Accelerating computation of eigenvectors in
the nonsymmetric eigenvalue problem

Mark Gates!, Azzam Haidar!, and Jack D011garra1'2'3

1University of Tennessee, Knoxville, TN, USA
20ak Ridge National Laboratory, Oak Ridge, TN, USA
3University of Manchester, Manchester, UK

March 3, 2014

Abstract

In the nonsymmetric eigenvalue problem, work has focused on the Hes-
senberg reduction and QR iteration, using efficient algorithms and fast,
Level 3 BLAS routines. Comparatively, computation of eigenvectors per-
forms poorly, limited to slow, Level 2 BLAS performance with little speedup
on multi-core systems. It has thus become a dominant cost in the eigen-
value problem. To address this, we present improvements for the eigen-
vector computation to use Level 3 BLAS where applicable and parallelize
the remaining triangular solves, achieving good parallel scaling and accel-
erating the overall eigenvalue problem more than three-fold.

1 Introduction

Eigenvalue problems are fundamental for many engineering and physics ap-
plications. For example, image processing, compression, facial recognition, vi-
brational analysis of mechanical structures, seismic reflection tomography, and
computing electron energy levels can all be expressed as eigenvalue problems.
The eigenvalue problem is to find an eigenvalue A and eigenvector x that sat-
isfy Ax = Ax, where A is an n X n matrix. When the entire eigenvalue decom-
position is computed we have A = XAX ™!, where A is a diagonal matrix of
eigenvalues and X is a matrix of eigenvectors. In this paper we consider the
case when A is nonsymmetric. We concentrate on computing the eigenvectors,
and present optimizations that accelerate the overall eigenvalue problem more
than three-fold.

The solution of the eigenvalue problem proceeds in three phases [5]. First,
the matrix is reduced to upper Hessenberg form by applying orthogonal Q

matrices on the left and right, to form H = QI AQ;. This phase takes 13—0113
floating point operations (flops), and has been formulated [1} 2] so that 80% of
these occur in efficient Level 3 BLAS matrix-matrix products (gemm), while the
remaining 20% occur in memory-bound Level 2 BLAS matrix-vector products
(gemv). Performance is limited by the memory bandwidth for gemv opera-
tions, which can take 70% of the time. Using multi-threaded BLAS, it achieves a
modest 7 times speedup on 16 cores. Recent work on a two-stage implementa-
tion reduces the amount of gemv operations [7]. A GPU accelerated version [9]
is an additional 4 times faster than the 16-core performance. For large matrices,
the Hessenberg reduction accounts for approximately 20% of the overall time
using 16 cores.

The second phase, QR iteration, is an iterative process that reduces the Hes-
senberg matrix to upper triangular Schur form, T = QI AQ,. Being based on
similarity transformations, the eigenvalues of A are the same as the eigenval-
ues of T, which are simply the diagonal elements of T. QR iteration takes
O(n3) flops, but being an iterative method, the exact count depends heavily on
the convergence rate and techniques such as aggressive early deflation [3} 4].
It includes a mixture of Level 1 BLAS for applying Givens rotations and Level
3 BLAS for updating H and accumulating Q. Parallel versions also exist [6].
While for small matrices, QR iteration can take over 50% of the time, for large
matrices this reduces to about 15% of the time on 16 cores.

Finally, the third phase computes eigenvectors Z of the Schur form T and
back-transforms them to eigenvectors X of the original matrix A. The eigenvec-
tors of A are related to the eigenvectors of T by multiplying with the orthogonal
matrices used in the Hessenberg reduction and QR iteration as X = QZ, where
Q = Q1Q2. In the LAPACK implementation, computation of each eigenvec-
tor involves a triangular solve (latrs) and matrix-vector product (gemv). This
phase takes %n?’ flops. However, due to a lack of parallelization and involving
only Level 2 BLAS operations, it has the lowest Gflop/s performance of the
three phases, asymptotically taking over 60% of the time on 16 cores.

