MIAMI: A Framework for Application Performance Diagnosis

Gabriel Marin
Innovative Computing Laboratory
University of Tennessee
gmarin@utk.edu

Abstract—A typical application tuning cycle repeats the fol-
lowing three steps in a loop: performance measurement, analysis
of results, and code refactoring. While performance measurement
is well covered by existing tools, analysis of results to understand
the main sources of inefficiency and to identify opportunities for
optimization is generally left to the user. Today’s state of the
art performance analysis tools use instrumentation or hardware
counter sampling to measure the performance of interactions
between code and the target architecture during execution. Such
measurements are useful to identify hotspots in applications,
places where execution time is spent or where cache misses
are incurred. However, explanatory understanding of tuning
opportunities requires a more detailed, mechanistic modeling
approach. This paper presents MIAMI (Machine Independent
Application Models for performance Insight), a set of tools
for automatic performance diagnosis. MIAMI uses application
characterization and models of target architectures to reason
about an application’s performance. MIAMI uses a modeling
approach based on first-order principles to identify performance
bottlenecks, pinpoint optimization opportunities, and compute
bounds on the potential for improvement.

I. INTRODUCTION

Investments in high performance computing (HPC) systems
stand at tens of millions of dollars each year. These systems
have tremendous peak performance potential, as demonstrated
by their throughput results with highly optimized, dense linear
algebra kernels [23]. However, most scientific simulations run
at only a fraction of theoretical system peak speed. This large
unfulfilled performance potential is due in part to compilers
and application developers not being able to harness the
potential of the architectures and in part due to an imbalance
between the resources offered by current systems and the
actual needs of applications. To close this performance gap,
application developers must precisely understand what factors
are limiting the performance of their codes, a process known as
performance diagnosis. Performance diagnosis is the first step,
and at the same time, the most difficult step of any performance
optimization effort, just as understanding the causes behind a
program crashing or producing incorrect results is the most
important and the most difficult step of any program debugging
effort. Once we identify the factors that limit performance,
the code transformations required to alleviate the detected
performance bottlenecks become more easily apparent.

State of the art performance analysis tools in use today
use either caliper-based hardware counter measurements [3],
[21] or hardware counter sampling [1], [13], [20] to measure
application performance during execution. A strength of hard-
ware performance counters is that they can observe phenomena
that cannot be measured directly otherwise. However, hardware
counters can only observe performance effects, the result of

978-1-4799-3606-9/14/$31.00 ©2014 IEEE 158

Jack Dongarra
Innovative Computing Laboratory
University of Tennessee
dongarra@utk.edu

Dan Terpstra
Innovative Computing Laboratory
University of Tennessee
terpstra@utk.edu

interactions between code and a target architecture. A process
of deconvolution through which we can attribute parts of the
observed effects to specific application and architectural factors
is needed to perform root cause analysis from hardware counter
measurements. While certain correlations between application
or architectural factors and the observed performance effects
can be established, the process requires high levels of user
expertise and a significant amount of guesswork.

To provide the kind of feedback that we think is necessary,
tools must identify and model in isolation the application
and architectural factors that are important for performance,
e.g. the application instruction mix, the instruction schedule
dependencies, the types of resources available on a target
architecture and the types of resources required by each basic
operation during execution, they must understand how data is
reused and the patterns with which an application traverses
memory. Performance diagnosis tools must then use a per-
formance convolution process based on first-order principles
to understand the factors that are limiting performance at
each point in an application. An estimate of the maximum
potential for improvement can be computed by idealizing
the limiting factors and reapplying the convolution process.
Finally, understanding what factors are limiting performance,
directly determines the types of code or architectural changes
that are needed to alleviate that bottleneck. In some instances,
such transformations are not possible, or they are prohibitively
expensive. However, it is very useful for a user to identify
such situations, so as to understand when to stop optimizing.
Providing users with an accurate trade-off of costs, i.e. the
types of transformations that are required, and benefits, e.g.
the potential for performance gains, enables users to make
informed decisions about where to focus their tuning efforts.

To be useful, tools must automate as much of this process
as possible. They must work on full applications instead of
requiring users to extract “interesting kernels,” and they must
be able to handle interactions between application code and
system libraries. Because performance depends also on the
quality of the code produced by the compiler, tools should try
to observe the effect of optimizations while not perturbing the
optimization process. For these reasons, we think that the best
way to perform performance diagnosis is by analyzing appli-
cation executables. In addition, tools that work on binaries can
naturally handle applications written in different programming
languages or using different programming models.

In this paper, we present MIAMI (Machine Independent
Application Models for performance Insight), a set of ex-
tensible tools for automatic performance diagnosis. MIAMI
analyzes fully optimized x86 application binaries to construct
a machine-independent understanding of an application’s al-

gorithm and implementation. It uses a detailed model of a
target architecture, to reason about the thread performance of
an application on that architecture. MIAMI uses a modeling
approach based on first-order principles to understand per-
formance inefficiencies, to identify the performance limiting
factors inside each loop, and to provide insight into the code
transformations needed to alleviate them.

The rest of this paper is organized as follows. Section II
presents our motivation and design goals with developing
MIAMI. Section III describes the implementation of the
MIAMI framework. Section IV describes three case studies
that illustrate the type of performance insights provided by
MIAMI. Section V reviews existing performance analysis
techniques and contrasts them against our approach. Section VI
summarizes our findings and concludes the paper.

II. MOTIVATION AND DESIGN GOALS

While node concurrency will continue to increase for many
years, fundamental architectural changes are needed at the
node level to achieve the levels of energy efficiency required
for an exascale machine [8]. Future systems will consist of
increasingly complex architectures with massive numbers of
potentially heterogeneous components [7], longer vector units,
and deeper memory hierarchies. Meanwhile, hierarchies of
large, multifaceted software components will be required to
build next-generation applications.

Understanding how to take advantage of new architectures,
identifying where performance is lost and what is causing
it, while also important in the past, will become even more
important in the future as we face a more diverse architectural
landscape. Fundamental issues such as automatic root cause
analysis of performance bottlenecks, and automatic recognition
of optimization opportunities are not fully solved problems yet.

We do not think that any single approach can explain all
performance inefficiencies. Tracing tools work best for under-
standing load imbalances in parallel applications or for diag-
nosing inefficiencies caused by the timing of communication
events, such as late receives. Hardware counter measurements
have no equal when it comes to understanding phenomena
that is micro-architecture specific, such as bank conflicts, mis-
aligned accesses, invalidation of modified cache lines, remote
memory accesses, or miss events in the processor’s front-end.
Some of those phenomena could be otherwise understood only
by cycle accurate simulations, but such simulators are very
difficult to develop and much more expensive to run.

At the same time, hardware counters are deficient at
explaining performance inefficiencies in the CPU’s back-end.
Metrics such as the number of instructions retired per cycle
(IPC) provide a measure of the distance from machine peak
retirement rate. However, if the measured IPC is low, we
cannot easily pinpoint the factors that are limiting performance.
We can try to guess and then try to validate our assumptions
using a trial and error approach. Memory delays are always
a good scapegoat for explaining low performance. However,
many times applications run inefficiently even when data is
read from the L1 cache. One of our goals with MIAMI is to
provide insight into inefficiencies in the processor’s back-end.

