Chapter 1
Accelerating Numerical Dense Linear Algebra
Calculations with GPUs

Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek,
Stanimire Tomov, and Ichitaro Yamazaki

1.1 Introduction

Enabling large scale use of GPU-based architectures for high performance
computational science depends on the successful development of fundamental
numerical libraries for GPUs. Of particular interest are libraries in the area of dense
linear algebra (DLA), as many science and engineering applications depend on
them; these applications will not perform well unless the linear algebra libraries
perform well.

Drivers for DLA developments have been significant hardware changes. In
particular, the development of LAPACK [1]—the contemporary library for DLA
computations—was motivated by the hardware changes in the late 1980s when its
predecessors (EISPACK and LINPACK) needed to be redesigned to run efficiently
on shared-memory vector and parallel processors with multilayered memory hierar-
chies. Memory hierarchies enable the caching of data for its reuse in computations,
while reducing its movement. To account for this, the main DLA algorithms were
reorganized to use block matrix operations, such as matrix multiplication, in their
innermost loops. These block operations can be optimized for various architectures
to account for memory hierarchy, and so provide a way to achieve high-efficiency
on diverse architectures.
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Challenges for DLA on GPUs stem from present-day hardware changes that
require yet another major redesign of DLA algorithms and software in order
to be efficient on modern architectures. This is provided through the MAGMA
library [12], a redesign for GPUs of the popular LAPACK.

There are two main hardware trends that challenge and motivate the development
of new algorithms and programming models, namely:

The explosion of parallelism where a single GPU can have thousands of cores
(e.g., there are 2,880 CUDA cores in a K40), and algorithms must account for
this level of parallelism in order to use the GPUs efficiently;

The growing gap of compute vs. data-movement capabilities that has been incre
asing exponentially over the years. To use modern architectures efficiently
new algorithms must be designed to reduce their data movements. Current
discrepancies between the compute- vs. memory-bound computations can be
orders of magnitude, e.g., a K40 achieves about 1,240 Gflop/s on dgemm but
only about 46 Gflop/s on dgemv.

This chapter presents the current best design and implementation practices that
tackle the above mentioned challenges in the area of DLA. Examples are given
with fundamental algorithms—from the matrix—matrix multiplication kernel written
in CUDA (in Sect. 1.2) to the higher level algorithms for solving linear systems
(Sects. 1.3 and 1.4), to eigenvalue and SVD problems (Sect. 1.5).

The complete implementations and more are available through the MAGMA
library.! Similar to LAPACK, MAGMA is an open source library and incorporates
the newest algorithmic developments from the linear algebra community.

1.2 BLAS

The Basic Linear Algebra Subroutines (BLAS) are the main building blocks for
dense matrix software packages. The matrix multiplication routine is the most
common and most performance-critical BLAS routine. This section presents the
process of building a fast matrix multiplication GPU kernel in double precision,
real arithmetic (dgemm), using the process of autotuning. The target is the Nvidia
K40c card.

In the canonical form, matrix multiplication is represented by three nested loops
(Fig. 1.1). The primary tool in optimizing matrix multiplication is the technique of
loop tiling. Tiling replaces one loop with two loops: the inner loop incrementing the
loop counter by one, and the outer loop incrementing the loop counter by the tiling
factor. In the case of matrix multiplication, tiling replaces the three loops of Fig. 1.1
with the six loops of Fig. 1.2. Tiling of matrix multiplication exploits the surface to
volume effect, i.e., execution of O(n?) floating-point operations over O(n?) data.

Thttp://icl.cs.utk.edu/magma/.
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Fig. 1.1 Canonical form of

matrix multiplication

for (m = 0; m< M; m++)
for (n = 0; n < N; n++)
for (k = 0; k< K; k++)
Cln][m] += A[k][m]*B[n][k];
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for (m. = 0; m_-< M; m+=tileM)
for (n. = 0; n. < N; n_+=tileN)

for (k- = 0; k. < K; k_-+=tileK)
for (m = 0; m< tileM; m++)
for (n = 0; n< tileN; n++)
for (k = 0; k< tileK; k++)
C[n_+n][m-+n] +=
Al k_+k ][ m_+m]*
B[n_-+n][k-+k];

Fig. 1.2 Matrix multiplication with loop tiling

for (n. = 0; n. < N;

for (m- = 0; m-< M; m+=tileM)

n_+=tileN)

O 0 J o Und W N

for (k- = 0; k- < K; k-+=tileK)
{

instruction

instruction

instruction

Fig. 1.3 Matrix multiplication with complete unrolling of tile operations

Next, the technique of loop unrolling is applied, which replaces the three
innermost loops with a single block of straight-line code (a single basic block),
as shown in Fig. 1.3. The purpose of unrolling is twofold: to reduce the penalty of
looping (the overhead of incrementing loop counters, advancing data pointers and
branching), and to increase instruction-level parallelism by creating sequences of

independent instructions, which can fill out the processor’s pipeline.

This optimization sequence is universal for almost any computer architecture,
including “standard” superscalar processors with cache memories, as well as GPU
accelerators and other less conventional architectures. Tiling, also referred to as
blocking, is often applied at multiple levels, e.g., L2 cache, L1 cache, registers

file, etc.
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In the case of a GPU, the C matrix is overlaid with a 2D grid of thread blocks,
each one responsible for computing a single tile of C. Since the code of a GPU kernel
spells out the operation of a single thread block, the two outer loops disappear, and
only one loop remains—the loop advancing along the k dimension, tile by tile.

Figure 1.4 shows the GPU implementation of matrix multiplication at the device
level. Each thread block computes a tile of C (dark gray) by passing through a stripe
of A and a stripe of B (light gray). The code iterates over A and B in chunks of Kj«
(dark gray). The thread block follows the cycle of:

* making texture reads of the small, dark gray, stripes of A and B and storing them
in shared memory,

* synchronizing threads with the syncthreads () call,

¢ loading A and B from shared memory to registers and computing the product,

* synchronizing threads with the  syncthreads () call.

After the light gray stripes of A and B are completely swept, the tile of C is read,
updated and stored back to device memory. Figure 1.5 shows closer what happens
in the inner loop. The light gray area shows the shape of the thread block. The dark
gray regions show how a single thread iterates over the tile.

Fig. 1.4 gemm at the device ‘ Neev ‘
level - ‘ ‘
N
Kdev i
B
) Kdev ‘77
I b}
Kpik Npj
— N
Mdev
A C

Figure 1.6 shows the complete kernel implementation in CUDA. Tiling is defined
by BLK M, BLK N, and BLK_K. DIM X and DIM_Y define how the thread block
covers the tile of C, DIM XA and DIM_ YA define how the thread block covers a
stripe of A, and DIM_XB and DIM_YB define how the thread block covers a stripe
of B.

