
J. Parallel Distrib. Comput. 74 (2014) 2548–2560
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Looking back at dense linear algebra software
Piotr Luszczek a, Jakub Kurzak a, Jack Dongarra a,b,c,∗

a University of Tennessee Knoxville, United States
b Oak Ridge National Laboratory, United States
c University of Manchester, United Kingdom

h i g h l i g h t s

• Growing gap of processor–memory communication affects linear algebra software.
• CPU/GPU hybridization creates challenging design combinations for legacy libraries.
• Loop restructuring methods include vectorization, chaining, blocking, and tiling.
• Scheduling techniques cover bulk-synchronous, SPMD, asynchronous, and dataflow.
• The effects of increased parallelism on numerical properties are briefly discussed.

a r t i c l e i n f o

Article history:
Received 17 July 2013
Accepted 28 October 2013
Available online 4 December 2013

Keywords:
Decompositional approach
Parallel algorithms
Dense linear algebra

a b s t r a c t

Over the years, computational physics and chemistry served as an ongoing source of problems that
demanded the ever increasing performance from hardware as well as the software that ran on top of it.
Most of these problems could be translated into solutions for systems of linear equations: the very topic
of numerical linear algebra. Seemingly then, a set of efficient linear solvers could be solving important
scientific problems for years to come. We argue that dramatic changes in hardware designs precipitated
by the shifting nature of the marketplace of computer hardware had a continuous effect on the software
for numerical linear algebra. The extraction of high percentages of peak performance continues to require
adaptation of software. If the past history of this adaptive nature of linear algebra software is any guide
then the future themewill feature changes as well – changes aimed at harnessing the incredible advances
of the evolving hardware infrastructure.

Published by Elsevier Inc.
1. Introduction

Over the decades, dense linear algebra has been an indispens-
able component of science and engineering. While the mathemat-
ical foundations and application methodology has changed little,
the hardware has undergone a tumultuous transition. The latter
precipitated a number of paradigm shifts in the way the linear
algebra software is implemented. Indeed, the ever evolving hard-
ware would quickly render old code inadequate in terms of perfor-
mance. The external interfaces to the numerical software routines
have undergone only minor adjustment which is in line with the
unchanged mathematical formulation of the problem of solving a
system of linear equations. The internal implementation of these
interfaces was changing to accommodate drastic redesign of the
underlying hardware technology. The internals have been modu-
larized to ease the implementation process. These modules over

∗ Corresponding author at: University of Tennessee Knoxville, United States.
E-mail addresses: luszczek@eecs.utk.edu (P. Luszczek), kurzak@eecs.utk.edu

(J. Kurzak), dongarra@cs.utk.edu, julie@cs.utk, dongarra@eecs.utk.edu
(J. Dongarra).

0743-7315/$ – see front matter. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.jpdc.2013.10.005
time have become the building blocks of new generations of the
numerical linear algebra libraries and made the effort more man-
ageable in the long run. Over time, the number and functionality
of these building blocks have increased but the delegation of re-
sponsibilities between various modules inside the software stack
has been retained. The most recent increase in hardware paral-
lelism further altered the established composition process of the
modules by necessitating the use of explicit schedulingmechanism
which needed to be handled manually in the composing code or
externally with a software scheduler. The rapid transformation of
computer hardware has not been ongoing and is expected to be
continuing into the future.With it, the software will evolve further
and our hope is that the design decision made in the past will al-
low for a smooth transition by reusing the tested and optimized
libraries we have become accustomed to.

2. Motivation: plasma physics and electronic structure calcula-
tion

Computational experiments of self-sustaining fusion reactions
could give us an informed perspective on how to build a device
capable of producing and controlling the high performance [3].

http://dx.doi.org/10.1016/j.jpdc.2013.10.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.10.005&domain=pdf
mailto:luszczek@eecs.utk.edu
mailto:kurzak@eecs.utk.edu
mailto:dongarra@cs.utk.edu
mailto:julie@cs.utk
mailto:dongarra@eecs.utk.edu
http://dx.doi.org/10.1016/j.jpdc.2013.10.005


P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560 2549
Modeling the heating response of plasma due to radio frequency
(RF) waves in the fast wave time scale leads to solving the gener-
alized Helmholtz equation. The time harmonic terms of effective
approximations of the electric field, magnetic field, and distribu-
tion function as a time-averaged equilibrium satisfy the equation.
The Scientific Discovery through Advanced Computing project
(SciDAC) Numerical Computation of Wave Plasma-Interactions in
Multi-dimensional Systems developed and implemented a simula-
tion code that gives insight into how electromagnetic waves can be
used for driving current flow, heating and controlling instabilities
in the plasma. The code is called AORSA [21–23,19,5] and stands for
All ORders Spectral Algorithm. The resulting computation requires
a solution of a system of linear equations exceeding half a million
unknowns [4].

In quantum chemistry, most of the scientific simulation codes
result in a numerical linear algebra problem that may readily
be solved with the ScaLAPACK library [6,8]. For example, early
versions of ParaGauss [32,27,31,24] relied on diagonalization
of the Kohn–Sham matrix and the parallelization method of
choice relied on the irreducible representations of the point
group. The submatrices diagonalize in parallel and the number
of them depended on the symmetry group. When using one
of ScaLAPACK’s parallel eigensolvers it is possible to achieve
speedup even for a Kohn–Sham matrix with only one block.
A different use of the BLAS library occurs in UTChem [36]—an
application code that collects a number of methods that allow
for accurate and efficient calculations for computational chemistry
of electronic structure problems. Both the ground and excited
states of molecular systems are covered. In supporting a number
of single-reference many-electron theories such as configuration-
interaction theory, coupled-cluster theory, and Møller–Plesset
perturbation theory, UTChem derives working equations using a
symbolic manipulation program called Tensor Contraction Engine
(TCE) [25]. It automates the process of deriving final formulas
and generation of the execution program. The contraction of
creation and annihilation operators according to Wick’s theorem,
consolidation of identical terms, and reduction of the expressions
into the form of tensor contractions controlled by permutation
operators are all done automatically by TCE. If tensor contractions
are treated as a collection of multi-dimensional summations of the
product of a few input arrays then the commutative, associative,
and distributive properties of the summation allow for a number
of execution orders, each of which having different execution
rates when mapped to a particular hardware architecture. Also,
some of the execution orders would result in calls to BLAS, which
provides a substantial increase in floating-point execution rate.
The current TCE implementation generatesmany-electron theories
that are limited to non-relativistic Hartree–Fock formulation with
referencewave functions but it is possible to extend it to relativistic
2- and 4-component reference wave functions.

3. Problem statement in matrix terms

Most dense linear systems solvers rely on a decompositional
approach [33]. The general idea is the following: given a problem
involving a matrix A, one factors or decomposes A into a product
of simpler matrices from which the problem can easily be solved.
This divides the computational problem into two parts: first
determine an appropriate decomposition, and then use it in solving
the problem at hand. Consider the problem of solving the linear
system:

Ax = b (1)

where A is a non-singular matrix of order n. The decompositional
approach begins with the observation that it is possible to factor A
in the form:

A = LU (2)
where L is a lower triangular matrix (a matrix that has only
zeros above the diagonal) with ones on the diagonal, and U is
upper triangular (with only zeros below the diagonal). During the
decomposition process, diagonal elements of A (called pivots) are
used to divide the elements below the diagonal. If matrix A has
a zero pivot, the process will break with division-by-zero error.
Also, small values of the pivots excessively amplify the numerical
errors of the process. So for numerical stability, the method needs
to interchange rows of the matrix or make sure pivots are as large
(in absolute value) as possible. This observation leads to a row
permutation matrix P and modifies the factored form to:

PA = LU . (3)

The solution can then be written in the form:

x = A−1Pb (4)

which then suggests the following algorithm for solving the system
of equations:

• Factor A according to Eq. (3)
• Solve the system Ly = Pb
• Solve the system Ux = y.

