Parallel Reduction to Hessenberg Form with
Algorithm-Based Fault Tolerance

Yulu Jia, George Bosilca,
Piotr Luszczek
University of Tennessee
Knoxville

ABSTRACT

This paper studies the resilience of a two-sided factorization and
presents a generic algorithm-based approach capable of making
two-sided factorizations resilient. We establish the theoretical proof
of the correctness and the numerical stability of the approach in
the context of a Hessenberg Reduction (HR) and present the scala-
bility and performance results of a practical implementation. Our
method is a hybrid algorithm combining an Algorithm Based Fault
Tolerance (ABFT) technique with diskless checkpointing to fully
protect the data. We protect the trailing and the initial part of the
matrix with checksums, and protect finished panels in the panel
scope with diskless checkpoints. Compared with the original HR
(the ScaLAPACK PDGEHRD routine) our fault-tolerant algorithm
introduces very little overhead, and maintains the same level of scal-
ability. We prove that the overhead shows a decreasing trend as the
size of the matrix or the size of the process grid increases.

Categories and Subject Descriptors

G.4 [Mathematics of Computing]: Mathematical Software—Al-
gorithm design and analysis, reliability and robustness

General Terms
Algorithms, Reliability

Keywords

Algorithm-based fault tolerance, Hessenberg reduction, ScaLAPACK,
Dense linear algebra, Parallel numerical libraries

1. INTRODUCTION

Mainstream supercomputers are well into the peta-scale era, with
the number of components on a sharp increase over the years. Only
one year ago, Jaguar, hosted at the Oak Ridge National Laboratory,
included 224,162 cores. During its 537 days of operation, an aver-
age of 2.33 failures per day [37] occured, or on average less than

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SC13 November 17-21, 2013, Denver, CO, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-2378-9/13/11 ...$15.00
http://dx.doi.org/10.1145/2503210.2503249.

Jack J. Dongarra
University of Tennessee
Knoxville, Oak Ridge National
Laboratory and University of
Manchester

10 continuous hours of operation. Already today, the new config-
uration of Jaguar, called Titan, has a remarkable 299,008 Opteron
cores, over 18,688 compute nodes, without taking into account the
number of computing units on the accelerators, which would put
the count in millions. This sharp increase in the number of compo-
nents is likely to continue [18], in which case even the most opti-
mistic predictions about the failure rate of a particular component,
in terms of tens of years, depict a gloomy future. A future where the
Mean Time To Interrupt (MTTI) of the entire machine falls under a
few hours, drastically affecting individual applications running on
the system [41], with a lasting impact, not only on the scientific
throughput, but directly on the cost of the scientific simulations.

Numerical libraries are an important category of large scale ap-
plications which can easily utilize hundreds of thousands of cores
and run for a prolonged period of time as building blocks of even
longer running applications. Any node failure will render the time
already spent running the application useless. Existing numerical
libraries for high performance computers were designed and imple-
mented when the size of the systems were modest and component
failures were not yet a concern. Altering these numerical libraries
and algorithms by adding reliability capabilities is critical to en-
abling them to become suitable for the future architectures with
million-way parallelism. This process will directly benefit all ap-
plications built on top of these basic building blocks.

Libraries with eigenvalue solvers are the method of choice for
spectral clustering of graphs [43] and eigenvector centrality and its
widely known form: the PageRank [2, 12, 13, 34]. Hessenberg
form is a common intermediate representation for eigenvalue cal-
culations.

The Hessenberg reduction [42] is an important step in calculating
the eigenvalues and/or eigenvectors of a dense non-symmetric ma-
trix or for solving the regular generalized eigenvalue problem. The
orthogonal transformations are commonly used for this reduction
for their guaranteed stability even though their accumulated cost
becomes high in terms of both: computation and communication.
One of the most common algorithms that stably computes eigenval-
ues of a dense matrix is the QR algorithm [42, 24]. There are two
steps in the QR algorithm. In the first step, the matrix A is reduced
to Hessenberg form H by a sequence of similarity transformations:
A=QH QT. A Hessenberg form, H, is a square matrix in which
all the entries below the first subdiagonal are 0. The second step
further reduces H to an upper triangular form 7. The elements on
the diagonal of T are the eigenvalues of matrix A. A Hessenberg
matrix is also required for obtaining Hessenberg triangular form of
the matrix pair (A,B) of the regular generalized eigenvalue prob-
lem of the form (A — AB)x = 0 when using the QZ algorithm that
originated from the implicitly shifted QR algorithm [22, 23]. More
recent work involves efficient implementations of various QR iter-

ation methods on modern multicore and distributed memory sys-
tems [30, 11, 26, 31, 27].

The Hessenberg reduction routine is provided in virtually all ma-
jor numerical libraries, both for shared and distributed memory
architectures. LAPACK [1] contains the routine DGEHRD for
Hessenberg reduction. ScaLAPACK [4] is the open source linear
algebra library providing LAPACK equivalent functionalities for
distributed memory machines, its Hessenberg reduction routine is
PDGEHRD. Commercial numerical libraries often provide opti-
mized implementations of LAPACK and ScaLAPACK for specific
architectures (such as LibSci for Cray XT architectures).

The high arithmetic complexity overall and low arithmetic inten-
sity of its building blocks make the Hessenberg reduction a rather
costly operation. In spite its high computational complexity of
0(%0n3), the Hessenberg reduction only achieves a fraction of the
theoretical machine peak performance (unlike one-sided factoriza-
tions such as LU and QR). While its long running time makes the
Hessenberg reduction routine more exposed to fail-stop failures,
with few exceptions, no algorithmic solutions to tolerate fail-stop
failures have been proposed. Common fault tolerant techniques
such as checkpointing and algorithm based fault tolerance (ABFT)
have limitations when applied to the Hessenberg reduction. Check-
pointing stores application data to stable memory at certain time in-
tervals. In Hessenberg reduction, the whole trailing matrix, which
accounts for a significant portion of application data, is modified
very frequently, annihilating even the potential benefits of incre-
mental checkpointing. Moreover, the checkpointing technique in-
troduces too much overhead due to frequent write-to-memory ac-
cesses (either hard disk or remote main memory). Similarly, the
usual ABFT techniques cannot provide protection for the lower left
part of the matrix during the reduction.

The focus of this paper is to investigate the possibility and ef-
fectiveness of ABFT techniques in the context of the Hessenberg
reduction, to make the algorithm resilient to process failures. The
fault tolerant algorithm we propose is a hybrid approach. We add
row checksums to the right hand side of the matrix, and column
checksums at the bottom of the matrix, which is similar to clas-
sic ABFT. We prove that the checksum relationship between the
row checksums on the right hand side and the data matrix is in-
variant thus it provides protection to the trailing matrix during the
whole factorization process. Any process failure and data loss in
the trailing matrix can be recovered using the row checksums. The
finished part of the matrix is protected with another group of row
checksums. This group of checksums is computed only once for a
group of column blocks upon their completion, thus the cost is very
low. The group of panels currently being factorized are protected
with a checkpoint. Due to the data dependencies of the Hessen-
berg reduction algorithm, this checkpointing procedure cannot be
avoided. However, there is only one block column that needs to be
checkpointed at any given time, and the overhead caused by this
checkpoint is modest still. Our algorithm can tolerant more than
one process failures at a time assuming that there is at most one
failure in one processor row.