In lines 24-28 the values of C are set to zero. In lines 32-38 a stripe of A is read
(texture reads) and stored in shared memory. In lines 4046 a stripe of B is read
(texture reads) and stored in shared memory. The  syncthreads () call in line
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Fig. 1.5 gemm at the block N
level _
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48 ensures that reading of A and B, and storing in shared memory, is finished before
operation continues. In lines 50-56 the product is computed, using the values from
shared memory. The _ syncthreads () call in line 58 ensures that computing
the product is finished and the shared memory can be overwritten with new stripes
of A and B. In lines 60 and 61 the pointers are advanced to the location of new
stripes. When the main loop completes, C is read from device memory, modified
with the accumulated product, and written back, in lines 64—77. The use of texture
reads with clamping eliminates the need for cleanup code to handle matrix sizes not
exactly divisible by the tiling factors.

With the parametrized code in place, what remains is the actual autotuning part,
i.e., finding good values for the nine tuning parameters. Here the process used in
the BEAST project (Bench-testing Environment for Automated Software Tuning) is
described. It relies on three components: (1) defining the search space, (2) pruning
the search space by applying filtering constraints, (3) benchmarking the remaining
configurations and selecting the best performer. The important point in the BEAST
project is to not introduce artificial, arbitrary limitations to the search process.

The loops of Fig. 1.7 define the search space for the autotuning of the matrix
multiplication of Fig. 1.6. The two outer loops sweep through all possible 2D shapes
of the thread block, up to the device limit in each dimension. The three inner loops
sweep through all possible tiling sizes, up to arbitrarily high values, represented by
the INF symbol. In practice, the actual values to substitute the INF symbols can
be found by choosing a small starting point, e.g., (64, 64, 8), and moving up until
further increase has no effect on the number of kernels that pass the selection.

The list of pruning constraints consists of nine simple checks that eliminate
kernels deemed inadequate for one of several reasons:

* The kernel would not compile due to exceeding a hardware limit.
* The kernel would compile but fail to launch due to exceeding a hardware limit.
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1 extern "C" ._global..

2 void beast.gemm_kernel (

3 int M, int N, int K,

4 double alpha ., double =A, int Ida,

5 double +B, int Idb,

6 double beta . double «C, int ldc )

7| {

B int blx = blockldx.x; /f block's m position

g int bly = blockldx.y; /f block™s n pesition

10 int idx = threadldx.x; /f thread's m poesition in C

11 int idy = threadldx.y: £ thread's n positien in C

12 int idt = DIMX«idy+idx; £ thread 's number

13

14 int idxA = idt % DIMXA; /4 thread's m positien for loading A
15 int idyA idt / DIMXA; /f thread's n position for loading A
16 int idxB dt % DIMXB; ff thread 's m positien for loding B
17 int idyB = idt / DIMXE: ff thread 's n position for loading B
18

19 --shared.. double sA[BLE.K||BLEM+1]; A/ shared memory buffer for A
20 --shared_._ double sB[BLKN||BLKK+1]; A shared memory buffer for B
21 double rC[BLKN/DIM.Y |[BLKM/DIM.X | ; ff registers for C

22

23 int coord.A = blx+BLKM + idyAs=lda+idxA; £ A stripe’s initial locarion
24 Int coord.B = bly«BLK.N+Idb + idyB«ldb+idxB; £ B sirvipe's initial location
25 int m, n, k, kk; £/ loop counters
26

27 #pragma uwnroll

28 for (n = 0; n< BLKN/DIM.Y; n++)

29 #pragma unroll

30 for (m = 0; m < BLKM/DIM.X: m++)

31 rC[(n][m] = 0.0;

32

33 for (kk = 0: kk < K: kk += BLKK)

34 {

35 #pragma unroll

36 for in = 0: n< BLKK: n += DIM.YA)

37 #pragma unroll

k] for (m = 0;: m< BLKM: m += DIMXA) {

39 int2 v = texIDfetch(tex.ref.A, coord.A + n=lda+m);
40 sA[n+idyA |[m#idxA] = ..hileint2double(v.y. v.x);:

41

42

43 #pragma unroll

44 for (n = 0; n< BLKN; n += DIM.YB)

45 fipragma unroll

46 for (m = 0; m< BLKK; m += DIMXB) {

47 int2 v = texIDfetch(tex_ref_B, coord.B + n=ldb+m):
48 sB[n+idyB | [m+idxB] = __hiloint2double(v.y. v.x);

49 1

50

51 --syncthreads () ;

52

53 #pragma unroll

54 for (k = 0; k < BLKK; k++)

55 fipragma unroll

56 for (n = 0; n< BLKEN/DIM.Y; n++)

57 #pragma unrell

58 for (m = 0; m< BLKM/DIMX; m++)

59 rCln][m] += sA[k][m+DIMX+idx] * sB[n+DIM.Y+idy |[k];
&0

61 --s¥yncthreads ();

[¥]

63 coord.A += BLK K«lda;

64 coord_B 4= BLKK;

65

&6

67 #pragma unroll

[3:] for (n = 0; n< BLKEN/DIM.Y; n++) {

69 int coord.dCn = bly+BLKN + naDIM_Y+idy:

T0 #pragma unroll

T1 for (m = 0; m< BLKM/DIMX; m++) {

72 int coord.dCm = blx«BLKM + meDIMX+idx;

73 if (coord.dCm < M && coord.dCn < N) {

T4 int offsC = coord_dCnxldc + coord.dCm;

75 double &regC = rCn][m];

76 double &memC = CloffsC |;

77 memC = alpha=regC + betasmemC;

8

79 }

80 }

81 }

Fig. 1.6 Complete dgemm (C = alpha A B + beta C) implementation in CUDA
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// Sweep thread block dimensions.
for (dimem = 1; dim-m <=MAX_THREADS_DIM_X; dim-m++)
for (dim.n = 1; dim_.n <=MAX_THREADS.DIM_Y; dim_n++)
// Sweep tiling sizes.
for (blkom = dim_m; blk.m < INF; blk.m += dim._m)
for (blk.n = dim_n; blk.n < INF; blk.n += dim.n)
for (blk-k = 1; blk-k < INF; blk-k++)

// Apply pruning constraints.

O W o Jo U b WN

—

Fig. 1.7 The parameter search space for the autotuning of matrix multiplication

e The kernel would compile and launch, but produce invalid results due to the
limitations of the implementation, e.g., unimplemented corner case.

e The kernel would compile, launch and produce correct results, but have no
chance of running fast, due to an obvious performance shortcoming, such as very
low occupancy.

The nine checks rely on basic hardware parameters, which can be obtained by
querying the card with the CUDA API, and include:

. The number of threads in the block is not divisible by the warp size.

. The number of threads in the block exceeds the hardware maximum.

. The number of registers per thread, to store C, exceeds the hardware maximum.

The number of registers per block, to store C, exceeds the hardware maximum.

. The shared memory per block, to store A and B, exceeds the hardware maximum.

. The thread block cannot be shaped to read A and B without cleanup code.

. The number of load instructions, from shared memory to registers, in the
innermost loop, in the PTX code, exceeds the number of Fused Multiply-
Adds (FMAsS).

. Low occupancy due to high number of registers per block to store C.