This approach to matrix computations through decomposition has
proven very useful for several reasons. First, the approach sepa-
rates the computation into two stages: the computation of a de-
composition, followed by the use of the decomposition to solve
the problem at hand. This can be important, for example, if differ-
ent right hand sides are present and need to be solved at different
points in the process. The matrix needs to be factored only once
and reused for the different right hand sides. This is particularly
important because the factorization of A, step 1, requires O(n3) op-
erations, whereas the solutions, steps 2 and 3, require only O(n2)
operations. Another aspect of the algorithm’s strength is in stor-
age: the L and U factors do not require extra storage, but can take
over the space occupied initially by A. For the discussion of coding
this algorithm, we present only the computationally intensive part
of the process, which is step 1, the factorization of the matrix.

Decompositional technique can be applied to many different
matrix types:

A1 = LLT A2 = LDLT PA3 = LU A4 = QR (5)

such as symmetric positive definite (A1), symmetric indefinite (A2),
square non-singular (A3), and general rectangular matrices (A4).
Each matrix type will require a different algorithm: Cholesky fac-
torization, Cholesky factorization with pivoting, LU factorization,
and QR factorization, respectively.

4. Introducing LU : a simple implementation

For the first version, we present a straightforward implemen-
tation of LU factorization. It consists of n-1 steps, where each step
introduces more zeros below the diagonal, as shown in Fig. 1.

Tools often used to teach Gaussian elimination includeMATLAB
and Python. They are scripting languages that make developing
matrix algorithms very simple. The notation might seem very
unusual to people familiar with other scripting languages because
it is oriented to process multi-dimensional arrays. The unique
features of the language that we use in the example code are:

• Transposition operator for vectors andmatrices: ’ (single quote)
• Matrix indexing specified as:

– Simple integer values: A(m, k)
– Ranges: A(k:n, k)
– Other matrices: A([k m], :)



2550 P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560
Fig. 1. Simple implementation of LU in MATLAB (left) and Python (right).
• Built-in matrix functions such as size or shape (returns matrix
dimensions), tril (returns the lower triangular portion of the
matrix), triu (returns the upper triangular portion of the
matrix), and eye (returns an identity matrix, which contains
only zero entries, except for the diagonal, which is all ones).

The algorithm presented in Fig. 1 is row-oriented, in the sense
that we are taking a scalar multiple of the ‘‘pivot’’ row and adding
it to the rows below to introduce zeros below the diagonal. The
beauty of the algorithm lies in its similarity to the mathematical
notation. Hence, this is the preferredway of teaching the algorithm
for the first time so that students can quickly turn formulas into
running code.

The convenience has its price, however, and it is not only related
to the overhead of scripting language interpretation. In the 1970s,
Fortran was the language for scientific computations. Fortran
stores two-dimensional arrays by column. Accessing the array in
a row-wise fashion within the matrix could involve successive
memory reference to locations separated from each other by a
large increment, depending on the size of the declared array. The
situation was further complicated by the operating system’s use of
memory pages to effectively control memory usage. With a large
matrix and a row-oriented algorithm in a Fortran environment,
an excessive number of page swaps might be generated in the
process of running the software. Cleve Moler pointed this out in
the 1970s [29].

To avoid this situation, one needed simply to interchange the
order of the innermost nested loops on i and j. This simple change
resulted in more than 30% savings in wall-clock time to solve
problems of size 200 on an IBM 360/67. Expressiveness of the code
was thus traded for efficiency by using a less obvious ordering of
loops and the use of a much more obscure (by today’s standard)
language.

5. Implementation for vector computers

In the second half of the seventies the introduction of vector
computer systems marked the beginning of modern Supercom-
puting. These systems offered a performance advantage of at least
one order of magnitude over conventional systems of that time.
Raw performance was the main if not the only selling argument.
In the first half of the eighties the integration of vector systems
in conventional computing environments becamemore important.
Only the manufacturers, which provided standard programming
environments, operating systems and key applications, were suc-
cessful in getting industrial customers and survived. Performance
was mainly increased by improved chip technologies and by pro-
ducing shared memory multi-processor systems. They were able
in one step to perform a single operation on a relatively large
number of operands stored in vector registers. Expressing matrix
algorithms as vector–vector operations was a natural fit for this
type of machines [17]. However, some of the vector designs had a
limited ability to load and store the vector registers in main mem-
ory. A technique called chaining allowed this limitation to be cir-
cumvented bymoving data between the registers before accessing
main memory. Chaining required recasting linear algebra in terms
of matrix–vector operations.

Vector architectures exploit pipeline processing by running
mathematical operations on arrays of data in a simultaneous
or pipelined fashion. Most algorithms in linear algebra can be
easily vectorized. Therefore, in the late 70s there was an effort to



P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560 2551
Fig. 2. LINPACK variant of LU factorization (this is the original FORTRAN 66 code—if LINPACK was written today it would have used Fortran 2008).
standardize vector operations for use in scientific computations.
The idea was to define some simple, frequently used operations
and implement them on various systems to achieve portability and
efficiency. This package came to be known as the Level 1 Basic
Linear Algebra Subprograms (BLAS) or Level 1 BLAS [26].

The term Level 1 denotes vector–vector operations. As we
will see, Level 2 (matrix–vector operations) [13,12], and Level
3 (matrix–matrix operations) [10,11] play important roles as
well. In the 1970s, the algorithms of dense linear algebra were
implemented in a systematic way by the LINPACK project [9].
LINPACK is a collection of Fortran subroutines that analyze and
solve linear equations and linear least-squares problems. The
package solves linear systemswhosematrices are general, banded,
symmetric indefinite, symmetric positive definite, triangular,
and square tridiagonal (only diagonal, super-diagonal and sub-
diagonal are present). In addition, the package computes the QR
(matrix Q is unitary or Hermitian and R is upper trapezoidal) and
singular value decompositions of rectangular matrices and applies
them to least-squares problems. LINPACK uses column-oriented
algorithms, which increase efficiency by preserving locality of
reference. By column orientation, we mean that the LINPACK code
always references arrays down columns, not across rows. This
is important since Fortran stores arrays in column-major order.
This means that as one proceeds down a column of an array, the
memory references proceed sequentially through memory. Thus,
if a program references an item in a particular block, the next
reference is likely to be in the same block (see Fig. 2).

The software in LINPACKwas keptmachine-independent partly
through the introduction of the Level 1 BLAS routines. Calling Level
1 BLAS did almost all of the computation. For each machine, the
set of Level 1 BLAS would be implemented in a machine-specific
manner to obtain high performance. The Level 1 BLAS subroutines
DAXPY, DSCAL, and IDAMAX are used in the routine DGEFA.

It was presumed that the BLAS operations would be imple-
mented in an efficient, machine-specific way suitable for the
computer on which the subroutines were executed. On a vector
computer, this could translate into a simple, single vector opera-
tion. This avoided leaving the optimization up to the compiler and
explicitly exposing a performance-critical operation.

