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ABSTRACT
Due to better parallel density and power efficiency, GPUs
have become more popular for use in scientific applications.
Many of these applications are based on the ubiquitous Mes-
sage Passing Interface (MPI) programming paradigm, and
take advantage of non-contiguous memory layouts to ex-
change data between processes. However, support for effi-
cient non-contiguous data movements for GPU-resident data
is still in its infancy, imposing a negative impact on the over-
all application performance.

To address this shortcoming, we present a solution where
we take advantage of the inherent parallelism in the datatype
packing and unpacking operations. We developed a close in-
tegration between Open MPI’s stack-based datatype engine,
NVIDIA’s Unified Memory Architecture and GPUDirect ca-
pabilities. In this design the datatype packing and unpack-
ing operations are offloaded onto the GPU and handled by
specialized GPU kernels, while the CPU remains the driver
for data movements between nodes. By incorporating our
design into the Open MPI library we have shown signifi-
cantly better performance for non-contiguous GPU-resident
data transfers on both shared and distributed memory ma-
chines.

CCS Concepts
•Theory of computation → Distributed computing mod-
els; •Computer systems organization→ Heterogeneous
(hybrid) systems; •Computing methodologies → Con-
current algorithms;

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4314-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2907294.2907317

Keywords
MPI; GPU; datatype; non-contiguous data; hybrid architec-
ture

1. INTRODUCTION
Throughput-oriented architectures, such as GPUs, are in-

creasingly used for scientific applications because of their
high efficiency in solving computationally intensive tasks at
an unbeatable rate of power consumption. Evidence of this
can be seen in the most recent Top500 list, where GPUs have
become the most popular accelerators. GPUs are connected
as peripheral devices via PCI-Express, and, for a long time,
had a separate memory space than the host. Explicit mem-
ory copy directives were necessary to move data between
host and GPU, before being available to CPU-based com-
putations or communications. More recently, this memory
separation has been fused with the introduction of the Uni-
fied Memory Architecture (UMA), allowing the host mem-
ory to be directly accessed from GPUs, and inversely, GPU
memory to be directly accessed from CPUs – providing ap-
plications with transparent access to the entire memory, in-
dependent of the physical location of the memory.

MPI is a popular and efficient parallel programming model
for distributed memory systems widely used in scientific ap-
plications. As many scientific applications operate on multi-
dimensional data, manipulating parts of these data becomes
complicated because the underlying memory layout is not
contiguous.The MPI standard proposes a rich set of inter-
faces to define regular and irregular memory patterns, the
so called derived datatypes (DDT). For example, the widely
used linear algebra library ScaLAPACK [2] usually deals
with sub-matrices and matrices with irregular shapes such
as upper or lower triangular matrices. The DDTs provide
a general and flexible solution to describe any collections of
contiguous and non-contiguous data with a compact format.
Once constructed and committed, an MPI datatype can be
used as an argument for any point-to-point, collective, I/O,
and one-sided functions. Internally, the MPI datatype en-
gine will automatically pack and unpack data based on the
type of operation to be realized, in an efficient way while
hiding the low-level details from users. Thus, the scien-



tific application developers do not have to manually pack
and unpack data in order to optimize non-contiguous data
transfers, but instead they can safely rely on the MPI run-
time to make such operations trivial and portable. Several
studies [12, 13] have shown that, at least when handling
CPU-based data, recent MPI implementations have exhib-
ited significant performance improvement for the handling
of non-contiguous datatypes. As a result, applications tak-
ing advantage of the MPI datatypes express a drastic benefit
in terms of performance, code readability and maintenance
compared with codes that prefer a more handmade, appli-
cation specific approach.

As GPUs have high computational capabilities, an in-
creasing number of scientific applications migrate their com-
putationally intensive parts to GPUs. Since the MPI stan-
dard [5] does not define interactions with GPU-based data,
it is expected that application developers have to explicitly
initiate data movements between host and device memory
prior to using MPI to move data across node boundaries.
Techniques such as GPUDirect [10] have been developed
to enable direct GPU data movement between processes,
i.e., without going through the host memory. Unfortunately,
these optimizations were designed with a focus on contigu-
ous data, leaving the most difficult operations, the packing
and unpacking of non-contiguous memory patterns, in the
charge of developers. To fully utilize the PCI-Express and
the network, non-contiguous data must be packed into a
contiguous buffer prior to wire transfer. There are effective
packing/unpacking implementations for datatypes in host
memory [12]. However, exposing the same level of support
for a non-contiguous MPI datatype based on GPU memory
remains an open challenge.

To address the lack of non-contiguous datatype support
for GPUs, we present the design of a datatype engine for
non-contiguous GPU-resident data, which is able to take
advantage of the embarrassingly parallel nature of the pack
and unpack operations and efficiently map them onto GPU
threads. The GPU datatype engine is incorporated into
the Open MPI [6] library, and takes advantage of the lat-
est NVIDIA hardware capabilities, such as GPUDirect, not
only to minimize the overheads but also to decrease the
overall energy consumption. For contexts where GPUDi-
rect is not available, we provide a copy-in/copy-out proto-
col using host memory as an intermediary buffer. All these
approaches are using a light-weight pipeline protocol to al-
low pack and unpack operations to work simultaneously to
reduce the overall communication time of non-contiguous
data between MPI processes. Although this work is done
using CUDA in the context of MPI, the ideas are generic
and can be easily ported not only to different programming
paradigms (OpenSHMEM and OpenCL), but also to other
types of accelerators with computational capabilities.