The rest of the paper is organized as follows: Section 2 presents
previous research work in fault tolerance for matrix computations.
Section 3 introduces the Hessenberg reduction algorithm and its im-
plementation, and highlights the challenges in applying ABFT to
the Hessenberg reduction. Sections 4 and 5, describe the encoding
used to provide the redundancy on the input matrix and the algo-
rithm to maintain it through the computation. Section 6 provides a
formal analysis of the overhead and costs, while Section 7 experi-
mentally validates them. Section 8 summarizes the results of this
paper and presents future work.

2. RELATED WORK

Diverse techniques to recover from a process failure exist, en-

compassing completely automatic solutions such as Checkpoint/Restart

(C/R) and algorithm-level techniques such as Algorithm Based Fault
Tolerance (ABFT). All these methods are applicable to linear alge-
bra computations and each has its advantages and drawbacks.

The major advantage of the C/R approach is the generality: it
can be applied to a wide range of applications not only linear al-
gebra software. In the C/R technique, consistent snapshots of pro-
gram data in main memory are saved to stable storage (usually a
disk drive) at certain time intervals. Once a failure happens, the
entire application rolls back to the latest snapshot and computation
resumes from that point on (we ignore the complexity related to
the consistent view of the entire application in terms of message or
file accesses). In a distributed environment the major cost of this
method comes from obtaining the consistent snapshots and disk ac-
cess to write the snapshots, which highlights the major drawback
of such approaches, the relatively high overhead. Langou and Don-
garra [33] investigated several checkpoint/recovery techniques and
a checkpoint-free lossy fault tolerant technique for parallel itera-
tive methods. Robert and Vivien [8, 10] presented a unified model
for several common checkpoint/restart protocols, extended in [14]
to cover process replication. Diskless checkpointing [39, 25, 35]
stores checkpoints in main memory to avoid disk accesses.

The advantage of the ABFT techniques is the potential lower
overheads, in exchange for algorithmic alterations. The algorithm
based approach considers the mathematical operations carried out
in the algorithm, and it takes advantage of the mathematical rela-
tionship between different parts of the data to recover from erro-
neous data. Algorithm-based techniques do not require disk ac-
cesses. The extra cost entailed is a requirement of a small amount
of local memory storage and some floating point operations. Since
CPU speed is orders of magnitude faster than disk accesses on mod-
ern computers, an algorithm based approach has a much smaller
overhead compared against the C/R approach.

Huang and Abraham [29] proposed a system-level method to tol-
erate errors in matrix computations in the context of systolic arrays.
The matrix is encoded and operations are carried out on the encoded
data. A single failure can be corrected during the computation. This
technique has been successfully applied to matrix addition and mul-
tiplication, scalar product and the LU decomposition. Later, Luk
and Park [36] extended Huang’s method to make it more efficient
to correct transient errors in Gaussian elimination and QR decom-
position on systolic arrays. They proposed methods to compute
checksums of the original matrix. Their method does not need a
rollback in order to correct the error. Kim and Plank [32] presented
a technique based on checksum and reverse computation to toler-
ate process failures in matrix operations. Chen and Dongarra [16]
designed and implemented an algorithm based fault tolerance al-
gorithm to tolerate process failures in the ScaLAPACK PDGEMM
routine. Bosilca and Langou [9] also designed and implemented
an algorithm based fault tolerance algorithm for the ScaLAPACK
PDGEMM routine and developed performance models to predict
its overhead. Hakkarinen and Chen [28] implemented an algo-
rithm based fault tolerance algorithm for Cholesky factorization,
an algorithm tolerating a single process failure at a time. Du and
Dongarra et al. [21] designed algorithm based fault tolerance algo-
rithms for LU and QR factorizations and implemented them in the
ScalLAPACK framework. Their methods have a low overhead and
scale well with the increase of matrix size and process grid size.
Davies et al. [17] also applied the ABFT technique to HPL [38, 19]
which is a highly optimized right-looking LU factorization. Yao
and Wang [46] proposed a non-stop algorithm based fault tolerant

(a) Matrix View

(b) Process View

Figure 1: A matrix mapped to a 2 x 3 process grid.

scheme to recover the solution vector from fail-stop process failures
in HPL 2.0. Bland et al. [5, 6] proposed a checkpoint-on-Failure
protocol for fault recovery in dense linear algebra.

3. ScaLAPACK HESSENBERG REDUCTION

ScalLAPACK uses a 2D block cyclic data distribution to achieve
good load balancing. The Hessenberg reduction routine PDGEHRD
in ScaLAPACK also distributes data in this way. The ScaLAPACK
implementation of the Hessenberg reduction is a blocked algorithm.
It first reduces a panel of columns using Householder reflections
and accumulates the Householder reflectors along the way. Later it
applies the group of reflectors all at once to the trailing matrix.

3.1 2D Block Cyclic Data Distribution

There are several possible ways to distribute a matrix across dis-
tributed memory machines. Among them, the 2D block cyclic dis-
tribution was chosen for ScaLAPACK based on its good scalability
properties and the ability to use Level 3 BLAS routines. Figure 1
illustrates the 2D block cyclic data distribution with an example. A
matrix is partitioned into small nb x nb square blocks. nb is called
the blocking factor. These blocks are mapped to a 2 X 3 process
grid. If a data block is mapped to a process it means the data block
is physically stored in the local memory associated with that pro-
cess. All the data blocks assigned to the same process are stored
contiguously. Figure 1(a) shows the global matrix from a logical
point of view. Each of the six colors represents a process. Data
blocks are assigned to the processes in a round-robin fashion in
both horizontal and vertical directions. Figure 1(b) is the processes’
view of the distribution. Same as in Figure 1(a), each color repre-
sents a process. Each process’s own part of the matrix is stored
contiguously in its local memory in column major. Each process
is assigned roughly the same amount of data, which means they
are responsible for roughly the same amount of total floating point
operations. Block algorithms in ScaLAPACK proceed from left to
right. As the algorithm continues, each process has roughly the
same amount of work load left. This avoids prolonged idle time
and keeps all the processes busy most of the time.

In this 2D block cyclic distribution, each process’s data corre-
spond to blocks scattered across the entire global matrix. When
a process fails during the Hessenberg reduction, we get corrupted
data blocks in every part of the global matrix.