Thus, despite having the least flops of the three phases, the computation
of eigenvectors has become the dominant cost and limited the overall parallel
speedup of the eigenvalue problem. This paper is therefore concerned with
accelerating the eigenvector computation through three improvements. First,
for the back-transformation, we block multiple Level 2 gemv products into
an efficient Level 3 gemm product, discussed in Section[8] Second, we paral-
lelize the triangular solves using a task-based scheduler, as described in Sec-
tionfd} Finally, using a GPU, the back-transformation is further accelerated and
done in parallel with the triangular solves, in Section 5} Combined, these im-
provements significantly increase the performance and scalability of the over-
all eigenvalue problem, demonstrated by the results in Section[6]

2 Eigenvector Computation

When eigenvectors are desired, the third phase computes eigenvectors of the
triangular Schur form T, then back-transforms them to eigenvectors of the orig-
inal matrix A. In LAPACK, this phase is implemented in the trevc (triangu-
lar eigenvector computation) routine. We will assume only right eigenvectors
are desired; the computation of left eigenvectors is similar and amenable to
the same techniques described here. After the Hessenberg and QR iteration
phases, the diagonal entries of T are the eigenvalues A, of A. To determine the
corresponding eigenvectors, we solve Tz, = Arzx by considering the decom-
position [5]

Tn u T13 4 2
0 Ay of | 1] =2 |1, (1)
0 0 Tz [0 0

which yields (T3 — A¢I)2 = —u. Thus computing each eigenvector z; of T

involves ak —1 x k —1 triangular solve, for k = 2,...,n. Each solve has a
slightly different T matrix, with the diagonal modified by subtracting Ax. The
resulting eigenvector z; of T must then be back-transformed by multiplying
with the Q formed in the Hessenberg and QR iteration phases to get the eigen-
vector x; = Qz; of the original matrix A.

Note that if two eigenvalues, A and A; (k > j), are identical, then T1y — Al
is singular. More generally, T1; — Axl can be badly conditioned. Therefore,
instead of using the standard BLAS triangular solver (trsv), a specialized trian-
gular solver (latrs) is used, which scales columns to protect against overflow,
and can generate a consistent solution for a singular matrix.

This method works in complex arithmetic, however the case in real arith-
metic is more complicated. For a real matrix A, the eigenvalues can still be
complex, coming in conjugate pairs, A; and A;. The eigenvectors are likewise
conjugate pairs, z; and Z;. In real arithmetic, the closest that QR iteration can
come to triangular Schur form is quasi-triangular real Schur form, which has
a2 x 2 diagonal block for each conjugate pair of eigenvalues. A specialized
quasi-triangular solver is required, which factors each 2 x 2 diagonal block,
as well as protecting against overflow and dealing with singular matrices. In
LAPACK this solver is implemented as part of the dtrevc routine.

3 Blocking back-transformation

Our first step to improve the eigenvector computation is to block the n gemv
operations for the back-transformation into 7/n;, gemm operations, where 7,
is the block size. This requires two n X n;, workspaces: one for the vectors zj,
the second for the back-transformed vectors x; before copying to the output V.

Pseudocode for the blocked back-transformation is shown in Algorithm
along with the parallel solver described in Section E} For each block, we loop

over 1 columns, performing a triangular solve for each column and storing the
resulting eigenvectors z; in workspace Z. After filling up 1, columns of Z, a
single gemm back-transforms all 1;, vectors, storing the result in workspace Z.
The vectors are then normalized and copied to V. On input, the matrix V = Q.
Recall from equation (1) that the the bottom #n — k rows of eigenvector zj are
0, so the last n — k columns of Q are not needed for the gemm. Therefore, we
start from k = n and work down to k = 1, writing each block of eigenvectors
to V over columns of Q after they are no longer needed.

The real case is similar, but has the minor complication that complex con-
jugate pairs of eigenvalues will generate conjugate pairs of eigenvectors, z; =
a + bi and z; = a — bi, which are stored as two columns, 4 and b, in Z. When
the first eigenvalue of each pair is encountered, both columns are computed;
then the next eigenvalue (its conjugate) is skipped. Once n;, — 1 columns are
processed, if the next eigenvector is complex it must be delayed until the next
block.

