
Toward a Scalable Multi-GPU Eigensolver via
Compute-Intensive Kernels and Efficient Communication

Azzam Haidar
Electrical Engineering and

Computer Science
University of Tennessee

Knoxville, Tennessee, USA
haidar@eecs.utk.edu

Mark Gates
Electrical Engineering and

Computer Science
University of Tennessee

Knoxville, Tennessee, USA
mgates3@eecs.utk.edu

Stanimire Tomov
Electrical Engineering and

Computer Science
University of Tennessee

Knoxville, Tennessee, USA
tomov@eecs.utk.edu

Jack Dongarra
∗ †

Computer Science and
Mathematics Division
Oak Ridge National

Laboratory
dongarra@eecs.utk.edu

ABSTRACT
The enormous gap between the high-performance capabili-
ties of GPUs and the slow interconnect between them has
made the development of numerical software that is scalable
across multiple GPUs extremely challenging. We describe a
successful methodology on how to address the challenges—
starting from our algorithm design, kernel optimization and
tuning, to our programming model—in the development of
a scalable high-performance tridiagonal reduction algorithm
for the symmetric eigenvalue problem. This is a funda-
mental linear algebra problem with many engineering and
physics applications. We use a combination of a task-based
approach to parallelism and a new algorithmic design to
achieve high performance. The goal of the new design is to
increase the computational intensity of the major compute
kernels and to reduce synchronization and data transfers be-
tween GPUs. This may increase the number of flops, but the
increase is offset by the more efficient execution and reduced
data transfers. Our performance results are the best avail-
able, providing an enormous performance boost compared
to current state-of-the-art solutions. In particular, our soft-
ware scales up to 1070 Gflop/s using 16 Intel E5-2670 cores
and eight M2090 GPUs, compared to 45 Gflop/s achieved
by the optimized Intel Math Kernel Library (MKL) using
only the 16 CPU cores.

∗University of Tennessee, USA
†School of Mathematics & School of Computer Science, Uni-
versity of Manchester, United Kingdom

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’13, June 10–14, 2013, Eugene, Oregon, USA.
Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

Categories and Subject Descriptors
G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Singular value decomposition, Eigenvalues and eigenvectors

Keywords
Eigenvalue, GPU Communication, GPU Computation, Per-
formance, Reduction to tridiagonal, Singular Value Decom-
position, heterogeneous programming model, task parallelism

1. INTRODUCTION
An exponentially increasing gap over the years of pro-

cessor speed vs. memory and interconnect speeds has es-
tablished the notion that “flops are free” compared to the
cost of fetching data. Indeed, if we consider the speed of
current GPUs vs. bandwidth of CPU-to-GPU communica-
tions, the cost of sending one double-precision floating-point
(DP) number through PCIe 3.0, disregarding latency, can
be the same as 1,000 DP flops on the latest NVIDIA Kepler
K20 GPU. In other words, a computation in this setting is
bound by the CPU-to-GPU bandwidth, unless data reuse
exceeds 1,000. To address this issue, algorithms must be
redesigned in order to increase the computational intensity
of their major compute kernels, and to reduce synchroniza-
tion and data transfers between processors. We describe
how to achieve this in the development of a scalable high-
performance multi-GPU tridiagonal reduction for the sym-
metric eigenvalue problem.

Eigenvalue problems are fundamental for many engineer-
ing and physics applications. For example, image processing,
compression, facial recognition, vibrational analysis of me-
chanical structures, and computing energy levels of electrons
in nanostructure materials can all be expressed as eigenvalue
problems. There are many ways to formulate mathemati-
cally and solve these problems numerically [11], but in all
cases, designing an efficient computation is challenging be-
cause of the nature of the algorithms. In particular, the basic
transformations (orthogonal similarity transformations) ap-
plied to the matrix are two-sided, i.e., transformations are
applied on both the left and right side of the matrix. This

223

creates data dependencies that prevent the use of standard
techniques to increase the computational intensity of the
computation [26], such as blocking and look-ahead, which
are used extensively in the one-sided LU, QR, and Cholesky
factorizations [27]. New algorithms are needed in order to
overcome the bottlenecks associated with the standard tech-
niques, as described in Section 4.

