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Abstract

We describe a design and implementation of a multi-stage
algorithm for computing eigenvectors of a dense symmetric
matrix. We show that reformulating the existing algorithms
is beneficial in terms of performance even if that doubles the
computational complexity. Through detailed analysis, we show
that the effect of the increase in the asymptotic operation count
may be compensated by a much improved performance rate. Our
performance results indicate that using our approach achieves
very good speedup and scalability even when directly compared
with the existing state-of-the-art software.

Index Terms

symmetric eigenvalue problem; eigenvectors; dynamic runtime
scheduling

1. Introduction and Motivation

Two-stage algorim was applied in the context of the
symmetric eigenvalue problem and achieved significant
performance gains [1], [2], [3], [4], [5]. However, there was
no attempt made to compute the eigenvectors using the
two-stage approach. This work is, to our knowledge, the
first attempt to provide this missing piece of functionality
by addressing a variety of algorithmic challenges as well as
by engineering an implementation that outperforms any
of the widely available software.

The two-stage method is effective method, for obtaining
eigenvalues of a symmetric (or hermitian) matrix, in
comparison to the classic one-stage algorithm due to
the lack of increase in computational complexity (for
the highest order term): O(4/3n

3), and because it recasts
memory-bound operations as compute-bound kernels.
Thus, the challenge is shifted from dealing with scarcity of
bandwidth to obtaining a device with higher computational
power – clearly, a desirable situation if one considers
the current technology trends [6]. This recasting alone
produces appreciative increase in performance [1]. Further
tuning contributes even more to the performance gains by
reordering and merging the computational steps [3]. The
drawback, that is commonly raised against the two-stage
method, is the introduction of an additional similarity

transformation matrix, that doubles the computational
complexity of the back-transformation procedure. Worse
still, the back-transformation is performed with computate-
bound routines that run at high percentage of the peak
performance. They are essentially based on the dense
matrix-matrix multiplies. Seemingly then, the use of
the two-stage algorithm is discouraged due to these
challenges. Overcoming them is the motivation of the
research presented here.

2. Related Work

Solving the symmetric eigenvalue problem continues to
be an active research field. Recently, many researchers took
interest in this area and have developed various strategies
with a number of efficient software implementations.
LAPACK [7] and ScaLAPACK [8] are considered robust
pieces of open source software for shared- and distributed-
memory systems, respectively. Hardware vendors provide
well-tuned versions o LAPACK and ScaLAPACK. Recent
work has concentrated on accelerating the individual
components of the solvers, and, in particular, the reduction
to the tridiagonal form, which is the most time consuming
phase. A new type of algorithm that departs from the stan-
dard one-stage reduction algorithms was introduced. The
idea behind this recent technique is to split the reduction
phase into two or more stages, recasting the expensive
memory-bound operations that occur during the panel
factorization into compute-bound operations to benefit
from the gains in peak performance of modern processors.
One of the first uses of a two-stage reduction occurred in
the context of out-of-core solvers for generalized symmetric
eigenvalue problems [9]. Then, a multi-stage method was
used to reduce a matrix to the tridiagonal, bidiagonal and
Hessenberg forms [10]. Consequently, a framework called
Successive Band Reduction (SBR) was developed [11], [12] to
provide the benefits of the approach as a software library.
Communication bounds for such reductions have been
established under the Communication Avoiding frame-
work [5]. The authors also show a model-driven optimiza-
tion of a communication-optimal algorithm that is based
on the two-stage approach [13]. A multi-stage approach has
also been applied to the Hessenberg reduction [14], [15].
A rekindled interest in tile algorithms was also recently
seen when applied to the two-stage tridiagonal [3], [1]
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and bidiagonal reductions [4]. The first stage in these
implementations is implemented using high performance
kernels and asynchronous execution while the second stage
is implemented based on cache-aware kernels and a task
coalescing technique [3]. Recently, a distributed-memory
eigensolver library called ELPA [16] was developed for
codes used in electronic structure calculations. It includes
one-stage and two-stage tridiagonalization algorithms, the
corresponding eigenvector transformation, and a modified
divide-and-conquer routine that is capable of computing
the entire eigenspace or a portion thereof.