The contributions of this paper are: a) a datatype en-
gine designed for GPU-resident non-contiguous data, which
adapts the parallelism of the pack/unpack operations to the
parallelism available on GPUs; b) support for different com-
munication protocols – for RDMA and copy in/out – to max-
imize the benefit from the capabilities available at the hard-
ware level (GPUDirect); c) a light-weight pipeline mecha-
nism to ensure all participants, the sender and the receiver,
can be used simultaneously to prepare the data for transfer
(pack and unpack); and d) to demonstrate the performance
boost achieved by the techniques presented in this paper

while transferring widely used non-contiguous data memory
layouts.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 outlines the design
of the GPU datatype engine. Section 4 presents how the
GPU datatype engine is integrated into Open MPI. Section 5
evaluates the performance in hybrid systems with four types
of benchmarks. Section 6 concludes the paper and describes
potential future work.

2. RELATED WORKS

2.1 GPU-Aware MPI
Heterogeneous systems feature several CPU cores and one

or more GPUs per node. Writing efficient applications for
such heterogeneous systems is a challenging task as applica-
tion developers need to explicitly manage two types of data
movements: intra-process communications (device to host)
and inter-process communications. Recent versions of well-
known MPI libraries such as MVAPICH2 [17] and Open MPI
already provide some levels of GPU support. With these
GPU-Aware MPI libraries, application developers can use
MPI constructs to transparently move data, even if the data
resides in GPU memory. Similar efforts have been made
to integrate GPU-awarness into other programming mod-
els. Aij et. al. propose the MPI-ACC [1], which seamlessly
integrates OpenACC with the MPI library, enabling Ope-
nACC applications to perform end-to-end data movement.
Lawlor presents the cudaMPI [8] library for communication
between GPUs, which provides specialized data movement
calls that translate to cudaMemcpy followed by the corre-
sponding MPI call. Even though the paper discusses non-
contiguous data support, the current implementation only
includes support for vector types. For the PGAS program-
ming model, Potluri et. al [11] extend OpenSHMEM to
GPU clusters providing a unified memory space. However,
as OpenSHMEM has no support for non-contiguous types,
this implementation does not provide sufficient support to
communicate non-contiguous GPU data. All these works
focus on providing GPU-awarness for parallel programming
models, and have been demonstrated to deliver good per-
formance for contiguous data, but none of them provide
full and efficient support for non-contiguous data residing
in GPU memory.

2.2 MPI Datatype for Data Residing in GPU
Memory

More recent works have focused on providing non-contiguous
MPI datatype functionality for GPU data. Wang et. al.
have improved the MVAPICH MPI implementation to pro-
vide the ability to transparently communicate non-contiguous
GPU memory that can be represented as a single vector, and
therefore translated into CUDA’s two-dimensional memory
copy (cudaMemcpy2D) [16]. A subsequent paper by the
same authors tries to extend this functionality to many data-
types by proposing a vectorization algorithm to convert any
type of datatype into a set of vector datatypes [15]. Unfor-
tunately, indexed datatypes such as triangular matrices, are
difficult to convert into a compact vector type. Using Wang’s
approach, each contiguous block in such an indexed datatype
is considered as a single vector type and packed/unpacked
separately from other vectors by its own call to cudaMem-
cpy2D, increasing the number of synchronizations and con-



sequently decreasing the performance. Moreover, no pipelin-
ing or overlap between the different stages of the datatype
conversion is provided, even further limiting the performance.

Jenkins et. al. integrated a GPU datatype extension into
the MPICH library [7]. His work focuses on the packing and
unpacking of GPU kernels, but without providing overlaps
between data packing/unpacking and other communication
steps. Both Wang and Jenkins’s work require transition-
ing the packed GPU data through host memory, increas-
ing the load on the memory bus and imposing a significant
sequential overhead on the communications. All of these
approaches are drastically different from our proposed de-
sign, as in our work we favor pipelining between GPU data
packing/unpacking and data movements, and also take ad-
vantage, when possible, of GPUDirect to bypass the host
memory and therefore decrease latency and improve band-
width.

3. DESIGN OF THE GPU DATATYPE EN-
GINE

The datatype constructs provided by the MPI Standard [5]
give one the capability to define contiguous and non-contiguous
memory layouts, allowing developers to reason at a higher
level of abstraction, thinking about data instead of focusing
on the memory layout of the data (for the pack/unpack op-
erations). MPI defines data layouts of varying complexity:
contiguous a number of repetitions of the same datatype
without gaps in-between; vector defines a non-contiguous
data layout that consists of equally spaced blocks of the
same datatype; indexed specifies a noncontiguous data lay-
out where neither the size of each block nor the displace-
ments between successive blocks are equal; struct consists of
location-blocklength-datatype tuples, allowing for the most
flexible type of non-contiguous datatype construction.

Many MPI-based libraries and applications are using data-
types to move the burden of handling non-contiguous data
from users to the MPI library implementors. For example,
in the 2D stencil application of the Scalable HeterOgeneous
Computing benchmark (SHOC) [3], two of the four bound-
aries are contiguous, and the other two are non-contiguous,
which can be defined by a vector type. In the LAMMPS
application from the molecular dynamics domain [13], each
process keeps an array of indices of local particles that need
to be communicated; such an access pattern can be captured
by an indexed type. Hence, MPI datatypes help application
developers alleviate the burden of manually packing and un-
packing non-contiguous data. Therefore, extending the same
datatype support to GPU data is extremely important for
efficient programming in heterogeneous systems.