Besides the algorithmic design, the development of high-
performance scalable software is linked to the programming
model and languages used in the implementation. Our de-
velopment is done in C/C++ and, when available, we rely
on existing routines in numerical libraries like CUBLAS and
MAGMA BLAS (for GPUs), MKL, ACML, and PLASMA
(for multicore CPUs), or MAGMA (for hybrid CPU-GPU
systems) to provide the basic building blocks for our algo-
rithms. Our programming model is based on task paral-
lelism where the computation is split into tasks and data
dependencies among the tasks, and the execution is sched-
uled over all available heterogeneous hardware components
without violating the dependencies. This model has been
successfully used in the development of dense linear algebra
libraries [3], and is self-evident in the presentation.

2. RELATED WORK
LAPACK [4] and ScaLAPACK [10] are the standard lin-

ear algebra libraries for dense and banded matrices that in-
clude eigensolver routines. LAPACK is for shared-memory
systems, while ScaLAPACK is its extension to distributed-
memory systems. Neither of them supports GPUs. Hard-
ware vendors in general provide well tuned LAPACK and
ScaLAPACK versions based on optimized BLAS — the build-
ing block for these libraries.

Recent work specifically on eigenvalue problems has con-
centrated on accelerating separate components of the solvers,
and in particular, the reduction to condensed form, which
is the most time consuming phase. This includes reductions
to Hessenberg, tridiagonal, and bidiagonal forms, each of
which is the result of a similarity transformation for general
eigenvalues, symmetric eigenvalues, or the singular value de-
composition, respectively. The standard one-stage reduction
algorithms have been challenged by the method of splitting
the reduction phase into multiple stages.

One of the first uses of a two-stage reduction occurred in
the context of out-of-core solvers for generalized symmetric
eigenvalue problems [16]. Then, a multi-stage method was
used to reduce a matrix to tridiagonal, bidiagonal and Hes-
senberg forms [22]. With this approach, it was possible to
recast the expensive memory-bound operations that occur
during the panel factorization into a compute-bound pro-
cedure. Consequently, a framework called Successive Band
Reduction (SBR) was designed [8], that integrated some of
the multi-stage work. The SBR toolbox applies two-sided
orthogonal transformations based on Householder reflectors
and successively reduces the matrix bandwidth size until a
suitable bandwidth is reached. The off-diagonal elements
are then annihilated, which produces fill-in blocks or bulges
that need to be chased down toward the bottom right cor-
ner of the matrix, hence this stage is termed“bulge chasing.”
If eigenvectors are required in addition to the eigenvalues,
the bulge chasing transformations can be efficiently accumu-
lated through Level 3 BLAS operations and used to generate
the eigenvectors. Communication bounds for such two-sided
reductions have been established under the Communication

Avoiding framework [6]. A multi-stage approach has also
been applied to the Hessenberg reduction [21] as well as the
QZ algorithm [20] for the generalized non-symmetric eigen-
value problem.

Tile algorithms have recently seen a rekindled interest
when applied to the two-stage tridiagonal [17, 24] and bidi-
agonal reductions [23]. The first stage is implemented us-
ing high performance kernels combined with a data transla-
tion layer to execute on top of the tile data layout format.
The second stage is implemented based on cache-aware ker-
nels and a task coalescing technique [17]. The performance
achieved is far greater than other available implementations.
These approaches, in contrast to our own, are not for hybrid
GPU-CPU systems.

With the emergence of high-bandwidth, high-performance
GPUs, memory-bound and compute-bound operations can
be accelerated by an order of magnitude or more. Tomov et
al. [26] presented novel hybrid reduction algorithms for the
two-sided factorizations, which take advantage of the high
bandwidth of the GPU by offloading the expensive Level 2
BLAS operations of the panel factorization to the GPU. Bi-
entinesi et al. [7] instead accelerated the two-stage approach
of the SBR toolbox by offloading the compute-bound kernels
of the first stage to the GPU. The computation of the sec-
ond stage (reduction from band to tridiagonal) still remains
on the host though. Vomel et al. [28] extended the tridi-
agonalization approach in [26] to the symmetric standard
eigenvalue problem, and Dong et al. [12] to multi-GPUs.