Perhaps the most closely related research is our work
on the parallelization of the bi-diagonal reduction on
multicore processors [17]. The one and only similarity to
this paper is the use of a two-stage approach for a runtime
scheduler that results in extra floating-point operations.
The differences far more pronounced when this work is
scrutinized in more detail. In particular, in the current
paper we develop and thoroughly analyze the performance
model of the computational stages (see Section 4) and
use it to guide the algorithmic optimizations in Section 5
and implementation tuning in Section 6. Clearly, most if
not all of the computationally crucial kernels had to be
written from scratch to take full advantage of the symmetry
of the eigen-value problem, which includes both a new
implementation and tuning to achieve optimal cache use
for a smaller memory and floating-point count of these
kernels. The scheduling strategy and the prioritization
of tasks has to account for a much more skewed timing
characteristics where the compute-intensive tasks become
twice as short (as determined by the flop-count) while the
latency- and bandwidth-bound tasks continue running into
the same memory system bottlenecks: limited transfer rate
and very long fetch delays. This finally leads to the much
greater influence of the Amdahl fraction [18] that deals
with the memory-bound portion of the computation which
in turn makes it more challenging to achieve good scaling
and performance for a wide range of core counts and
matrix sizes – the computational intesity of cache-resident
kernels was much higher in our previous work [17].

3. Research Contributions

Besides the software development efforts that we inves-
tigate to accomplish an efficient implementation, we high-
light three main contributions related to the algorithm’s
design:

• Mapping computation to hardware via both dynamic
and static scheduling. We developed our algorithm
in a way that facilitates mapping of computational
tasks to the strengths of the available hardware
components, and taking appropriate care of the data
reuse. Our algorithm also uses techniques to mix
between dynamic and static scheduling to extract
both efficient scaling and performance. The impact
of these techniques may be observed during either
the bulge chasing stage or the eigenvectors update.

The former operates on a small amount of data of
the size nb × n, where nb and n are the width of
the band and the size of the matrix, respectively.
Most operations in this stage are memory-bound and
the parallelism is limited. Hence, it is better to let
this stage run on a small number of cores, which
increases data locality, rather than to let all the cores
work, which increases the data coherence traffic. The
latter applies the Householder reflectors generated
by the bulge chasing stage in a complicated fashion
and resolves the overlap between the reflector blocks.
We combine the computation splitting (a technique
based on the available number of resources and on the
size of the Level 2 cache) with hybrid task scheduling.
This combination is the main factor, that is used to
determine the block size required for data reuse, and
the way in which parallelism is extracted for high
performance. Section 6 provides further details about
these techniques.

• High performance fine-tuned, memory-cognizant,
and compute-bound tasks. Our goal from the onset
was to use modern hardware efficiently by providing
plentiful parallelism that relies on splitting the com-
putation into tasks that either increase computational
intensity or reduce data movement. Two main issues
should be taken into consideration here. First, the
task splitting and determination of granularity is es-
sential for obtaining high performance and scalability.
Moreover, the data reuse among the CPU-cores should
also be taken into consideration in order to minimize
communication and achieve good execution rate. To
that end, we developed new fine-tuned and memory-
cognizant BLAS-like kernels for use during the second
stage of the TRD reduction, i.e., for the bulge chasing
procedure. Another set of kernels was developed for
the update of the eigenvectors by the transformation
matrices. This is in contrast to the kernels that have
been developed by Luszczek et al. [1] only for the first
stage of the reduction to the tridiagonal form.
Sections 5 and 6 provide more information about
these new fine-tuned and cache-friendly numerical
kernels.

• Examining the trade-off between higher perfor-
mance and extra computation. A judicious determi-
nation of this trade-off reduces overall execution time,
which we believe will become increasingly important
for the current and the future hardware designs. We
employ an advanced optimization strategy, which
consists of aggregating multiple applications of House-
holder reflectors occurring within a single data block.
This removes the communications overhead as well as
enhances the memory reuse while at the same adds
a small extra cost. We show in Section 7 how this
allows to obtain high performance algorithms that
significantly outperform any of the currently available
alternatives.
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Routine Method TRD Gen. Q Eig of T Update Z
EVD D&C 4/3n

3 0 4∼8/3n
3 4n3

EVR MRRR 4/3n
3 0 O(n2) 4n3

EV QR 4/3n
3 24/3n3 ≈ 6n3 0

Table 1. Threemost commonmethods for symmetric eigenvalue
problem.

Reduction Operations Sandy Bridge
TRD 4× SYMV 45 Gflop/s
BRD 4× GEMV 26 Gflop/s
HRD 10× GEMV 13 Gflop/s

Table 2.Operation types and their counts for three two-sided
reductions.