Current networks are bandwidth-oriented instead of latency-
oriented, and fewer large messages provide better bytes per
second transfer rates. Thus, in the context of non-contiguous
data transfers, instead of generating a network operation for
each individual contiguous block from the non-contiguous
type, it is more efficient to pack the non-contiguous data into
a contiguous buffer, and send less – but larger – messages.
The same logic can be applied when data resides in GPU
memory. Considering sending/receiving non-contiguous GPU
datatypes, the four solutions presented in Figure 1 are usu-
ally employed.

a) Copy the entire non-contiguous data including the gaps
from device memory into host memory. Accordingly, the
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Figure 1: Four possible solutions for send-
ing/receiving non-contiguous data residing in GPU
memory.

data in host memory retains the same memory layout as
the original, and the traditional CPU datatype engine
can handle the pack/unpack operations. This solution
provides good performance for memory layouts with lit-
tle gaps, but cannot be generalized since it wastes a large
amount of host memory for the intermediary copies, and
has a potential degree of parallelism bounded by the
CPU parallelism instead of taking advantage of the com-
putational power of the GPU.

b) The second solution is to issue one device-to-host mem-
ory copy (cudaMemcpy) for each piece of contiguous
data, packing the data into a single, contiguous buffer.
Once packed, the resulting contiguous buffer is sent us-
ing a traditional approach. The receiver will also gener-
ate the required host-to-device memory copies to scatter
the temporary contiguous buffer into the expected loca-
tions in device memory. The overhead of launching lots
of memory copies degrades performance. Moreover, a
memory copy of each small block of contiguous data is
not able to utilize the bandwidth of PCI-Express even
with the help of multiple CUDA streams. Hence, the
performance of this approach is limited.

c) A small improvement upon the second solution, instead
of going through host memory, it issues one device-to-
device memory copy for each piece of contiguous data,
and directly copies data into the destination device mem-
ory. Similar to the previous solution, this alternative suf-
fers from the overhead of launching too many memory
copies and the low utilization of PCI-Express. Also, this
solution only works when the peers have identical mem-
ory layouts and the hardware supports direct device-to-
device copy.

d) The last solution is to utilize the GPU to pack and un-
pack non-contiguous data directly into/from a contigu-
ous GPU buffer. Then the contiguous GPU-based buffer
can either be moved between GPUs with hardware sup-
port, or – in the worst case – through the host memory.

Among all of the above solutions, we believe the last to be
the most promising. Compared with the CPU, the GPU
has many light-weight cores and significantly larger mem-
ory bandwidth, which might be beneficial for GPU pack-
ing/unpacking as these operations can be made embarrass-
ingly parallel. Since the kernel is offloaded into the GPU



while the CPU is mostly idle (in an MPI call), it also pro-
vides the opportunity to pipeline pack/unpack with send/re-
ceive (discussed in Section 4). Moreover, this approach can
be easily adapted to any hardware configuration: if GPUDi-
rect is supported, we can bypass the host memory and use
network RDMA capabilities, otherwise the copies to/from
host memory can also be integrated in the pipeline, provid-
ing end-to-end overlap between pack/unpack and commu-
nications. In this paper, we present the design of a GPU
datatype engine based on the 4th approach, taking advan-
tage of CUDA zero copy and pipeline techniques to maxi-
mally the overlap between pack/unpack operations and com-
munications.

In Open MPI, a datatype is described by a concise stack-
based representation. Each stack element records type-specific
parameters for a block, such as the number of contiguous el-
ements in the block, the displacement of the first element
from the beginning of the corresponding stack frame, and
the number of blocks to be packed/unpacked. The most
straightforward way to provide datatype support for GPU
data would be to port the original (CPU-based) datatype
engine into the GPU. However, porting the datatype stack
to execute the pack/unpack operation on the GPU gener-
ates too many conditional operations, which are not GPU
friendly. Thus, in order to minimize the branch operations
executed by the GPU, we divided the pack/unpack opera-
tions into 2 stages. First, the host simulates the pack/unpack
and generates a list of tuples <source displacement, length,
destination displacement>. Because this list contains only
relative displacements, it can be reused for a subsequent
pack/unpack using the same datatype, and is therefore sub-
ject to caching optimizations. The second stage, which is
represented by a kernel executing on a GPU, is using this
list to execute – in parallel – as many of these pack/unpack
operations as possible.

3.1 Vector Type
Other than contiguous datatype, vector is the most regu-

lar and certainly the most widely used MPI datatype con-
structor. A vector type is described by blocklengh and
stride, where blocklength refers to the number of primi-
tive datatypes that a block contains, and stride refers to
the gaps between blocks. In our GPU datatype engine, we
developed optimized packing/unpacking kernels specialized
for a vector-like datatype. Similar to the 2 stages described
above, the pack/unpack is driven by CPU. The pack kernel
takes the address of the source and the destination buffers,
blocklength, stride, and block count as arguments, and is
launched in a dedicated CUDA stream. The operation is
considered complete after a synchronization with the stream.
The unpack kernel behaves similarly to the pack kernel.

While accessing global memory, a GPU device coalesces
loads and stores issued by threads of a warp into as few
transactions as possible to minimize DRAM bandwidth. Fig-
ure 2 shows the memory access pattern of GPU packing and
unpacking kernels, forcing coalesced CUDA threads to ac-
cess contiguous memory. Since device memory is accessed
via 32-, 64-, or 128-byte memory-wide transactions [9], in
order to minimize memory transactions, each thread theo-
retically should copy at least 4-bytes of data (128 bytes /
32 threads per warp). In our kernel, we force each thread
to copy 8-bytes of data to reduce the number of total loops
of each thread. In the case that data is not aligned with 8-

256B 128B 256B128B

WARP WARP WARP WRAP

8-byte
access

CUDA threads

Figure 2: Access pattern of GPU pack/unpack ker-
nels of vector type. The size of a CUDA block is a
multiple of the warp size.

bytes, the block is divided into 3 parts: the prologue and
epilogue sections follow the original alignment, while the
middle one follows the 8-byte alignment.

3.2 Less regular memory patterns
Datatypes other than vector are more complicated, and

cannot be described in a concise format using only block-
lengh and stride, and instead require a more detailed descrip-
tion including the displacement. However, one can imagine
that any type can be described as a collection of vectors,
even if some of the vectors have a count of a single ele-
ment. Thus, it would be possible to fall back on a set of
vector-based descriptions, and launch a vector kernel (sim-
ilar to 3.1) for each entry. This design is unable to pro-
vide good performance as many kernels need to be launched,
overwhelming the CUDA runtime.