ELPA [5], a recent distributed-memory eigensolver library,
was developed for electronic structure codes. ELPA is based
on ScaLAPACK and does not support GPUs. It includes
one-stage and two-stage tridiagonalizations, the correspond-
ing eigenvector transformation, and a modified divide and
conquer routine that can compute the entire eigenspace or a
part of it. Haidar et al. [18] developed a two-stage approach
for multicore and single GPU. The main thrust of the work
presented here is the extension of this two-stage approach
to multi-GPUs.

3. MAIN CONTRIBUTIONS
We developed the following new algorithms, software, and

techniques for heterogeneous multi-GPU computing:

• Efficient and scalable multi-GPU BLAS, includ-
ing the HER2K and HEMM Level 3 BLAS kernels;

• Multi-GPU two-stage tridiagonalization, utiliz-
ing techniques to map computational tasks to the strengths
of heterogeneous hardware components, and to overlap
computation on GPUs with computation on CPUs;

• Hierarchical multi-GPU communication model
to optimize communication for multi-GPUs, which can
be applied in general, beyond the scope of the algo-
rithms developed;

• Examining trade-offs between communication
and extra computation to reduce overall execution
time, which we believe will become increasingly impor-
tant for current and up-coming hardware.

Further, the algorithms presented are included in MAGMA [1],
an open source library of next generation LAPACK-compliant
linear algebra routines for hybrid GPU-CPU architectures.

224

4. BACKGROUND
To solve a Hermitian (symmetric) eigenproblem of the

form Ax = λx, finding its eigenvalues Λ and eigenvectors Z
such that A = ZΛZ∗, where ∗ denotes conjugate-transpose,
the standard algorithm follows three steps [2,15,25]. First,
reduce the matrix to tridiagonal form using an orthogonal
transformation Q such that A = QTQ∗, where T is a tridiag-
onal matrix (called the “reduction phase”). Note that when
a two-sided orthogonal transformation is applied to gener-
ate T , the eigenvalues of the tridiagonal matrix are the same
as those of the original matrix. Second, compute eigenpairs
(Λ, E) of the tridiagonal matrix (called the“solution phase”).
Third, back transform eigenvectors of the tridiagonal matrix
to eigenvectors of the original matrix, Z = QE (called the
“back transformation phase”). Due to the computational
complexity and data access patterns, it is well known that
the reduction phase is considerably more time consuming
than the other two phases combined. Thus, in this paper,
we will focus on improving the reduction to tridiagonal step,
and present a multi-GPU implementation of it.

4.1 Tridiagonal reduction
Several approaches exist to compute the tridiagonalization

of a dense matrix.

4.1.1 Standard approach
Standard software for reducing a symmetric dense ma-

trix to tridiagonal form is available in LAPACK [4] and
in MAGMA [1] through the ZHETRD (DSYTRD) routine.
This approach suffers from a lack of efficiency, and so it
is important to first identify the bottlenecks of this stan-
dard one-stage approach. It is characterized by iterating
two computational phases: the panel factorization and the
update of the trailing submatrix. The panel factorization
computes the transformations (reflectors) to introduce zeros
below the subdiagonal within a block column using memory-
bound Level 2 BLAS operations. The trailing submatrix up-
date applies the accumulated block reflector using compute-
bound Level 3 BLAS operations. The parallelism in this ap-
proach resides primarily within the trailing submatrix up-
date phase. Synchronization points are required between
each panel factorization and trailing submatrix update, pre-
venting overlap of the computational phases and memory
transfers between the CPU and GPU. The panel factoriza-
tion step is actually the critical phase because computing
each reflector column of the panel requires a substantial
symmetric matrix-vector product involving the trailing sub-
matrix. Although this approach scales on multi-GPUs, the
performance is memory-bound [12].