4. Algorithmic Complexity Study

In this paper, we make design choices that significantly
affect the algorithmic complexity of our algorithm by
increasing it almost two-fold. This section details this
aspect of our work.

Computing eigenvalues of a dense Hermitian matrix A
using an LAPACK algorithm proceeds by reducing A to a
triangular form:

A = ZΛZH. (1)

Computation of eigenvectors then proceeds

T = EΛEH (2)

with matrices Q1 and Q2 from the two stages:

Z = Q1Q2E = (I− V1T1V
H
1 )(I− V2T1V

H
2 )E. (3)

where (V1, T1) and (V2, T2) represent the Householder
reflectors generated during the first and second reduction
stages, respectively. Table 1 presents the computational
complexity that results from using one of the common
methods when the single stage approach is taken (Q2 ≡ I).

Our model for execution time allows us to ascertain
the validity of the two-stage approach for the case when
both eigenvalues and eigenvectors are calculated. In the
one-stage approach we essentially have two components –
first for the eigenvalues and second for the eigenvectors –
each of which has cubic complexity:

t1-s =
4
3
n3

β
+ 2

n3

αp
f (4)

where α is the execution rate of xGEMM measured in
flop/s, β is the execution rate for xGEMV, and f is the
fraction of the number of desired eigenvectors (0 < f � 1).
For the two-stage approach, we need to account for both

Parameter AMD Magny-Cours Intel Sandy Bridge
α 10 Gflop/s 20 Gflop/s
β 40 MB/s 80 MB/s
p 12 8

Table 3. Sample values of the parameters used in the complexity
formulas.

stages that result in, first, symmetric band form, and, later,
tridiagonal form:

t2-s =
4
3
n3

αp
+ 6D

n2

αp ′ + 4
n3

αp
f (5)

where D is the size of band after the first stage and p ′ is
the level of parallelism available in the second stage (bulge
chasing): p ′ � min(D,p).

Clearly, the one stage algorithm does not scale:
limp→∞ t1-s = 4/3n3/β as well as the two-stage one:
limp→∞ t2-s = 6Dn2/(αp ′). And for large problem sizes,
two stage approach is superior: limp→∞

t1-s
t2-s

= αp/β+3/2f
1+3f

considering the fact that the quantity αp/β may easily
exceed a few orders of magnitude even for a single socket
multicore system – typical values are given as an example
in Table 3 which are based on the operation types and
counts included in Table 2. The question then remains in
what range of problem sizes n the two-stage algorithm is
viable or for each n t1-s = t2-s. By substitution in (4) and
(5) we obtain

n(α,β,D, f,p) =
9βD

2αp− 3fβ− 2β
(6)

which from the theoretical stand-point allows for a wide
range of problem sizes to benefit from our two-stage
algorithm.

We do not concern ourselves here with the complexity
of the second stage of the two-stage algorithm, the bulge-
chasing procedure, because involves only a low-order
terms. In particular, the estimate of the operation count
is n2

(
1+ ib

nb

)
where ib and nb are internal and external

blocking factors.

4.1. Comparison with the Bi-Diagonal Reduction

The analysis presented above could apply with an
appropriate scaling to our bi-diagonal reduction code [17].
However, we did not apply this model before and therefore
it should be considered as a new contribution of this paper.

Furthermore, we would like to show how the symmetric
eigenvalue problem is more sensitive to the hardware
specification and the software implementation in com-
parison with the SVD algorithm that we have succesfully
parallelized before [17].

To simplify the exposition we can assume that the 3-
stage process of computing eigen-values and eigen-vectors
of a symmetric matrix has the complexity:

4
3
n3 +O(n2) + 2n3 + 2n3 (7)

where the first compent represents reduction to block tri-
diagonal form, the second one – bulge-chasing to achieve
tri-diagonal form, and the third one – computation of
the corresponding eigen-vectors. In comparison, our SVD
algorithm that computes both singular values and singular
vectors [17] has the complexity:

8
3
n3 +O(n2) + 4n3 + 4n3 (8)
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which stems from the lack of symmetry in the SVD code
and causes the floating-point instruction count to double.