Instead, we propose a general solution by re-encoding a
representation of any complex datatype into a set of work
units with similar sizes as shown in Figure 3 by picking a
reasonable work unit size. As described above, each entry
is identified by a tuple <source displacement, destination
displacement, length> named cuda dev dist. Together with
the source and destination buffers, these entries are inde-
pendent and can be treated in parallel. When entries work
on the same length they provide a good occupancy. The in-
complete entries can either be delegated into another stream
with a lower priority, or treated the same as all the other en-
tries. We choose to treat them equally to the other entries,
allowing us to launch a single kernel and therefore mini-
mize launching overhead. A more detailed procedure for the
pack/unpack operations is as follows:

• First, convert the representation of the datatype from
stack-based into a collection of Datatype Engine Vectors
(DEVs), where each DEV contains the displacement of a
block from the contiguous buffer, the displacement of the
corresponding block from the non-contiguous data and the
corresponding blocklength (the contiguous buffer is the
destination for the pack operation, and the source for the
unpack).

• The second step is to compute a more balanced work dis-
tribution for each CUDA thread. Limited by the number
of threads allowed per CUDA block, a contiguous block
of data could be too large to use a single CUDA block,
resulting in reduced parallelism. To improve parallelism,
a DEV is assigned to multiple CUDA blocks. Instead of
copying the entire DEV into GPU memory and letting
each CUDA block compute its working range, we take
advantage of the sequentiality of this operation to exe-
cute it on CPU, where each DEV is divided into several
cuda dev dist (called CUDA DEV) of the same size S –
plus a residue if needed – and each one is assigned to
a CUDA WARP. Similar to the vector approach, each
CUDA thread accesses 8-bytes of data each time; to fully
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Figure 3: Access pattern of GPU pack/unpack ker-
nels using the DEV methodology. The left struct
describes a work unit for a CUDA WARP.

utilize all threads of a WARP, the size S must be a mul-
tiple of 8 times the CUDA WARP size (32). Thus, the
lower bound of S is 256 bytes; but since CUDA provides
loop unrolling capability, we set the size S to 1KB, 2KB
or 4KB to reduce the branch penalties and increase op-
portunities for instruction level parallelism (ILP).

• Last, once the array of CUDA DEVs is generated, it is
copied into device memory and the corresponding GPU
kernel is launched. When a CUDA block finishes its work,
it would jump N (total number of CUDA blocks) on the
CUDA DEVs array to retrieve its next unit of work.

Since any datatype can be converted into DEV, this ap-
proach is capable of handling any MPI datatype. However,
without a careful orchestration of the different operations,
the GPU idles when the CPU is preparing the CUDA DEVs
array. To improve the utilization of both GPU and CPU, we
pipeline the preparation of the array and the execution of
the GPU kernel: instead of traversing the entire datatype,
the CPU converts only a part of the datatype, then a GPU
kernel is launched to pack/unpack the converted part into a
dedicated CUDA stream. The CPU can then continue con-
verting while the GPU is executing the pack/unpack kernel.
As the CUDA DEV is tied to the data representation and
is independent of the location of the source and destination
buffers, it can be cached, either in the main or GPU memory,
thereby minimizing the overheads of future pack/unpack op-
erations.

4. INTEGRATION WITH Open MPI
This section describes how we integrated the GPU datatype

engine with the Open MPI infrastructure. The Open MPI
communication framework – outside the MPI API – is di-
vided into three layers, with each one playing a different
role. At the top level, the PML (point-to-point management
layer) realizes the MPI matching, fragments, and reassem-
bles the message data from point-to-point communications.
Different protocols based on the message size (short, eager,
and rendezvous) and network properties are available (la-
tency, bandwidth, RMA support), and the PML is designed
to pick the best combination in order to maximize network
usage. Below the PML, the BML (BTL management layer)
manages different network devices, handles multi-link data
transfers, and selects the most suitable BTL for a communi-
cation based on the current network device where messages
go through. The lowest layer, the BTL (byte transfer layer),
is used for the actual point-to-point byte movement. Each

Sender ReceiverRDMA connection established

Lengend:
pack
unpack

Active Message

Figure 4: Pipelined RDMA protocol for
send/receive of non-contiguous GPU-resident
data.

BTL provides support for a particular type of network (TCP,
shared memory, InfiniBand, Portals, uGNI and so on), and
mainly deals with low level network communication proto-
cols where the focus is on optimally moving blobs of bytes.
As different network devices have their own optimal com-
munication protocols, the methodology of GPU datatype
engine integration is realized at the level of the network de-
vice (the BTL). In this paper, we focus on the shared mem-
ory and InfiniBand BTL, and propose support for two types
of protocols: RDMA and copy in/out. Of course, these pro-
tocols are adaptable to the GPU and network capabilities,
and can be easily extended to other BTLs.

4.1 RDMA Protocol
NVIDIA’s GPUDirect technology improves GPU to GPU

communication by allowing data movement between GPU
devices without going through host memory. According to
[18], PCI-E bandwidth of GPU-GPU is larger than the one
of CPU-GPU, therefore, RMDA GPU-GPU communication
not only provides shortest data path between processes, but
also has higher PCI-E utilization. In intra-node communica-
tions, CUDA IPC allows the GPU memory of one process to
be exposed to the others, and therefore provides a one sided
copy mechanism similar to RDMA. In inter-node communi-
cation, GPUDirect RDMA supports data exchange directly
between the GPU and the network interface controller using
PCI-E, enabling direct GPU data movement between nodes.
Taking advantage of GPUDirect, a basic GPU RDMA pro-
tocol can be implemented as follows: sender packs a non-
contiguous GPU datatype into a contiguous GPU buffer,
and then exposes this contiguous GPU buffer to the receiver
process. If the synchronization is done at the level of an
entire datatype packing, the receiver should not access the
data until the sender has completed the pack operation. The
resulting cost of this operation is therefore the cost of the
pack, followed by the cost of the data movement plus the cost
of the unpack. However, if a pipeline is installed between
the 2 processes, the cost of the operation can be decreased,
reaching the invariant (which is the cost of the data trans-
fer) plus the cost of the most expensive operation (pack or
unpack) on a single fragment, which might represent a reduc-
tion by nearly a factor of 2 if the pipeline size is correctly
tuned. This approach also requires a smaller contiguous
buffer on the GPU as the segments used for the pipeline can
be reused once the receiver completes the unpack and noti-
fies the sender that its operation on a segment is completed.
The Open MPI’s PML layer is already capable of implement-
ing message fragmentation and can send/receive them in a