4 Multi-threading triangular solver

After blocking the back-transform, the triangular solver remains a major bot-
tleneck because it is not parallelized. Recall that the triangular matrix being
solved is different for each eigenvector — the diagonal is modified by subtract-
ing Ay. This prevents blocking multiple eigenvectors together using a Level 3
BLAS trsm operation to solve multiple eigenvectors together.

In the complex case, LAPACK's ztrevc uses a safe triangular solver, zlatrs.
Unlike the standard ztrsv BLAS routine, zlatrs uses column scaling to avoid
numerical instability, and handles singular triangular matrices. Therefore, to
not jeopardize the accuracy or stability of the eigensolver, we continue to rely
on zlatrs instead of the optimized, multi-threaded ztrsv. However, processing
T column-by-column prevents parallelizing individual calls to zlatrs, as is typ-
ically done for BLAS functions. Instead, we observe that multiple triangular
solves could occur in parallel. One obstacle is that a different Ay is subtracted
from the diagonal in each case, modifying T in memory. Our solution is to
write a modified routine, zlatrsd (triangular solve with modified diagonal),
which takes both the original unmodified T;; and the Ay to subtract from the
diagonal. The subtraction is done as the diagonal elements are used, without
modifying T in memory. This allows us to pass the same T to each zlatrsd call
and hence solve multiple eigenvectors in parallel, one in each thread.

As previously mentioned, the real case requires a special quasi-triangular
solver to solve each 2 x 2 diagonal block. In the original LAPACK code, this
quasi-triangular solver is embedded in the dtrevc routine. To support multi-
threading, we refactor it into a new routine, dlaqtrsd, a quasi-triangular solver
with modified diagonal. Unlike the complex case, instead of passing Ay sepa-
rately, dlagtrsd computes it directly from the diagonal block of T. If Ay is real,
dlaqtrsd computes a single real eigenvector. If Ay is one of a complex-conjugate
pair, dlagtrsd computes a complex eigenvector, as two real vectors.

To deal with multi-threading, we use a thread pool design pattern. As
shown in AlgorithmT} the main thread inserts latrsd tasks into a queue. Worker
threads pull tasks out of the queue and execute them. For this application, there
are no dependencies to be tracked between the triangular solves. After a block
of ny vectors has been computed, we back-transform them with a gemm. We
could call a multi-threaded gemm, as available in MKL, but to simplify thread
management and avoid switching between our pthreads and MKL's threads,
we found it more suitable to use the same thread pool for the gemm as for
latrsd. For p threads, the gemm is split into p tasks, each task multiplying a
single block row of Q with Z. After the gemm, the next block of n;, vectors is
computed. Within each thread, the BLAS calls are single threaded.

5 GPU Acceleration

To further accelerate the eigenvector computation, we observe that the trian-
gular solves and the back-transformation gemm can be done in parallel. In
particular, the gemm can be done on a GPU while the CPU performs the trian-
gular solves. Data transfers can also be done asynchronously and overlapped

Algorithm 1 Multi-threaded eigenvector computation (complex-arithmetic).

1: function ztrevc(n, T, V)
2: // Tisn x nupper triangular matrix.

3: // 'V isn x n matrix; on input V = Q, on output V has eigenvectors.
4: // Zand Z are n x ny, workspaces, 1y is column blocksize.

5: k=n

6: while kK >1

7:] =Ny

8: while j >1and k > 1

9:)\k = Tk, k

10: enqueue latrsd to solve (Ty 1, 1:k-1 — MI)Z1k—1,j = —Tik—1, &
11: Zn,j=1[1,0,...,0]7

12: j—=1 k —=1

13: end

14: sync queue

15: m=k+ny—j

16: for i =1tonby [n/p]

17: ip =min(i+n, —1, n)

18: enqueue gemm to multiply Zi.j, j11.0, = Viiiy, 1:m * Z1om, j+1:m,
19: end
20: sync queue
21: normalize vectors in Z and copy to Vi, ket 1k,
22: end

23: end function

with the triangular solves. To facilitate this asynchronous computation, we
double-buffer the CPU workspace Z, using it to store results from latrsd, then
swapping with Z, which is used to send data to the GPU while the next block of
latrsd solves are performed with Z. The difference from Algorithm [I|is shown
in Algorithm

6 Results

We performed tests with two 8-core Intel Sandy Bridge Xeon E5-2670 CPUs
at 2.6 GHz and an NVIDIA Kepler K40 GPU at 875 MHz. Intel MKL 11.0.5
was used for optimized, multi-threaded BLAS. Matrices were double precision
with uniform random entries in (0,1). Inside our parallel trevc, we launch p
pthreads and set MKL to be single-threaded for each pthread; outside of trevc
we set the MKL number of threads to the same number of threads, p.