Many performance analysts in the HPC community judge
the speed of a code by the rate at which floating point

159

instructions are issued, and the code’s efficiency by how close
its floating-point issue rate is to the machine’s theoretical
peak FLOPS performance. However, unlike highly optimized
dense linear algebra kernels, instruction mixes found in typical
scientific applications have large fractions of register copy,
data shuffling, integer arithmetic, branches and memory in-
structions [24]. All these instructions compete for the limited
CPU retirement bandwidth when the ILP is high, resulting in
a low floating point issue rate on average. Other times, there is
an imbalance between the types of floating point instructions
in an application loop and the mix of floating point execution
units on the target machine. Modern architectures usually
have a balanced number of Add and Multiply execution
units. If a calculation uses only one type of instructions, for
example only additions, it can achieve no better than 50%
of theoretical machine peak FLOPS rate, before any other
sources of inefficiencies are even considered. We found our
analysis equally useful for explaining why an application
or an application loop does not run as fast as we think it
should due to an inherent characteristic of the algorithm or
of the implementation. Even if there are no obvious code
transformations to accelerate the computation in such cases,
it is very useful to understand that fact.

MIAMI uses static analysis of application binaries to un-
derstand the instruction schedule dependencies and the precise
instruction mixes inside loop bodies. It uses this information
to pinpoint cases when the code is limited by dependency
cycles, by skewed instruction mixes, or if the code does not
take advantage of available vector units.

An even more significant source of performance losses is
poor data locality. Traditional tools measure and report the
number of cache misses inside individual loops and routines.
Knowing which loops of an application experience a large
number of cache misses does not provide sufficient insight
by itself for understanding how to improve data locality,
because data reuse is not a local phenomenon. The same
data structures can be accessed by multiple loops located in
different routines. MIAMI uses static and dynamic analysis on
application binaries to identify the memory reuse patterns that
create the largest number of cache misses. The information
reported about a memory reuse pattern directly determines the
types of loop transformations needed to improve its locality.

Contemporary architectures include also one or several
streaming hardware prefetchers. Even if not all data transfers
from memory can be eliminated through data locality optimiza-
tions, we can still improve application performance by tuning
the memory access patterns for the hardware prefetchers.
MIAMI helps this process by identifying the memory accesses
that cannot be effectively prefetched and the reasons why.

While working on application binaries provides program-
ming language and programming model independence, it also
ties our analysis framework to one architecture family. For
this reason, one of our design goals with MIAMI was to
define a program intermediate representation, called the MI-
AMI IR, as seen in Figure 1. The MIAMI IR isolates the
bulk of our analysis performed in the tools’ back-end, from
the native architecture and the selected binary instrumentation
framework. We think that this design choice will ease the tools’
maintainability and eventual portability to new architectures or
binary formats.

MIAMI front- - Application code

Application code
x86 object code,

end (x86) (MIAMI IR)
: MIAMI Performance
Machine model P on e
engine

Fig. 1. The MIAMI workflow

III. MIAMI IMPLEMENTATION

Figure 1 shows a high level diagram of the MIAMI
workflow. MIAMI makes the following contributions:

MIAMI intermediate representation — MIAMI uses a ma-
chine-independent intermediate representation (IR) of appli-
cations that includes control flow information as well as a
machine-independent representation of computation and data
flow inside each basic block. Using a machine-independent IR
enables the performance convolution back-end to reason about
an application’s performance across different architectures.

Machine description language — MIAMI uses a machine
description language (MDL) for modeling target architectures.
The MDL constructs are tightly coupled with the machine-
independent application IR.

A front-end for x86-64 binaries — MIAMI uses static and
dynamic analysis of application executables and shared li-
braries to automatically build a machine-independent repre-
sentation of full applications. Currently, the tool includes an
x86 front-end to decode x86 binaries into the MIAMI IR.

Performance convolution back-end — MIAMI uses a perfor-
mance convolution engine that combines dynamic and static
information about an application together with a target archi-
tecture model to reason about application performance. The
convolution engine uses first-order principles to map applica-
tion operations onto the target architecture resources to com-
pute performance estimates, identify performance bottlenecks
and determine the potential for performance improvement.

Data locality analyzer — Data movement inside the memory
hierarchy is typically the main cause of performance losses
for scientific applications, and one of the principal sources of
energy consumption in current systems [11]. The data locality
analyzer identifies memory access patterns with poor cache
locality and patterns that are prefetcher unfriendly.

A. The MIAMI Intermediate Representation

Our x86 front-end uses PIN [16] to instrument object
code and to perform dynamic analysis on application bina-
ries, and XED [14] to decode the instructions from an x86
binary into their MIAMI representation. To increase the tools’
portability to eventually other binary formats and architectures,
we defined a MIAMI intermediate representation and our
analysis is performed on the MIAMI IR. The MIAMI IR
defines its own abstractions for load modules and routines,
and captures information about the application control flow and
about the computation inside each basic block. A load module
corresponds to one object code file. It can be a static or a
dynamically linked executable, or a shared library. We build a
control flow graph (CFG) for each routine, and we decode the
machine instructions from the native binary into their generic

160

CpuUnits = U_ALU%3, U_Loadx2, U_StAddrx2,
U_STD, U_VMul, U_VAdd, U_JMP,
U_vShufflex2, U_FDiv, U_FpAdd,
U_FpMul, U_FpShuf, U_FpBool,
U_FpBlendx2, U_Carry, I_Portx6;

AsyncResources = L1_RdTrans=*2, L1_WrTrans;

Fig. 2. Machine resources defined for an Intel Sandy Bridge

MIAMI representation that resembles RISC instructions. Thus,
arithmetic x86 instructions with memory operands are de-
coded into multiple micro-ops: one for the actual arithmetic
operation, plus one additional micro-op for each memory
read and write operation performed by the instruction. We
associate a list of MIAMI instructions with each basic block.
We store detailed information about a MIAMI instruction. This
information is sufficient to perform dependence analysis and
data flow analysis on the MIAMI IR.

B. The Machine Description Language

We use a machine description language (MDL) to build
models of target architectures. A machine model enumerates
the resources available on the target architecture, describes
execution templates for each generic micro-operation type
of the IR, specifies eventual use conflicts among different
resources, allows for optional idiom replacement rules to
account for differences in the instruction set architecture (ISA)
of different machines, provides information about the memory
hierarchy, and can be used to specify other characteristics of
the target architecture.

A machine model includes detailed information about
the resources needed and the scheduling constraints of each
MIAMI instruction type. We use information from vendor doc-
uments and from micro-benchmarks to build such a model. A
machine model is constructed by hand, but we only have to do
this task once for each architecture. A good performance ana-
lyst must have a general familiarity with computer architecture,
and should have good knowledge about the target architecture
at hand. MIAMI captures that architecture knowledge in the
machine model, which can be written by experts and then made
available to the community. The tools users are not burdened
with knowing low-level architecture details.

A machine model starts by defining the machine resources
that can constrain the scheduling of instructions, such as the
set of execution units and the machine issue ports. Figure 2
shows the set of CPU resources defined for an Intel Sandy
Bridge processor, based on the processor diagram provided in
vendor documentation [12]. For each MIAMI IR instruction
class, the model must define at least one execution template
that describes the resources used by such an instruction during
execution. A template defines the resources used over a number
of cycles. The default latency of an instruction is determined
by the length of its shortest execution template. The resources
used in various cycles create scheduling constraints with other
instructions. Figure 3 shows sample execution templates for
a few different flavors of Load and Store micro-operations
on a Sandy Bridge machine. The NOTHING keyword is used
to indicate that no scheduling constraints can occur in those
cycles because the machine units are pipelined, but they help
define the instruction’s latency.

Instruction Load:fp,vec{128} template = I_Port[2]+U_StAddr[0], U_Load, NOTHING=*3 |
I_Port[3]+U_StAddr[1l], U_Load, NOTHING=*3;

Instruction Load:fp,vec{256} template = I_Port[2]+U_StAddr[0],U_Load,U_Load, NOTHINGx*4 |
I_Port[3]+U_StAddr[1l],U_Load,U_Load, NOTHING=*4;

Instruction Store:fp,vec{128} [L1_WrTrans] template =

I_Port[2]+U_StAddr[0], I_Port[4]+U_STD

I_Port[3]+U_StAddr([1l], I_Port[4]+U_STD;

Instruction Store:fp,vec{256} [L1_WrTrans(2)] template =

I_Port[2]+U_StAddr[0], I_Port[4]+U_STD

Fig. 3.