pipelined fashion. However, applying this pipelining feature
directly for PML-based RDMA protocols is costly because
PML is the top-level layer, and pipelining in this layer re-
quires going through the entire Open MPI infrastructure to
establish an RDMA transfer for each fragment. Starting an
RDMA transfer requires the sender to send its GPU memory
handle to the receiver for mapping to its own GPU memory
space, which is a costly operation. With such an approach
any benefits obtained from pipelining will be annihilated by
the overhead of registering the RDMA fragments. To lower
this cost, we implement a light-weight pipelined RDMA pro-
tocol directly at the BTL level, which only proposes a single
one-time establishment of the RDMA connection (and then
caching the registration).

The implementation of our pipelined RDMA protocol uses
BTL-level Active Message [4], which is an asynchronous
communication mechanism intended to expose the intercon-
nection network’s flexibility and performance. To reduce
the communication overhead, each message header contains
the reference of a callback handler triggered on the receiver
side, allowing the sender to specify how the message will be
handled on the receiver side upon message arrival.

Taking advantage of Active Message communications, the
sender and receiver are dissociated, and they synchronize
only when needed to ensure smooth progress of the pack/unpack
operations. While the sender works on packing a fragment,
the receiver is able to unpack the previous fragment, and
then notify the sender that the fragment is now ready for
reuse. Once the sender receives the notification from the
receiver that a fragment can safely be reused, it will pack
the next chunk of data (if any) directly inside. Figure 4
presents the steps of the pipelined RDMA protocol. Besides
the address of a callback handler for invoking the remote
pack or unpack functions, the header in our implementation
also contains additional information providing a finer grain
control of the pack/unpack functions (such as the index of
the fragment to be used). In our RDMA protocol, the pack-
ing/unpacking is entirely driven by the receiver acting upon
a GET protocol, providing an opportunity for a handshake
prior to the beginning of the operation. During this hand-
shake, the two participants agree on the type of datatype in-
volved in the operation (contiguous or non-contiguous) and
the best strategy to be employed. If the sender datatype is
contiguous, the receiver can use the sender buffer directly for
it’s unpack operation, without the need for further synchro-
nizations. Similarly, if the receiver datatype is contiguous
the sender is then allowed to pack directly into the receiver
buffer, without further synchronizations. Of course, based
on the protocol used (PUT or GET), a final synchronization
might be needed to inform the peer about the data transfer
completion. The more detailed description of the pipelined
RDMA protocol is as follows.

• Sender: detects if GPU RDMA is supported between
the two MPI processes, and requests a temporary GPU-
residing buffer from the datatype engine. It then retrieves
the memory handle of this temporary GPU buffer, and
starts the RDMA connection request providing the mem-
ory handle and the shape of the local datatype in a request
message. It then waits until a pack request is received
from the receiver. After finishing packing a fragment, an
unpack request is sent to the receiver signaling the in-
dex of the fragment to be unpacked. In case the GPU
buffer is full, or the pipeline depth has been reached, the

sender waits until it receives an acknowledgment from the
receiver notifying that the unpacking is finished for a par-
ticular fragment that can be reused for the next pack.
This stage repeats until all the data is packed.

• Receiver: upon receiving an RDMA request it maps the
memory handle provided by the sender into its own mem-
ory, allowing for direct access to the sender’s GPU buffer.
After the RDMA connection is established, the receiver
signals the sender to start packing, and then waits until it
receives an unpack request from the sender. After finish-
ing the unpacking of each fragment, the receiver acknowl-
edges the sender, allowing the fragment to be reused. In
the case where the sender and the receiver are bound to
different GPUs, we provide the option to allow the receiver
to allocate a temporary buffer within its device memory
and move the packed data from sender’s device memory
into its own memory before unpacking. In some config-
urations, going through this intermediary copy delivers
better performance than accessing the data directly from
remote device memory.

4.2 Copy In/Out Protocol
In some cases, due to hardware limitations or system level

security restrictions, the IPC is disabled and GPU RDMA
transfers are not available between different MPI processes.
To compensate for the lack of RDMA transfers we provide
a copy in/copy out protocol, where all data transfers go
through host memory. It is worth noting that this approach
is extremely similar to the case when one process uses device
memory while the other only uses host memory. Open MPI
handles non-contiguous datatypes on the CPU by packing
them into a temporary CPU buffer prior to communication.
When GPU RDMA is not available, we forced Open MPI to
always consider all data as being in host memory, and there-
fore it always provides a CPU buffer even for datatypes re-
siding in device memory. When the datatype engine detects
that the corresponding non-contiguous data is actually in
device memory, it allocates a temporary GPU buffer (with
the same or smaller size than the CPU buffer) for packing.
Once this GPU buffer is full, the packed data is copied into
the CPU buffer for further processing. This procedure re-
peats until the entire data is packed. A similar mechanism
applies to unpack.