Figure [1| shows the total eigenvalue problem (dgeev) time, broken down
into four phases: QR iteration (bottom row, green), Hessenberg reduction (2nd
row, cyan), triangular solves (3rd row, blue), and back-transformation (top row,
red). The triangular solves and back-transformation together form the eigen-
vector computation. Columns are grouped by number of CPU threads. We
compare results to two reference implementations — the LAPACK CPU ver-
sion in the first column, and the MAGMA [8] GPU-accelerated version in the
fourth column.

The improvement due to blocking the back-transformation is shown by the
second column of each group in Figure(l| It is up to 14 times faster than the
non-blocked version using 16 threads. Further, the red square lines in Figure
show it has better parallel scaling, reaching a speedup of 12 times for 16 cores,
compared to only 6 times for the LAPACK implementation. However, as the
triangular solves are not yet parallelized, the overall improvement is limited,
being at most 1.4 times faster, seen in the single threaded result in Figure

Parallelizing the triangular solves is the third column of each group in Fig-
ure|(l} For one thread, there is of course no parallel speedup, so the results are
the same as the second column. With multiple threads, we see significant par-
allel speedup, up to 12.8 times for 16 threads, shown as the solid blue triangle

Algorithm 2 GPU accelerated back-transformation replaces lines of Al-
gorithm (I} Also, V is sent asynchronously to 4V at start of ztrevc.

15: // A4V is n x n workspace on GPU.

16: // dZ and dZ are n x n; workspaces on GPU.

17: swap buffers Z and Z

18: async send Z to dZ on GPU

19: async gemm dZ1.y, i1, = AViin, 1:m * AZ1., j41:, o0 GPU
20: async receive dZ to Vi, k1:kn, on CPU
21: normalize vectors in V

line in Figure[2] Combined with the blocked back-transformation, these two
modifications significantly improve the overall eigenvalue problem by up to
2.5 times for 16 cores, shown by the blue triangle line in Figure [3} and anno-
tated with arrows in Figure |1} This is the total improvement available using
only CPUs. Next we will look at the improvement also using GPUs.

The fourth column in Figure [I|is the MAGMA reference time, which ac-
celerates the Hessenberg reduction using the GPU. The MAGMA Hessenberg
performance depends on the GPU, so is independent of the number of CPU
threads. It is up to 3.4 times faster than the 16-core LAPACK Hessenberg. How-
ever, the LAPACK Hessenberg is only 20% of the total time, so accelerating it
reduces the total dgeev time by only 1.15 times, shown by the green diamond
line in Figure 3] When combined with the new blocked back-transform and
parallel triangular solves, the performance substantially increases, as shown by
the orange starred lines in Figure B} being up to 3.8 times faster than LAPACK.

Our final improvement is to move the back-transformation gemm to the
GPU, shown as the fifth column of each group in Figure|l} The gemm can be
almost entirely overlapped with the triangular solves, practically eliminating
time spent on the back-transformation. This is a minor additional improve-
ment on top of the blocked back-transform and parallel solves, shown by the
magenta circle lines in Figure|3| The improvement from the MAGMA version
using 16 cores is 3.5 times, while from the LAPACK version is 4.0 times, as
annotated in Figure

5500
5000

3.4x B back-transform |

4500 Il triangular solves H
__ 4000 I Hessenberg i
g 3500 Bl QR iteration
L 3000
g 2500 3.1x
= 2000 R 4.0x

1500

1000

500
LY o I ¢ LYo o I ¢ LYoo I
TLES & TLES & SIS §
Q0 X 9 Q0 X 9 Q0 X 9
J@ I J&@ I J&@ o
&2 Q ¢ Q ¢ Q
o ¥ o o ¥ o o ¥ o
00‘0 oézr o’;gr
Q 1 thread R 4 threads Q 16 threads

Figure 1: Execution time of eigenvalue solver (dgeev) for matrix size
n = 16,000.