Optionally, the machine model can define a set of asyn-
chronous resources. These resources are handled differently
by the MIAMI evaluation engine. Instruction templates can
indicate the use of asynchronous resources with an optional
quantity amount. Asynchronous resources do not impose
scheduling constraints on individual instructions. Instead, their
cumulative use defines a lower bound on the schedule length
for an entire loop, in other words, a loop throughput limit.

The Sandy Bridge processor has a non-trivial memory
subsystem. It has two ports for issuing Load requests, and
one port dedicated to Stores. However, it has only two
address generation units (U_StAddr in Figure 2), that must
be shared by any Load and Store instructions. Therefore, it
can sustain either two Loads, or one Load and one Store
every cycle. Moreover, its bandwidth to the L1 cache is limited
to two 16 byte read transfers, and one 16 byte write transfer
every cycle. Thus, an AVX workload is effectively limited to
a throughput of one 256-bit Load every cycle, and one 256-
bit Store every two cycles. The templates in Figure 3 try
to capture all these constraints. The rule for 256-bit Loads
uses the U_Load unit for two cycles, effectively halving the
instruction’s throughput vs. its 128-bit counterpart. The rule for
256-bit Stores makes use of two units of the asynchronous
resource L1_WrTrans. The intuition here is that while a
constraint on the load bandwidth can potentially increase
the latency of a Load, and thus delay any instructions that
depend on the read data, Stores write data to a store buffer
that is transferred asynchronously to the memory subsystem,
and therefore, affect only the loop throughput. Many other
instruction classes have generally simpler execution templates.

The MDL also provides constructs to specify special by-
pass latencies based on the producer / consumer instructions,
and based on the dependence type. In addition to register
dependencies, the MIAMI dependence analyzer also uncovers
memory dependencies and it creates control dependencies to
restrict the ordering of instructions around function calls and
inner loops. Thus, most control dependencies are defined to
have a latency of zero cycles, and memory dependencies are
defined to have a latency of one cycle, because Loads can
generally be issued one cycle after a Store to the same
address, data being forwarded from the store buffer.

Another important language construct is the replacement
rule. Replacement rules specify that certain instruction idioms
should be replaced with different instruction patterns, and
are useful to account for differences in the instruction set
architecture (ISA) of different machines, or to define special
micro-architecture optimizations. An example of the former
use case would be to construct a machine model for an AMD
Bulldozer or an Intel Haswell processor, knowing that the ap-

161

I_Port[3]+U_StAddr[1l], I_Port[4]+U_STD;

Sample Load and Store execution templates for an Intel Sandy Bridge architecture

Replace Sub:int rX, SrX —-> S$rY
with NOP:int -> S$rYy;

Replace Xor:int rX, SrX -> SrY
with NOP:int —-> S$rY;

Fig. 4. Dependency breaking idioms defined using replacement rules.

plication could have been compiled for an earlier architecture
and is not using the new fused multiply add instructions. We
can write a replacement rule that finds Add instructions as
sole consumers of Mult instructions, and replaces them with
MulAdd instructions. As an example of the latter use case,
the replacement rules in Figure 4 specify that Sub and Xor
instructions with identical source operands should be converted
to NOPs without source operands. Intel calls such instructions
dependency breaking idioms [12], and they are recognized and
removed by a CPU’s front-end.

C. Diagnosing Computational Inefficiencies

MIAMI uses a modulo instruction scheduler to map an
application’s instructions onto the resources of a target archi-
tecture. This convolution process identifies performance ineffi-
ciencies due to an interaction between application code and a
target machine’s back-end resources. MIAMI uses a two step
process for all its analyses. In the first step, a dynamic analysis
tool collects profile information about an application. In this
case, we use a CFG profiler to collect CFG edge execution
frequencies at run-time. Most of the analysis is performed
offline in a second step, and thus can be cheaply repeated using
different machine models or input configurations. MIAMI uses
the collected profile information and static analysis on the
application binary to identify the executed paths in application
loops and their execution frequencies. MIAMI reschedules
these paths for a target architecture using a critical-path driven,
modulo instruction scheduler that has been instantiated with a
model of the architecture.

MIAMI computes instruction schedules one path at a time.
Scheduling each path separately emulates an ideal branch
predictor. The computed instruction schedule cost, Cgciynais
takes into account both the instruction schedule dependencies
and the machine resource constraints. MIAMI reports the
predicted execution times at loop and path level. In addition, it
computes cycle accounting — it provides a detailed breakdown
of the factors contributing to the execution time, such as
application dependencies or contention on various machine
resources. It also performs resource use accounting — it reports
a summary of how many cycles each machine resource has
been in use or idle inside each loop, and a precise breakdown
of the instruction mix at loop level, including operation types,
operand widths, and vector lengths.

The metrics computed by MIAMI provide insight into the
factors that are bounding performance inside each loop. Many
times, the relationship between these metrics is sufficient to
diagnose the sources of inefficiency. However, interpreting
that information and understanding where the low-hanging
opportunities for improvement are, still requires experienced
users with a background in compilers or architectures.

To make the process of uncovering opportunities for opti-
mization easier, we also report a few higher level metrics. By
idealizing one or several constraints limiting execution time,
we can compute a lower bound on the execution cost, Cjgeqi,
that can be achieved if we can relax or remove said constraints.
The maximum potential for improvement from removing the
respective scheduling constraints can be simply computed as
the difference between Clciyar and Cigear-

We compute the maximum potential for improvement from
increased ILP, from additional machine resources, and from
ideal vectorization, and we report these metrics at the loop
and the routine level. The improvement from increased ILP
metric is computed by relaxing all data dependencies while
preserving instruction mixes and control dependencies. The
improvement from additional machine resources metric
preserves instruction mixes and all instruction dependencies,
but assumes the machine has unlimited resources.

Efficient use of SIMD execution units is essential for
achieving a significant fraction of peak performance on current
and future systems. Therefore, it is very important to identify
loops that can benefit from vectorization, and estimate the
performance gains from doing so. The improvement from
ideal vectorization metric relaxes data dependencies, but it
also looks at the instruction mixes and at the machine model.
This “what if”” analysis packs together instructions for which
the machine model provides templates of longer vector lengths,
by unrolling a loop the required number of times. For example,
we have to unroll a loop four times to pack scalar double
precision arithmetic into AVX vectors. Instructions already
vectorized and instructions that do not have a corresponding
template of longer vector size are duplicated when the loop is
unrolled. Instructions used for address arithmetic and for the
loop branch condition are not vectorized, but neither are they
duplicated when the loop is unrolled. Our goal is to provide a
sensible bound on the potential gains from vectorization. This
metric should provide a potential for improvement at least as
large as that from increased ILP, since we are relaxing in-
struction dependencies in addition to looking for vectorization
opportunities. Thus, when we look at these metrics, we need to
consider the additional improvement provided by vectorization
over the improvement from increased ILP.

D. Diagnosing and Improving Data Locality

A large amount of literature for compiler research shows
that program transformations can dramatically reduce the
number of cache misses and improve program performance
through high level loop transformations such as loop inter-
change, unroll-and-jam [6], cache blocking (tiling) [26], loop
fusion [10], or a combination of transformations. Identifying
that memory bandwidth or memory latency is limiting appli-
cation performance, represents just a preliminary step. Even
knowing which loops of an application experience a large

162

Loop
interchange Tile inner loop
Move loop

over tiles out

£-B-G-

PN

Sa Ja

Fuse
scopes

«w

Fig. 5. Examples of source, destination and carrier scope relationships
number of cache misses, usually does not provide sufficient
insight by itself for understanding how to improve locality.
The reason for this is that data reuse, the main determinant of
cache performance, is not a local phenomenon. The same data
may be accessed in multiple loops located in different routines.
Given a source-code data array that experiences long temporal
reuses, two crucial pieces of information needed to understand
how to restructure the code to shorten its reuse are to identify
the place where the array has been previously accessed, and
the application code executed between data reuses.