Unlike the RDMA protocol, extra memory copies between
device and host memory are required. To alleviate the over-
head of such memory transfer, pipelining can also be used
by allowing the sender to partially pack the data, fragment
after fragment, and allow the receive to unpack once it re-
ceives each packed fragment. Therefore, the pipelining be-
comes more complex, overlapping packing/unpacking on the
GPU, with device-to-host data movement and intra-node
communication. Another CUDA capability, zero copy , can
be exploited to minimize the memory copy overhead. In-
stead of using the CPU to explicitly drive memory move-
ment, the CPU buffer is mapped to GPU memory with the
help of CUDA UMA, and then the data movement is implic-
itly handled by hardware, which is able to overlap it with
pack/unpack operations. Overall, as indicated in the exper-
imental Section 5, copy in/out protocol is a general solution
suitable for most platforms, and delivers good performance
– especially once integrated with a pipelined protocol.
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Figure 5: Triangular matrix (red one) vs Stair trian-
gular matrix (red and green one), width and height
of stair nb is multiple of CUDA block size
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5. EXPERIMENT AND EVALUATION
We evaluate our datatypes packing/unpacking methodol-

ogy using four types of benchmarks. First, we investigate
the performance of the GPU datatype engine. Second, we
look at inter-process GPU-to-GPU communication through
a non-contiguous data ping-pong test, and compare with
MVAPICH2.1-GDR. Third, we figure out the minimal GPU
resources required for GPU packing/unpacking kernels to
achieve optimal overall performance when communication
is engaged. Last, we analyze the impact on non-contiguous
data transfer when access to the GPU resource is limited
(the GPU is shared with another GPU intensive applica-
tion). Experiments are carried out on an NVIDIA PSG
cluster: each node is equipped with 6 NVIDIA Kepler K40
GPUs with CUDA 7.5 and 2 deca-core Intel Xeon E5-2690v2
Ivy Bridge CPUs; nodes are connected by FDR IB.

5.1 Performance Evaluation for Datatype En-
gine

In this section, we investigate the performance of our GPU
datatype engine by using two commonly used datatypes:
vector and indexed. These datatypes are representative of
many dense linear algebra based applications, as they are the
basic blocks of the ScaLAPACK data manipulation. More
precisely, these types are represented as a sub-matrix and
an (upper or lower) triangular matrix. Considering a sub-
matrix with column-major format, each column is contigu-
ous in memory, and the stride between columns is the size
of the columns in the original big matrix, which follows the
characteristic of a vector type (shown as “V” in the following
figures). In the lower triangular matrix case, each column
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is contiguous in memory with a size smaller by one element
than the size of the previous column; and the strides between
consecutive columns are equal to the previous stride plus 1,
which can be described by an indexed type (shown as “T”
in the following figures). First, we evaluate the performance
of our packing/unpacking kernels by measuring GPU mem-
ory bandwidth. Figure 6 presents the GPU memory band-
width achieved from packing these two datatypes into local
GPU buffer using our CUDA kernel compared with moving
contiguous data of the same size using cudaMemcpy. cud-
aMemcpy is already the optimal implementation for moving
contiguous GPU data, which can be treated as the practical
peak of GPU memory bandwidth. Compared to cudaMem-
cpy, our GPU packing kernel is able to obtain 94% of the



practical peak for a vector type. The memory instructions
in the unpacking kernel are the same as the ones in the pack-
ing kernel – but in the opposite direction – and therefore the
unpacking kernel delivers the same performance as packing
kernels; this is not presented in the figure. For a triangu-
lar matrix, each column has a different size, which results
in inefficient occupancy of the CUDA kernels; therefore, a
GPU packing kernel is only able to achieve 80% of the GPU
memory’s peak bandwidth. In order to prove that the band-
width difference between the sub-matrix and the triangular
matrix is indeed from the less efficient GPU occupancy, the
triangular matrix is modified to a stair-like triangular ma-
trix (Figure 5). Thus, the occupancy issue can be reduced by
setting the stair size nb to a multiple of a CUDA block size
to ensure no CUDA thread is idle. Sure enough, it is able
to deliver almost the same bandwidth as the vector type.

After studying the performance of the packing/unpacking
kernels, we measure the intra-process performance of pack-
ing non-contiguous GPU-resident data to evaluate the GPU
datatype engine. Because of the current limitation of GPUDi-
rect, using an intermediate host buffer for sending and re-
ceiving over the network is better for large messages than di-
rect communication between remote GPUs in an InfiniBand
environment [14]. Thus, studying the case of going through
host memory is also necessary. In the following benchmark,
one process is launched to pack the non-contiguous GPU
data into a local GPU buffer, followed by a data movement
to copy the packed GPU data into host memory; and then,
the unpacking procedure moves the data from host memory
back into the original GPU memory with the non-contiguous
layout. Accordingly, the time measurement of the bench-
marks in this section contains two parts: “d2d” measures the
time of packing/unpacking non-contiguous data into/from
a contiguous GPU buffer; and “d2d2h” measures the time
of packing/unpacking plus the round trip device-host data
movements. We also apply zero copy , shown as “0cpy,” to
use the CUDA UMA to map the CPU buffer to GPU mem-
ory. In this case, the GPU to CPU data movement is taken
care of by hardware implicitly. Since zero copy involves im-
plicit data transfer, we are only able to measure its total
time without having a separate in-GPU pack/unpack time
to show in figures.

Figure 7 shows the results of a double precision sub-matrix
and lower triangular matrix, with respect to matrix size.
From the figure, a number of interesting trends can be ob-
served. First, the pipelining discussed in Section 3.2 overlaps
the preparation of the CUDA DEVs with GPU pack/unpack
kernels, almost doubling the performance. If the CUDA
DEVs are cached in GPU memory (shown as “cached”), the
preparation cost can be omitted; therefore, by caching the
CUDA DEVs, the packing/unpacking performance is im-
proved when working on data types of the same format.
Second, even though it takes the same time (if CUDA DEVs
are not cached) to pack/unpack a sub-matrix and triangu-
lar matrix of the same matrix size on a GPU, one must note
that the triangular matrix is half the size of a sub-matrix;
therefore, compared with a vector approach, the overhead of
CUDA DEVs preparation is significant – even with pipelin-
ing – which also demonstrates the importance of caching the
CUDA DEVs. Since the MPI datatype describes data layout
format, not data location, by spending a few MBs of GPU
memory to cache the CUDA DEVs, the packing/unpacking
performance could be significantly improved when using the
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Figure 9: PCI-E bandwidth of vector and indexed
data type comparing with contiguous data.

same data type repetitively. Third, since zero copy is able to
overlap the device-host communication with the GPU ker-
nel, it is slightly faster than explicitly moving data between
device and host memory after/before pack/unpack kernels.
In all remaining figures, the zero copy is always enabled if
going through host memory is required.