3.2 Failure Model Under 2D Block Cyclic Data
Distribution
In this work, we consider process failures. When a process fails
in the process grid the data resident on that process will be all gone.
Figure 2 shows the status of the matrix when a process failure hap-
pens. The colored squares are the data blocks owned by the live pro-

Figure 2: Global view of the matrix when a process fails.

cesses. The blank squares with question marks are the data blocks
owned by the failed process. After we have recovered the process
grid, the replacement process contains invalid data. These invalid
data blocks need to be recovered to their state before the failure hap-
pened. If we continue the Hessenberg reduction without recovering
the lost data the final result will be completely wrong.

3.3 Non-blocked Hessenberg Reduction

The Hessenberg reduction takes a general nonsymmetric square
matrix A € R"" and decomposes it: A= UHU . U is an orthogo-
nal matrix, H is a Hessenberg matrix. The non-blocked Hessenberg
reduction is an iterative process, n — 1 Householder transformations
are applied to the matrix A from left and right
Hy \Hy_—>...H,HiAH| H) ...H| ,H | =H. The orthogonal ma-
trix U is U = H{H,...H,_»H,_1. A Householder transformation
H; can be generated efficiently [42, page 83]. The non-blocked ver-
sion uses Level 2 BLAS operations which have a low flop/transfer
ratio and are slow. ScaLAPACK uses a blocked Hessenberg reduc-
tion algorithm which has a larger number of efficient Level 3 BLAS
operations.

3.4 Blocked Hessenberg Reduction

In the blocked Hessenberg reduction [20] nb (the blocking factor
in the 2D block cyclic distribution) Householder reflectors are ac-
cumulated and applied to the trailing matrix together using Level 3
BLAS. Using the WY representation [3, 40] the reduction can be
written as:

H),---HAH,---H,;, = A-VW-YV')

where V is the matrix formed by the nb Householder vectors used
to reduce the first nb columns, 7 is an nb X nb upper triangular
matrix, W =T"VTA Y =4V "

Algorithm 1 PDGEHRD
1: for every panel do
2: PDLAHRD on the panel, return V,T,Y
3: PDGEMM: trail(A) = trail(A) — YV T
4: PDLARFB: trail(A) = trail(A) = VT 'V -trail(A)
5: end for

Algorithm 1 is the pseudo code for PDGEHRD. The function
call PDLAHRD reduces a panel with a sequence of Householder
transformations. It takes the trailing submatrix, reduces the first
panel of nb columns, and overwrites the bottom part of the panel
with the Householder reflectors. Although this panel factorization
routine only modifies the panel, it has a data dependency on the
trailing matrix. In other words, once the trailing matrix is modified
and we lose data inside the panel, the panel factorization cannot be
repeated. This poses a challenge for our fault tolerant algorithm
design as explained in later sections.

Figure 3 illustrates one iteration of the ScaLAPACK Hessenberg
reduction algorithm. In Figure 3(a) the yellow part is part of the
final result of the Hessenberg matrix. This part will not be touched
once they have been computed. Columns in the green part are the
Householder reflectors used to transform the matrix. The red part
is the trailing matrix which will be reduced in future iterations. As
other factorizations in ScaLAPACK, PDGEHRD is an iterative al-
gorithm. In each iteration, PDLAHRD reduces the first block col-
umn which is called the panel. This call produces the final result of
the desired Hessenberg matrix (the yellow upper trapezoid in Fig-
ure 3(b)) and nb Householder reflectors (the green lower trapezoid
in Figure 3(b)). This call also generates intermediate matrices V
and Y which are used by the PDGEMM and PDLARFB immedi-
ately following the panel reduction to update the trailing submatrix.
When this iteration finishes, we get a smaller trailing submatrix: the
red part on the right in Figure 3(e). In the next iteration, the same
process is repeated on the shrunk trailing submatrix which further
reduces it to a smaller size. This algorithm is a right-looking al-
gorithm, in that, the updates only access data to the right of the
current panel. Matrix entries to the left of the current panel are
never touched again after the panel computation proceeded to the
right.

4. ENCODING THE INPUT MATRIX

The essential part of ABFT technique is to expand the original
matrix data with redundant data and maintain the relationship be-
tween the original matrix and the redundant data through compu-
tation. In our fault tolerant Hessenberg reduction algorithm, we
chose to append the matrix with row checksums to the right of the
original matrix. We show the checksum scheme with an example
in Figure 4. A matrix of N x N blocks is mapped to a P x Q pro-
cess grid in the 2D block cyclic fashion (here N =8, P =2, O = 3).
Each process will be assigned at most [N/P] x [N/Q] data blocks.
We add [N/Q] x 2 block columns to the right as checksum blocks.
Data blocks in the same position of different processes of the same
process row are added together element-wise to form a checksum
block. This checksum block is duplicated and stored next to itself.
The details are shown in Figure 4(a).

We also expand the original matrix with checksum blocks at the
bottom. Only the storage is allocated, the actual checksums are not
actually calculated in the beginning. The extra storage at the bottom
will be used for pseudo checksums of the V matrix which contains
the block Householder reflectors. The number of pseudo check-
sum block rows at the bottom is the same as the number of check-
sum block columns to the right of the matrix. And each pseudo
checksum block is calculated in this way: pretend the matrix is
distributed over a Q x Q process grid (despite that it is actually dis-
tributed over a P x Q grid), then we sum corresponding data blocks
in different processes in the same process column element-wise and
obtain a pseudo checksum block. The summing relationship is also
shown in Figure 4(a). In this figure, the pseudo checksum block
is the sum of the first three blocks, because had we distributed the
matrix over a 3 x 3 process grid, the first three data blocks would
be the first blocks in the three processes in the their respective local
matrices.

These checksum blocks are treated as normal matrix data and dis-
tributed across the process grid. Figure 4(b) shows each process’s
local matrix containing the checksum blocks. Each black box rep-
resents a process. The white blocks are the checksum blocks. Note
that the example in Figure 4 uses a small process grid, the check-
sum data are relatively large compared to the original input matrix.
But in practice the process grid is rarely this small. The checksum
data only accounts for a small portion of the input matrix when the

copy

(a) Matrix View

(b) Process View

Figure 4: An encoded matrix mapped to a 2 x 3 process grid.

size of the process grid increases.

5. THE ALGORITHM

Algorithm 2 ABFT Hessenberg Reduction (non-delayed)

1: Compute the row checksum of matrix A, get A,
2: for each i in N, iterations do
if i=0 mod Q then

Take a snapshot of the panel scope.
end if
PDLAHRD on the panel, return V, T, Y
Calculate column pseudo checksum of V, get V,
Send V to the next process column.
The process column owning the ith panel make a copy of its
Y and T, send Y, T to the next process column.
10: PDGEMM: trail (A,) = trail(Ae) — Y (V)T
11: PDLARFB:

trail(A,) = trail(A,) —VT TV T -trail(A,)

12: Recover from failure if there is any.
13: end for

Ve nhw

5.1 Maintaining Data Redundancy in the Fac-
torization

Two versions of ABFT Hessenberg reduction algorithms are shown
in Algorithm 2 and Algorithm 3. These two versions are mathemat-
ically equivalent, but their actual implementations have different
performance characteristics due to the behavior of PBLAS routines.
We use Algorithm 2 to explain how the method works. In iteration
i, we refer to the Q block columns starting from |i/Q] to [i/Q]

(a) Beginning of itera- (b) Factorize the panel
tion

(c) Right update

(d) Left update (e) End of iteration

Figure 3: One iteration of PDGEHRD

(inclusive) as the panel scope. N is the dimension of the original
matrix, nb is the blocking factor.