We use reuse distance analysis to understand the temporal
locality of each memory access. To understand how to improve
data locality, in other words, how to shorten a data reuse,
we must also understand where those intervening accesses are
located. SLO [2] obtains this information by collecting the set
of basic blocks executed between two accesses. In previous
work on Sparc binaries [18], we captured the same information
by understanding how far back the flow of control returns in
the dynamic program calling context tree between consecutive
reuses of a datum. MIAMI implements the latter approach. We
maintain information about the dynamic calling context tree
during execution. In our implementation, a dynamic calling
context tree path includes both the routine frames and the
loop nests encountered from an executing instruction to the
root of the tree. We say that the carrier scope of a data reuse
is the shallowest program scope where the control flow returns
between two consecutive access to the same datum.

MIAMI uses dynamic analysis to identify the memory
reuse patterns in an application during execution and to as-
sociate a histogram of observed memory reuse distances with
each pattern. A memory reuse pattern is identified by the
following information: the carrier scope, the path from the
carrier scope to the first access to the datum, also called the
source of the reuse, and the path from the carrier scope to the
second access to the datum, which we call the destination of
the reuse. In an offline step, the MIAMI back-end translates the
measured memory reuse distances into a prediction of cache
misses, based on the memory hierarchy parameters specified in
the machine model. MIAMI identifies and ranks the memory
reuse patterns that produce the highest number of cache and
TLB misses for a particular target machine.

The relationship between the three scopes associated with
a reuse pattern directly determines the type of code transfor-
mations needed to improve locality. Figure 5 shows a few
examples. In all three scenarios, the orange C loop is the carrier
scope, the S block is the source of the reuse, and the D block is

the destination of the reuse. When a reuse is carried within the
same iteration of the carrier scope, we must fuse the scopes on
the paths to the source and destination scopes, starting from
the carrier scope. When the reuse is carried across iterations,
we must interchange the carrier scope into an inner position,
or we must tile one of the inner loops and move the loop
over tiles outside the carrier scope. The intuition in all these
cases is that we are reducing the amount of other data touched
between data reuses. MIAMI can identify the transformations
required to shorten a reuse. However, such transformations are
not always legal or easy to implement. In general, the farther
removed the carrier scope is from the places where data is
accessed, the harder it is to improve the reuse, because there is
a greater chance of data dependencies that prevent refactoring.

Understanding bandwidth constraints: The reuse distance
models provide a lower bound on the traffic volume between
any two adjacent levels of the memory hierarchy. For each
memory level, MIAMI determines the minimum time needed
to transfer the data from the next memory level, using the
peak bandwidth values from the machine model, and assuming
ideal prefetching. It then compares these times to the estimated
instruction schedule cost for a loop to understand if the loop is
potentially bandwidth constrained. This metric is similar to the
loop balance metric introduced in [6], except that we compute
the balance between memory bandwidth and the effective
instruction schedule cost of a loop, not just its floating-point
peak performance.

E. Tuning for the Hardware Prefetchers

We cannot optimize away all transfers of data from memory
for a typical application. However, we can still improve an ap-
plication’s performance by tuning its memory access patterns
for the hardware prefetchers. Modern architectures include one
or several streaming hardware prefetchers that can hide part
of the memory latency when applications traverse memory
with the right access patterns. MIAMI uses dynamic analysis
to abstractly understand streaming behavior in applications. It
uses static analysis to pinpoint memory accesses that cannot
be effectively prefetched and to identify the reasons why, such
as non-streaming accesses, streaming accesses with a too large
stride, or loops with too many concurrent streams. A detailed
description of this analysis is provided in [17].

F. Support for Parallel Applications

While application scalability is increasingly important,
efficient utilization of resources on each core is crucial for
both performance and power efficiency. A large number of
tools support collection of traces for parallel applications to
diagnose load imbalances. While MIAMI focuses on providing
performance diagnosis insight for individual threads, it also
supports data collection and analysis for parallel applications.
The MIAMI profilers support both MPI and multithreaded
applications. The tools automatically collect and save profile
data separately for each application thread. The profile data
collected for any thread can be then post-processed by the
MIAMI back-end to understand performance inefficiencies.

G. Analysis of Results

MIAMI outputs performance results in CSV format, to
enable parsing with a post-processing script and visual analysis

163

12 void compute (int reps) {

13 int i, 3, k, r;

14 for (r=0 ; r<reps ; ++r)

15 for(i = 0; 1 < N; ++1i)

16 for(j = 0; J < N; ++7)

17 for(k = 0; k < N; ++k)
18 C(i, 3)+=A(i,k)*B(k,) ;
19 }

Fig. 6. Matrix multiply code

using a spreadsheet application, and in XML format for top-
down analysis using hpcviewer, the viewer application
distributed with HPCToolkit [1]. In this paper, we include
screenshots of MIAMI results displayed in hpcviewer.

The viewer presents data in tabular format. Each metric is
shown in a separate column. The rows correspond to program
scopes such as loops and routines. We can expand a particular
scope to understand the contribution of its inner scopes to
the various metrics. The percentages visible on the right side
of each cell (see Figure 8) are added by the viewer and are
computed column-wise. They represent the contribution of
a scope (and its children) to the total value of that metric
corresponding to the entire experiment. The percentage is
useful to quickly assess that a particular routine is responsible
for 25% of the running time of an application, or that it
accounts for 40% of the potential for improvement. However,
many times we are interested in the relationship between
different metrics for a particular scope. In such cases, we
have to ignore the pre-computed percentages and compare the
absolute values displayed inside the cells on the same row.

IV. CASE STUDIES

In this section, we describe our experiences with apply-
ing MIAMI to three applications, a simple matrix multiply
algorithm, a PLASMA [5] math kernel, and the LULESH
proxy application [15]. Our motivation with these case studies
is to demonstrate some of the performance diagnosis insight
provided by MIAMI, and to show how this insight can be
used to uncover tuning opportunities. All experiments were
performed on a system with dual Intel Xeon E5-2690 CPUs,
based on the Sandy Bridge micro-architecture. Each processor
has 8 cores and a shared 20 MB L3 cache.

A. Matrix Multiply

Our first experiment looks at the matrix multiply code
shown in Figure 6. We added a fourth outer loop that repeats
the matrix multiplication several times, to keep the number of
calculations within the same order of magnitude as we vary the
matrix size. The number of repetitions is computed as Ll(])\%ls |
We compiled this code with two compilers. The first binary
was compiled with the GNU compiler version 4.7.1 and flags
-Ofast -g. The second binary was compiled with the Intel
compiler version /3.1.2 and compilation flags —03 —-xHost
—g. Our goal here is not to compare the performances of the
two compilers, because we did not attempt to find the best
codes these compilers can produce. Our goal is to get two
different binaries, and use MIAMI to understand the factors
behind the obtained execution times.

-e-gccd471_Ofast
-=-icc13_03_xHost
= gccd71_1C

Cycles / Work
w

Fig. 7. Matrix multiply: time per unit of work using two compilers

Curves gced71_Ofast and iccl3_O3_xHost in Figure 7
plot the average time per unit of work for the two binaries
running on our test system. We divided the total execution
time, including initialization code, by the amount of useful
work, i.e. reps* N3. Lower is better for this type of graph. The
times were measured using hardware performance counters.