In a sense, then, the beauty of the original code was regained
with the use of a new vocabulary to describe the algorithms: the
BLAS. Over time, the BLAS became a widely adopted standard and
were most likely the first to enforce two key aspects of software:
modularity and portability. Again, these are taken for granted
today, but at the time they were not. One could have the cake
of compact algorithm representation and eat it too, because the
resulting Fortran code was portable.

Most algorithms in linear algebra can be easily vectorized.
However, to gain the most out of such architectures, simple
vectorization is usually not enough. Some vector computers are
limited by having only one path between memory and the vector
registers. This creates a bottleneck if a program loads a vector
from memory, performs some arithmetic operations, and then
stores the results. In order to achieve top performance, the scope
of the vectorization must be expanded to facilitate chaining
operations together and to minimize data movement, in addition
to using vector operations. Recasting the algorithms in terms of
matrix–vector operations makes it easy for a vectorizing compiler
to achieve these goals.

Thus, as computer architectures became more complex in
the design of their memory hierarchies, it became necessary to
increase the scope of the BLAS routines from Level 1 to Level 2 and
Level 3.

6. Implementation on RISC processors

RISC computers were introduced in the late 1980s and early
1990s. While their clock rates might have been comparable to
those of the vector machines, the computing speed lagged behind
due to their lack of vector registers. Another deficiency was their
creation of a deep memory hierarchy with multiple levels of cache
memory to alleviate the scarcity of bandwidth that was, in turn,
causedmostly by a limited number ofmemory banks. The eventual
success of this architecture is commonly attributed to the right
price point and astonishing improvements in performance over
time as predicted by Moore’s Law [30]. With RISC computers, the
linear algebra algorithms had to be redone yet again. This time, the
formulations had to expose as many matrix–matrix operations as
possible, which guaranteed good cache reuse.

As mentioned before, the introduction in the late 1970s and
early 1980s of vector machines brought about the development
of another variant of algorithms for dense linear algebra. This
variant was centered on the multiplication of a matrix by a vector.
These subroutines were meant to give improved performance
over the dense linear algebra subroutines in LINPACK, which
were based on Level 1 BLAS. In the late 1980s and early 1990s,



2552 P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560
Fig. 3. LAPACK’s LU factorization routine DGETRF (FORTRAN 77 coding).
with the introduction of RISC-type microprocessors (the ‘‘killer
micros’’) and other machines with cache-type memories, we saw
the development of LAPACK [1] Level 3 algorithms for dense linear
algebra. A Level 3 code is typified by the main Level 3 BLAS, which,
in this case, is matrix multiplication [2].

The original goal of the LAPACK project was to make the widely
used LINPACK library run efficiently on vector and shared-memory
parallel processors. On these machines, LINPACK is inefficient
because its memory access patterns disregard the multilayered
memory hierarchies of the machines, thereby spending too much
timemoving data instead of doing useful floating-point operations.
LAPACK addresses this problem by reorganizing the algorithms to
use block matrix operations, such as matrix multiplication, in the
innermost loops (see the paper by E. Anderson and J. Dongarra
under ‘‘Further Reading’’). These block operations can be optimized
for each architecture to account for its memory hierarchy, and so
provide a transportable way to achieve high efficiency on diverse
modern machines.

Here we use the term ‘‘transportable’’ instead of ‘‘portable’’
because, for fastest possible performance, LAPACK requires that
highly optimized blockmatrix operations be implemented already
on each machine. In other words, the correctness of the code is
portable, but high performance is not—if we limit ourselves to a
single Fortran source code.

LAPACK can be regarded as a successor to LINPACK in terms
of functionality, although it does not always use the same
function-calling sequences. As such a successor, LAPACK was a
win for the scientific community because it could keep LINPACK’s
functionality while getting improved use out of new hardware.

Most of the computational work in the algorithm from Fig. 3 is
contained in three routines:

• DGEMM—Matrix–matrix multiplication.
• DTRSM—Triangular solve with multiple right hand sides.
• DGETF2—Unblocked LU factorization for operations within a

block column.

One of the key parameters in the algorithm is the block size,
called NB here. If NB is too small or too large, poor performance
can result-hence the importance of the ILAENV function, whose
standard implementation was meant to be replaced by a vendor
implementation encapsulating machine-specific parameters upon
installation of the LAPACK library. At any given point of the
algorithm, NB columns or rows are exposed to a well-optimized
Level-3 BLAS. If NB is 1, the algorithm is equivalent in performance
and memory access patterns to LINPACK’s version.

Matrix–matrix operations offer the proper level of modularity
for performance and transportability across a wide range of com-
puter architectures, including parallel systems with memory hi-
erarchy. This enhanced performance is primarily due to a greater
opportunity for reusing data. There are numerous ways to accom-
plish this reuse of data to reduce memory traffic and to increase
the ratio of floating-point operations to data movement through
thememory hierarchy. This improvement can bring a three- to ten-
fold improvement in performance on modern computer architec-
tures.

The jury is still out concerning the productivity of writing and
reading the LAPACK code: How hard is it to generate the code
from its mathematical description? The use of vector notation
in LINPACK is arguably more natural than LAPACK’s matrix
formulation. The mathematical formulas that describe algorithms
are usually more complex if only matrices are used, as opposed to
mixed vector–matrix notation.

7. Implementation on distributed memory machines

Traditional design focus forMassively Parallel Processing (MPP)
systems was the very high end of performance. In the early
nineties, the SymmetricMulti-Processing (SMP) systems of various
workstation manufacturers as well as the IBM SP series, which
targeted the lower and medium market segments, gained great
popularity. Their price/performance ratios were better due to the
missing overhead in the design for support of the very large
configurations and due to cost advantages of the larger production
numbers. Due to the vertical integration of performance it was no
longer economically feasible to produce and focus on the highest
end of computing power alone. The design focus for new systems
shifted to the market of medium performance systems.



P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560 2553
The acceptance of MPP systems not only for engineering ap-
plications but also for new commercial applications especially
for database applications emphasized different criteria for market
success such as the stability of the system, continuity of the
manufacturer and price/performance. Success in commercial en-
vironments became a new important requirement for a successful
supercomputer business towards the end of the nineties. Due to
these factors and the consolidation in the number of vendors in the
market, hierarchical systems built with components designed for
the broader commercial market did replace homogeneous systems
at the very high end of performance. The marketplace adopted
clusters of SMPs readily, while academic research focused on clus-
ters of workstations and PCs.

At the end of the nineties clusters were common in academia
but mostly as research objects and not primarily as general pur-
pose computing platforms for applications. Most of these clus-
ters were of comparable small scale and as a result the November
1999 edition of the TOP500 [28] listed only seven cluster systems.
This changed dramatically as industrial and commercial customers
started deploying clusters as soon as applications with less strin-
gent communication requirements permitted them to take advan-
tage of the better price/performance ratio—roughly an order of
magnitude of commodity based clusters. At the same time, all ma-
jor vendors in the HPC market started selling this type of cluster
to their customer base. In November 2004, clusters were the dom-
inant architectures in the TOP500 with 294 systems at all levels of
performance. Companies such as IBM andHewlett-Packard sell the
majority of these clusters and a large number of them are installed
at commercial and industrial customers.