Algorithm 2 first calculates row checksums for each block row
in line 1. This is achieved with a reduction operation on each block
row. Calculating this global checksum for the entire matrix requires
many reduction operations and large communication volume. But
this checksum is computed only once at the beginning of the algo-
rithm. The cost is not high compared to the time cost of the actual
Hessenberg reduction.

In line 4, the algorithm takes a snapshot of the panel scope before
starting the factorization of the block columns in the panel scope.
The final Hessenberg matrix contains zeros in its lower part, below
the first subdiagonal. In order to save storage, the ScaLAPACK
Hessenberg reduction algorithm stores the Householder reflectors
in the lower part of the matrix. Because the zero entries are over-
written with the Householder reflectors, the row checksum relation-
ship between the current panel scope and its checksum no longer
holds. Once a process failure causes data loss in the trailing matrix
part of the current panel, we can retrieve the pre-update data from
the snapshot and reapply all updates from the beginning of the cur-
rent panel scope. By so doing, we can restore the lost data to their
state right before the failure.

Lines 8 and 9 record the state of the panel scope after each panel
factorization. These two lines also record the state of ¥ and T
which are the results of panel factorization. Y and T are stored
in a separate workspace apart from A. The newly calculated House-
holder reflectors are stored in-place in the lower portion of A. These
reflectors do not have any protection mechanism. Unlike a recent
implementation of QR factorization [21], the panel factorization
in the Hessenberg reduction has a data dependence on the trailing
submatrix. The PDLAHRD routine needs the unmodified trailing
submatrix to factorize the panel. This means that the panel factor-
ization result has to be protected right away after it is obtained. We
do not delay the recording of the state of the panel result (V, Y and
T) till either the PDGEMM call or the PDLARFB call. This is
because in the case of a process failure, data loss would occur in
the panel result. This is possible for a failure that happens after the
panel factorization and after the start of the trailing matrix update.
The panel result cannot be recovered in that case by a rollback of
the panel and re-factorizing it despite the fact that we can manage
to recover the panel data right before its factorization. It is possible
to reverse the effect of the trailing matrix update if we store the V, Y
and T matrices which were used to update the trailing matrix. But
they are not available since these three matrices are exactly what
are supposed to be recovered.

Line 12 recovers data that were lost due to a process failure. The
details of the recovery procedure are explained in section 5.3.

The following theorem shows how the correctness of the check-

sum is maintained throughout the algorithm.

THEOREM 1. The row checksums for block columns after the
current panel scope are valid at the end of each iteration.

PROOF. We proceed by showing that the checksum remains cor-
rect after each step. Suppose A is of size m X n, e is a column vector
of 1’s of length n. For simplicity, in the following proof we assume
the block size nb is 1, and the process grid is m X n, so each process
takes one entry of the matrix but the proof holds true for any nb
value and process grid size.

1. Before the for loop all the row checksums are just calculated,
no data has been modified. Thus the checksums are valid.

2. In the first iteration, after the PDLAHRD, the checksum
for the first panel scope is destroyed. But the checksums
for the block columns after the first panel scope are still
valid, because both the original matrix data and the check-
sums haven’t been modified.

3. In the first iteration, after the PDGEMM, the checksums for
the block columns after the first panel scope are still valid.

A—Y(V)T =

S
>
Q
I
~
[
o

= [A-YvT (A-YVT)e]

4. In the first iteration, after the PDLARFB, the checksums for
the block columns after the first panel scope are still valid.
Ae—VTTVTA,
(I-vTTVvA,
= (I-VT'V)[A A
= [-vTTVIHA (I-VTTVT)A]
[(A-VTTVTA) (A-VTTVTA)]

By mathematical induction, the row checksums for block columns
after the current panel scope are valid at the end of each itera-
tion. [

Algorithm 3 ABFT Hessenberg Reduction (delayed)

1: Compute the row checksum of matrix A, get A,
2: for each iin 1 to [N/nb] iterations do
if i=0 mod Q then
Take a snapshot of the panel scope.
end if
PDLAHRD on the panel, return V,T,Y
if a process owns parts of V,T,Y then
Store V, T,Y in its neighbor in the next process column.
end if
if i=0 mod Q then
Calculate column checksums of V from the last Q block
columns, get V,
12: endif
13: PDGEMM: trail (A,) = trail(A.) — Y (V)T
14: PDLARFB:
trail(A,) = trail(A,) —VT TV T -trail (A,)
15: ifi=0 mod Q then

TV XN EW

—

16: Update the row checksums at the right side of the original
matrix using the V,Y,T matrices from the last Q panel
factorizations.

17: endif

18: if a failure happens then

19: Compute column checksums of V from the already fac-
torized panels in the current panel scope, get V.

20: Update the row checksums at the right side of the original
matrix.

21: Recover from failure.

22: endif

23: end for

5.2 Checksum Duplication

We protect the row checksums appended to the right of the ma-
trix by maintaining two copies of exactly the same checksums. Be-
cause the checksums are distributed as normal matrix data over the
process grid, any process failure will also cause loss of the check-
sums resident on the failed process. To solve this problem we
maintain two copies of the checksums as in [21]. Both are kept
valid through updating them independently. These two copies are
stored next to each other so they are distributed to different process
columns. Since only one process could fail, we always have one
valid copy and can use this copy to recover the other copy. This
approach does not need dedicated checksum processes, and does
not have to assume that the checksum processes never fail. This
approach also has good load balancing property. These traits are
preferable because it does not require users of the ScaLAPACK
library to change their application or the way they run their appli-
cation. It is also easier to implement since the code has clear logic.
The update of the checksum data does not need special treatment,
the only thing needed is to change the dimensions of the trailing
matrix during the update step of the original ScaLAPACK code.

5.3 Recovery

When the Hessenberg factorization is in progress, the matrix can
be divided into different areas based on the status of the data as
shown in Figure 5. Different areas of the matrix data need different
methods to recover.

The recovery process:

1. Recover the runtime system. Replace the lost process and
restore the process grid.

2. Recover lost checksums using the duplication.

Area 2 Area3 Aread4 Areal

Figure 5: Partitions of the matrix. The dotted block column in
area 3 has just been factorized. Area 1 (red) is the trailing ma-
trix after the current panel scope. Area 2 (blue) is the finished
part of the matrix. Area 3 (yellow) is the block columns in the
current panel scope that have been factorized. Area 4 (green)
is part of the current panel scope which belongs to the trailing
matrix.

3. Recover lost data in area 1 and 2 using the row checksum on
the right and the data on the live processes. First calculate the
sum of data blocks on different processes in the same process
row, then subtract this partial sum from the checksum to get
the lost data blocks. Send the recovered data blocks to the
replacement process.