9. Low occupancy due to the amount of shared memory per block to read A and B.

oo

In order to check the last two conditions, the number of registers per block, and
the amount of shared memory per block are computed. Then the maximum number
of possible blocks per multiprocessor is found, which gives the maximum possible
number of threads per multiprocessor. If that number is lower than the minimum
occupancy requirement, the kernel is discarded. Here the threshold is set to a fairly
low number of 256 threads, which translates to minimum occupancy of 0.125 on the
Nvidia K40 card, with the maximum number of 2,048 threads per multiprocessor.

This process produces 14,767 kernels, which can be benchmarked in roughly
1 day. Three thousand two hundred and fifty six kernels fail to launch due to
excessive number of registers per block. The reason is that the pruning process uses
a lower estimate on the number of registers, and the compiler actually produces code
requiring more registers. We could detect it in compilation and skip benchmarking
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of such kernels or we can run them and let them fail. For simplicity we chose the
latter. We could also cap the register usage to prevent the failure to launch. However,
capping register usage usually produces code of inferior performance.

Eventually, 11,511 kernels run successfully and pass correctness checks.
Figure 1.8 shows the performance distribution of these kernels. The fastest kernel
achieves 900 Gflop/s with tiling of 96 x 64 x 12, with 128 threads (16 x 8 to compute
C, 32 x 4 to read A, and 4 x 32 to read B). The achieved occupancy number of
0.1875 indicates that, most of the time, each multiprocessor executes 384 threads
(three blocks).

Fig. 1.8 Distribution of the

dgemm kernels
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In comparison, CUBLAS achieves the performance of 1,225 Gflop/s using 256
threads per multiprocessor. Although CUBLAS achieves a higher number, this
example shows the effectiveness of the autotuning process in quickly creating well
performing kernels from high level language source codes. This technique can be
used to build kernels for routines not provided in vendor libraries, such as extended
precision BLAS (double—double and triple-float), BLAS for misshaped matrices
(tall and skinny), etc. Even more importantly, this technique can be used to build
domain specific kernels for many application areas.

As the last interesting observation, we offer a look at the PTX code produced
by the nvcc compiler (Fig. 1.9). We can see that the compiler does exactly what is
expected, which is completely unrolling the loops in lines 50-56 of the C code
in Fig. 1.6, into a stream of loads from shared memory to registers and FMA
instructions, with substantially more FMAs than loads.
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Fig. 1.9 A portion of the PTX for the innermost loop of the fastest dgemm kernel

d.shared.f64
Id.shared.f64

%fd258 , [%rd3];
%fd259 , [%rd4];

fma.rn.f64 %fd260, %fd258, %fd259,

d.shared.f64

%fd261 , [%rd3+128];

fma.rn.f64 %fd262, %fd261, %fd259,

1d . shared . f64

%fd263, [%rd3+256];

fma.rn.f64 %fd264, %fd263, %fd259,

d.shared.f64

%fd265 , [%rd3 +384];

fma.rn.f64 %fd266, %fd265, %fd259,

d.shared.f64

%fd267 , [%rd3+512];

fma.rn.f64 %fd268, %fd267, %fd259,

Id .shared.f64

%fd269 , [Yrd3+640];

fma.rn.f64 %fd270, %fd269, %fd259,

d.shared.f64

%fd271, [%rd4 +832];

fma .
fma .
fma .
fma .
fma.
fma .

rn. f64
rn. f64
rn. f64
rn. f64
rn. f64
rn. 64

%fd272 ,
%fd273 ,
%fd274 ,
%fd275 ,
%fd276 ,
%fd277 ,

%fd258 ,
%fd261 ,
Y%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd271 ,
Y%fd271 ,
Y%fd271 ,
%fd271 ,
%fd271 ,
Y%fd271 ,

%fd1145;
%fd1144;
%fd1143;
%fd1142;
%fd1141;
%fd1140;
%fd1139;
%fd1138;
%fd1137;
%fd1136;

%fd1135;
Y%fd1134;

d.shared.f64  %fd278, [%rd4+1664];

fma.
fma .
fma .
fma .
fma .

fma

d.shared.f64
fma.
fma .
fma .
fma.
fma .
fma .
Id .shared . f64
fma .
fma .
fma .
fma.
fma .
fma .

rn. f64
rn. f64
rn. f64
rn. f64
rn. f64
rn. f64

rn. f64
rn. f64
rn. f64
rn. f64
rn. 64
rn. f64

rn. f64
rn. f64
rn. f64
rn. f64
rn. f64
rn. f64

%fd279 ,
Y%fd280 ,
%fd281 ,
%fd282
%fd283
%fd284 ,

%fd286 ,
Y%fd287 ,
%fd288 ,
%fd289 ,
%fd290 ,
%fd291 ,

%fd293
%fd294 ,
%fd295 ,
%fd296 ,
Y%fd297 ,
%£d298 ,

%fd258 ,
%fd261 ,
Y%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
Y%fd269 ,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd278 , %fd1133;
%fd278 , %fd1132;
%fd278 , %fd1131;
Y%fd278 , %fd1130;
Y%fd278 , %fd1129;
Y%fd278 , %fd1128;

%fd285 , [%rd4 +2496];

Y%fd285, %fd1127;
Yfd285 , %fd1126;
%fd285 , %fd1125;
Y%fd285, %fd1124;
Y%fd285, %fd1123;
%fd285 , %fd1122;

%fd292, [%rd4+3328];

%fd292 , %fd1121;
%fd292 , %fd1120;
%fd292 , %fd1119;
%fd292, %fd1118;
%fd292, %fd1117;
%fd292 , %fd1116;

1d . shared . f64

%fd299 , [%rd4+4160];

fma .
fma .
fma .
fma .
fma .
fma .
Id . shared . f64
fma .
fma .
fma.
fma .
fma .
fma .

rn. 64
rn. f64
rn. f64
rn. f64
rn. f64
rn. f64

rn. f64
rn . f64
rn. f64
rn. 64
rn. f64
rn. f64

%fd300 ,
%fd301 ,
%fd302 ,
%fd303
Y%fd304 ,
%fd305 ,

%fd307 ,
%fd308 ,
%fd309
%fd310 ,
%fd311
%fd312 ,

%fd258 ,
Y%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

%fd258
%fd261 ,
%fd263 ,
%fd265
%fd267 ,
%fd269 ,

%fd299
%fd299 ,
%fd299 ,
%fd299
%fd299 ,
%fd299 ,

%fd306, [%rd4+4992];

Y%fd306 ,
%fd306 ,
Y%fd306 ,
Y%fd306 ,
%fd306 ,
Y%fd306 ,

Id . shared . f64

%fd313, [%rd4+5824];

%fd1115;
%fd1114;
%fd1113;
%fd1112;
%fd 11115
%fd1110;

%fd1109;
%fd1108 ;
%fd1107;
%fd1106;
%fd1105;
%fd1104;

fma .
fma .
fma.
fma .
fma .
fma.

rn. f64
rn. f64
rn. f64
rn. 64
rn. f64
rn. f64

Y%fd314
%fd315,
%fd316 ,
%fd317 ,
%fd318 ,
%fd319 ,

%fd258 ,
%fd261 ,
%fd263 ,
%fd265 ,
%fd267 ,
%fd269 ,

Yfd313, %fd1103;
Y%fd313, %fd1102;
Y%fd313, %fd1101 ;
Yfd313, %fd1100;
%fd313, %fd1099 ;
Y%fd313, %fd1098;

d.shared.f64
d.shared.f64

%fd320, [%rd3+776];
%fd321, [Yrd4 +8];

fma.rn.f64 %fd322, %fd320, %fd321, %fd260:

Id .shared . 64

%fd323, [%rd3+904];

fma.rn.f64 %fd324, %fd323, %fd321, %fd262;

d.shared.f64

%fd325, [%rd3+1032];

fma.rn.f64 %fd326, %fd325, %fd321, %fd264;

Id . shared . f64

%fd327, [%rd3+1160];

fma.rn.f64 %fd328, %fd327, %fd321, %fd266;

Id .shared . f64

%fd329, [%rd3+1288];

fma.rn.f64 %fd330, %fd329, %fd321, %fd268:

d.shared.f64

%fd331, [%rd3+1416];

fma.rn.f64 %fd332, %fd331, %fd321, %fd270;

Id . shared . f64

%fd333, [Y%rd4+840];

fma .
fma .
fma.
fma .
fma .
fma .

rn. f64
rn. f64
rn. f64
rn. 64
rn. f64
rn. f64

Y%fd334
%fd335,
%fd336 ,
Y%fd337 ,
%fd338 ,
%fd339 ,

%fd320 ,
%fd323,
%fd325,
%fd327 ,
%fd329 ,
%fd331,

Y%fd333, %fd272;
Y%fd333, %fd273;
Y%fd333, %fd274;
Yfd333, %fd275;
Y%fd333, %fd276;
Y%fd333, %fd277;

Id . shared . 64

%fd340 , [%rd4+1672];

fma .
fma .
fma.
fma .
fma .
fma.

rn. f64
rn. f64
rn. f64
rn. f64
rn. f64
rn. f64

%fd341 ,
%fd342 ,
%fd343 ,
fd344 ,
%fd345 ,
%fd346 ,

%fd320 ,
%fd323,
%fd325,
%fd327 ,
%fd329 ,
%fd331 ,

Y%fd340 ,
Y%fd340 ,
Y%fd340 ,
Y%fd340 ,
Yfd340 ,
Y%fd340 ,

%fd279 ;
%fd280 ;
%fd281;
%fd282;
%fd283;
%fd284;

11
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1.3 Solving Linear Systems

Solving dense linear systems of equations is a fundamental problem in scientific
computing. Numerical simulations involving complex systems represented in terms
of unknown variables and relations between them often lead to linear systems
of equations that must be solved as fast as possible. This section presents a
methodology for developing these solvers. The technique is illustrated using the
Cholesky factorization.

1.3.1 Cholesky Factorization

The Cholesky factorization (or Cholesky decomposition) of an # x n real symmetric
positive definite matrix A has the form A = LLT, where L is an n x n real
lower triangular matrix with positive diagonal elements [5]. This factorization is
mainly used as a first step for the numerical solution of linear equations Ax = b,
where A is a symmetric positive definite matrix. Such systems arise often in
physics applications, where A is positive definite due to the nature of the modeled
physical phenomenon. The reference implementation of the Cholesky factorization
for machines with hierarchical levels of memory is part of the LAPACK library.
It consists of a succession of panel (or block column) factorizations followed by
updates of the trailing submatrix.

1.3.2 Hybrid Algorithms

The Cholesky factorization algorithm can easily be parallelized using a fork-join
approach since each update—consisting of a matrix—matrix multiplication—can be
performed in parallel (fork) but that a synchronization is needed before performing
the next panel factorization (join). The number of synchronizations of this algo-
rithm and the synchronous nature of the panel factorization would be prohibitive
bottlenecks for performance on highly parallel devices such as GPUs.

Instead, the panel factorization and the update of the trailing submatrix are
broken into tasks, where the less parallel panel tasks are scheduled for execution on
multicore CPUs, and the parallel updates mainly on GPUs. Figure 1.10 illustrates
this concept of developing hybrid algorithms by splitting the computation into
tasks, data dependencies, and consequently scheduling the execution over GPUs
and multicore CPUs. The scheduling can be static (described next), or dynamic (see
Sect. 1.4). In either case, the small and not easy to parallelize tasks from the critical
path (e.g., panel factorizations) are executed on CPUs, and the large and highly
parallel task (like the matrix updates) are executed mostly on the GPUs.
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Fig. 1.10 Algorithms as a
collection of tasks and
dependencies among them for
hybrid GPU-CPU computing

GPU

1.3.3 Hpybrid Cholesky Factorization for a Single GPU

13

Figure 1.11 gives the hybrid Cholesky factorization implementation for a single
GPU. Here da points to the input matrix that is in the GPU memory, work is a
work-space array in the CPU memory, and nb is the blocking size. This algorithm
assumes the input matrix is stored in the leading n-by-n lower triangular part of da,
which is overwritten on exit by the result. The rest of the matrix is not referenced.
Compared to the LAPACK reference algorithm, the only difference is that the hybrid
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for (j = 0; j<=n; j += nb){
jb = min(nb, *n—j);
cublasDsyrk (*1°,°n", jb, j.—1, da(j.0).xlda, 1, da(j,j).*lda);
cudaMemcpy2DAsync (work , jbxsizeof(double), da(j,j), xldaxsizeof(double),

sizeof (double)xjb, jb, cudaMemcpyDeviceToHost, stream[1]);

if (j + jb< *n)
cublasDgemm(’'n’, t", *n—j—jb, jb, j, —1, da(j+jb,0), xlda, da(j,0),
*lda, 1, da(j+jb.j).xlda);
cudaStreamSynchronize (stream[1]);
dpotrfo(”Lower”, &jb, work, &b, info);
if (xinfo != 0)
*info = *info + j, break;
cudaMemcpy2DAsync (da(j.j) . *ldaxsizeof (double), work. jb*sizeof(double),

sizeof (double)*jb, jb, cudaMemcpyHostToDevice, stream[0]);

if (j + jb< *n)
cublasDtrsm(’'r”,’1°,°t ,'n", *n—j—jb, jb, 1, da(j,j), *lda,
da(j+jb,j), *xlda);

Fig. 1.11 Hybrid Cholesky factorization for single CPU-GPU pair (dpotrf)
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one has three extra lines—4, 9, and 13. These extra lines implement our intent in
the hybrid code to have the jb-by-jb diagonal block starting at da(j,j) factored on
the CPU, instead of on the GPU. Therefore, at line 4 we send the block to the CPU,
at line 9 we synchronize to ensure that the data has arrived, then factor it on the
CPU using a call to LAPACK at line 10, and send the result back to the GPU at
line 13. Note that the computation at line 7 is independent of the factorization of
the diagonal block, allowing us to do these two tasks in parallel on the CPU and
on the GPU. This is implemented by statically scheduling first the dgemm (line 7)
on the GPU; this is an asynchronous call, hence the CPU continues immediately
with the dpotrf (line 10) while the GPU is running the dgemm.

The hybrid algorithm is given an LAPACK interface to simplify its use and
adoption. Thus, codes that use LAPACK can be seamlessly accelerated multiple
times with GPUs.