In the early 2000s, clusters buildwith off-the-shelf components
gained more and more attention not only as academic research
object but also computing platforms with end-users of HPC com-
puting systems. By 2004, these groups of clusters represent thema-
jority of new systems on the TOP500 in a broad range of application
areas. One major consequence of this trend was the rapid rise in
the utilization of Intel processors in HPC systems. While virtually
absent in the high end at the beginning of the decade, Intel proces-
sors are now used in the majority of HPC systems. Clusters in the
ninetiesweremostly self-made systemdesigned and built by small
groups of dedicated scientist or application experts. This changed
rapidly as soon as the market for clusters based on PC technology
matured. Nowadays, the large majority of TOP500-class clusters
are manufactured and integrated by either a few traditional large
HPC manufacturers such as IBM or Hewlett-Packard or numerous
small, specialized integrators of such systems.

In addition, there still is generally a large difference in the
usage of clusters and their more integrated counterparts: clusters
are mostly used for capacity computing while the integrated
machines primarily are used for capability computing. The largest
supercomputers are used for capability or turnaround computing
where the maximum processing power is applied to a single
problem. The goal is to solve a larger problem, or to solve a single
problem in a shorter period of time. Capability computing enables
the solution of problems that cannot otherwise be solved in a
reasonable period of time (for example, by moving from a 2D to
a 3D simulation, using finer grids, or using more realistic models).
Capability computing also enables the solution of problems with
real-time constraints (e.g., predicting weather). The main figure
of merit is time to solution. Smaller or cheaper systems are
used for capacity computing, where smaller problems are solved.
Capacity computing can be used to enable parametric studies or
to explore design alternatives; it is often needed to prepare for
more expensive runs on capability systems. Capacity systems will
often run several jobs simultaneously. The main figure of merit is
sustained performance per unit cost. Traditionally, vendors of large
supercomputer systems have learned to provide for the capacity
mode of operation as the precious resources of their systems were
required to be used as effectively as possible. By contrast, Beowulf
clusters aremostly operated through the Linux operating system (a
small minority using Microsoft Windows) where these operating
systems either lack the tools or these tools are relatively immature
to use a cluster effectively for capability computing. However, as
clusters become on average both larger and more stable in terms
of continuous operation, there is a trend to use them also as
computational capability servers.

There are a number of choices of communication networks
available in clusters. Of course 100 Mb/s Ethernet or Gigabit Eth-
ernet is always possible, which is attractive for economic reasons,
but it has the drawback of a high latency (∼100 µs)—the time it
takes to send the shortest message. Alternatively, there are, for in-
stance, networks that operate from user space, likeMyrinet, Infini-
band. The network speeds as shown by these networks are more
or less on par with some integrated parallel systems. So, possibly
apart from the speed of the processors and of the software that is
provided by the vendors of traditional integrated supercomputers,
the distinction between clusters and the class of custom capability
machines becomes rather small andwill, without a doubt, decrease
further in the coming years, and the advances of the Ethernet stan-
dard into the 100 Gb/s territory with latencies well below 10 µs
make it even more so.

LAPACK was designed to be highly efficient on the vector
processors, high-performance ‘‘superscalar’’ workstations, and
shared-memory multi-processors. LAPACK can also be used
satisfactorily on all types of scalar machines (PCs, workstations,
and mainframes). However, LAPACK in its present form is less
likely to give good performance on other types of parallel
architectures—for example, massively parallel Single Instruction
Multiple Data (SIMD) machines, or Multiple Instruction Multiple
Data (MIMD) distributed-memorymachines. The ScaLAPACK effort
was intended to adapt LAPACK to these new architectures.

Like LAPACK, the ScaLAPACK routines are based on block-
partitioned algorithms in order to minimize the frequency of data
movement between different levels of the memory hierarchy.
The fundamental building blocks of the ScaLAPACK library are
distributed-memory versions of the Level-2 and Level-3 BLAS [7],
and a set of Basic Linear Algebra Communication Subprograms
(BLACS) [18] for communication tasks that arise frequently in
parallel linear algebra computations. In the ScaLAPACK routines, all
interprocessor communication occurs within the distributed BLAS
and the BLACS, so the source code of the top software layer of
ScaLAPACK looks very similar to that of LAPACK. The similaritymay
be observed by comparing Figs. 3 and 4.

In order to simplify the design of ScaLAPACK, and because the
BLAS have proven to be very useful tools outside LAPACK, we chose
to build a Parallel BLAS, or PBLAS [7], whose interface is as similar
to the BLAS as possible. This decision has permitted the ScaLAPACK
code to be quite similar, and sometimes nearly identical, to the
analogous LAPACK code.

It was our aim that the PBLAS would provide a distributed
memory standard, just as the BLAS provided a shared memory
standard. This would simplify and encourage the development
of high performance and portable parallel numerical software,
as well as providing manufacturers with just a small set of
routines to be optimized. The acceptance of the PBLAS requires
reasonable compromises between competing goals of functionality
and simplicity.

The PBLASoperate onmatrices distributed in a two-dimensional
block cyclic layout. Because such a data layout requires many
parameters to fully describe the distributed matrix, we have cho-
sen a more object-oriented approach and encapsulated these pa-
rameters in an integer array called an array descriptor. An array



2554 P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560
Fig. 4. ScaLAPACK variant of LU factorization (FORTRAN 77 coding makes the code overly verbose due to lack of object oriented capabilities that could have hidden much
of the complexity).
descriptor includes:

• The descriptor type.
• The BLACS context (a virtual space for messages that is created

to avoid collisions between logically distinct messages).
• The number of rows in the distributed matrix.
• The number of columns in the distributed matrix.
• The row block size.
• The column block size.
• The process row over which the first row of the matrix is

distributed.
• The process column over which the first column of the matrix

is distributed.
• The leading dimension of the local array storing the local
blocks.

By using this descriptor, a call to a PBLAS routine is very similar
to a call to the corresponding BLAS routine:

CALL DGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A(IA, JA),
LDA, B(IB, JB), LDB, BETA, C(IC, JC), LDC)

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA, A, IA, JA,
DESC_A, B, JB, DESC_B, BETA, C, IC, JC, DESC_C)

DGEMM computes C = BETA × C + ALPHA × op(A) × op(B),
where op(A) is either A or its transpose depending on TRANSA,
op(B) is similar, op(A) is M-by-K, and op(B) is K-by-N. PDGEMM is
the same, with the exception of the way submatrices are specified.



P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560 2555
To pass the submatrix starting atA(IA, JA) toDGEMM, for example,
the actual argument corresponding to the formal argument A is
simplyA(IA, JA). PDGEMM, on the other hand, needs to understand
the global storage scheme of A to extract the correct submatrix, so
IA and JA must be passed in separately.

DESC_A is the array descriptor forA. The parameters describing
thematrix operandsB andC are analogous to those describingA. In
a truly object-oriented environment, matrices and DESC_A would
be synonymous. However, this would require language support
and detract from portability.

Usingmessage passing and scalable algorithms from the ScaLA-
PACK library makes it possible to factor matrices of arbitrarily in-
creasing size, givenmachines withmore processors. By design, the
library computes more than it communicates, so for the most part,
data stay locally for processing and travels only occasionally across
the interconnect network.

But the number and types of messages exchanged between
processors can sometimes be hard to manage. The context
associated with every distributedmatrix lets implementations use
separate ‘‘universes’’ for message passing. The use of separate
communication contexts by distinct libraries (or distinct library
invocations) such as the PBLAS insulates communication internal
to the library from external communication. When more than one
descriptor array is present in the argument list of a routine in the
PBLAS, the individual BLACS context entriesmust be equal. In other
words, the PBLAS do not perform ‘‘inter-context’’ operations.