The O(n3) components are amenable to parallelization
because they are based on compute-intensive tasks that
readily benefit from the increased number of cores. The
O(n2) component, on the other hand, is strictly memory-
bound and not only suffers due to the lack of memory
bandwidth but also is sensitive to the memory latency since
it involves small vectors. The square component is the
Amdahl fraction [18] of both algorithms but our previously
parallelized SVD code [17] has disproportionally larger
amount of readily parallizable workload. In comparison, the
eigenvalue implementation, that we present here, is much
more sensitive to insufficient parallelization and below we
present ways of dealing with this problem. This of course
is compounded by the fact that our multi-stage algorithm
practically doubles the number of floating-point operations
when compared with the traditional implementations.

5. Two-Stage Asynchronous Algorithm for
Tridiagonal Reduction

Due to its computational complexity and data access
patterns, the reduction to the tridiagonal form is challeng-
ing to implement and optimize. Two approaches exist. The
standard one-stage approach from LAPACK [7], whereby
the block Householder transformations are used to directly
reduce the dense matrix to tridiagonal form. A newer
algorithm that we refer to as two-stage approach, whereby
a block Householder of transformations are used to first
reduce the matrix to a band form, and then, in the second
stage, bulge chasing procedure is used to reduce the
band matrix to the tridiagonal form [3]. The one-stage
approach is memory-bound because each reflector relies on
a symmetric matrix-vector multiplication with the trailing
submatrix, which cuases the entire trailing submatrix to
be loaded into main memory without any regard to data
reuse in the cache hierarchy. The resulting performance is
bound by the main memory bandwidth for larger matrices
and exhibits a moderate speedup for smaller matrices that
fit entirely in one of the cache levels. Figure 1a shows
the percentage of the total time for each of the three
components of the eigenvector routine using the standard
one-stage reduction approach when all the eigenvectors
are requested. When only a portion of eigenvectors are
needed, the reduction to the tridiagonal form consumes
even greater portion of the execution time while the
share of other phases diminishes. The figure indicates
that the reduciton to the tridiagonal form requires 90% of
the total computation time when only eigenvalues (or a
small portion of eigenvectors) are needed and over 60%
of execution time when all the eigenvectors are requested.
This, aside from the promising analysis from Section 4, was
the main motivation for our work, to extend the two-stage
algorithm for computing both eigenvalues and eigenvectors.
To ease the development on the multicore architectures we
used the software infrastructure provided by the PLASMA
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Figure 1. (a)Thepercentageof the timespent ineachkernelof the
eigensolver using the standard one stage approach to compute
the tridiagonal form; (b) the corresponding percentages for the
two-stage approach.

project [19]. The techniques used here are similar to the
one developed previously for multicore processors and
eigenvalue-only calculation [3]. In the following we strive
for completeness as we begin by briefly describing the first
stage (the reduction from dense to band), then we explain
in detail the reduction from band to the tridiagonal form
and its fine-grain scheduling techniques.

5.1. The First Stage: Reduction to the Band Form

The two-stage approach overcomes the memory band-
width limitations of the one-stage approach. The first stage
(the reduction to band) is compute-intensive and may be
performed efficiently using optimized kernels from Level
3 BLAS. In particular, it relies on tile algorithms [20]. The
matrix is split into tiles, whereby data within a tile is
contiguous in memory and thus avoids the cache and TLB
misses associated with strided access. The computation is
then broken into tasks and proceeds that are organized
into a directed acyclic graph (DAG) [21]. The nodes
represent tasks and the edges are the data dependences.
Restructuring linear algebra algorithms as a sequence
of tasks that operate on blocks of data removes the
bottleneck of BSP (or fork-join stages) barriers [22], [23]
and increases data locality. This required implementations
of new computational kernels [3], [2], [1], [4], [24] to be
able to operate within the new algorithm and on the new

1153



  0   5  10  15  20  25 

  0 

  5 

10 

15 

20 

25 

(a) xHBCEU (red).
  0   5  10  15  20  25 

  0 

  5 

10 

15 

20 

25 

2525
(b) xHBREL (blue).

  0   5  10  15  20  25 

  0 

  5 

10 

15 

20 

25 

(c) xHBLRU (green)
  0   5  10  15  20  25 

  0 

  5 

10 

15 

20 

25 

2
5 20 25

sweep 1 

sweep 2 

(d) bulge overlap.

Figure 2. Kernel execution of the TRD algorithm during the
second stage.

data structures.

