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• Occur for approximate incomplete factorization preconditioners
• Low solution accuracy required as LU ≈ A typically only 

a rough approximation.
• Replace forward/backward substitutions with iterative method.
• Better scalability of iterative methods.

• Jacobi iteration

Sparse Triangular Systems
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• Block-Decomposition
• Typically, no information about the problem discretization.
• Matrix partitioning, block sizes match hardware characteristics.
• Over-decomposition for GPUs.

• Clear information dependency
• Synchronous top-down subdomain scheduling results in (block-) 

substitution. For blocks containing one unknown, exact solve.
• Propagation of new information in dependency direction is key.
• Faster convergence expected for the scheduling: 

 top-down in Ly=b and bottom-up in Ux=y.

• GPUs do in general not allow to control the scheduling.

Sparse Triangular Systems

==
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Domain Overlap Strategies
• Global domain is decomposed into subdomains.
• A local problem is solved for each subdomain.
• Iterative process generates the global solution.
• Subdomains overlap for faster information propagation.

https://en.wikipedia.org/wiki/Domain_decomposition_methods

https://en.wikipedia.org/wiki/Domain_decomposition_methods
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Domain Overlap Strategies

• Alternating Schwarz
• Write back results for extended subdomain.
• Sequential updates or multi-color ordering. 
• Fixed subdomain scheduling.

• Restricted Additive Schwarz
• Write back results only for original subdomain.
• Parallel update of all subdomains.

• Random-Order Alternating Schwarz 
• Write back results only for original subdomain. 
• Sequential subdomain updates.
• Random subdomain scheduling.
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• Domain overlap based on matrix partitioning
• Blocks are extended by components adjacent in the matrix.

Domain Overlap
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• Domain overlap based on matrix partitioning
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• Domain overlap based on matrix partitioning
• Blocks are extended by components adjacent in the matrix.
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• Domain overlap based on matrix partitioning
• Blocks are extended by components adjacent in the matrix.
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• Target Problems
• Laplace Problem, 3D, 27-point stencil, 8x8x8 grid, 47 blocks.
• Sparse triangular systems from ILU(0) preconditioning.

• Solver Setting
• 2 Jacobi sweeps as local solver on the blocks (subdomains).
• Different update schemes in-between subdomains:

• Fixed Gauss-Seidel top-down subdomain scheduling.
• Random (subdomains are updated once per global iteration).

• Overlap
• Uniform overlap derived from matrix partitioning.
• Non-uniform / directed overlap derived from matrix characteristics.

• Analyze convergence.
• Normalized iterations account for overhead of overlap.

Experiment Outline
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Alternating Schwarz Convergence

• Overlap improves convergence.
• Random subdomain scheduling (dashed lines) results in  

slower average convergence.

Test case: L3D 27-pt stencil
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• Overlap only in one direction, e.g. Top-Down overlap:

Directed Subdomain Extension 
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Directed Subdomain Extension 
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Directed Subdomain Extension 
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Directed Subdomain Extension 
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• Overlap only in one direction, e.g. Top-Down overlap:
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For top-down subdomain scheduling:
• Bottom-Up overlap propagates all new information available in the 

uniform extension - at lower computational cost.
• Top-Down overlap provides almost no convergence benefit.

Directed Subdomain Extension 
Test case: L3D 27-pt stencil
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For random subdomain scheduling:
• No difference between Top-Down and Bottom-Up overlap.
• Symmetric matrix properties in combination with random update 

scheduling removes advantage of non-uniform extensions. 

Directed Subdomain Extension 
Test case: L3D 27-pt stencil
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• Clear information dependency
• Synchronous top-down subdomain scheduling results in (block-) 

substitution. For blocks containing one unknown, exact solve.
• Propagation of new information in dependency direction is key.
• Faster convergence expected for the scheduling: 

 top-down in Ly=b and bottom-up in Ux=y.
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Sparse Triangular Systems
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• Clear information dependency
• Synchronous top-down subdomain scheduling results in (block-) 

substitution. For blocks containing one unknown, exact solve.
• Propagation of new information in dependency direction is key.
• Faster convergence expected for the scheduling: 

 top-down in Ly=b and bottom-up in Ux=y.

• Random subdomain scheduling
• No information on subdomain scheduling. 
• Overlap useful if it propagates new information.
• Directed subdomain extension opposite dependency direction.
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For lower triangular system:
• L-1 Bottom-Up overlap propagates all new information available in 

the uniform extension (left) - at lower computational cost (right). 
• L-1  Top-Down overlap useless due to dependency in linear system.

=

Directed Subdomain Extension 
Test case: ILU(0) for L3D 27-pt stencil
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For upper triangular system:
• L-1 Top-Down overlap propagates all new information available in 

the uniform extension (left) - at lower computational cost (right). 
• L-1  Bottom-Up overlap useless due to dependency in linear system.

=

Directed Subdomain Extension 
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• Anisotropic Fluid Flow 
• E.g. groundwater flow.
• Non-symmetric convection.
• Information gets propagated faster in one  

than another direction. 
• Represented by different magnitude of matrix entries  

connecting unknowns. 

• Non-Uniform overlap accounting for Anisotropy
• Subdomain extended only by some candidates (largest matrix entries). 
• Recursive application of this strategy potentially  

results in subdomains that are different to any uniform extension. 

Anisotropic Problems
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• Sparse triangular systems of ILU(0) for anisotropic fluid flow problem.
• Directed overlap opposite propagation direction.
• Recursive domain extension with only with some of the candidates.

Anisotropic Problems
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Anisotropic Problems

For lower triangular system:
• L-1 50% propagates all new information fast (left) and at low 

computational cost (right). (All Bottom-Up overlap.)
• L-1 20% is computationally cheaper, needs more global iterations.
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Anisotropic Problems

For upper triangular system:
• L-1 50% / L-1 80% matches L-1 100% in global iterations. (All Top-

Down overlap.) 
• L-1 50% computationally cheaper than L-1 100%.
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Conclusion

This research is based on a cooperation with Edmond Chow from Georgia Institute of 
Technology, Daniel Szyld from the Temple University in Philadelphia, and supported by the 
U.S. Department of Energy.
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• Directed overlap propagates information in a certain direction.
• Directed overlap opposite subdomain scheduling direction  

propagates only new information.
• For triangular systems, directed overlap opposite dependency  

works also for random subdomain scheduling.
• Non-Uniform overlap accounting for anisotropy propagates 

most important information.
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Normalized Iters Iterations

Subdomains without overlap

Subdomains with overlap

Floating point operations in local solver for subdomain 
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