4.1.2 Two-stage approach
Because of the expense of the reduction step, renewed re-

search has focused on improving this step, resulting in a
novel technique based on a two-stage reduction [17]. We
developed a two-stage algorithm for one GPU [18] which
achieved good performance compared to the standard ap-
proach [12, 26, 28], motivating us to focus in this paper on
developing and optimizing a multi-GPU two-stage approach.

The two-stage reduction is designed to increase the uti-
lization of compute-intensive operations. Many algorithms
have been investigated using this two-stage approach [8, 9].
The idea is to split the original one-stage approach into a
compute-intensive phase (first stage) and a memory-bound

phase (second or “bulge chasing” stage). The first stage re-
duces the original symmetric dense matrix to a symmetric
band form, while the second stage reduces from band to
tridiagonal form.

First stage.
The first stage applies a sequence of block Householder

transformations to reduce a symmetric dense matrix to a
symmetric band matrix. This stage uses compute-intensive
matrix-multiply kernels, eliminating the memory-bound
matrix-vector product in the one-stage panel factorization,
and has been shown to have a good data access pattern and
large portion of Level 3 BLAS operations [8, 13, 14, 18]. It
also enables the efficient use of GPUs by minimizing com-
munication and allowing overlap of computation and com-
munication. Given a dense n × n symmetric matrix A, the
matrix is divided into nt = n/b block-columns of size b.
The algorithm proceeds panel by panel, performing a QR
decomposition for each panel to generate the Householder
reflectors V (i.e., the orthogonal transformations) required
to zero out elements below the bandwidth b. Then the gen-
erated block Householder reflectors are applied from the left
and the right to the trailing symmetric matrix, according to

A = A−WV ∗ − VW ∗, (1)

where V and T define the block of Householder reflectors
and W is computed as

W = X − 1
2
V T ∗V ∗X, where (2)

X = AV T.

Second stage.
The second stage involves memory-bound operations and

requires the band matrix to be accessed from multiple dis-
joint locations. In other words, there is an accumulation
of substantial latency overhead each time different portions
of the matrix are loaded into cache memory, which is not
compensated for by the low execution rate of the actual
computations (the so-called surface-to-volume effect). To
overcome these critical limitations, we use the novel bulge
chasing algorithm (reduction from band to tridiagonal) de-
veloped in [17]. This algorithm is designed to extensively use
cache friendly kernels combined with fine grained, memory
aware tasks in an out-of-order scheduling technique which
considerably enhances data locality. This reduction has been
designed for multicore architectures, and results have shown
its efficiency. This step has been well optimized such that it
takes between 5% to 10% of the global time of the reduction
from dense to tridiagonal. We refer the reader to [17,18] for
a detailed description of the bulge chasing algorithm.

We decide to develop a hybrid CPU-GPU implementation
of only the first stage of this algorithm, and leave the second
stage executed entirely on the CPU. The main motivation
is that the first stage is the most expensive computational
phase of the reduction. Results show that 90% of the time
is spent in the first stage reduction. Another motivation for
this direction is that accelerators perform poorly when deal-
ing with memory-bound fine-grained computational tasks
(such as bulge chasing), limiting the potential benefit of a
GPU implementation of the second stage.

225

5. MULTI-GPU ALGORITHM
Our hybrid CPU-GPU algorithm is similar to the two-

stage tridiagonal reduction developed for multicore CPUs [17].
However, a hybrid CPU-GPU implementation needs to take
advantage of the GPUs by offloading expensive operations to
the GPUs, while overlapping the CPU and the GPU com-
putation and minimizing communication. In other words,
our goal is to keep the GPUs busy, making the CPUs wait
for the GPUs, and not the reverse. The relatively slow CPU
computation and the communications with the GPUs are
hidden by overlapping them with the GPU computation.
To characterize our work, we start by describing the single
GPU implementation of the reduction to banded form.