4. Recover the lost data in area 3 using the checkpoint.

5. Recover the lost data in area 4. First retrieve the backup data
from the snapshot, then apply all the left updates and right
updates since the last snapshot.

6. Resume computation as usual. Ready to recover from the
next failure.

6. PERFORMANCE ANALYSIS

In this section we use N to refer to the dimension of the global
matrix.

There are several sources where the overhead of the fault toler-
ant Hessenberg reduction comes from. Firstly, it carries out more
floating point operations than the ScaLAPACK version. Secondly,
we need to perform bookkeeping for the panel results. Thirdly, we
need to generate vertical pseudo checksums for V after the panels
are factorized.

Global row checksums have to be calculated at the beginning of
the factorization. On a P x Q process grid, every process row cal-
culates the checksums inside the process row using reduction oper-
ations. Every process row performs the reductions in parallel with
other process rows. Hence the total time cost is the same as the time
cost in any one process row. There are N/ (nb - Q) block columns in
one process, for every one block column there is one reduction op-
eration. Let Tp be the time cost of one reduction operation among
Q processes, the overhead incurred by the global checksum calcu-
lation at the beginning of the fault tolerance Hessenberg reduction
algorithm is:

T
an‘Q

This part of the overhead is a one time cost. The Hessenberg reduc-
tion is computation intensive, and the total floating point operation
count is 0(13—0N 3). As the size of the matrix N increases, the oper-
ation count increases quickly, this initial one-time checksum cost
becomes insignificantly small very quickly compared to the total
cost of the original ScaLAPACK Hessenberg reduction routine.

Extra floating point operations are needed to maintain the correct
global checksum on the right side of the matrix. The panel factor-
ization will stop at the end of the original matrix, so no panel factor-
ization has to be done on the checksum block columns. The trailing
matrix updates have to be performed on the checksums. In every
iteration there is a right update which is a PDGEMM, and there is
a left update which is a PDLARFB. The PDLARFB contains three
steps: a PDGEMM, a PDTRMM and another PDGEMM. For the
right updates, the number of checksum block columns decreases as
the factorization proceeds. The reason is that the block columns to
the left of the current panel and in the current panel scope are not
protected by the right side checksum, and we do not need to up-
date these not used checksums anymore. For the left updates on the
checksums, not only does the number of columns of the checksums
decrease, but also the number of rows decreases.

The amount of extra floating point operations caused by the right
update (PDGEMM) is:

N/nb—1

FLOPpdgemm = 'Zl 2N (2nb)nb-Q
=

- 2%3 —2N2nb

The amount of floating point operations introduced by the left up-
date (PDLARFB) is:

FLOP pdtarty

Ny
- Y [2an(2nb~1)(2nb~1+2)+(2nb~1)nb2 0
=1

8 N3 N%nb 4

= 2 ANZb+aN? + 2 L TN Onb?
30 3
—4NQ -nb — Nnb*

The total amount of extra floating point operations by maintaining
the checksum is
N/nb—1
FLOPExna =), [FLOPpggemm + FLOPpatar]
i=1
The total count of floating point operations of the original ScalLA-
PACK Hessenberg reduction routine is:

10
FLOPoy = ?N3
So the overhead introduced by maintaining the checksums is
given by:
FLOPgx(ra
FLOPoyig
FLOdegemm + FLOdelarfb

FLOPoyig
_ 3 (21 _6nb 4 nb 4 oni?
10\30 N 'N NO '3 N2
40nb nb*
N2 N2

These extra floating point operations are all in matrix matrix mul-
tiplies which are efficiently implemented, so the overhead in terms

Overhead =

of floating point operation count can also be interpreted as overhead
in terms of running time. From the formula above, we observe that
as the size of the matrix is big enough, N tends to infinity, and the
terms containing N in the denominator tend to 0:

. 1

A%linm Overhead = 50 2)
which means that the theoretical lower bound of the overhead intro-
duced by maintaining the checksums is 1/(50). By “theoretical”
we mean the ideal case where there is no time cost for memory
accesses, and no time cost for communications between processes.
When we keep the blocking factor nb unchanged and keep increas-
ing the matrix size N, the least amount of overhead we have to pay
is 1/(5Q) of the ScaLAPACK Hessenberg reduction routine. In
practice it is not possible to access memory and transfer data be-
tween processes without time costs. The actual observed overhead
introduced by these extra floating point operations should be higher
than the above theoretical lower bound.

The second part of the overhead comes from bookkeeping the
panel factorization results after panels are factorized. The book-
keeping is done by sending the matrices to the neighboring process
in the next process column and storing them there. There are three
matrices which have to be saved: the panel itself, Y and T'. Let Ty,
be the time cost to perform a Send-Receive operation between two
processes, the total overhead incurred by bookkeeping the panel
factorization results is:

T N
sr nb

The value of T, varies depending on the MPI implementation
and the network between processes.

Also there is the overhead of computing the vertical pseudo check-
sum of V. Every pseudo checksum block calculation involves a re-
duction operation, and this pseudo checksum has to be calculated in
every iteration. Let Tp denote the time cost to perform a reduction
among P processes, the total time cost of calculating this checksum
is given by:

N
nb-Q

Tp

Storage overhead. Extra storage is necessary for the checksums
and for bookkeeping the panel factorization results. We keep two
copies of the row checksums on the right of the original matrix.
The amount of memory needed for this is:

N
2N —
0

We also need the same amount of storage for the pseudo check-

sum of V. This makes the total amount of checksum memory:
N
4N —
0

The amount of memory needed to store the snapshot of the panel
scope is N (N/Q+ 2nb), the amount of memory needed by check-
pointing Y and T is:

N(N/Q)+nb(N/Q)
Adding them all together, the total amount of storage overhead
is:

4%2 +(N+nb)(N/Q)

7. EXPERIMENTS

In this section we evaluate the performance of our fault toler-
ant Hessenberg reduction algorithm through experiments. We used
DOE’s Titan as our test platform.

Titan is a hybrid supercomputing system located at Oak Ridge
National Laboratory. It is the fastest parallel computer on the cur-
rent TOP500 list (Nov., 2012). Since we are only using the tra-
ditional CPU section of the machine, information about NVIDIA
GPUs on Titan is not reported. Titan is composed of 18,688 nodes
with 299,008 cores, for a CPU peak performance in double preci-
sion of 2.63 PFlop/s.