Alternatively, CUDA provides a two-dimensional memory
copy cudaMemcpy2D to move vector-like data. Figure 8
presents the comparison between our vector pack/unpack
kernel and cudaMemcpy2D, when the numbers of contigu-
ous blocks are fixed at 1000 and 8000, while block size varies
covering both small and large problems. Since using our
pack kernel to move vector-like non-contiguous GPU data
is equivalent to initiating a device to host data movement
using cudaMemcpy2D, we test it in three ways (device-to-
device“mcp-d2d”, device-to-device-to-host“mcp2d-d2d2h”, and
device-to-host “mcp2d-d2h”). As seen in the figure, the per-
formance of cudaMemcpy2D between device and host mem-
ory highly depends on the block size: block sizes that are
a multiple of 64 bytes perform better, while others experi-
ence significant performance regression – especially when the
problem size increases. For non-contiguous data movement
within a GPU, our kernels achieve almost the same perfor-
mance as cudaMemcpy2D. Our DEV pack/unpack kernel is
not compared with CUDA since CUDA does not provide
any alternative function for irregular non-contiguous GPU
data movement.

5.2 Full Evaluation: GPU-GPU Communica-
tion with MPI

In this section, we evaluate the performance of the GPU
datatype engine integration with the Open MPI infrastruc-
ture. The performance is assessed using an MPI“ping-pong”
benchmark. In a shared memory environment, the RDMA
protocol over CUDA IPC is used to avoid extraneous mem-
ory copies between host and device. In a distributed memory
setting, GPU data goes through host memory for commu-
nication. According to [14], even though the GPUDirect
RDMA allows direct intra-node GPU data communication,
it only delivers interesting performance for small messages
(less than 30KB), which is not a typical problem size of GPU
applications. Instead, when pipelining through host memory
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Figure 10: Ping-pong benchmark with matrices. “V” refers to sub-matrix, “T” refers to triangular matrix.

and overlapping GPU pack/unpack kernels, the GPU-CPU
data movement and inter-node data transfer performs bet-
ter. Therefore, in a distributed memory environment, we al-
ways pipeline through host memory. Based on such a setup,
packed GPU data always goes through PCI-E for communi-
cation no matter if it is in a shared or distributed memory
environment; thus, PCI-E bandwidth could be a bottleneck
of overall communication in a ping-pong benchmark. Sim-
ilar to last section, we first evaluate the integration of the
GPU datatype engine with OpenMPI by measuring PCI-E
bandwidth achieved by vector and indexed datatypes, com-
paring data in contiguous format of the same size, with re-
sults shown in Figure 9. Thanks to the pipeline mechanism
discussed in Section 4, we achieved 90% and 78% of the PCI-
E bandwidth for vector and indexed types, respectively, by
selecting a proper pipeline size.

Then, in the following ping-pong benchmarks, we explore
both a shared memory (“SM”) and a distributed memory
(using InfiniBand“IB”) environment under the following con-
figurations with several commonly used data types, and com-
pare them with the state-of-art MVAPICH2:

• “1GPU”: both sender and receiver use the same GPU.

• “2GPU”: sender and receiver use different GPUs. Data is
sent over network (PCI-E or InfiniBand) to the receiver
process.

• “CPU”: the non-contiguous data is in host memory. This
benchmarks the Open MPI CPU datatype engine.

5.2.1 Vector and Indexed Type
Figure 10 presents the ping-pong benchmark with regard

to the matrix size in both “SM” and “IB” environments.
As discussed in Section 4.1, in the “SM” environment with
CUDA IPC support, we provide two options for unpacking
in the receiver side: first, the receiver unpacks directly from
the packed buffer in the remote GPU memory; second, the
receiver process copies the packed buffer into a local GPU
buffer prior to unpacking. The first option involves a lot of
small chunks of data fetching from remote device memory,
generating too much traffic and under-utilizing the PCI-E.
In comparison, the second option groups small data into a
big data movement between GPUs, minimizing the traffic
on the PCI-E and becoming faster. Based on our experi-
ment, by using a local GPU buffer, the performance is 5-10%
faster than directly accessing remote GPU memory; so lim-
ited by the space, we always use the second option in later

benchmarks. The“1GPU”case omits the data movement be-
tween GPUs, being at least 2x faster than any “2GPU” case.
Therefore, even though data is already packed to a contigu-
ous format, the data transfer between GPUs over PCI-E is
still the bottleneck of non-contiguous GPU data communica-
tion in an “SM” environment. Compared with MVAPICH2,
our implementation is always significantly faster, indepen-
dent of the datatype. Because of MVAPICH2’s vectoriza-
tion algorithm converting any type of datatype into a set
of vector datatypes [15], each contiguous block in such an
indexed datatype is considered as a single vector type and
packed/unpacked separately, resulting in sub-optimal per-
formance. As seen in the figure, their indexed implementa-
tion is slow, going outside the time range once the matrix
size reached 1000.

In an “IB” environment, even though data is transitioned
through host memory before being sent over the network,
thanks to zero copy , the device-to-host transfers are handled
automatically by the hardware, and this transfer is over-
lapped with the execution of the GPU pack/unpack kernels.
In this environment we notice a significantly more desir-
able behavior from MVAPICH2, at least for the vector type.
However, our approach achieves a roughly 10% improvement
for the vector type. Similar to the indexed result of “SM”en-
vironment, the MVAPICH2 performance is quickly outside
the range for matrices as small as 1500.