In the performance sense, ScaLAPACK did to LAPACK what
LAPACK did to LINPACK: it broadened the range of hardwarewhere
LU factorization (and other codes) could run efficiently. In terms of
code elegance, the ScaLAPACK’s changes were much more drastic:
the same mathematical operation now required large amounts of
tedious work. Both the users and the library writers were now
forced into explicitly controlling data storage intricacies, because
data locality became paramount for performance. The victim was
the readability of the code, despite efforts to modularize the
code according to the best software engineering practices of the
day.

8. Shared memory implementation

The advent ofmulti-core processors brought about a fundamen-
tal shift in the way software is produced even though compar-
isons have been brought upwith the established coding techniques
fromSMPs. Rather elaborating the differenceswewill focus onhow
most of software had to be adjusted for SMPs with a special focus
on dense linear algebra. The good news is that LAPACK’s LU factor-
ization runs on a multi-core system and can even deliver a modest
increase of performance if multi-threaded BLAS are used. In tech-
nical terms, this is the Block Synchronous Processing (BSP) model
[34,35] model of parallel computation: each call to BLAS (from a
single main thread) forks a suitable number of threads (parallel
units of executions that share memory and are often scheduled
by the operating system), which perform the work on each core
and then join the main thread of computation. This is also called a
fork–joinmodel and it implies a synchronization point at each join
operation.

The bad news is that LAPACK’s fork–join algorithm gravely
impairs scalability even on small multi-core computers that do not
have the memory systems available in SMP systems. The inherent
scalability flaw is the heavy synchronization in the fork–join
model: only a single thread is allowed to perform the significant
computation that occupies the critical section of the code, leaving
other threads idle. That results in lock-step execution: all threads
have to wait for the slowest one among them. It also prevents
hiding of inherently sequential portions of the code behind parallel
ones. In other words, the threads are forced to perform the same
operation on different data. If there is not enough data for some
threads, they will have to stay idle and wait for the rest of the
threads that perform useful work on their data. Clearly, another
version of the LU algorithm is needed such that would allow
threads to stay busy all the time by possibly making them perform
different operations during some portion of the execution.

The multi-threaded version of the algorithm recognizes the
existence of a so-called critical path in the algorithm: a portion
of the code whose execution depends on previous calculations
and can block the progress of the algorithm. The LAPACK LU does
not treat this critical portion of the code in any special way: the
DGETF2 subroutine is called by a single thread and does not allow
much parallelization even at the BLAS level. While one thread calls
this routine, the other ones wait idly, and since the performance
of DGETF2 is bound by memory bandwidth (rather than processor
speed), this bottleneck will exacerbate scalability problems as
systems with more cores are introduced.

The multi-threaded version of the algorithm attacks this
problem head-on by introducing the notion of look-ahead:
calculating things ahead of time to avoid potential stagnation in
the progress of the computations. This of course requires additional
synchronization and bookkeeping not present in the previous
versions—a trade-off between code complexity and performance.
Another aspect of the multi-threaded code is the use of recursion
in the panel factorization. It turns out that the use of recursion can
give even greater performance benefits for tall panel matrices than
it does for the square ones [20].

The algorithm is the same for each thread (the SIMD paradigm),
and the matrix data is partitioned among threads in a cyclic
manner using panels with NB columns in each panel (except
maybe the last). The NB parameter corresponds to the blocking
parameter NB of LAPACK. The difference is the logical assignment
of panels (blocks of columns) to threads. Physically, all panels are
equally accessible, because the code operates in a shared memory
regime. The benefits of blocking in a thread are the same as
they were in LAPACK: better cache reuse and less stress on the
memory bus. Assigning a portion of the matrix to a thread seems
an artificial requirement at first, but it simplifies the code and
the bookkeeping data structures; most importantly, it provides
better memory affinity. It turns out that multi-core chips are not
symmetric in terms of memory access bandwidth, so minimizing
the number of reassignments of memory pages to cores directly
benefits performance.

The standard components of LU factorization are represented
by the pfactor() and pupdate() functions in Fig. 5. As one might
expect, the former factors a panel, whereas the latter updates a
panel using one of the previously factored panels.

The main loop makes each thread iterate over each panel in
turn. If necessary, the panel is factored by the owner thread while
other threads wait (if they happen to need this panel for their
updates).

The look-ahead logic is inside the nested loop (prefaced by the
comment for each panel to be updated) that replaces DGEMM or
PDGEMM from previous algorithms. Before each thread updates
one of its panels, it checks whether it is already feasible to factor
its first unfactored panel. This minimizes the number of times the
threads have to wait because each thread constantly attempts to
eliminate the potential bottleneck.

As was the case for ScaLAPACK, the multi-threaded version
detracts from the inherent elegance of LAPACK’s version. Also in
the same spirit, performance is the main culprit: LAPACK’s code
will not run efficiently onmachines with ever-increasing numbers
of cores. Explicit control of execution threads at the LAPACK
level rather than the BLAS level is critical: parallelism cannot be
encapsulated in a library call. The only good news is that the code
is not as complicated as ScaLAPACK’s, and efficient BLAS can still
be put to good use.



2556 P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560
Fig. 5. Factorization for multi-threaded execution (C code).
9. Multi-core implementations

The multi-core processors do not resemble the SMP systems
of the past, nor do they resemble distributed memory systems.
In comparison to SMPs, multi-cores are much more starved for
memory due to the fast increase in the number of cores, which
is not followed by a proportional increase in bandwidth. Owing
to that, data access locality is of much higher importance in
case of multi-cores. At the same time, they do follow to a large
extent the memory model where the main memory serves as a
central (not distributed) repository for data. For those reasons, the
best performing algorithms or multi-cores happen to be parallel
versions of what used to be known as ‘‘out of core’’ algorithms
(algorithms developed in the past for situations where data does
not fit in themainmemory and has to be explicitlymoved between
the memory and the disc).

In dense linear algebra, the Tile Algorithms are direct descen-
dants of ‘‘out of core’’ algorithms. The Tile Algorithms are based on
the idea of processing thematrix by square submatrices, referred to
as tiles, of relatively small size. Thismakes the operation efficient in
terms of cache and TLB use. The Cholesky factorization lends itself
readily to tile formulation, however the same is not true for the LU
and QR factorizations. The tile algorithms for them are constructed
by factorizing the diagonal tile first and then incrementally updat-
ing the factorization using the entries below the diagonal tile. This
is a very well known concept that dates back to the work of Gauss.
The idea was initially used to build ‘‘out-of-core’’ algorithms and
recently rediscovered as a very efficient method for implementing
linear algebra operations on multi-core processors. It is crucial to
note that the technique of processing the matrix by square tiles
yields satisfactory performance only when accompanied by data
organization based on square tiles. The layout is referred to as a
Square Block layout or, simply, Tile Layout.
For parallel execution those algorithms can be scheduled either
statically or dynamically. For static execution (Fig. 6) the work
for each core is predetermined and each core follows the cycle:
check task dependencies (and wait if necessary), perform a task,
update dependencies, transition to the next task (using a static
transition function). For regular algorithms, such as dense matrix
factorizations, static scheduling is straightforward and very robust.