We notice that the codes produced by the two compilers
have vastly different performances. In fact, at problem size
120, the second binary runs almost three times as fast as the
first binary, 1.08 vs. 3.11 cycles/work. These results underline
the importance of working at binary level to observe the effects
of compiler optimizations. If we were presented only with the
performance results of the first binary, and if this was not such
a well known code for which we know that a highly tuned
implementation can achieve performance close to machine
peak FLOPS, we would have a hard time knowing if the
performance of the first binary was good or bad. Moreover, the
first binary has an average IPC of 2.6 at problem size 120,
which is generally considered excellent. Note that a Sandy
Bridge core can retire at most 4 instructions per cycle.

We used MIAMI to analyze the two matrix multiply bina-
ries using matrices of size 120. Figure 8 shows a screenshot
of several performance metrics computed by MIAMI for the
binaries compiled using the GNU compiler (top), and the Intel
compiler (bottom). The first five metrics shown in Figure 8
for the first binary are, in order: execution time, improvement
potential from additional machine resources, improvement po-
tential from additional ILP, improvement potential from vector-
ization, time due to application dependencies. The highlighted
line corresponds to the cyclic path through the innermost loop.
MIAMI shows values per iteration for a path, while for a loop
scope it shows metrics aggregated over all the paths and all
the iterations. The cyclic path inside the inner loop is limited
by a recurrence of 3 cycles (metric AppDepTime), which is
the latency of a floating point addition on a Sandy Bridge. The
matrix multiply code has a reduction in the inner loop.

Obviously, the improvement potential from additional ma-
chine resources is very low, 3.61e07 cycles out of [.34el0
total execution time, due to the recurrence in the inner loop.
On the other hand, removing data dependencies would cut /
cycle (metric GainExtraILP) from the cost of the cyclic
path through the inner loop, and roughly 33% of the total exe-
cution time. The improvement is modest because the compiler
generated many auxiliary instructions for address arithmetic.
The code already has a good amount of ILP. The potential for

164

improvement from vectorization (metric GainVectorize)
is significantly higher. The average cost of one inner loop
iteration would drop from 3 to 0.5 cycles. This is much
better than the improvement from additional ILP. These metrics
suggest that the code is not using vector operations, an obser-
vation confirmed by looking at the instruction mix reported by
MIAMI for the innermost loop. The last metric displayed in
the top table of Figure 8 shows that if the code was perfectly
vectorized, it would be limited by contention on the U_Load
units. In our Sandy Bridge machine model, see Section III-B,
these units model the download bandwidth from the L1 cache.

The second binary has an average IPC of 2, but runs three
times as fast as the first binary. The first four MIAMI metrics
displayed for this binary are the same as for the first binary.
The last three metrics show the total time due to resource
contention, the time due to contention on the U_Load units,
and the time due to contention on the U_StAddr units. We
notice that the object code has three level four loops. The Intel
compiler applied loop interchange and unrolled the inner loop,
processing 16 elements in one iteration. Two of the level four
loops handle the odd iterations from unrolling. The unrolled
inner loop, highlighted in the figure, is limited primarily by
contention on the U_Load units, 1.72¢09 out of 2.58¢09
cycles. The other two loops are partially limited by contention
on the address generation units, U_StAddr, which indicates
a too high ratio of memory to arithmetic instructions.

For the main level 4 loop, the improvement potentials
from additional ILP and from vectorization are equal, which
suggests the code is already vectorized. The instruction mix
report confirms this observation. Most arithmetic and memory
instructions are 256-bit, the exception being some load
instructions that are 128-bit wide. However, packing these
instructions into AVX loads would not speed-up the code.
The bottleneck remains the load bandwidth from the L1 cache.
While the Intel compiler generated well vectorized code for
the unrolled loop, the loop runs at only 25% of peak, due to
contention on the L1 bandwidth. To achieve higher throughput,
the code must increase data reuse in registers.

While improving register reuse is non-trivial, we attempt
here to improve the performance of the code produced by
the GNU compiler based on the insight provided by MIAMI.
The recurrence in the inner loop is the main bottleneck for
the first binary. The ~Ofast flag already asks the compiler
for vectorization. However, the GNU compiler fails to either
interchange the loops or to apply unroll&jam. Therefore, we
manually interchanged loops 3 & 4 and recompiled the code
with the GNU compiler. The performance of this code is shown
in Figure 7 under the label geed471_IC. The GNU compiler
generated fully vectorized arithmetic operations. However, the
code uses only memory operations that operate on half an AVX
vector at a time. As a result, this binary is limited by contention
on the address generation units, U_StAddr, and runs slightly
slower than the binary produced by the Intel compiler.

Our goal with MIAMI is to provide performance insight,
not to have perfect predictions of execution time. However,
having accurate execution time estimates when the data fits
in cache, increases confidence in our approach and in our
machine model. The execution times measured with hardware
counters for the two binaries are 1.33e10 and 4.68e09, respec-
tively, which are within 2% of the times estimated by MIAMI.

Scopes E ¥+ L CPU_Time J L GainExtraRes J t GainExtralLP J t GainVectorize AppDepTime § [V_CPU_U_Load[0] J
Experiment Aggregate Metrics 1.34e10 100.0 | 3.61e07 100.0 | 4.72e09 100.0 | 1.12el10 100.0 § 1.33e10 100.0 2.13e09 100.0
r compute 1.34e10 100.0 | 3.61e07 99.9% | 4.72e09 100.0 | 1.12e10 100.0 § 1.33el10 100.0 2.13e09 100.0
v loop at source.c: 14-18 1.34e10 100.0 | 3.61e07 99.9% | 4.72e09 100.0 1.12e10 100.0 | 1.33el0 100.0 2.13e09 100.0
v loop at source.c: 15-18 1.34e10 100.0 | 3.61e07 99.9% | 4.72e09 100.0 | 1.12e10 100.0 § 1.33el10 100.0 2.13e09 100.0
v loop at source.c: 16-18 1.34e10 100.0 | 3.61e07 99.9% | 4.72e09 100.0 | 1.12e10 100.0 § 1.33e10 100.0 2.13e09 100.0
v loop at source.c: 17-18 | | 1.33e10 99.2% | 3.58e07 99.1% | 4.69e09 99.2% | 1.11el@ 99.2% | 1.32e10 99.2% 2.13e09 100.0
Path 2 (x): 3.5784E7 1.40e01 0.0% | 1.00e00 0.0% | 1.20e01 0.0% | 1.32e01 0.0% § 1.30e01 0.0%
e - R
Scopes @ t CPU_Time J L GainExtraRes J { GainExtralLP J { GainVectorize J CPUBottleNeck ¥~ J CPU_U_Load[0] Jt CPU_U_StAddr[0] J
Experiment Aggregate Metrics 4.76e09 100.0 | 2.68e09 100.0 | 1.72e09 100.0 2.34e09 100.0 2.15e09 100.0 1.72e09 100.0 4.29e08 100.0
4 main 4.76e09 100.0 | 2.68e09 100.0 | 1.72e09 100.0 2.34e09 100.0 2.15e09 100.0 1.72e09 100.0 4.29e08 100.0
v loop at source.c: 14-18 4.76e09 100.0 | 2.68e09 100.0 | 1.72e09 100.0 2.34e09 100.0 2.15e09 100.0 1.72e09 100.0 4.29e08 100.0
v loop at source.c: 14-17 4.76e09 100.0 | 2. .0 | 1.72e09 100.0 2.34e09 100.0 2.15e09 100.0 1. .0 4.29e08 100.0
v loop at source.c: 16-18 4.76e09 . 2 1 100.0 2.34e09 2. 1 .0 4.29e08 100.0
8 Wl 1o0p at source.c: 16-18 |l 2.58€09 54.1% | 2 5 33.3% | 5.73e08 1 1 .0
> loop at source.c: 16-18 3 22.9% 7.16e08 o .58e08 o
» loop at source.c: 16-18 7.16€07 2.7% | 3.94e08 22.9% | 5.01e08 21.4% | 7.1607
Fig. 8. MIAMI results for the matrix multiply code compiled with gcc (top), and icc (bottom)

B. PLASMA Kernel

For our second experiment, we look at the math kernel
CORE_dtsmgr from the optimized linear algebra library for
multicore architectures, PLASMA [5]. One of the PLASMA
developers remarked during one private conversation that some
of the core kernels in PLASMA do not run as efficiently (as
high a fraction of machine peak FLOPS) as the well known
dgemm kernel, especially at smaller problem sizes. Small
problem sizes, such as 128x64 per core, are desired for the
increase in thread and task level parallelism that they provide.