5.2. The Second Stage: Reduction to the Tridiagonal
Form

There are numerous shortcomings of the basic bulge
chasing procedure that triggered development of the
memory-aware numerical kernels and the scheduling
techniques used here. The most problematic aspect of
the standard procedure is the element-wise elimination [3].
We developed a bulge chasing that uses a very similar
algorithm but differs in using a column-wise elimination.
Our modification adds a small amount of extra work but
allows the use of the Level 3 BLAS kernels to compute
the transformations and to apply them in the form of the
orthogonal matrix Q2 which is the result of computation
in this phase. Below we present a brief description of
the column-wise bulge chasing approach as well as the
technique used for task scheduling and the enhancement
of data locality. The bulge chasing algorithm consists of
three new kernels. The first kernel is called xHBCEU and
it triggers the beginning of each bulge chasing sweep by
annihilating the extra non-zero entries within a single
column by calling the LAPACK’s xLARFG function. This is
shown in Figure 2a. The kernel then applies the computed
elementary Householder reflectors to both sides of the
appropriate symmetric data block (red triangle), that is
loaded into the cache memory. The second kernel, xHBREL,
continues the application from the right derived from
the previous kernel, either xHBCEU or xHBLRU. This
subsequently generates triangular bulges, new non-zero

entries, as shown in Figure 2b, which must be annihilated
by early enough in order to avoid the excessive growth of
this fill-in structure. Note that the triangular bulges created
by the annihilation process of the sweep i overlap with
those of the sweep i+ 1, because of only one column shift
to the right and one row down. It is shown in Figure 2d,
as the lower triangular portion of the cyan squares (the
bulge created in sweep i + 1) overlaps with the lower
triangular portion of the blue squares (corresponding to
the bulges created by the previous sweep i). Thus, during
the annihilation of sweep i, if we eliminate each of the
triangular bulges (the lower blue triangular of Figure 2b)
with a call to xHBREL for sweep i, then, at the next step,
the annihilation of sweep i+ 1 creates a triangular bulge
which will overlap with the one previously eliminated and
cause appearance of fill-in in the overlapped region. We
can reduce the computational cost by only eliminating
the non-overlapped region of bulge, i.e., its first column,
instead of eliminating the entire triangular bulge created
for sweep i. The remaining columns can be delayed for
elimination during the subsequent annihilation sweeps.
On the one hand, we can avoid an excessive growth of
bulges – a bulge created once will expand dramatically
if not chased down the diagonal. On the other hand,
our delayed annihilation allows us to reduce the extra
computation. We designed our cache friendly xHBREL
kernel to take advantage of the fact that the created
bulge (the blue block) remains in cache and so right
after the annihilation the first column occurs, the left
update is immediately applied to the remaining columns
of the blue block. The third kernel, xHBLRU, continues
the application of reflectors from the left to the green
block of Figure 2c. Since, the green block is remaining
in cache, hence the kernel proceeds with the application
from the right to the symmetric portion. The annihilation
resulting from each sweep comprises a single call to the
first kernel followed by a repetitive calls to a repetition of
the second and the third kernels. The implementation
of this stage is done by using either a dynamic or a
static runtime environment that we developed [19]. In
our opinion, this stage is one of the main challenges of
the overall algorithm as it poses challenges of tracking the
data dependences. The annihilation from the subsequent
sweeps will generate computational tasks, which will have
partially overlapped data between tasks from previous
sweeps as seen in Figure 2d. We have used our data
translation layer (DTL) [1], and supplemented it with
functional dependencies [3] to handle the dependences,
and to provide sufficient information to the runtime to
achieve the correctness in scheduling.

6. The Application of the Orthogonal Matrices
Q1 and Q2

In this section, we discuss the application of the
Householder reflectors generated from the two stages
of the reduction to the tridiagonal form. We focus the
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discussion from §4 on the two-stage algorithm, whereby
the first stage reduces the original Hermitian matrix A to
a band matrix B by applying a unitary Q1 to both sides of
A such that we obtain A = Q1BQ

H
1 . In the second stage,

the bulge chasing procedure reduces the band matrix B
to a tridiagonal form by applying the unitary matrix Q2
to both sides of B yielding B = Q2TQ

H
2 . This requires the

eigensolver iteration to update matrix E of Eq. (2) with
the Householder reflectors generated during the reduction
phase according to Eq. (3).