To summarize, the following is achieved with this algorithm:

* The LAPACK Cholesky factorization is split into tasks;

e Large, highly data parallel tasks, suitable for efficient GPU computing, are
statically assigned for execution on the GPU;

* Small, inherently sequential dpotrf tasks (line 10), not suitable for efficient GPU
computing, are executed on the CPU using LAPACK;

e Small CPU tasks (line 10) are overlapped by large GPU tasks (line 7);

e Communications are asynchronous to overlap them with computation;

e Communications are in a surface-to-volume ratio with computations: sending
nb? elements at iteration j is tied to O(nb x j?) flops, j > nb.

1.4 The Case for Dynamic Scheduling

In this section, we present the linear algebra aspects of our generic solution for
development of either Cholesky, Gaussian, and Householder factorizations based
on block outer-product updates of the trailing matrix.

Conceptually, one-sided factorization .# maps a matrix A4 into a product of two
matrices X and Y:

7 [An A12i| o |:X11 XIZ] « |:Yll le]
Az Ax Xa1 X Yo Yo
Algorithmically, this corresponds to a sequence of in-place transformations of A,

whose storage is overwritten with the entries of matrices X and Y (P;; indicates the
currently factorized panels):

A(ﬂ) A(lg) A(l(;) Py A‘l‘? Ai‘? XY Yo Yis XY Yo Y3
n a 1

AL AD) AR | > | P A AR | > | X AR AR | > | Xa Pp AN | —>
0 L0 0 0 O H o i
A(31) Agz) A(33) P A(sz) A(33) X3 Agz) A33) X531 Py Ag;
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Algorithm 1 Two-phase implementation of a one-sided factorization
// iterate over all matrix panels
for P, € {P, P>,..., P,}
FactorizePanel(P;)
UpdateTrailingMatrix(4®)

end
Table. 1'1. Routines for.Panel Cholesky ~ Householder  Gauss
factorization and the trailing -
matrix update FactorizePanel dpotf2 dgeqf2 dgetf2
dtrsm
dsyrk dlarfb dlaswp
UpdateTrailingMatrix =~ dgemm dtrsm
dgemm

Algorithm 2 Two-phase implementation with the update split between Fermi and
Kepler GPUs

// iterate over all matrix panels

for P,' E{P[,Pz,...}
FactorizePanel(P;)
UpdateTrailingMatrixgepie: (A7)
UpdateTrailingMatrixXgemi(4©)

end
XY Y Yi XY Y2 Yi3 XY Yo Yi
e X2| XY22 Y23 g X2| X22 Y23 g X21 XY22 Y23 e [XY].
X311 X3 Ag? X31 X3 P33 X311 Xz XVY3i

where XY;; is a compact representation of both X;; and Y;; in the space originally
occupied by A4;;.

Observe two distinct phases in each step of the transformation from [A] to
[XY]: panel factorization (P) and trailing matrix update: A©) — AG+D_ Imple-
mentation of these two phases leads to a straightforward iterative scheme shown
in Algorithm 1. Table 1.1 shows BLAS and LAPACK routines that should be
substituted for the generic routines named in the algorithm.

The use of multiple accelerators complicates the simple loop from Algorithm 1:
we must split the update operation into multiple instances for each of the acceler-
ators. This was done in Algorithm 2. Notice that FactorizePanel() is not split for
execution on accelerators because it exhibits properties of latency-bound workloads,
which face a number of inefficiencies on throughput-oriented GPU devices. Due to
their high performance rate exhibited on the update operation, and the fact that the
update requires the majority of floating-point operations, it is the trailing matrix
update that is a good target for off-load. The problem of keeping track of the
computational activities is exacerbated by the separation between the address spaces
of main memory of the CPU and the GPUs. This requires synchronization between
memory buffers and is included in the implementation shown in Algorithm 3.



16 J. Dongarra et al.

Algorithm 3 Two-phase implementation with a split update and explicit communi-

cation

// iterate over all matrix panels

for P; € {Pl, P, .. }
FactorizePanel( P;)
SendPaneIKepler( P)
UpdateTrailingMatrixgepie: (A7)
SendPanelgemi(Pi)
UpdateTrailingMatrixXgemi(4©)

end

Algorithm 4 Lookahead of depth 1 for the two-phase factorization

FactorizePanel(P;)
SendPanel(Py)
UpdateTl’aiIingMatrix{Kepler, Fermi} (Py)
PanelStartReceiving(P,)
UpdateTrailingMatrix ¢kepier, Fermiz (R")
// iterate over remaining matrix panels
for P; € {PQ, P, .. }
PanelReceive(P;)
PanelFactor(P;)
SendPanel(P;)
UpdateTrailingMatriX ¢kepier, Fermi (P;)
PanelStartReceiving(P;)
UpdateTrailingMatriX ¢kepier, Fermi3 (R®)
end
PanelReceive(P,)
PanelFactor(P,)

The complexity increases further as the code must be modified further to achieve
close to peak performance. In fact, the bandwidth between the CPU and the GPUs is
orders of magnitude too slow to sustain computational rates of GPUs.? The common
technique to alleviate this imbalance is to use lookahead [14,15].

Algorithm 4 shows a very simple case of a lookahead of depth 1. The update
operation is split into an update of the next panel, the start of the receiving of the
next panel that just got updated, and an update of the rest of the trailing matrix R.
The splitting is done to overlap the communication of the panel and the update
operation. The complication of this approach comes from the fact that depending
on the communication bandwidth and the accelerator speed, a different lookahead
depth might be required for optimal overlap. In fact, the adjustment of the depth
is often required throughout the factorization’s runtime to yield good performance:
the updates consume progressively less time when compared to the time spent in the
panel factorization.

2The bandwidth for the current generation PCI Express is at most 16 GB/s while the devices
achieve over 1,000 Gflop/s performance.
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Since the management of adaptive lookahead is tedious, it is desirable to use a
dynamic scheduler to keep track of data dependences and communication events.
The only issue is the homogeneity inherent in most of the schedulers which is
violated here due to the use of three different computing devices that we used. Also,
common scheduling techniques, such as task stealing, are not applicable here due
to the disjoint address spaces and the associated large overheads. These caveats are
dealt with comprehensively in the remainder of the chapter.

1.5 Eigenvalue and Singular Value Problems

Eigenvalue and singular value decomposition (SVD) problems are fundamental
for many engineering and physics applications. For example, image processing,
compression, facial recognition, vibrational analysis of mechanical structures,
and computing energy levels of electrons in nanostructure materials can all be
expressed as eigenvalue problems. Also, the SVD plays a very important role in
statistics where it is directly related to the principal component analysis method,
in signal processing and pattern recognition as an essential filtering tool, and in
analysis of control systems. It has applications in such areas as least squares
problems, computing the pseudoinverse, and computing the Jordan canonical form.
In addition, the SVD is used in solving integral equations, digital image processing,
information retrieval, seismic reflection tomography, and optimization.