5.1 Hybrid CPU–single GPU band reduction
The hybrid CPU-GPU algorithm is illustrated in Figure 1.

We first run the QR decomposition (GEQRT kernel) of a
panel on the CPUs. Once the panel factorization of step
i is finished, then we compute W on the GPU, as defined
by equation (2). This kernel is called xPNCXW. Its com-
putation involves a matrix-matrix multiplication (GEMM)
to compute V T , then a Hermitian matrix-matrix multiplica-
tion to compute X = AV T (HEMM), which is the dominant
cost of computing W , consisting of 95% of the time spent
in computing W , and finally another inexpensive GEMM.
Once W is computed, the trailing matrix update (apply-
ing transformations on the left and right) defined by equa-
tion (1) can be performed using a rank-2k update (HER2K).
Note that for real symmetric matrices, the operations corre-
sponding to HEMM and HER2K are SYMM and SYR2K.

However, to allow overlap of CPU and GPU computation,
the trailing submatrix update is split into two pieces. First,
the next panel for step i + 1 (green panel of Figure 1) is
updated using two GEMMs on the GPU. The corresponding
kernel is called xPNRFB. Next, the remainder of the trailing
submatrix (orange triangle of Figure 1) is updated using a
HER2K. While the HER2K is executing, the CPUs receive
the panel for step i+1, perform the next panel factorization
(GEQRT), and send the resulting Vi+1 back to the GPU. In
this way, the factorization of panels i = 2, . . . , nt and the
associated communication are hidden by overlapping with
GPU computation, as demonstrated in Figure 2.

This is similar to the look-ahead technique typically used
in the one-sided dense matrix factorizations. Figure 2 shows
a snapshot of the execution trace of the reduction to band

G
PU

C

PU
s

CPU: QR on
panel (i+1)
xGEQRT

GPU: compute W(i)
and update next panel (i+1)

xPNCXW and xPNRFB

GPU: update
trailing matrix

xHER2K

W(i)

panel of (i+1)
step i

W(i+1)

Figure 1: Description of the reduction to banded
form, stage 1.

form, where we can easily identify the overlap between CPU
and GPU computation. Note that the high-performance
GPU is continuously busy, either computing W or updating
the trailing matrix, while the lower performance CPUs wait
for the GPU as necessary. We compare hybrid GPU-CPU
implementations of the one-stage and two-stage algorithms
in Figure 3, where the two-stage algorithm is about six times
faster than the standard one-stage approach. Also, both hy-
brid implementations are significantly faster than the CPU-
only implementation available in the Intel MKL.

5.2 Hybrid multi CPU-GPU band reduction
In this section, we describe the development of our multi-

GPU algorithm, including the constraints to consider, how
to deal with communication, and how to achieve good scal-
ability over both CPUs and GPUs. Our target algorithm,
the first stage reduction to band form, involves two main
multi-GPU kernels: the computation of W and the trailing
submatrix update.

Recall that the computation of W involves two small
GEMMs (5% of the time to compute W), and one expensive
HEMM (95% of the time). Rather than computing the two
small GEMMs on one GPU and broadcasting the results to
the other GPUs, it is faster to duplicate these two small
computations on all the GPUs. A scalable implementation
of the multi-GPU HEMM, in which a data distribution is
chosen in order to minimize communications, is described
below.

CPU: QR on
Panel i xGEQRT

CPU: waiting

GPU: compute W(i) xPNCXW
and update next panel (i+1) xPNRFB

GPU: update
trailing matrix xHER2K

0: NT= number of block

1: for i = 0; 1 to NT-1

2: panelstep i: QR(i) ==>(V,T)

3: compute X = AVT (HEMM)

4: compute W = X – (½)V*T’*V’*X

5: update trailing matrix

A = A – W’*V – V’*W (HER2K)

6: end for

CPU
GPU

CPU: QR on
Panel i+1
xGEQRT

Figure 2: Execution trace of reduction to banded
form.

2k3k4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k
0

40

80

120

160

200

240

280

Matrix size

G
flo

p/
s

DSYTRD_2stage_1GPU
DSYTRD_standard_1GPU
DSYTRD_standard_MKL

Figure 3: Comparison between the standard and the
two-stage approaches for the reduction to tridiago-
nal. The reference Gflops formula is 4n3/3 for all.

226

As previously described for the single GPU implementa-
tion, the trailing submatrix update is split into two parts.
First we update the next panel, which is a block column
belonging to a single GPU, so it can be updated with two
GEMMs on a single GPU. Then a multi-GPU HER2K up-
dates the rest of the trailing matrix, which is distributed
across multiple GPUs.

