
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