1.5.1 Background

The eigenvalue problem is to find an eigenvector x and eigenvalue A that satisfy
Ax = Ax,

where A is a symmetric or nonsymmetric # X n matrix. When the entire eigenvalue
decomposition is computed we have 4 = XAX ™!, where A is a diagonal matrix of
eigenvalues and X is a matrix of eigenvectors. The SVD finds orthogonal matrices
U, V, and a diagonal matrix > with nonnegative elements, such that A = UX VT,
where A is an m x n matrix. The diagonal elements of ¥ are singular values of A,
the columns of U are called its left singular vectors, and the columns of V' are called
its right singular vectors.
All of these problems are solved by a similar three-phase process:

1. Reduction phase: orthogonal matrices Q (Q and P for singular value decom-
position) are applied on both the left and the right side of A to reduce it to a
condensed form matrix—hence these are called “two-sided factorizations.” Note
that the use of two-sided orthogonal transformations guarantees that A has the
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same eigen/singular-values as the reduced matrix, and the eigen/singular-vectors
of A can be easily derived from those of the reduced matrix (step 3);

2. Solution phase: an eigenvalue (respectively, singular value) solver further
computes the eigenpairs A and Z (respectively, singular values ¥ and the left
and right vectors U and I7T) of the condensed form matrix;

3. Back transformation phase: if required, the eigenvectors (respectively, left and
right singular vectors) of A are computed by multiplying Z (respectively, U and
VT by the orthogonal matrices used in the reduction phase.

For the nonsymmetric eigenvalue problem, the reduction phase is to upper
Hessenberg form, H = Q7T AQ. For the second phase, QR iteration is used to
find the eigenpairs of the reduced Hessenberg matrix H by further reducing it to
(quasi) upper triangular Schur form, S = ETHE. Since S is in a (quasi) upper
triangular form, its eigenvalues are on its diagonal and its eigenvectors Z can be
easily derived. Thus, A can be expressed as:

A= QHQ" =QESE" 0,

which reveals that the eigenvalues of A are those of S, and the eigenvectors Z of S
can be back-transformed to eigenvectorsof Aas X = Q E Z.

When A is symmetric (or Hermitian in the complex case), the reduction phase is
to symmetric tridiagonal T = QT AQ, instead of upper Hessenberg form. Since
T is tridiagonal, computations with 7" are very efficient. Several eigensolvers are
applicable to the symmetric case, such as the divide and conquer (D&C), the
multiple relatively robust representations (MRRR), the bisection algorithm, and the
QR iteration method. These solvers compute the eigenvalues and eigenvectors of
T = ZAZT, yielding A to be the eigenvalues of A. Finally, if eigenvectors are
desired, the eigenvectors Z of T are back-transformed to eigenvectors of A as
X=0Z.

For the singular value decomposition (SVD), two orthogonal matrices Q and
P are applied on the left and on the right, respectively, to reduce A to bidiagonal
form, B = QT AP. Divide and conquer or QR iteration is then used as a solver
to find both the singular values and the left and the right singular vectors of B as
B = UxVT, yielding the singular values of A. If desired, singular vectors of B
are back-transformed to singular vectors of Aas U = Q U and VT = PTVT,

There are many ways to formulate mathematically and solve these problems
numerically, but in all cases, designing an efficient computation is challenging
because of the nature of the algorithms. In particular, the orthogonal transformations
applied to the matrix are two-sided, i.e., transformations are applied on both the left
and right side of the matrix. This creates data dependencies that prevent the use
of standard techniques to increase the computational intensity of the computation,
such as blocking and look-ahead, which are used extensively in the one-sided
LU, QR, and Cholesky factorizations. Thus, the reduction phase can take a large
portion of the overall time. Recent research has been into two-stage algorithms
[2,6,7,10, 11], where the first stage uses Level 3 BLAS operations to reduce A
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to band form, followed by a second stage to reduce it to the final condensed form.
Because it is the most time consuming phase, it is very important to identify the
bottlenecks of the reduction phase, as implemented in the classical approaches [1].
The classical approach is discussed in the next section, while Sect. 1.5.4 covers two-
stage algorithms.

The initial reduction to condensed form (Hessenberg, tridiagonal, or bidiagonal)
and the final back-transformation are particularly amenable to GPU computation.
The eigenvalue solver itself (QR iteration or divide and conquer) has significant
control flow and limited parallelism, making it less suited for GPU computation.

1.5.2 Classical Reduction to Hessenberg, Tridiagonal,
or Bidiagonal Condensed Form

The classical approach (“LAPACK algorithms”) to reduce a matrix to condensed
form is to use one-stage algorithms [5]. Similar to the one-sided factorizations
(LU, Cholesky, QR), the two-sided factorizations are split into a panel factorization
and a trailing matrix update. Pseudocode for the Hessenberg factorization is
given in Algorithm 5 and shown schematically in Fig. 1.12; the tridiagonal and
bidiagonal factorizations follow a similar form, though the details differ [17].
Unlike the one-sided factorizations, the panel factorization requires computing
Level 2 BLAS matrix-vector products with the entire trailing matrix. This requires
loading the entire trailing matrix into memory, incurring a significant amount of
memory bound operations. It also produces synchronization points between the
panel factorization and the trailing submatrix update steps. As a result, the algorithm
follows the expensive fork-and-join model, preventing overlap between the CPU
computation and the GPU computation. Also it prevents having a look-ahead panel
and hiding communication costs by overlapping with computation. For instance,
in the Hessenberg factorization, these Level 2 BLAS operations account for about
20% of the floating point operations, but can take 70 % of the time in a CPU
implementation [16]. Note that the computational complexity of the reduction phase
is about n° $n3, and $n’ for the reduction to Hessenberg, bidiagonal, and
tridiagonal form respectively.

In the panel factorization, each column is factored by introducing zeros below
the subdiagonal using an orthogonal Householder reflector, H; = I — tv; va. The
matrix Q is represented as a product of n — 1 of these reflectors,

O=HH.. H,_.

Before the next column can be factored, it must be updated as if H; were
applied on both sides of A4, though we delay actually updating the trailing matrix.
For each column, performing this update requires computing y; = Av;. For
a GPU implementation, we compute these matrix-vector products on the GPU,
using cublasDgemv for the Hessenberg and bidiagonal, and cublasDsymv for
the tridiagonal factorization. Optimized versions of symv and hemv also exist in
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Algorithm 5 Hessenberg reduction, magma_*gehrd

for i =1,...,nbynb

// panel factorization, in magma_*lahr2.
get panel Aiin,i:i+nb—l from GPU

for j =i,....i +nb
(vj, ;) = householder(a;)
send v; to GPU
Vi = Ai+1:m,j:nv; on GPU
get y; from GPU

compute 7;) = 0

T
Tij—ny =1 Ti—nVi—1vi

update column a1 = (I —VTTVT)(aj41 —YT{VT},;41)

end

// trailing matrix update, in magma_*lahru.