7.1 Overhead Without Failure

Figure 6(a) shows the overhead of our fault tolerant Hessenberg
reduction on Titan when no failure happens in the factorization.
The overhead measured in the percentage of performance penalty
drops as the problem size increases. The performance of Hessen-
berg reduction is not as high as the one-sided factorizations (LU,
QR and Cholesky) on both distributed memory machines and shared
memory machines. The reason is that Hessenberg reduction is rich
in Level 2 BLAS (GEMY). Level 2 BLAS routines have a 1-to-1
flop to word ratio. These routines are memory bound and hence
their performance is limited by the bandwidth of the memory. In
terms of performance, our fault tolerant algorithm has a small over-
head. The overhead with a matrix of size 6000 on a 6 x 6 process
grid is 7.6%. The overhead keeps decreasing as the matrix size in-
creases and the process grid increases. The overhead drops to 1.8%
for a matrix of size 96000 (process grid 96 x 96). This overhead
includes the overhead of calculating the initial checksum, the com-
putation overhead incurred by updating the checksum, the overhead
of calculating the vertical pseudo checksum of V after each panel
factorization, and the overhead of the recovery process. Equation 2
states that the overhead caused by extra computation on the check-
sums asymptotically decreases to 1/(5Q). It accounts for a decreas-
ing portion of the total overhead as the problem size and process
grid become large. The overhead caused by saving the results of
the panel factorization (PDLAHRD) becomes the major contribu-
tor of the total overhead. Over the course of the factorization, the
total communication volume of this saving process is roughly two
times the global matrix data volume. Depending on the network
bandwidth between the processes, this part of the overhead can ac-
count for different percentages of the total overhead. Generally,
this part of the overhead tends to a small constant percentage when
the problem size increases.

Figure 7 shows the overhead of Algorithm 3 on Titan. We see
that the performance overhead keeps dropping in the beginning, but
it starts to go up again at grid size 96 x 96. There are three main
reasons which cause the overhead increase. Firstly, when we delay
the updates of the global checksums at the end of each panel scope,
these updates resulting from each panel factorization are applied
sequentially. When the process grid size increases, the number of
panels in the panel scope also becomes larger. The sequence of
updates to the global checksums takes longer to finish. Secondly,
when updating the checksums separately from the trailing matrix,
the updates (PDLARFB and PDGEMM) are applied to a tall and
skinny matrix. These two routines perform best when applied to
more rectangular matrices. Also, splitting the calls to these rou-
tines disrupts their internal communication pipeline that hides la-
tency and creates additional synchronization points upon exit and
then entry into these routines. Thirdly, updating the checksums
separately causes extra communication between processes owning
V and processes owning the checksums. These overheads are criti-
cal in the context of an already communication-rich operation such

9000 T 9
= = FT-Hess
8000 = = ScaLapack Hess 8
— = Performance Penalty (%
7000 7
~
6000 ~ 6 _
4 ‘ g ®
& 5000 R Abs T
8 o o “ 4 :,é;
= 4000 ~_ o= 744 8
° ¢ g
3000 3
¢
2000 40 2
1000 - 1
=0
- =0= = . .

0 0
6k (6x6) 12k (12x12) 24k (24x24) 48k (48x48) 96k (96x96)
Matrix size (Grid size)

Figure 7: Overhead of FT-Hess without failures. Platform: Ti-
tan, NB = 80, Algorithm 3

as the Hessenberg reduction, and they inhibit scalability as the Fig-
ure 7 indicates.

7.2 Overhead With Failure

Figure 6(b) shows the performance and performance overhead
of our fault tolerant Hessenberg reduction algorithm on Titan when
one failure happens in the factorization. Compared with Figure 6(a)
the performance overhead shown in the Figure 6(b) includes one
more factor: the recovery overhead. The recovery process involves
a global row-wise reduction operation on the entire global matrix.
Before this global reduction the data on the replacement process are
set to zero. This global reduction operation calculates a new global
checksum. The lost data belonging to Area 1 and Area 2 in Fig-
ure 5 are recovered using the new checksum and the old checksum
that we have been maintaining along with the factorization. The
cost of this global reduction depends on the bandwidth of the link
between the processes. This cost accounts for a small portion of the
total running time of the Hessenberg reduction. Figure 6(b) shows
that, even with the recovery cost included, the total overhead of our
fault tolerant Hessenberg reduction algorithm is still very low and
it decreases as the problem increases. It is down to 4.03% for the
matrix of size 96000 (process grid dimension: 96 x 96).

7.3 Numerical Stability After Recovery From
a Failure

In this subsection, we show how our fault tolerant Hessenberg
reduction algorithm maintains the same level of numerical stability
as the original ScaLAPACK algorithm.

Floating point numbers are represented in IEEE 754 format in
modern computers, floating point operations are not carried out in
exact arithmetic. Standard error analysis for the reduction of a gen-
eral matrix A to Hessenberg form H by means of similarity trans-
formations shows the process to be backward stable [44, page 363].
In particular, the process reduces a nearby problem A = A+ E into
H with a set of similarity transformations U and at the end we get:

A=UTAU (3)
The bound on the residual error E [44, page 351] is
IENF/lIAllF < ¢(N)e @)

where ¢ is a low degree polynomial [44, page 351, Table 1] and &
is the unit roundoff (machine precision). This is an expected result
since the transformation only employs orthogonal transformations
and therefore does not introduce rounding errors larger than those
already existing in the data. In fact, its backward error analysis

9000 T 9
= = FT-Hess
8000 = = ScaLapack Hess 8
@, = = Performance Penalty (%
7000 7
N

6000 < 6
%) R
& 5000 N gs €
= o s
- ~ P4]
E 4000 ~ 4 2
© Soo ¢ g

3000 ~ 3

~o &
2000 “o 2
1000 - 1
_ =0
0 = - O = I L
6k (6x6) 12k (12x12) 24Kk (24x24) 48k (48x48) 96k (96x96)

Matrix size (Grid size)

(a) Without failures

GFLOPS

9000 T 9
D = = FT-Hess
8000 [= = ScaLapack Hess 8
N | = = Performance Penalty (%
7000 < p 7
6000 Mo o 6 _
5000 o0 ? s S
e ¢ z
4000 O 4 2
’ £
3000 3
4
2000 20 2
-
1000 e 1
0 = - 0= - - I L
6k (6x6) 12k (12x12) 24k (24x24) 48k (48x48) 96k (96x96)

Matrix size (Grid size)

(b) With failures

Figure 6: Overhead of FT-Hess without failures and with one failure. Platform: Titan, NB = 80, Algorithm 2

has been used in a scheme that detects soft errors in linear algebra
operations at runtime [7].

The ScaLAPACK PDGEHRD routine uses the following factor-
ization residual to verify the factorization result

_ |JA—UHU ||
||Al|NE

where 7., is a slowly growing function of N. For practical purposes
7 may be checked against a constant threshold ;. We consider
the reduction correct if the residual ., is smaller than the threshold
Iy = 3.

To show backward stability of the recovery process, we use the
technique of projecting the error (resulting from a fault) back into
the original matrix A [36]. We then exploit the fact that the back-
ward error analysis already involves a perturbation to A and the re-
duction is shown to provide a solution to a nearby problem A with
a satisfactory bound on the perturbing error. Then, using a standard
dot-product error analysis [15], we show that the numerical stabil-
ity is not affected by the recovery from the fault. The dot-product
analysis applies to our checksum procedure with only a slight mod-
ification.