From the practical standpoint, the application of the
V2 reflectors is not as straightforward as the application
of V1. To show this, we begin by first describing the
complexity and the design of the algorithm for applying V2.
We show the structure of V2 in Figure 3b. Note that the
reflectors being applied represent the annihilation of the
band matrix columns, and thus, each one is of length nb
– the bandwidth size. A naı̈ve implementation would take
each reflector and apply it in isolation to the matrix E. Such
an implementation is memory-bound because relies on
Level 2 BLAS operations. If we want to group the separate
anihilation operations and take advantage of the efficiency
of Level 3 BLAS routines, we must pay attention to the
overlap between the data they access as well as the fact
that their application must follow the specific dependency
order dictated by the bulge chasing procedure. For example,
for sweep i, the annihilation of the column at position
Bi,i:i+nb

generates a set of k Householder reflectors v
(k)
i ,

each of length nb represented as column i of the matrix
V2, which is shown in Figure 3b. The columns related to the
annihilation of sweep i+ 1, are those presented in column
i+ 1 of V2 and so on with the caveat that each subsequent
column is shifted one element below the previous column.
Despite the dependences of this bulge chasing procedure,
it is possible to group the reflectors v(k)i from sweep i with
those from sweep i+ 1, i+ 2,. . . , i+ � and to apply them
together in blocked fashion. This grouping is represented
by the diamond-shaped region in Figure 3b. While each of
those diamonds may be considered as a single block, their
application to the E matrix has to follow the order inherited
from the bulge chasing stage. For example, applying the
green block 4 and the red block 5 of the V2 in Figure 3b
modifies the green block row 4 and the red block row 5,
respectively, of the eigenvector matrix E shown in Figure 3c.
This allows to observe the overlapping between the regions.
The order dictates that block 4 needs to be applied before
block 5. We have shown a sample of these dependences
by the arrows in Figure 3b. We also represented them
by the DAG in Figure 3d. This pattern of dependences
allows a very limited number of parallel and pipelined
tasks. In practice however, it is possible to compute these
efficiently by focusing on the matrix E and on how it is
split into blocks of columns over the number of cores as
shown in Figure 3c. We can then apply each diamond block
independently to the appropriate portion of E. Moreover,
this method does not require any data communication
between cores reducing cache conflict misses in addition
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Figure 3. (a) Tiling ofV1, (b) Blocking technique to applyV2, (c)
Distribution of the eigenvectorsmatrix that create independent
fashion of applyingQ2 which increase locality per core, (d) Por-
tion of the DAG showing the dependency of the V's ofV2.

to the cache resuse afforded by groupping. The size of each
block of E is small enough so that more than one of them
fits in the L2 cache for increased data locality. For example,
core 1 applies all the portion of V to the magenta block of
Figure 3c, then it moves to its next assigned block – the
black block. The draw back is that we had to implement a
new kernel that deals with the diamond-shape blocks in a
way that increases the cache reuse.

By comparison, the application of V1 to the resulting
matrix, G = (I− V2T2V

H
2 )E, may be done simply by using

our tile algorithm. For one, there is no overlap between
the different parts of V1. Each tile of a column block of
V1 modifies a different area of the matrix G. In Figure 3a,
any tile of the magenta column modifies different area
of G and so they can be applied independently. Also, the
operations can be merged as shown in Figure 3a, which
renders their application a compute-intensive task that may
be achieved with efficient BLAS 3 kernels. The elements
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of V1 are stored in a tile fashion as shown in Figure 3a
to increase data locality. The application “from the left”
has to satisfy only one constraint whereby the v4,3 – the
black tile (4,3) – has to be applied before the magenta
v4,2. Similary, the magenta v4,2 needs to be aplied before
the blue v4,1. The parallelism comes from two sources: the
matrix G is a set of independent tiles slated for update and,
also, the application of blocks of the V1 is independent. As
a result, the design of the tile algorithm generates a large
number of independent tasks that can be applied in an
asynchronuous manner using either a static or dynamic
scheduling.

7. Performance Results

Our experiments have been performed on the largest
shared memory system that we could access. It is rep-
resentative of a vast class of servers and workstations
commonly used for computationally intensive workloads.
We benchmark all implementations on a four-socket system
with AMD Opteron™ 6180 SE processor, each comprising
12 cores for the total of 48 cores, running at 2.5 GHz with
128 GiB of main memory. The cores were evenly spread
among two physical mother boards. The Level 2 cache size
per core was 512 KiB. All computations were performed
in double precision arithmetic. The theoretical peak for
this machine in double precision was 480 Gflop/s or 10.1
Gflop/s per core. There are a number of software packages
that include an eigensolver. We used the latest MKL (Math
Kernel Library) [25] version 13.1, which is a commercial
software library from Intel that is a highly optimized
for Intel processors but remains competitive on AMD
hardware especially for small matrix sizes that we need for
our tile algorithm implementation. The library includes a
comprehensive set of mathematical routines implemented
in a way to run well on most x86 multicore processors. In
particular, MKL includes the LAPACK-equivalent routines
to compute the tridiagonal reduction DSYTRD (with the
QR iteration), or to find the eigenpairs DSYEVD (divide
and conquer – D&C – algorithm) and DSYEVR (the Multiple
Relatively Robust Representations – MRRR – approach).