Yi:itme = Av:i:nV on GPU

A=I—=VTTVTYA—=YTVT)on GPU

end

Yl:i, : :Al:i, :V
BLAS-3 on GPU

Y= Ay

BLAS-2
on GPU

Panel

Trailing
matrix
update

A=0"40

BLAS-3
on GPU

A

column a;

Fig. 1.12 Hessenberg panel factorization, trailing matrix update, and V' matrix on GPU with upper

triangle set to zero

MAGMA [13], which achieve higher performance by reading A only once and using
extra workspace to store intermediate results. While these are memory-bound Level
2 BLAS operations, computing them on the GPU leverages the GPU’s high memory

bandwidth.

After factoring each panel of nb columns, the trailing matrix must be updated.
Instead of applying each H; individually to the entire trailing matrix, they are
blocked together into a block Hessenberg update,

Qi =H{H,...Hy, =1-V, T,V
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The trailing matrix is then updated as
A=0740; = - VTV YA -Y,TV]) (1.1)
for the nonsymmetric case, or using the alternate representation
A=A-wyl —viwT' (12)

for the symmetric case. In all cases, the update is a series of efficient Level 3 BLAS
operations executed on the GPU, either general matrix—matrix multiplies (dgemm)
for the Hessenberg and bidiagonal factorizations, or a symmetric rank-2k update
(dsyr2k) for the symmetric tridiagonal factorization.

Several additional considerations are made for an efficient GPU implementation.
In the LAPACK CPU implementation, the matrix V' of Householder vectors is stored
below the subdiagonal of A. This requires multiplies to be split into two operations,
a triangular multiply (dtrmm) for the top triangular portion, and a dgemm for the
bottom portion. On the GPU, we explicitly set the upper triangle of V' to zero, as
shown in Fig. 1.12, so the entire product can be computed using a single dgemm.
Second, it is beneficial to store the small nb x nb T; matrices used in the reduction,
for later use in the back-transformation, whereas LAPACK recomputes them later
from V;.

1.5.3 Back-Transform Eigenvectors

For eigenvalue problems, after the reduction to condensed form, the eigensolver
finds the eigenvalues A and eigenvectors Z of H or T. For the SVD, it finds
the singular values X and singular vectors U and V of B. The eigenvalues and
singular values are the same as for the original matrix A. To find the eigenvectors or
singular vectors of the original matrix A, the vectors need to be back-transformed
by multiplying by the same orthogonal matrix Q (and P, for the SVD) used
in the reduction to condensed form. As in the reduction, the block Householder
transformation Q; = I — V[T,'Vl-T is used. From this representation, either Q can
be formed explicitly using dorghr, dorgtr, or dorgbr; or we can multiply by the
implicitly represented Q using dormhr, dormtr, or dormbr. In either case, applying
it becomes a series of dgemm operations executed on the GPU.

The entire procedure is implemented in the MAGMA library: magma_dgeev
for nonsymmetric eigenvalues, magma_dsyevd for real symmetric, and
magma_dgesvd for the singular value decomposition.
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1.5.4 Two Stage Reduction

Because of the expense of the reduction step, renewed research has focused
on improving this step, resulting in a novel technique based on a two-stage
reduction [6, 9]. The two-stage reduction is designed to increase the utilization of
compute-intensive operations. Many algorithms have been investigated using this
two-stage approach. The idea is to split the original one-stage approach into a
compute-intensive phase (first stage) and a memory-bound phase (second or “bulge
chasing” stage). In this section we will cover the description for the symmetric case.
The first stage reduces the original symmetric dense matrix to a symmetric band
form, while the second stage reduces from band to tridiagonal form, as depicted
in Fig. 1.13.

0

i First stage 0% Second stage 10

| 20 Bulge chasing 20
—) %

I 40 40

l 50 : 50

I 60 i 60

0 0 10 20 30 40 50 60 0 10 20 30 40 50 60

nz=1016 nz=119

Fig. 1.13 Two stage technique for the reduction phase

1.5.4.1 First Stage: Hybrid CPU-GPU Band Reduction

The first stage applies a sequence of block Householder transformations to reduce
a symmetric dense matrix to a symmetric band matrix. This stage uses compute-
intensive matrix-multiply kernels, eliminating the memory-bound matrix-vector
product in the one-stage panel factorization, and has been shown to have a good data
access pattern and large portion of Level 3 BLAS operations [3,4,8]. It also enables
the efficient use of GPUs by minimizing communication and allowing overlap of
computation and communication. Given a dense n X n symmetric matrix A4, the
matrix is divided into n¢ = n/b block-columns of size nb. The algorithm proceeds
panel by panel, performing a QR decomposition for each panel to generate the
Householder reflectors V' (i.e., the orthogonal transformations) required to zero out
elements below the bandwidth nb. Then the generated block Householder reflectors
are applied from the left and the right to the trailing symmetric matrix, according to

A=A-wvT —vwT (1.3)
where V' and T define the block of Householder reflectors and W is computed as
W =X—iVT"vTX, where (1.4)
X = AVT.
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Since the panel factorization consists of a QR factorization performed on a panel
of size I x b shifted by nb rows below the diagonal, this will remove both the
synchronization and the data dependency constraints seen using the classical one
stage technique. In contrast to the classical approach, the panel factorization by
itself does not require any operation on the data of the trailing matrix, making
it an independent task. Moreover, we can factorize the next panel once we have
finished its update, without waiting for the total trailing matrix update. Thus this
kind of technique removes the bottlenecks of the classical approach: there are no
BLAS-2 operations concerning the trailing matrix and also there is no need to wait
for the update of the trailing matrix in order to start the next panel. However, the
resulting matrix is banded, instead of tridiagonal. The hybrid CPU-GPU algorithm
is illustrated in Fig. 1.14. We first run the QR decomposition (dgeqrf panel on step
i of Fig.1.14) of a panel on the CPUs. Once the panel factorization of step i is
finished, then we compute W on the GPU, as defined by Eq. (1.4). In particular,
it involves a dgemm to compute V' 7, then a dsymm to compute X = AVT,
which is the dominant cost of computing W, consisting of 95 % of the time spent
in computing W, and finally another inexpensive dgemm. Once W is computed,
the trailing matrix update (applying transformations on the left and right) defined
by Eq. (1.3) can be performed using a rank-2k update.

However, to allow overlap of CPU and GPU computation, the trailing submatrix
update is split into two pieces. First, the next panel for step i + 1 (medium gray panel
of Fig. 1.14) is updated using two dgemm’s on the GPU. Next, the remainder of the
trailing submatrix (dark gray triangle of Fig. 1.14) is updated using a dsyr2k. While
the dsyr2k is executing, the CPUs receive the panel for step i + 1, perform the next
panel factorization (dgeqrf), and send the resulting V;; back to the GPU. In this
way, the factorization of panels i = 2,...,nt and the associated communication
are hidden by overlapping with GPU computation, as demonstrated in Fig. 1.15.
This is similar to the look-ahead technique typically used in the one-sided dense

3 2 )
I ™~
I \
v
> - | |
[«
= ] N
GPU: computeW(i) CPU: QR on GPU: update
and update next panel (i+1) panel (i+1) trailing matrix

Fig. 1.14 Description of the reduction to band form, stage 1
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GPU compute W of 0: NT=_ number of block
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of step i & ompute X = AVI lsymm)

5: update trailing matrix
A=A-WT'V-VI'W (dsyr2k)
6: end for

Fig. 1.15 Execution trace of reduction to band form

matrix factorizations. Figure 1.15 shows a snapshot of the execution trace of the
reduction to band form, where we can easily identify the overlap between CPU and
GPU computation. Note that the high-performance GPU is continuously busy, either
computing W or updating the trailing matrix, while the lower performance CPUs
wait for the GPU as necessary.