12

10 V=X parallel triangular solves
o ¥= =¥ triangular solves (LAPACK)
S 8 Bl block back-transform
v 6 = = i B -l back-transform (LAPACK)
o - r
", ‘: = T &= =¢ Hessenberg (LAPACK)

= =K"= T SX g =% QR iteration (LAPACK)
2 - = -k =K]
I =¥ =¥ -y= ¥- ¥y=- ¥~

2k 4k 6k 8k 10k 12k 14k 16k
matrix size

Figure 2: Parallel speedup of each phase for p = 16 threads, compared

top=1.
S 4.0
<
% 35
- 3.0 @—® MAGMA + GPU back.
o ’ Ye—=3%x MAGMA + parallel solves
= 2.5 —4 MAGMA (GPU Hessenberg)
% 2.0 ¥—Y parallel triangular solves
O B block back-transform
5 1.5
1)
.g 1'0 | | | | | | |
-+~

2k 4k 6k 8k 10k 12k 14k 16k
matrix size; nthread = 16

Figure 3: Overall improvement of eigenvalue solver (dgeev) compared to
LAPACK, after various improvements, using p = 16 threads.

7 Conclusion

It has been said that high performance computing is an exercise in chasing bot-
tlenecks. Previously, the Hessenberg reduction and QR iteration have rightly
been addressed as major bottlenecks in the nonsymmetric eigenvalue prob-
lem. Amdahl’s Law requires that all phases of the algorithm receive atten-
tion. Indeed, while the Hessenberg was accelerated by 3.4 times with a GPU,
the overall speedup was previously limited to 15% (Figure[B). We accelerated
the remaining eigenvector computation phase by 12 times through introduc-
ing Level 3 BLAS and parallelizing the Level 2 BLAS triangular solves. This
improved the overall eigenvalue problem by 2.5 times for CPU-only code and
3.5 times for the GPU-accelerated version. The bottleneck is now moved back
to QR iteration, which is natural as it has the most flops and its iterative nature
makes it the most complicated and difficult phase to parallelize.

Acknowledgments

The authors would like to thank the National Science Foundation, the Depart-
ment of Energy, Intel, MathWorks, and NVIDIA for supporting this research
effort.

References

[1] C. Bischof. A summary of block schemes for reducing a general matrix to
Hessenberg form. Technical report, ANL/MCS-TM-175, Argonne National
Laboratory, 1993.

[2] C. Bischof and C. Van Loan. The WY representation for products of House-
holder matrices. SIAM Journal on Scientific and Statistical Computing, 8(1):s2—
s13,1987.

[3] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. part I:
Maintaining well-focused shifts and level 3 performance. SIAM Journal on
Matrix Analysis and Applications, 23(4):929-947, 2002.

[4] K. Braman, R. Byers, and R. Mathias. The multishift QR algorithm. part
II: Aggressive early deflation. SIAM Journal on Matrix Analysis and Applica-
tions, 23(4):948-973, 2002.

[5] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins, third
edition, 1996.

[6] B. Kégstrom, D. Kressner, and M. Shao. On aggressive early deflation in
parallel variants of the QR algorithm. In Applied Parallel and Scientific Com-
puting, pages 1-10. Springer, 2012.

[7] L. Karlsson and B. Kagstrom. Parallel two-stage reduction to Hessenberg
form using dynamic scheduling on shared-memory architectures. Parallel
Computing, 37(12):771-782, 2011.

[8] MAGMA. http://icl.eecs.utk.edu/magma/.

[9] S. Tomov, R. Nath, and J. Dongarra. Accelerating the reduction to upper
Hessenberg, tridiagonal, and bidiagonal forms through hybrid GPU-based
computing. Parallel Computing, 36(12):645-654, 2010.

http://icl.eecs.utk.edu/magma/

	Introduction
	Eigenvector Computation
	Blocking back-transformation
	Multi-threading triangular solver
	GPU Acceleration
	Results
	Conclusion