There are three sources of errors in addition to the error existing
in the original algorithm after the recovery:

Voo

e from the initial encoding of the input matrix,
e from updating the global checksum,
e from recovering the lost data in the case of a failure.

Errors from encoding the input matrix. The initial checksums
are calculated through a simple summation operation. On a P x Q
process grid, each checksum element involves at most Q — 1 addi-
tion operations . The rounding error (denoted by E;) introduced by
encoding the input matrix is bounded by

Ey<(Q-1)¢ &)

This upper bound is reached in the worst case scenario when round-
ing errors happen in every element and all have the same sign. In
reality, rounding errors do not happen for every operation and/or do
not all have the same sign. A pair of rounding errors with opposite
signs will cancel each other out. The actual error is much smaller
than the upper bound — the suggested approximation is the square
root of quantities dependent on the problem size [45].

Errors from updating the global checksum. The global check-
sums on the right hand side of the input matrix are updated by two

routines PDGEMM and PDLARFB, both of them perform matrix-
matrix multiplications. These two routines are numerically stable
which means the rounding error of the input data does not grow
after the calculation.

Errors from recovering the lost data in the case of a failure.
During recovery we calculate a new checksum of the data on the
still live processes. In the worst case scenario the rounding error
(denoted by E») could be

E,<(Q-1)¢ (6)

In the worst case, E» has the opposite sign to £y, which gives the
worst case error in the recovered data compared against the lost
data
E3s=E +E<2(Q—-1)¢ @)
If the failure happens in the i-th iteration, denote the accumulated
transformations so far by U(;, we have

A — <UHUT +UGEU)l

i

[A]|Ne
(1-ttgEs) -
[A]l-NE
) |\<A7U(,-)E3U(ZT))*UHUT||°° 14— U B3V 1=
A —U(,-)EaUJ)HooNS [[A]oo
\(a-ty03) -0
T T AU BU -Ne
where

A = UG E3U Il
Ao
1Al + 11U E3U ||
- [[A]le
UG EsU Il
1A]o
1+N/Px2(0—1)e

IN

Again, this is the theoretical upper bound assuming the worst pos-
sible cases. In reality rounding errors are mostly likely random, so

Table 1: Residual Comparison

Grid Size FT-Hess ScaLAPACK Hess
6x6 5.208026x1073 5.014403x1073
12x 12 3.099298x 1073 2.348654x1073
24x24 2.166615%x1073 1.174153x 1073
48 x 48 1.361631x1073 6.350293x 1074
96x96 1.038104x1073 3.379741x 10~

they will cancel each other out. The recovery process will not cause
observable extra backward errors.

Table 1 shows a comparison of the residual r obtained in our fault
tolerant algorithm when a failure happens and the residual obtained
in the fault-free ScaLAPACK routine. We can see that our fault tol-
erant algorithm computes answers on the same order of magnitude
as the original ScaLAPACK algorithms, with minor differences due
to the randomness of the initial matrix and the lack of bitwise repro-
ducibility of the algorithm. Overall, our fault tolerant Hessenberg
reduction algorithm is as backward stable as the ScaLAPACK ver-
sion.

8. CONCLUSIONS AND FUTURE WORK

This paper describes a hybrid fault tolerant Hessenberg reduction
algorithm combining diskless checkpointing and algorithm based
fault tolerance techniques under the fail/stop failure model, capable
to recover from one process failure at a time. After the successful
recovery, the computation is resumed and ready to progress and to
tolerate the next process failure. We use algorithm based fault tol-
erance techniques to protect the trailing matrix, and checksums to
protect the left part of the Hessenberg matrix, while the panel scope
is protected through diskless checkpointing. We confirmed the low
overhead and good scalability of our approach both from a theo-
retical standpoint and through experiments on various scales. The
overhead decreases when the matrix size or the process grid size
increases, making this approach a good candidate for large scale
environments. Future work would include exploring methods to
tolerate multiple simultaneous failures and designing fault tolerant
algorithms for other two-sided factorizations in large scale parallel
computing environments.

9. ACKNOWLEDGMENTS

The authors would like to thank the NSF for funding through
grants 0904952 and 1063019, JST Japan, and DOE INCITE through
the Performance End Station PEAC Project — this research used re-
sources of the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725. The authors thank Peng Du,
Aurelien Bouteiller and Thomas Herault for their valuable contri-
bution and challenging discussions.

10. REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, Third edition, 1999.

[2] M. Berry and M. Browne. Understanding Search Engines:
Mathematical Modeling and Text Retrieval. SIAM,
Philadelphia, Second edition, 2005.

[3] C. H. Bischof and C. V. Loan. The WY Representation for
Products of Householder Matrices. In Parallel Processing for
Scientific Computing, pages 2—13, 1985.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’ Azeuedo,

J. Demmel, I. Dhillon, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. Scal APACK Users’
Guide. STAM, Philadelphia, PA, 1997.

W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca, and
J. Dongarra. A checkpoint-on-failure protocol for
algorithm-based recovery in standard MPI. In Proceedings of
the 18th international conference on Parallel Processing,
Euro-Par’12, pages 477-488, 2012.

W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca, and
J. Dongarra. Extending the scope of the
checkpoint-on-failure protocol for forward recovery in
standard MPI. Technical Report UT-CS-12-702, University
of Tennessee, 2012.

D. Boley, G. H. Golub, S. Makar, N. Saxena, and E. J.
McCluskey. Floating point fault tolerance with backward
error assertions. IEEE Transactions on Computers,
44(2):302-311, February 1995.

G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello,

J. Dongarra, A. Guermouche, T. Hérault, Y. Robert,

F. Vivien, and D. Zaidouni. Unified Model for Assessing
Checkpointing Protocols at Extreme-Scale. Technical Report
RR-7950, INRIA, October 2012.

G. Bosilca, R. Delmas, J. Dongarra, and J. Langou.
Algorithm-based fault tolerance applied to high performance
computing. J. Parallel Distrib. Comput., 69(4):410-416,
April 2009.

M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and

D. Zaidouni. Using Group Replication for Resilience on
Exascale Systems. Technical Report RR-7876, INRIA,
February 2012.

K. Braman, R. Byers, and R. Mathias. The multishift QR
algorithm. ii. aggressive early deflation. SIAM J. Matrix Anal.
Appl., 23:948-973, 2002.

S. Brin and L. Page. The antaomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 33:107-17, 1998. Also available online at
http://infolab.stanford.edu/pub/papers/google.pdf.

K. Bryan and T. Leise. The $25,000,000,000 eigenvector. the
linear algebra behind google. SIAM Review, 48(3):569-81,
2006. Also avaiable at
http://www.rose-hulman.edu/~bryan/google.html.

H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni.
Combining Process Replication and Checkpointing for
Resilience on Exascale Systems. Technical Report RR-7951,
INRIA, May 2012.