We offered to analyze one of these kernels, and we were
pointed in the direction of the CORE_dt smgr kernel, which
is used by multiple solvers. PLASMA can be configured to
use external BLAS libraries. On Intel multicores, PLASMA
is typically configured to use the optimized Intel MKL Ili-
braries. We used MIAMI to analyze the performance of
CORE_dtsmgr with input parameters nb and ib set to 128
and 64, respectively, which was the configuration requested
by the developers. Figure 9 presents a snapshot of some of
the metrics computed by MIAMI for the top time consuming
routines. All these routines are inside the Intel MKL library.

We notice that the top two routines, mk1l_blas_avx-
_dgemm_kernel_0 and mkl_blas_avx_sgem2vu-
_even account for 68% and 18% of the instruction
execution cost, respectively, based on our model. The seven
metrics included in the figure are, in order: execution time,
improvement potential from additional machine resources,
improvement potential from additional ILP, improvement
potential from vectorization, total time due to resource
contention, time due to contention on the U_FpAdd unit,
and time due to contention on the U_FpMult unit. The
performance of the top two routines is limited primarily
by contention on machine resources. The dgemm kernel’s
performance is limited by the availability of the floating-point
adder unit, and the sgem2vu kernel’s performance is limited
by the availability of the multiply unit. The execution unit
usage report produced by MIAMI shows that both kernels
make balanced use of the adder and the multiply units. The
first kernel executes just a few extra additions, and the second
kernel executes just a few extra multiply instructions.

165

As expected, both kernels would benefit very little from
additional instruction level parallelism. However, when we
look at the improvement potential from vectorization, we see
a different picture. The dgemm kernel’s improvement poten-
tial from vectorization is barely larger than its improvement
potential from higher ILP, suggesting that the kernel is well
vectorized. This observation was confirmed by inspecting the
instruction mix report. On the other hand, the sgem2vu
kernel’s improvement potential from vectorization is much
higher than its improvement potential from additional ILP,
suggesting that the kernel is not well vectorized. When we
looked at this kernel’s instruction mix report, we observed that
it included only 128-bit vector instructions. Thus, while the
kernel has a balanced mix of instructions that results in a high
utilization of the floating-point adder and multiply units, it can
run at no more than 50% of peak.

While our findings do not provide a direct path for the
PLASMA developers to fix this performance inefficiency since
the MKL library is closed source, it provides a clear answer to
the question of why their kernel is not running at peak FLOPS.

C. LULESH 2.0.2

For our final case study, we analyze a serial run of the
hydrodynamics proxy application LULESH 2.0.2. LULESH
operates on an unstructured hexahedral mesh and is more
memory intensive than our first two case studies. We focus
our narrative on the insight provided by MIAMI about data
reuse patterns and prefetcher unfriendly memory accesses.

Figure 10 shows memory analysis results for a serial run
of LULESH using a mesh of size 45 and 50 time steps of
simulation. We used the MIAMI data locality analyzer to
understand the memory reuse patterns in LULESH. Figure 10a
displays the program scopes that carry the most misses in
each of the three cache levels on our target system. A scope
S carries cache misses generated by data reuse patterns for
which S is the carrying scope (see Section III-D). Cold misses
are not included. This means that the program control flow
returns back to scope S between two consecutive accesses to a
particular datum D, and the second access to D has a memory
reuse distance that is too long for our target cache. Identifying

A HEE

Scopes

{ CPU_Time T J L GainExtraRes J ‘ GainExtralLP J L GainVectorize J L CPUBottleNeck J L CPU_U_FpAdd[0] J ‘ CPU_U_FpMul[0] J

Experiment Aggregate Metrics 6.55e09 100.0 @ 4.45e09 100.0

2.58e08 100.0

1.10e09 100.0 6.16e09 100.0 4.29e09 100.0 1.10e09 100.0

mkl_blas_avx_dgemm_kernel_0 | | 4.44e09 67.9% 2.71e09 61.0%

3.40e07 13.2%

4.76e07 4.3% 4.41e09 71.6% 4.29e09 100.0

I mkl_blas_avx_sgem2vu_even 1.19e09 18.1% | 1.17e09 26.3% | 1.06e07 4.1% 5.73e08 52.0% 1.18e09 19.1% 1.10e09 100.0
mkl_blas_avx_xdaxpy 2.98e08 4.5% 1.43e08 3.2% | 1.03e08 39.9% | 1.57e08 14.2% 1.74e08 2.8%
mkl_blas_avx_dgemm_copybn 2.08e08 3.2% 2.02e08 4.5% | 3.78e06 1.5% 1.06e08 9.6% 1.99e08 3.2%
mkl_blas_avx_dgemm_copyat 7.10e07 1.1% 6.82e07 1.5% | 1.70e06 0.7% 3.65e07 3.3% 6.86e07 1.1%

Fig. 9. MIAMI results for kernel CORE_dt smgr from the PLASMA library

FALIHEIE

Scopes

| Carried L1DY || carried 120 || carried 13D |

IS

.35e08 100.0 4.20e08 100.0
1.37e08 31.5% 1.35e08 32.1%

Experiment Aggregate Metrics ‘
CalcEnergyForElems(double*, double*, dot

9.97e07 100.0

alien [L;Lev 1;P:EvalEOSForElems(Domain&

» 1.06e€08 24.4% 1.01e08 24.0%
» alien [L;Lev 1;P:main;lulesh.cc[2753;2760]

26e07 12.1%

v

=

LagrangeleapFrog(Domain&) .36e07 3.1%

| 5.26€07 12.5% | 4.88e07 49.0%
|calcHourglassControlForElems(Domain&, (M| 3.02¢07 6.9% | 3.02e07 7.2% | 3.02e07 30.3%
1.36e07 3.2% | 8.40e06 8.4%

(a) Memory reuse insight
Fig. 10. Memory analysis results for a serial run of LULESH 2.0.2

the carrying scope of a reuse pattern is very important for
tuning. To improve the locality of a data reuse pattern, we
have to apply code transformations starting from the carrying
scope, as explained in Section III-D. MIAMI captures detailed
information about each data reuse pattern, including source,
destination and carrying scopes. We do not include screenshots
of all this data due to lack of space, but we explain the relevant
details in text.

Misses in the last level of cache are generally the most
costly for an application. We start our analysis by looking
at metric Carried_L3D. We notice that 49% of L3 cache
misses are carried by a level 1 loop in the main routine. This
loop is the main time step loop of the simulation. These misses
are generated by reuse of data across iterations of the main
time step loop, and are difficult or impossible to eliminate due
to likely data dependencies. Routine LagrangeLeapFrog
carries 8.4% of L3 cache misses. This routine, called from the
main time step loop, coordinates the simulation of one time
step. Misses carried by this routine are between the different
phases of a simulation step and are also difficult to eliminate.