1.5.4.2 Second Stage: Cache-Friendly Computational Kernels

The band form is further reduced to the final condensed form using the bulge chasing
technique. This procedure annihilates the extra off-diagonal elements by chasing the
created fill-in elements down to the bottom right side of the matrix using successive
orthogonal transformations. Each annihilation of the nb non-zero element below
the off-diagonal of the band matrix is called a sweep. This stage involves memory-
bound operations and requires the band matrix to be accessed from multiple disjoint
locations. In other words, there is an accumulation of substantial latency overhead
each time different portions of the matrix are loaded into cache memory, which is not
compensated for by the low execution rate of the actual computations (the so-called
surface-to-volume effect). To overcome these critical limitations, we developed
a bulge chasing algorithm, to extensively use cache friendly kernels combined
with fine grained, memory aware tasks in an out-of-order scheduling technique
which considerably enhances data locality. This reduction has been designed for
multicore architectures, and results have shown its efficiency. This step has been
well optimized such that it takes between 5 and 10 % of the global time of the
reduction from dense to tridiagonal. We refer the reader to [6, 8] for a detailed
description of the technique.
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We decide to develop a hybrid CPU-GPU implementation of only the first stage
of the two stage algorithm, and leave the second stage executed entirely on the
CPU. The main motivation is that the first stage is the most expensive computational
phase of the reduction. Results show that 90 % of the time is spent in the first stage
reduction. Another motivation for this direction is that accelerators perform poorly
when dealing with memory-bound fine-grained computational tasks (such as bulge
chasing), limiting the potential benefit of a GPU implementation of the second stage.
Experiments showed that the two-stage algorithm can be up to six times faster than
the standard one-stage approach.

1.5.5 Back Transform the Eigenvectors of the Two Stage
Technique

The standard one-stage approach reduces the dense matrix A to condensed form
(e.g., tridiagonal 7 in the case of symmetric matrix), computes its eigenval-
ues/eigenvectors (A, Z) and back transform its eigenvectors Z to computes the
eigenvectors X = Q Z of the original matrix A as mentioned earlier in Sect. 1.5.3.
In the case of the two-stage approach, the first stage reduces the original dense
matrix 4 to a band matrix by applying a two-sided transformations to A such that
QT AQ, = B. Similarly, the second, bulge-chasing stage reduces the band matrix
B to the condensed form (e.g, tridiagonal 7) by applying two-sided transformations
to B such that QZT BQ, = T. Thus, when the eigenvectors matrix X of A are
requested, the eigenvectors matrix Z resulting from the eigensolver needs to be back
transformed by the Householder reflectors generated during the reduction phase,
according to

X=010:Z=I-VinV") I =VauV)) Z, (1.5)

where (V1, t1) and (V3, t,) represent the Householder reflectors generated during the
reduction stages one and two, respectively. Note that when the eigenvectors are
requested, the two stage approach has the extra cost of the back transformation
of Q,. However, experiments show that even with this extra cost the overall
performance of the eigen/singular-solvers using the two stage approach can be
several times faster than solvers using the one stage approach.

From the practical standpoint, the back transformation @, is not as straight-
forward as the one of @, which is similar to the classical back transformation
described in Sect. 1.5.3. In particular, because of complications of the bulge-chasing
mechanism, the order and the overlap of the Householder reflector generated during
this stage is intricate. Let us first begin by describing the complexity and the
design of the algorithm for applying Q,. We present the structure of V, (the
Householder reflectors that form the orthogonal matrix Q») in Fig. 1.16a. Note that
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these reflectors represent the annihilation of the band matrix, and thus each is of
length nbh—the bandwidth size. A naive implementation would take each reflector
and apply it in isolation to the matrix Z. Such an implementation is memory-bound
and relies on Level 2 BLAS operations. A better procedure is to apply with calls
to Level 3 BLAS, which achieves both very good scalability and performance. The
priority is to create compute intensive operations to take advantage of the efficiency
of Level 3 BLAS. We proposed and implemented accumulation and combination
of the Householder reflectors. This is not always easy, and to achieve this goal we
must pay attention to the overlap between the data they access as well as the fact
that their application must follow the specific dependency order of the bulge chasing
procedure in which they have been created. To stress these issues, we will clarify it
by giving an example. For sweep i (e.g., the column at position B(i,i):B(i+nb,i)),
its annihilation generates a set of kX Householder reflectors (vf), each of length nb,
the vi-‘ are represented in column i of the matrix V, depicted in Fig. 1.16a. Likewise,
the ones related to the annihilation of sweep i + 1, are those presented in column
i 4 1, where they are shifted one element down compared to those of sweep i.
It is possible to combine the reflectors vl(k) from sweep i with those from sweep
i+1,i42,...,i+{and to apply them together in blocked fashion. This grouping
is represented by the diamond-shaped region in Fig. 1.16a. While each of those
diamonds is considered as one block, their back transformation (application to the
matrix Z) needs to follow the dependency order. For example, applying block 4 and
block 5 of the V,’s in Fig. 1.16a modifies block row 4 and block row 5, respectively,
of the eigenvector matrix Z drawn in Fig. 1.16b where one can easily observe the
overlapped region. The order dictates that block 4 needs to be applied before block 5.
It is possible to compute this phase efficiently by splitting Z by blocks of columns
over both the CPUs and the GPU as shown in Fig. 1.16b, where we can apply
each diamond independently to each portion of E. Moreover, this method does not
require any data communication. The back transformation of Q; to the resulting
matrix from above, Q1 x (Q, Z), involves efficient BLAS 3 kernels and it is done
by using the GPU function magma_dormtr, which is the GPU implementation of
the standard LAPACK function (dormtr).

1.6 Summary and Future Directions

In conclusion, GPUs can be used with astonishing success to accelerate fundamental
linear algebra algorithms. We have demonstrated this on a range of algorithms,
from the matrix—matrix multiplication kernel written in CUDA, to the higher level
algorithms for solving linear systems, to eigenvalue and SVD problems. Further,
despite the complexity of the hardware, acceleration was achieved at a surprisingly
low software development effort using a high-level methodology of developing
hybrid algorithms. The complete implementations and more are available through
the MAGMA library. The promise shown so far motivates and opens opportunities
for future research and extensions, e.g., tackling more complex algorithms and
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Fig. 1.16 Blocking technique to apply the Householder reflectors V> with a hybrid implementation
on GPU and CPU. (a) Blocking for V5>; (b) eigenvectors matrix

hybrid hardware. Several major bottlenecks need to be alleviated to run at scale
though, which is an intensive research topic. When a complex algorithm needs to be
executed on a complex heterogeneous system, scheduling decisions have a dramatic
impact on performance. Therefore, new scheduling strategies must be designed to
fully benefit from the potential of future large-scale machines.
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