A. M. Castaldo, R. C. Whaley, and A. T. Chronopoulos.
Reducing floating point error in dot product using the
superblock family of algorithms. SIAM J. Sci. Comput.,
31(2):1156-1174, 2008.

Z. Chen. Scalable techniques for fault tolerant high
performance computing. PhD thesis, University of
Tennessee, Knoxville, TN, USA, 2006.

T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High
Performance Linpack Benchmark: A Fault Tolerant
Implementation Without Checkpointing. In Proceedings of
the International Conference on Supercomputing, ICS "11,
pages 162-171, New York, NY, USA, 2011. ACM.

J. Dongarra, P. Beckman, and T. Moore. The international
Exascale software project roadmap. Int. J. High Perform.
Comput. Appl., 25(1):3-60, February 2011.

[19] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK

[5

—

[6

—_

[7

—

(8

—_—

[9

[

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

http://infolab.stanford.edu/pub/papers/google.pdf
http://www.rose-hulman.edu/~bryan/google.html

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

benchmark: Past, present, and future. Concurrency and
Computation: Practice and Experience, 15:1-18, 2003.

J. J. Dongarra and R. A. van de Geijn. Reduction to
condensed form for the eigenvalue problem on distributed
memory architectures. Parallel Computing, 18(9):973-982,
1992.

P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra.
Algorithm-based fault tolerance for dense matrix
factorizations. SIGPLAN Not., 47(8):225-234, February
2012.

J. G. F. Francis. The QR transformation a unitary analogue to
the LR transformation. I. Comput. J., 4:265-271, 1961.

J. G. F. Francis. The QR transformation II. Comput. J.,
4:332-345, 1962.

G. H. Golub and C. F. V. Loan. Matrix Computations. The
John Hopkins University Press, 4th edition, December 27
2012. ISBN-10: 1421407949, ISBN-13: 978-1421407944.
L. A. B. Gomez, N. Maruyama, F. Cappello, and

S. Matsuoka. Distributed Diskless Checkpoint for Large
Scale Systems. In Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference
on, pages 63-72, 2010.

R. Granat, B. Kagstrom, and D. Kressner. A novel parallel
QR algorithm for hybrid distributed memory HPC systems.
SIAM J. Sci. Comput., 32:2345-2378, 2010.

R. Granat, B. Kagstrom, D. Kressner, and M. Shao. Parallel
library software for the multishift QR algorithm with
aggressive early deflation. Technical Report UMINF-12.06,
Dept. of Computing Science, Umega University, Sweden,
2012.

D. Hakkarinen and Z. Chen. Algorithmic Cholesky
Factorization Fault Recovery. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium
on, pages 1-10, April 2010.

K.-H. Huang and J. A. Abraham. Algorithm-based fault
tolerance for matrix operations. /[EEE Trans. Comput.,
33(6):518-528, June 1984.

R. M. K. Braman, R. Byers. The multishift QR algorithm. i.
maintaining well-focused shifts and level 3 performance.
SIAM J. Matrix Anal. Appl., 23:929-947, 2002.

B. Kégstrom, D. Kressner, and M. Shao. On aggressive early
deflation in parallel variants of the QR algorithm. In PARA
2010, Applied Parallel and Scientific Computing, LNCS,
volume 7134, pages 1-10. Springer, 2012.

Y. Kim, J. S. Plank, and J. Dongarra. Fault Tolerant Matrix
Operations Using Checksum and Reverse Computation. In
6th Symposium on the Frontiers of Massively Parallel
Computation, pages 70-77, Annapolis, MD, October 1996.
J. Langou, Z. Chen, G. Bosilca, and J. Dongarra. Recovery
patterns for iterative methods in a parallel unstable
environment. SIAM J. Sci. Comput., 30(1):102-116,
November 2007.

A. Langville and C. Meyer. Google’s PageRank and Beyond:
The Science of Search Engine Rankings. Princeton University
Press, 2006.

C.-D. Lu. Scalable Diskless Checkpointing for Large
Parallel Systems. PhD thesis, University of Illinois, Urbana,
Illinois, USA, 2005.

F. T. Luk and H. Park. Fault-tolerant matrix
triangularizations on systolic arrays. I[EEE Trans. Comput.,
37(11):1434-1438, November 1988.

11

(37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

E. Meneses. Clustering Parallel Applications to Enhance
Message Logging Protocol.
https://wiki.ncsa.illinois.edu/download/attachments/
17630761/INRIA-UIUC-WS4-emenese.pdf?version=
1&modificationDate=1290466786000.

A. Petitet, C. Whaley, J. Dongarra, and A. Cleary. HPL - a
Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-memory Computers, September
2008. http://www.netlib.org/benchmark/hpl/.

J. S. Plank, K. Li, and M. A. Puening. Diskless
checkpointing. IEEE Trans. Parallel Distrib. Syst.,
9(10):972-986, October 1998.

R. Schreiber and C. V. Loan. A storage efficient WY
representation for products of householder transformations.
SIAM Journal on Scientific and Statistical Computing, 10,
1989.

B. Schroeder and G. A. Gibson. Understanding failures in
petascale computers. Journal of Physics: Conference Series,
78,2007.

G. W. Stewart. Matrix Algorithms, Volume II: Eigensystems.
SIAM: Society for Industrial and Applied Mathematics, First
edition, August 2001.

U. von Luxburg. A tutorial on spectral clustering. Stat.
Comput., 17:395-416, 2007.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford
University Press, Inc., New York, NY, USA, 1988. ISBN-10:
0198534183, ISBN-13: 978-0198534181.

J. H. Wilkinson. Rounding Errors in Algebraic Processes.
Dover, New York, 1994.

E. Yao, R. Wang, M. Chen, G. Tan, and N. Sun. A Case
Study of Designing Efficient Algorithm-based Fault Tolerant
Application for Exascale Parallelism. In Parallel Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th
International, pages 438—448, May 2012.

https://wiki.ncsa.illinois.edu/download/attachments/17630761/ INRIA-UIUC-WS4-emenese.pdf?version=1&modificationDate=1290466786000
https://wiki.ncsa.illinois.edu/download/attachments/17630761/ INRIA-UIUC-WS4-emenese.pdf?version=1&modificationDate=1290466786000
https://wiki.ncsa.illinois.edu/download/attachments/17630761/ INRIA-UIUC-WS4-emenese.pdf?version=1&modificationDate=1290466786000
http://www.netlib.org/benchmark/hpl/

	Introduction
	Related Work
	ScaLAPACK Hessenberg Reduction
	2D Block Cyclic Data Distribution
	Failure Model Under 2D Block Cyclic Data Distribution
	Non-blocked Hessenberg Reduction
	Blocked Hessenberg Reduction

	Encoding The Input Matrix
	The Algorithm
	Maintaining Data Redundancy in the Factorization
	Checksum Duplication
	Recovery

	Performance Analysis
	Experiments
	Overhead Without Failure
	Overhead With Failure
	Numerical Stability After Recovery From a Failure

	Conclusions and Future Work
	Acknowledgments
	References