We performed an extensive study with a large number
of experimental tests to provide comprehense information
for the wide range of possible testing scenarios to take
into accounts various runtime effects that might influence
the performance and the outcome of comparisons. We
computed the eigenpairs of a symmetric eigenvalue prob-
lems, by varying the size of matrices from 2000 to 24, 000
using the all of the available 48 cores of the machine.
As a point of reference against our prior results [1], [2],
[3], [4], we report the results of improvements that our
two-stage implementation brings to the reduction to the
tridiagonal form compared against the one-stage approach.
We compare against MKL as it contains a state-of-the-art
implementation and is superior in terms of performance
when compared with all the available numerical linear
algebra libraries. Figure 4c shows the comparison between
our implementation versus the DSYTRD routine from
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Figure 4. Speedup comparison versus the MKL librairies for
different eigensolver.

Intel’s MKL library. Asymptotically, our code achieves
over 8-fold speedup for the largest matricees tested. This
is the result of the effcient implementation of the first
stage (reduction to band) which is the compute intensive
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stage, and from the careful design and implementation
of the second stage that maps both the algorithm and
the data to the hardware using cache-friendly kernels
and scheduling that takes data locality into account. In
Figures 4a and 4b, we illustrate the speedup obtained by
our algorithm when computing all the eigenvectors using
either the D&C or the MRRR as the tridiagonal eigensolver.
We still observe a significant speedup over the optimized
MKL solver: our implementation is twice as fast. It is not
as high as eigenvalues-only scenario due to the complexity
argument presented in §4. Also note, that the time to
compute the eigenpairs (λ,Z) of the matrix A, is the sum
of the time required for three steps: (1) the time to perform
the tridiagonal reduction, which could enjoy as big as 8-
fold speedup; (2) the time to compute the eigenvectors
of the tridiagonal form, and (3) the time to update these
eigenvectors (the back transformation). Since our work is
focused on improving and optimizing phases 1 and 3, they
are now around 3 times faster than those of the one-stage
approach. This makes the phase 2 dominate the execution
time as predicted by Amdahl’s law [18]. In fact, it now
consists of 50% of the new reduced total time, which is
shown in Figure 1b. Finally, observe that that the time
required to compute the eigenvectors of the tridiagonal
matrix (phase 2) is the same as the one for the MKL solver.
In the end, reaching a two-fold speedup is worthwhile
effort. In Figure 4d, we show the speedup obtained by
our algorithm when only 20% of the eigenvectors are
needed, which is a scenario that might occur in practice for
applications that do not require the full set of eigenvalues.
This case is similar and the graph exhibits a familiar trend
to the one presented in Figure 4c, with the 4-fold speedup
achieved. We would like to highlight the fact that when
a portion of the eigenvectors is needed, the cost of our
algorithm may be reduced dramatically as both phase 2
and phase 3 require less operation and thus are faster,
which is represented the fraction f in Eq. (4) and (5). In
concrete terms, our algorithm requires 150 seconds to find
f = 20% of the eigenvectors for a matrix of size 20,000,
and 400 seconds when all vectors are requested. Achieving
such speedups is one of the initial pieces of motivation to
extend the two-stage algorithm for eigenvectors.

7.1. The Effects of the Bandwidth Size

We have previously developed [4] a performance model
for the bulge chasing stage of a two-stage algorithm that
was helpful in predicting an optimal blocking factor nb =
80. The execution time tx was modeled as:

tx =
1
α

× n2 × nb (9)

the communication time tc was modeled as:

tc = n2 ×
(
nb

β
+

γ

nb

)
(10)

where parameters α, β, and γ are the same as given
in Table 3. The derivation of the model relies on the

�� ��������� ��� ��� ������ 	�� ���
�

���

���

���

���

	��


��
���




��


�
�


��

�
������� �� ��������� �
�����������
��
�
��
�����������
���
������ ����� �����
���

� 

� 

Figure 5. The effect of the tile size on the performance of both
stages for amatrix of size 16, 000 using 48 cores of systemA.

exactly same assumptions as are applicable to our current
implementation. We then proceed in perusing the model
for tuning and showing the effects of the current design
in the results presented below.