An alternative approach, which emphasizes the ease of
development, is based on writing a serial algorithm and the use
of a dynamic scheduler, which traverses the code and queues tasks
for parallel execution, while automatically keeping track of data
dependencies (Fig. 7). This approach relies on the availability of
such a scheduler, which is not trivial to develop, but offersmultiple
advantages, such as pipelining/streaming of different stages of the
computation (e.g. factorization and solve).

Regardless of whether static or dynamic scheduling is used, a
proper treatment of partial pivoting requires nested parallelism
that brings its own set of complications [14–16].

10. Error analysis and operation count

The key aspect of all of the implementations presented in this
section is their numerical properties.

It is acceptable to forgo elegance in order to gain performance.
But numerical stability is of vital importance and cannot be sacri-
ficed, because it is an inherent part of the algorithm’s correctness.
While these are serious considerations, there is some consolation
to follow. It may be surprising to some readers that all of the al-
gorithms presented are the same, even though it is virtually im-
possible to make each excerpt of code produce exactly the same
output for exactly the same inputs. The fundamental reason for
this are the vagaries of the floating-point arithmetic in finite pre-
cision as it is implemented in virtually all hardware. In essence,



P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560 2557
Fig. 6. Factorization for multi-core execution using the SPMD programming model with static scheduling of work (C code).
only a slight change in the order in which the floating-point oper-
ations are performed causes a change in the result: the change is
on the order of the, so called, machine precision. Machine preci-
sion comes from the number of decimal digits represented in the
floating-point format: for double precision there are 15 digits and
so themachine precision is about 10−15. LINPACK and LAPACK per-
form the operations in different order because the latter merges
the updates into a single call to BLAS. And even though ScaLAPACK
merges the updates in a similar fashion as LAPACK does, the for-
mer performs its operations only on the local portion of the ma-
trix whereas the latter treats the matrix as a single piece quantity.
In other words, when LAPACK makes a single update operation,
ScaLAPACK could make as many as there are processors involved
in the computation.

When it comes to repeatability of results, the vagaries of
floating-point representation may be captured in a rigorous way
by error bounds. One way of expressing the numerical robustness
of the previous algorithms is with the following formula:

∥Ax̂ − b∥
∥A∥

≤ ∥x − x̂∥ ≤ ∥A−1
∥ ∥Ax̂ − b∥ (6)

where the error vector x−x̂ is the difference between the computed
solution x̂ and the correct solution x, and Ax̂ − b is a so-called
‘‘residual’’. The previous formula basically says that the size of the
error (the parallel bars surrounding a value indicate a norm—a
measure of absolute size) is as small as warranted by the quality
of the matrix A. Therefore, if the matrix is close to being singular in
numerical sense (some entries are small with respect to machine
precision and the condition number of the matrix and so they
might be considered to be zero) the algorithms will not give an
accurate answer. But otherwise, a relatively good quality of the
result may be expected.



2558 P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560
Fig. 7. Factorization for multi-core execution using dynamic task scheduling
(C code).

Another feature that is common to all the versions presented
is the operation count: they all perform O(2/3n3) floating-point
multiplications and/or additions. The order of these operations
is what differentiates them. There exist algorithms that increase
the amount of floating-point work to save on memory traffic
or network transfers (especially for distributed-memory parallel
algorithms.) But because the algorithms shown in this chapter
have the same operation count, it is valid to compare them for
performance. The computational rate (number of floating-point
operations per second) may be used instead of the time taken
to solve the problem, provided that the matrix size is the same.
But comparing computational rates is sometimes better because
it allows a comparison of algorithms when the matrix sizes differ.
For example, a sequential algorithm on a single processor can be
directly compared with a parallel one working on a large cluster
on a much bigger matrix.

11. Concluding remarks and future directions

In this chapter we have looked at the evolution of the design of
a simple but important algorithm in computational science. The
changes over the past 30 years have been necessary to follow
the lead of the advances in computer architectures. In some cases
these changes have been simple, such as interchanging loops. In
other cases, they have been as complex as the introduction of
recursion and look-ahead computations. In each case, however, a
code’s ability to efficiently utilize the memory hierarchy is the key
to high performance on a single processor as well as shared and
distributed memory systems.

The essence of the problem is the dramatic increase in com-
plexity that software developers have had to confront, and still do.
Dual-core machines are already common, and the number of cores
is expected to roughly double with each processor generation. But
contrary to the assumptions of the old model, programmers will
not be able to consider these cores independently (i.e., multi-core
is not ‘‘the new SMP’’) because they share on-chip resources in
ways that separate processors do not. This situation is made even
more complicated by the other non-standard components that fu-
ture architectures are expected to deploy, including mixing differ-
ent types of cores, hardware accelerators, and memory systems.

When processor clock speeds flatlined in 2004, after more than
fifteen years of exponential increases, the era of routine and near
automatic performance improvements that the HPC application
community had previously enjoyed came to an abrupt end. The air
of crisis that followed in the wake of this new regime continues
to hang over computational science. To develop software that will
perform well on petascale systems with thousands of nodes and
millions of cores, the list of major challenges that must now be
confronted is formidable:

• Dramatic escalation in the costs of intrasystem communication
between processors and/or levels of memory hierarchy;

• Increased hybridization of processor architectures (mixing
CPUs, GPUs, etc.), in varying and unexpected design combina-
tions;

• High levels of parallelism andmore complex constraints means
that cooperating processes must be dynamically and unpre-
dictably scheduled for asynchronous execution;

• Software will not run at scale without much better resilience to
faults and far more robustness; and

• New levels of self-adaptivitywill be required to enable software
to modulate process speed in order to satisfy limited energy
budgets.

After the industry-wide move from single to multi-core
systems, dominant mainstream computer architecture is now
undergoing a second major evolution: from homogeneous to
heterogeneous platforms. With increased frequency, the new
systems are called Hybrid Multi-cores (HMCs). Today’s breed of
HMCs simply feature a multi-core processor and a high end GPU.
In the future, the multi-core vendors are planning integration of



P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560 2559
GPU-like technology directly into the multi-core chip. From the
programmer’s perspective, this might alleviate the problem of
dealing with two separate memory address spaces: one attached
to the multi-core and one attached to the GPU. If such integration
is realized and the performance levels are satisfactory, then such a
hybrid computing device could be the prevalent hardware design.
Faced with a choice of either having an external GPU or an
integrated GPU-like device, the programmerwould have to choose
the more productive solution give the problem at hand.

In a nutshell, the high performance computing (HPC) commu-
nity will soon be faced with machines supporting heterogeneities
in all hardware aspects – processing elements of multiple types
with different ISAs, multiple memory components with variable
data transport interfaces, general and specific accelerators for
various purpose, power control system infrastructure integrated
throughout – and all in concurrent, simultaneous action and inter-
action.

Finally, the proliferation of widely divergent design ideas
shows that the question of how to best combine all these new
resources and components is largely unsettled. When combined,
these changes produce a picture of a future in which programmers
will have to overcome software design problems vastly more
complex and challenging than those in the past in order to
take advantage of the much higher degrees of concurrency and
greater computing power that new architectures will offer. The
current trends in software do not address such complexities.
The message passing paradigm epitomized by the MPI (Message
Passing Interface) standard quickly leads to management issues if
every processing core corresponds to a single MPI process. Only
a hierarchical approach could possibly address today’s machine
that features man hundreds of thousands of computational cores.
One such approach is a mix of MPI and OpenMP. The former
connects the multi-core nodes while the latter commands the
computation inside each node. Such amix could potentially reduce
the programming complexity by one or two orders of magnitude
in the number cores but the issue of the attached accelerator
(either a GPU or GPU-like device) is still not addressed within a
single programming framework. Existing PGAS (Partitioned Global
Address Space) languages such as Co-Array Fortran, Titanium,
and UPC have never been designed to address the hardware
hybridization phenomenon. Even the new languages of the breed
such as Chapel, Fortress, and X10 could potentially face the
challenge of redesign to fit in the changing hardware landscape.
It is still too early to tell what would come out of the current
initiatives to retrofit themainstay languages of HPC, C and Fortran,
with new facilities for handling hybrid computers. At this point in
time it is hard to see which approach will prove to have a lasting
power.