Routine CalcHourglassControlForElems carries
30% of L3 cache misses between a level 1 loop in the same
routine, L., and a level 1 loop of a direct callee, Lgcg:-
Both loops iterate over all the mesh elements. L. computes
intermediate values for each of the eight nodes associated
with a mesh cell and stores them in six temporary arrays.
Lgest uses these intermediate values to compute nodal forces.
We can improve such data reuse patterns by fusing the two
loops, which would eliminate the need for temporary arrays.
Because the two loops are located in different routines, we
improved their locality by tiling both loops with the same tile
size, moving the loops over tiles to the CalcHourglass—
ControlForElems routine and fusing them. The new code
uses the same six temporary arrays, however, the array sizes
are proportional to the tile size. By shortening the temporary
arrays, we reduced the application’s memory footprint and
removed an equal number of cache misses carried across
iterations of the main time step loop between Lg.s; and Lg;.c.

Metrics Carried_L1D and Carried_L2D in Fig. 10a
show that routine CalcEnergyForElems carries 32% of L1

166

Scopes @ﬂ {CacheMisses J NotStreams 17+Streams Y

t
Experiment Aggregate Metrics 4.58e08 100.0 |3.84e07 100.0 |5.77e07 100.0
CalcMonotonicQGradientsForElems(D| | 1.42e@07 3.1% |2.21e05 0.6% [1.17e07 20.3%
CalcFBHourglassForceForElems(Dome | 4.62e07 10.1% [5.57e06 14.5% [1.16e07 20.1%

2 2

9. 9

8. 2

CollectDomainNodesToElemNodes(D¢ 13e07 4.6% |2.73e06 7.1% |9.97e06 17.3%
CalcKinematicsForElems(Domaing&, dc 35e06 2.0% [9.91e05 2.6% [8.20e06 14.2%
IntegrateStressForElems(Domain&, dc¢ 49e06 1.9% [2.66e06 6.9% §5.46e06 9.5%

(b) Data streaming insight

and L2 cache misses, while a level 1 loop in routine Eval-
EOSForElems carries an extra 24% of L1 and L2 misses.
Routine CalcEnergyForElems carries misses between dif-
ferent loop nests located in the same routine. The level 1 loop
in routine EvalEOSForElems implements an artificial load
imbalance in LULESH by repeating the calculations in this
routine a variable number of times, depending on the region
index. This loop includes several inner loops of its own and
a call to routine CalcEnergyForElems. It carries misses
both within- and across-iterations, between its inner loops and
loops located in its callee. The code uses a large number of
temporary arrays of size equal to the number of elements in
a region. Such data reuse patterns can be improved by fusing
the various inner loops. Instead of fusing the loops, we found
it easier to preserve the code structure. As before, we tiled the
inner loops in these two routines, promoted the loops over tiles
to the caller routine and fused them. We kept the temporary
arrays, however, their sizes are much shorter.

Figure 10b shows some of the insight provided by MIAMI
about prefetcher unfriendly memory accesses in LULESH. The
figure shows the number of L1 misses, the number of misses
that are not part of streaming access patterns, and the number
of misses part of high concurrency streams. Non-streaming
memory accesses are generally caused by irregular memory
access patterns, and they cannot be effectively prefetched by
streaming hardware prefetchers. Regions with high streaming
concurrency correspond to program loops that have many inde-
pendent streams. Hardware prefetchers can track only a limited
number of data streams due to finite hardware resources. For
example, the AMD 10H hardware prefetchers are effective
for up to only 16 concurrent streams [17]. We notice that
roughly 12.6% of all L1 cache misses (5.77e07 out of 4.58e08
misses) correspond to high concurrency streaming accesses.
The top five routines contributing to this metric account for
over 80% of high concurrency accesses. These routines access
various arrays associated with mesh nodes that store node
coordinates, velocities, accelerations and nodal forces. Each of
these kinematic metrics have x, y and z contributions stored in
separate arrays. We replaced the three arrays associated with
each kinematic nodal metric, as well as the three arrays storing
element strains, with arrays of structures with three fields.

13
B SandyBridge O istanbul

iﬂﬂﬂﬂ[

hrgl eos data

hrgl_eos hrgl_eos_data

Fig. 11. LULESH speedup on Intel SandyBridge and AMD Istanbul systems

Figure 11 presents a summary of the speedups obtained
after applying the code transformations described above on our
target SandyBridge system and on an AMD Istanbul machine
at 2.6 GHz. Each column cluster shows data for one code vari-
ant. Thus, hrgl represents the tiling & fusion transformation
applied to routine CalcHourglassControlForElems,
eos represents the tiling & fusion transformation applied to
routine EvalEOSForElems, and data represents the fusion
of the data arrays. We also show speedups achieved by the
combination of the two data reuse optimizations, and by the
combination of all three transformations. The two data reuse
optimizations yield very similar speedups on both systems.
As expected, version hrgl yields the highest speedup of all
three transformations. Version eos achieves no speedup by
itself, but it yields a modest speedup when combined with
the hrgl transformation. The fusion of data arrays yields a
significantly higher speedup on the AMD system and accounts
for the difference in total speedup observed on the two systems.

The feedback provided by MIAMI pinpointed several read-
ily available tuning opportunities, even as we had no prior
experience with the application. In a typical tuning exercise,
one would repeat the analysis on the newly optimized code to
identify the next largest opportunities for improvement.

V. RELATED WORK

Many performance analysis tools and performance model-
ing techniques have been proposed by the research community
over the years to tackle performance analysis. These tools fall
broadly into two categories: 1) performance measurement tools
that use either instrumentation [3], [21] or hardware counter
sampling [1], [13], [20] to measure performance effects on
a particular architecture; and 2) performance modeling and
performance prediction tools [19], [22], [25].

Hardware counter measurements are useful for getting an
accurate view of performance effects occurring on a real
architecture. Tools such as [1], [3], [13], [20], [21] facilitate the
collection of hardware counter measurements and are useful
for identifying hotspots in applications. Some of these tools
also compute a call graph of an application, which helps users
identify the callers of a hotspot routine. However, performing
root cause analysis from hardware counter measurements re-
quires an additional process of deconvolution and good knowl-
edge of the underlying architecture. The diagnostic information
produced by MIAMI complements hardware counter measure-
ments and provides additional insight, currently unavailable
through raw measurements.

167

PerfExpert [4] uses HPCToolkit to collect time and cache
miss profiles of an application. Next, it analyzes the profile
data to find hotspots, places where most time is spent or
where most cache misses are incurred. It outputs a list of the
identified hotspots in text format, and a list of typical loop nest
transformations that a user can try. The code transformation
suggestions are generic, not tailored to the particular memory
access patterns in the application, which limits their usability.

Existing performance modeling approaches either use ap-
plication operation counts and machine peak performance rates
to compute upper bounds on achievable performance, or use
agnostic models that can predict a metric of interest while
being oblivious of system internals, and thus cannot provide di-
agnostic insight. The Roofline model [25] uses an application’s
arithmetic intensity, the ratio between the number of executed
floating-point operations and the number of bytes transferred
from memory, to classify the application as compute bound or
memory bound. The model can compare achieved application
performance against an intuitive, visual model of machine peak
performance rates. However, if an application does not already
perform close to machine peak, the model does not provide
any real insight into the factors that limit its performance or
guidance on how to change its arithmetic intensity.

PBound [19] relies on static analysis of an application’s
source code to collect operation statistics. The source code
metrics are then convolved with an abstract architectural model
to compute performance-related estimates, e.g., execution time
or cache miss rates. Because the analysis is limited to source
code, the bounds are not tight in the presence of irregular
memory access patterns and complex dynamic behavior.

Prophesy [22] uses empirical measurements of application
performance for different inputs, and applies curve fitting to
compute a scalable model of performance as a function of
application input parameters. The models are application and
architecture specific. This is an example of an agnostic model
that can predict performance for a different program input
while not modeling any of the system’s internals. Such models
provide little performance diagnostic insight.