5.2.2 Vector-Contiguous
When using MPI datatypes, the sender and the receiver

can have different datatypes as long as the datatype signa-
tures are identical. Such features improve the application’s
ability to reshape data on the fly, such as in FFT and ma-
trix transpose. In FFT, one side uses a vector, and the other
side uses a contiguous type. Figure 11 shows the ping-pong
performance with such datatypes of different sizes. As seen
in the figure, taking the benefit of GPU RDMA and zero
copy , our implementation performs better than MVAPICH2
in both shared and distributed memory environments.

5.2.3 Matrix Transpose
Matrix transpose is a very complex operation and a good

stress-test for a datatype engine. With column-major stor-
age, each column is contiguous in memory. A matrix can
be described by a contiguous type or vector type if only ac-
cessing the sub-matrix. After the transpose, each column
can be represented by a vector type with a block length of
1 element; consequently, the whole transposed matrix is a
collection of N vector types. Figure 12 shows the bench-
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ronment.

mark for a matrix transpose depending on the matrix size.
Since there is only 1 element in each block, the memory ac-
cess is not following the coalesced rule, and the performance
is not comparable with the regular vector type. However,
such difficulty also occurs in the CPU implementation, ben-
efiting from the parallel capability and high memory band-
width, our GPU datatype implementation is at least 10x
faster than the CPU version of Open MPI. Lacking stable
support for such a datatype, MVAPICH2 crashed in this
experiment and is not included in the figure.

5.3 GPU Resources of Packing/Unpacking Ker-
nels

In previous benchmarks, GPU packing/unpacking kernels
aggressively used CUDA’s Streaming Multiprocessor (SM).
Figure 6 shows that by using as many CUDA cores as pos-
sible, the kernels are able to achieve more than 80 GB/s
of GPU memory bandwidth. However, in most cases, each
MPI process is attached to a separate GPU; since GPUs are
connected by PCI-E, then the communication bandwidth
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trix size varies from 1K to 4K.

is limited to the 10 GB/s available through PCI-E. In this
section, we investigate the minimal resources required to
fulfill the PCI-E bandwidth. The top figures of Figure 13
and Figure 14 present the GPU memory bandwidth of pack-
ing/unpacking kernels for sub-matrix“V”and triangular ma-
trix “T” data types. NVIDIA’s Kepler GPU has four warp
schedulers per SM; therefore, in order to achieve the best
GPU occupancy, the block size should be a multiple of 128
threads (32 threads per warp). In the benchmark, we use
256 threads per block. As seen in the figure, it requires 16
blocks to achieve the peak bandwidth, and achieves 10 GB/s
(the peak of PCI-E bandwidth) by launching only 2 blocks
in most cases. Hence, theoretically, by using no more than
2 blocks, the cost of packing/unpacking can be hidden by
communication over PCI-E when pipelining is applied. Sim-
ilarly, bottom figures of Figure 13 and Figure 14 illustrates
that the PCI-E bandwidth of the same two data types varies
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by the number of blocks used for kernel launching. As seen
in the figure, as we expected, the bandwidth becomes stable
when using at least 2 CUDA blocks. The K40 GPU has 15
SMs, so in the worst case, one seventh of the GPU SMs are
required to overlap the cost of packing/unpacking kernels
with communications over PCI-E. In other cases when each
MPI process is attached to the same GPU or future NVLink
is introduced with higher bandwidth, our GPU datatype en-
gine can be easily adapted by tuning CUDA blocks to fulfill
bandwidth.

5.4 Pipeline and Resource Contention Effects
All previous benchmarks were executed under the assump-

tion that the GPU resources are readily available for pack/un-
pack. As in some cases, overlapping communication with
computation is possible, the application might be using the
GPU while MPI communications with non-contiguous data-
types are ongoing. In this section, we investigate how re-
source contention affects the pack/unpack performance, as
well as the pipelining discussed in Sec 4.

In this benchmark, we launch a special kernel to continu-
ously occupy a fixed percentage of the GPU while executing
the ping-pong benchmark. The grid size of the kernel varies
to occupy full, half, or a quarter of the GPU resources; we
then measure the ping-pong performance under these sce-
narios. The datatypes used are (vector) sub-matrices of size
1000 by 1000 and 2000 by 2000, since they are typical prob-
lem sizes for GPU applications in the linear algebra domain.
The results are shown in Figure 15. Thanks to the pipelin-
ing methodology, a proper pipeline size improves the per-
formance in both shared and distributed memory machines.
However, as seen in the figure, with a small pipeline size the
pack/unpack operations are divided into many small GPU
kernels, and the scheduling of such kernels could be delayed
by the CUDA runtime when the occupancy of the GPU is
high. Our GPU pack/unpack kernels mainly contain mem-
ory operations without floating point operations, and they
are memory bound. Therefore, as long as the GPU is not
fully occupied, our pack/unpack methodology is not signifi-

cantly affected. By using a proper pipeline size, we limit the
loss of performance to under 10%.

6. CONCLUSIONS
As heterogeneous compute nodes become more pervasive,

the need for programming paradigms capable of providing
transparent access to all types of resources becomes crit-
ical. The GPU datatype engine presented in this paper
takes advantage of the parallel capability of the GPUs to
provide a highly efficient in-GPU datatype packing and un-
packing. We integrate the GPU datatype engine into the
state-of-art Open MPI library, at a level of integration such
that all communications with contiguous or non-contiguous
datatypes will transparently use the best packing/unpacking
approach. The different protocols proposed, RDMA, copy
in/out, pipeline, and the use of novel technologies, such as
GPUDirect, drastically improve the performance of the non-
contiguous data movements, when the source and/or the
destination buffers are GPU-resident. The described princi-
ples can be extended to other accelerators, and other types
of networks in a simple manner. They can also be the basic
blocks for defining and implementing concepts outside the
scope of point-to-point constructs, such as collective and
RDMA operations.
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