As the model given by Eqs. (9) and (10) suggests,
bandwidth size, which also is the tile size, is an important
aspect of tuning the code in order to achieve near optimal
performance. Unlike the first stage kernels, in the second
stage sensitivity to memory bandwidth is the key due to
reliance on Level 2 BLAS operations – their performance
depends on how much data can fit in the cache memory.
Thus, if the tile size chosen for the first stage is too large,
the second stage may encounter significant difficulties in
coping with the memory bus latency. Figure 5 illustrates
this effect with respect to nb parameter and how it affects
the first stage (reduction to general band) by showing the
blue curve with the “+” markers. And for the second stage
(the bulge chasing), the green curve with the “diamond”
marker. On the one hand, the tile size needs to be large
(120 < nb < 300) to extract high performance from the
first stage but with limit due to effect it has in the second
stage. Evidently, for nb > 360, we lose all the gains
obtained from the locality and the cache reuse as the
data does not fit into the Level 2 cache and we also lose
substantial degree of the parallelism because the number
of tiles nt = n/nb decreases precipitously. The tile size
has to be small enough to extract high performance from
the bulge chasing stage, which has to do with the cache
containment of tile data. Thus, a judcious trade-off between
the stages is offers an optimal choice. In our experiments,
we found that 120 < nb < 200 looks to be the best
compromise which is in line with the predictions offered
by the performance model.

8. Conclusions and Future Work

In this paper, we presented a novel implementation of an
algorithm that computes eigenvalues and of eigenvectors
(or a chosen subset thereof) for symmetric or hermitian
matrices. Our algorithm is based on the two-stage approach
and thus performs twice as many floating operations when
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asked to compute the eigenvectors when compared with
the classic one-stage approach. Such a drastic increase in
operation count might have been considered a hindrance
just a few years back but on modern hardware it has
become an advantage due to the overall structure of the
code and its design, that is geared towards high flop-counts
and comparatively low memory bandwidth. In particular,
we attribute this to the formulation of the algorithm in
terms efficient kernel routines and we show their benefit
both theoretically as well as in a practical setting. With a
two-fold increase in the operation count, we were still able
to achieve two-fold speedup over the current of state-of-
the-art software packages that achieve the highest speed on
the tested hardware. Because of good scalability properties
of our algorithm, we believe that our approach lends itself
well to distributed memory implementations and we plan
to pursue this direction in the future. Similarly, we consider
a future implementation on hardware accelerators such as
GPUs or coprocessors to be good candidates for validation
of our approach.
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R. Johanni, L. Krämer, B. Lang, H. Lederer, and P. R.
Willems, “Parallel solution of partial symmetric eigenvalue
problems from electronic structure calculations,” Parallel
Comput., vol. 37, no. 12, pp. 783–794, Dec. 2011. [Online].
Available: http://dx.doi.org/10.1016/j.parco.2011.05.002

[17] A. Haidar, J. Kurzak, and P. Luszczek, “An improved
parallel singular value algorithm and its implementation for
multicore hardware,” in SC13, The International Conference for
High Performance Computing, Networking, Storage and Analysis,
Denver, Colorado, USA, November 17-22 2013.

[18] G. M. Amdahl, “Validity of the single-processor approach
to achieving large scale computing capabilities,” in AFIPS
Conference Proceedings, vol. 30. Atlantic City, N.J.: AFIPS
Press, Reston, VA, APR 18-20 1967, pp. 483–485.

1158



[19] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, H. Ltaief, P. Luszczek, and S. Tomov, “Numerical
linear algebra on emerging architectures: The PLASMA and
MAGMA projects,” J. Phys.: Conf. Ser., vol. 180, no. 1, 2009.

[20] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarra, “Comparative
study of one-sided factorizations with multiple software
packages on multi-core hardware,” SC ’09: Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis, 2009.

[21] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek,
and S. Tomov, “The impact of multicore on math software,”
in Applied Parallel Computing. State of the Art in Scientific
Computing, 8th International Workshop, PARA, ser. LNCS,
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