So the bad news is that none of the presented codes will work
efficiently someday. The good news is thatwe have learned various
ways tomold the original simple rendition of the algorithm tomeet
the ever increasing challenges of hardware designs.

References

[1] E. Anderson, Z. Bai, C. Bischof, Suzan L. Blackford, James W. Demmel, Jack J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, Danny C.
Sorensen, LAPACK User’s Guide, third ed., Society for Industrial and Applied
Mathematics, Philadelphia, 1999.

[2] E. Anderson, J. Dongarra, LAPACKworking note 19: evaluating block algorithm
variants in LAPACK. Technical Report UT-CS-90-103, University of Tennessee
Computer Science, April 1990.

[3] R. Aymar, V. Chuyanov,M. Huguet, Y. Shimomura, Overview of ITER-FEAT—the
future international burning plasma experiment, Nucl. Fusion 41 (10) (2001).

[4] R.F. Barrett, T.H.F. Chan, E.F. D’Azevedo, E.F. Jaeger, K. Wong, R.Y. Wong,
Complex version of high performance computing LINPACK benchmark (HPL),
Concurr. Comput.: Pract. Exper. 22 (5) (2010) 573–587.
[5] Th. Belling, Th. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer,
V.A. Nasluzov, U. Birkenheuer, N. Rösch, ParaGauss: a density functional
approach to quantum chemistry on parallel computers, in: F. Keil, M.Mackens,
H. Voß, J.Werther (Hrsg.) (Eds.), Scientific Computing in Chemical Engineering
II, Vol. 1, Springer, Heidelberg, 1999, pp. 66–73.

[6] L. Suzan Blackford, J. Choi, Andy Cleary, Eduardo F. D’Azevedo, James W.
Demmel, Inderjit S. Dhillon, Jack J. Dongarra, Sven Hammarling, Greg Henry,
Antoine Petitet, Ken Stanley, David W. Walker, R. Clint Whaley, ScaLAPACK
Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia,
1997.

[7] J. Choi, A proposal for a set of parallel basic linear algebra subprograms,
Technical Report UT-CS-95-292, University of Tennessee Knoxville. LAPACK
Working Note 100, 1995.

[8] J. Choi, Jack J. Dongarra, Susan Ostrouchov, Antoine Petitet, David W. Walker,
R. ClintWhaley, The design and implementation of the ScaLAPACK LU , QR, and
Cholesky factorization routines, Sci. Program. 5 (1996) 173–184.

[9] J.J. Dongarra, J.R. Bunch, C.B. Moler, G.W. Stewart, LINPACKUser’s Guide, SIAM,
Philadelphia, ISBN: 0-89871-172-X, 1979.

[10] Jack J. Dongarra, J. Du Croz, Iain S. Duff, S. Hammarling, Algorithm 679: a set of
level 3 basic linear algebra subprograms, ACM Trans. Math. Softw. 16 (1990)
1–17.

[11] Jack J. Dongarra, J. Du Croz, Iain S. Duff, S. Hammarling, A set of level 3 basic
linear algebra subprograms, ACM Trans. Math. Softw. 16 (1990) 18–28.

[12] Jack J. Dongarra, J. Du Croz, S. Hammarling, R. Hanson, Algorithm 656: an
extended set of FORTRAN basic linear algebra subprograms, ACM Trans. Math.
Softw. 14 (1988) 18–32.

[13] Jack J. Dongarra, J. Du Croz, S. Hammarling, R. Hanson, An extended set
of FORTRAN basic linear algebra subprograms, ACM Trans. Math. Softw. 14
(1988) 1–17.

[14] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, Piotr Luszczek, High perfor-
mance matrix inversion based on LU factorization for multicore architectures,
in: Proceedings of the 2011 ACM International Workshop on Many Task Com-
puting on Grids and Supercomputers, MTAGS’11, Association for Computing
Machinery, Seattle, Washington, USA, 2011, pp. 33–42.

[15] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, Piotr Luszczek, Exploiting fine-
grain parallelism in recursive LU factorization, Adv. Parallel Comput. 22 (2012)
429–436. Special Issue, (print); ISBN 978-1-61499-041-3 (online).

[16] Jack Dongarra, Mathieu Faverge, Hatem Ltaief, Piotr Luszczek, Achieving
numerical accuracy and high performance using recursive tile LU factorization
with partial pivoting, Concurr. Comput.: Pract. Exper. (2013), in press.

[17] Jack J. Dongarra, Fred G. Gustavson, A. Karp, Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine, SIAM Rev. 26 (1)
(1984) 91–112.

[18] Jack Dongarra, R. Clint Whaley, A user’s guide to the BLACS v1.1, Technical
Report UT-CS-95-281, University of Tennessee Knoxville,March 1995. LAPACK
working note 94 updated May 5, 1997 (VERSION 1.1).

[19] M. Fuchs, A.M. Shor, N. Rösch, The hydration of the uranyl dication.
Incorporation of solvent effects in parallel density functional calculationswith
the program PARAGAUSS, Int. J. Quantum Chem. 86 (2002) 487–501.

[20] Fred G. Gustavson, Recursion leads to automatic variable blocking for dense
linear-algebra algorithms, IBM J. Res. Dev. 41 (6) (1997) 737–755.

[21] E.F. Jaeger, L.A. Berry, E. D’Azevedo, D.B. Batchelor, M.D. Carter, K.F. White,
H. Weitzner, Advances in full-wave modeling of radio frequency heated
multidimensional plasmas, Phys. Plasmas 9 (5) (2002) 1873–1881.

[22] E.F. Jaeger, L.A. Berry, J.R. Myra, D.B. Batchelor, E. D’Azevedo, P.T. Bonoli,
C.K. Philips, D.N. Smithe, D.A. D’Ippolito, M.D. Carter, R.J. Dumont, J.C. Wright,
R.W. Harvey, Sheared poloidal flow driven by mode conversion in Tokamak
plasmas, Phys. Rev. Lett. 90 (19) (2003).

[23] E.F. Jaeger, R.W. Harvey, L.A. Berry, J.R. Myra, R.J. Dumont, C.K. Philips,
D.N. Smithe, R.F. Barrett, D.B. Batchelor, P.T. Bonoli, M.D. Carter, E.F. D’azevedo,
D.A. D’ippolito, R.D. Moore, J.C. Wright, Global-wave solutions with self-
consistent velocity distributions in ion cyclotron heated plasmas, Nucl. Fusion
46 (7) (2006) S397–S408.

[24] T. Kerdcharoen, U. Birkenheuer, S. Krüger, A. Woiterski, N. Rösch, Implemen-
tation of a quantummechanics/molecular mechanics approach in the parallel
density functional program PARAGAUSS and applications tomodel copper thi-
olate clusters, Theor. Chem. Acc. 109 (2003) 285–297.