Beyls and D’Hollander [2] describe RDVIS, a tool for
visualizing reuse distance information clustered based on the
intermediary executed code (IEC) between two accesses to the
same data, and SLO, a tool that suggests locality optimizations
based on the analysis of the IEC. The capabilities of their
tools are similar to our data locality analyzer. However, our
implementations differ in the ways we collect and analyze
the data. RDVIS uses compiler based instrumentation, while
MIAMI works on x86 executables, which enables it to observe
effects of compiler optimizations and interactions between
application code and third party libraries. Fauzia et al. [9]
construct a computational directed acyclic graph (CDAG) of
data dependencies in an application. They partition the CDAG
into convex subsets, and use the partitions to find instruction
orderings that improve locality while preserving data depen-
dencies. Their analysis confirms the existence of better, valid
instruction orderings, but does not provide direct guidance on
how to transform the source code to obtain those orderings.
In contrast, the MIAMI data reuse analyzer provides insight
into the types of code transformations needed to improve a
data reuse pattern, however, our analysis does not determine
automatically if all transformations are legal.

VI. CONCLUSIONS

Performance diagnosis has been a largely manual process.
While many tools support collection of performance profiles
and traces, analysis of this data to understand sources of
inefficiency is typically left for the user. The difficulty of this
task is compounded by the fact that current tools focus on col-
lecting performance effects, the result of interactions between
code and a particular architecture. A process of deconvolution
through which we can attribute parts of the observed effects
to specific application and architectural factors is needed to
perform root cause analysis from such measurements.

In this paper, we introduced MIAMI, a collection of tools
for identifying tuning opportunities in applications. Instead of
measuring performance effects, MIAMI collects profiles of
application characteristics that are largely architecture inde-
pendent. MIAMI uses detailed static analysis and performance
modeling based on first order principles to reason about perfor-
mance and to pinpoint sources of inefficiency in applications.
MIAMI computes a large number of performance metrics,
focused primarily on facilitating performance diagnosis. One
of MIAMI’s main goals is to eliminate or drastically reduce the
amount of guesswork traditionally involved in uncovering tun-
ing opportunities. The three case studies presented in the paper
validate many of our design decisions. The matrix multiply
and the PLASMA kernel examples underscore the importance
of working at the executable level to capture the effects of
compiler optimizations and to enable analysis of third party
libraries for which source code may not be available. The
LULESH example demonstrates how the insight provided by
MIAMI can pinpoint available tuning opportunities, even when
one has no prior experience with an application.

Currently, MIAMI outputs a set of detailed performance
metrics. Experienced users that can interpret this data would
get the most benefits from the provided insight. Our plans for
the future call for automating the interpretation of performance
results to make the tools accessible to a wider range of users
and to feed downstream tools, and on extending our diagnosis
approach to accelerators such as the Intel Phi and GPUs.

VII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their improvement
suggestions. This work was funded, in part, by the Office
of Advanced Scientific Computing Research in the U.S. De-
partment of Energy under grant No. DE-SC0006733, by the
National Science Foundation Award No. CNS-0910899, and
by the U.S. Air Force under subcontract No. 421-21-038 from
Iowa State University.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. Hpctoolkit: tools for performance analysis
of optimized parallel programs http://hpctoolkit.org. Concurr. Comput.
: Pract. Exper., 22(6):685-701, Apr. 2010. 1, 6, 10

[2] K. Beyls and E. H. D’Hollander. Intermediately executed code is the
key to find refactorings that improve temporal data locality. In CF
’06: Proceedings of the 3rd Conference on Computing Frontiers, pages
373-382, New York, NY, USA, 2006. ACM Press. 5, 10

[3] S. Browne, C. Deane, G. Ho, and P. Mucci. PAPI: A portable interface
to hardware performance counters. In Proceedings of Department of
Defense HPCMP Users Group Conference, 1999. 1, 10

168

(4]

(5]

(6]

(71

(8]

[91

[10]

(11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne. Perfexpert: An easy-to-use performance diagnosis tool for
hpc applications. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1-11, Washington, DC, USA, 2010. 10

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel
tiled linear algebra algorithms for multicore architectures. Parallel
Comput., 35(1):38-53, Jan. 2009. 6, 8

D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and
improving balance for pipelined architectures. Journal of Parallel and
Distributed Computing, 5(4):334-358, Aug. 1988. 5, 6

E. Chung, P. Milder, J. Hoe, and K. Mai. Single-chip heterogeneous
computing: Does the future include custom logic, fpgas, and gpgpus?
In Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM Interna-
tional Symposium on, pages 225-236, 2010. 2

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In Proceedings
of the 38th annual international symposium on Computer architecture,
ISCA ’11, pages 365-376, New York, NY, USA, 2011. ACM. 2

N. Fauzia, V. Elango, M. Ravishankar, J. Ramanujam, F. Rastello,
A. Rountev, L.-N. Pouchet, and P. Sadayappan. Beyond reuse dis-
tance analysis: Dynamic analysis for characterization of data locality
potential. ACM TACO, 10(4):53:1-53:29, Dec. 2013. 10

G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for
array contraction. In Proceedings of the Fifth Workshop on Languages
and Compilers for Parallel Computing, New Haven, CT, Aug. 1992. 5
R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding
sources of inefficiency in general-purpose chips. In Proceedings of the
37th Annual International Symposium on Computer Architecture, ISCA
’10, pages 3747, New York, NY, USA, 2010. ACM. 3

Intel Corporation. Intel 64 and IA-32 Architectures Optimization Ref-
erence Manual. http://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-optimization-manual.html. 3, 4
Intel Corporation. Intel VTune Amplifier XE 2013. http:/software.
intel.com/en-us/intel- vtune-amplifier-xe [04 October 2013]. 1, 10
Intel Corporation. XED. http://software.intel.com/sites/landingpage/
pintool/docs/61206/Xed/html/ [27 September 2013]. 3

I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates and changes.
Technical Report LLNL-TR-641973, LLNL, August 2013. 6

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design
and implementation, PLDI 05, pages 190-200, New York, NY, USA,
2005. ACM. 3

G. Marin, C. McCurdy, and J. S. Vetter. Diagnosis and optimization
of application prefetching performance. In Proceedings of the 27th
international ACM conference on International conference on super-
computing, ICS 13, pages 303-312, New York, NY, 2013. 6, 9

G. Marin and J. Mellor-Crummey. Pinpointing and exploiting op-
portunities for enhancing data reuse. In Proceedings of the 2008
IEEE International Symposium on Performance Analysis of Systems
and Software, Apr 2008. 5

S. H. K. Narayanan, B. Norris, and P. D. Hovland. Generating
performance bounds from source code. In Proceedings of the 2010 39th
International Conference on Parallel Processing Workshops, ICPPW
10, pages 197-206, Washington, DC, USA, 2010. IEEE Computer
Society. 10

The OProfile website. http://oprofile.sourceforge.net/docs. 1, 10

S. Shende and A. D. Malony. The TAU parallel performance system.
International Journal of High Performance Computing Applications,
SAGE Publications, 20(2):287-331, 2006. 1, 10

V. Taylor, X. Wu, and R. Stevens. Prophesy: an infrastructure for
performance analysis and modeling of parallel and grid applications.
SIGMETRICS Perform. Eval. Rev., 30(4):13-18, Mar. 2003. 10
TOPS500 Supercomputer Sites. http://www.top500.org. 1

J. Vetter, S. Lee, D. Li, G. Marin, C. McCurdy, J. Meredith, P. Roth, and
K. Spafford. Quantifying architectural requirements of contemporary
extreme-scale scientific applications. In 4th International Workshop on
Performance Modeling, Benchmarking and Simulation of HPC Systems
(PMBS13), Denver, Colorado, November 2013. 2

S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Commun. ACM,
52(4):65-76, Apr. 2009. 10

M. E. Wolf and M. Lam. A data locality optimizing algorithm.
In Proceedings of the SIGPLAN 91 Conference on Programming
Language Design and Implementation, June 1991. 5