[25] Chi-Chung Lama, Thomas Rauber, Gerald Baumgartner, Daniel Cociorva,
P. Sadayappan,Memory-optimal evaluation of expression trees involving large
objects, Comput. Lang. Syst. Struct. 37 (2) (2011) 63–75.

[26] C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, Basic linear algebra
subprograms for Fortran usage, ACM Trans. Math. Software 5 (1979) 308–323.

[27] A.V. Matveev, V.A. Nasluzov, N. Rösch, Linear response formalism for the
Douglas–Kross–Hess approach to the Dirac–Kohn–Sham problem: first-
and second-order energy derivatives, Int. J. Quantum Chem. 107 (2007)
3236–3249. http://dx.doi.org/10.1002/qua.21501.

[28] Hans W. Meuer, Erich Strohmaier, Jack J. Dongarra, Horst D. Simon, TOP500
supercomputer sites, 38th edition, November 2011. (The report can be
downloaded from http://www.netlib.org/benchmark/top500.html).

[29] Cleve B. Moler, Matrix computations with Fortran and paging, Commun. ACM
15 (4) (1972) 268–270.

[30] Gordon E. Moore, Cramming more components onto integrated circuits,
Electronics 38 (8) (1965).

http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref1
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref3
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref4
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref5
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref6
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref7
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref8
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref9
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref10
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref11
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref12
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref13
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref14
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref15
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref16
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref17
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref19
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref20
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref21
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref22
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref23
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref24
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref25
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref26
http://dx.doi.org/doi:10.1002/qua.21501
http://www.netlib.org/benchmark/top500.html
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref29
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref30


2560 P. Luszczek et al. / J. Parallel Distrib. Comput. 74 (2014) 2548–2560
[31] N. Rösch, A.V. Matveev, V.A. Nasluzov, K.M. Neyman, L.V. Moskaleva, S. Krüger,
Quantum chemistry with the Douglas–Kroll–Hess approach to relativistic
density functional theory: efficient methods for molecules and materials,
in: P. Schwerdtfeger (Hrsg.) (Ed.), Relativistic Electronic Structure Theory—
Applications, in: Theoretical and Computational Chemistry Series, vol. 14,
Elsevier, Amsterdam, 2004, pp. 656–722.

[32] A.M. Shor, E.A. Ivanova Shor, V.A. Nasluzov, G.N. Vayssilov, N. Rösch, First
hybrid embedding scheme for polar covalent materials using an extended
border region to minimize boundary effects on the quantum region, J. Chem.
Theory Comput. 3 (2008) 2290–2300. http://dx.doi.org/10.1021/ct700159k.

[33] G.W. Stewart, The decompositional approach tomatrix computation, Comput.
Sci. Eng. (ISSN: 1521-9615) 2 (1) (2000) 50–59.
http://dx.doi.org/10.1109/5992.814658.

[34] L.G. Valiant, Bulk-synchronous parallel computers, in: M. Reeve (Ed.), Parallel
Processing and Artificial Intelligence, John Wiley & Sons, 1989, p. 1522.

[35] L. Valiant, A bridging model for parallel computation, Commun. ACM 33 (8)
(1990) 103–111.

[36] Takeshi Yanai, HaruyukiNakano, TakahitoNakajima, Takao Tsuneda, SoHirata,
Yukio Kawashima, Yoshihide Nakao,Muneaki Kamiya, Hideo Sekino, Kimihiko
Hirao, UTChem—a program for ab initio quantum chemistry, in: P.M.A. Sloot,
et al. (Eds.), ICCS 2003, in: LNCS, vol. 2660, Springer-Verlag, Berlin, Heidelberg,
2003, pp. 84–95.

Piotr Luszczek worked on sparse direct methods for
matrix factorizations that leveraged existing optimized
linear algebra kernel codes. In addition, he published
papers on other matrix factorization scenarios such as
parallel out-of-core solvers.

Hardware and software benchmarking has also been
the focus of his professional activities: primarily the
codes for numerical linear algebra. Variability of the
benchmarked computer architectures and algorithmic
approaches was a natural base for his investigation of very
broad topic of software self-adaptation. He investigated

the language design issues as they apply to scientific programmer productivity but
also to resulting performance in the government-sponsored HPCS program.

His work at the MathWorks was concentrated on parallel language design and
its implementation with particular emphasis on high performance programming.
These activities had resulted in three patent awards.

His recent research focus is on performance modeling and evaluation in the
context of tuning of parallelizing compilers as well as energy-conscious aspects of
heterogeneous and embedded computing.
Currently, he investigates how scientific codes are influenced by power and
energy constraints and how to include performance-conscious optimizations into
sustainable computational science.

Jakub Kurzak received the M.Sc. degree in Electrical
and Computer Engineering from Wroclaw University of
Technology, Poland, and the Ph.D. degree in Computer
Science from the University of Houston. He is a Research
Director at the Innovative Computing Laboratory in
the Department of Electrical Engineering and Computer
Science at the University of Tennessee, Knoxville. His
research interests include parallel algorithms, specifically
in the area of numerical linear algebra, and also parallel
programming models and performance optimization for
parallel architectures, multi-core processors, and GPU

accelerators.

Jack Dongarra holds an appointment as University Dis-
tinguished Professor of Computer Science in the Electrical
Engineering andComputer ScienceDepartment at theUni-
versity of Tennessee and holds the title of Distinguished
Research Staff in the Computer Science and Mathematics
Division at Oak Ridge National Laboratory (ORNL), Turing
Fellow in the Computer Science and Mathematics Schools
at the University of Manchester, and an Adjunct Profes-
sor in the Computer Science Department at Rice Uni-
versity. He specializes in numerical algorithms in linear
algebra, parallel computing, use of advanced-computer

architectures, programming methodology, and tools for parallel computers. His
research includes the development, testing and documentation of high quality
mathematical software. He has contributed to the design and implementation of the
following open source software packages and systems: EISPACK, LINPACK, the BLAS,
LAPACK, ScaLAPACK, Netlib, PVM, MPI, NetSolve, Top500, ATLAS, OpenMPI, and
PAPI. He has published approximately 300 articles, papers, reports and technical
memoranda and he is coauthor of several books. Hewas awarded the IEEE Sid Fern-
bach Award in 2004 for his contributions in the application of high performance
computers using innovative approaches; in 2008 he was the recipient of the first
IEEE Medal of Excellence in Scalable Computing; in 2010 he was the first recipient
of the SIAM Special Interest Group on Supercomputing’s award for Career Achieve-
ment; and in 2011 he was the recipient of the IEEE IPDPS 2011 Charles Babbage
Award. He is a Fellow of the AAAS, ACM, IEEE, and SIAM and a member of the Na-
tional Academy of Engineering.

http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref31
http://dx.doi.org/doi:10.1021/ct700159k
http://dx.doi.org/doi:10.1109/5992.814658
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref34
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref35
http://refhub.elsevier.com/S0743-7315(13)00216-5/sbref36

	Looking back at dense linear algebra software
	Introduction
	Motivation: plasma physics and electronic structure calculation
	Problem statement in matrix terms
	Introducing  L U : a simple implementation
	Implementation for vector computers
	Implementation on RISC processors
	Implementation on distributed memory machines
	Shared memory implementation
	Multi-core implementations
	Error analysis and operation count
	Concluding remarks and future directions
	References