5.2.1 Data distribution
In the LAPACK storage for Hermitian and symmetric ma-

trices, only one of the lower or upper triangles of A has valid
entries; the other triangle is not referenced. We shall assume
that the lower triangle of A is referenced. Due to the low
communication bandwidth between GPUs relative to their
high floating point performance, a 1-D block-column cyclic
distribution of the matrix was chosen, as shown in Figure 4.
However, the block size for distribution does not need to be
the same as the bandwidth. It may be more efficient to have
a larger block size for distribution than the bandwidth. This
only slightly complicates the code, as the first and last block
can be partial blocks.

GPU 0 GPU 1

Figure 4: Block-cyclic data distribution. Shaded ar-
eas contain valid data. Dashed lines indicate diago-
nal blocks.

5.2.2 Multi-GPU HER2K (SYR2K)
The Hermitian rank-2k update implements the operation

A = A−VW ∗−WV ∗, where A is an n×n Hermitian matrix,
and V and W are n × k matrices. After distribution, the
portion of A on each GPU no longer appears as a symmetric
matrix, but instead has a stepped appearance, as in Figure
4. Because of this stepped storage, the multi-GPU HER2K
cannot be assembled purely from regular HER2K calls on
each GPU. Instead, each block column must be processed
individually. The diagonal blocks require special attention.
In the BLAS standard, elements above the diagonal are not
accessed; the user is free to store unrelated data there and
the BLAS library will not touch it. To achieve this, one can
use a HER2K to update each diagonal block, and a GEMM
to update the remainder of each block column below the di-
agonal block. However, these small HER2K operations have
little parallelism and so are inefficient on a GPU. This can
be improved to some degree by using multiple streams to
execute several HER2K updates simultaneously. However,

because we have copied the data to the GPU, we can con-
sider the space above the diagonal to be a scratch workspace.
Thus, we update the entire block column, including the diag-
onal block, writing extra data into the upper triangle of the
diagonal block, which is subsequently ignored. We do extra
computation for the diagonal block, but gain efficiency over-
all by launching fewer BLAS kernels on the GPU and using
the more efficient GEMM kernels, instead of small HER2K
kernels.

1: for i = 1 to nt do
2: if this GPU owns block-column i then
3: Ai:nt,i −= Vi:ntW

∗
i

4: end if
5: end for
6: for i = 1 to nt do
7: if this GPU owns block-column i then
8: Ai:nt,i −= Wi:ntV

∗
i

9: end if
10: end for

Algorithm 1: Multi-GPU Hermitian rank-2k up-
date.

We replicate the V and W matrices on all the GPUs.
Each block column of A, denoted Ai:nt,i, is updated with
two GEMMs, as shown in Algorithm 1. These can be done
in multiple streams, to allow multiple simultaneous GEMMs
when a single GEMM does not fill up the GPU. The code
loops over all block columns and executes the required GEMMs
on the GPU that owns each block column. Other than
broadcasting V and W to all GPUs, there is no additional
communication required during the HER2K operation, so it
scales well to multiple GPUs, as demonstrated in Figure 5.

2000 4000 6000 8000 10000 12000
matrix size

200

400

600

800

1000

G
fl
o
p
/s

4 GPUs

3 GPUs

2 GPUs

1 GPU

Figure 5: Multi-GPU DSYR2K scales perfectly with
number of GPUs.

5.2.3 Multi-GPU HEMM (SYMM)
In this section, we will discuss the different implementa-

tions for the HEMM kernel, which is one of the two primary
kernels of the reduction to band algorithm. We recall that
the role of HEMM is to compute X = AV T , where A is
an n × n Hermitian matrix and B = V T is a block-column
matrix of size n×nb. We mention that only the lower or the
upper triangle of the matrix A is referenced, the opposite

227

x =

(a) Row-oriented schema

x =

(b) Column-oriented schema

Figure 6: Representation of a one GPU HEMM for
both Row or Column oriented schema.

triangle being obtained by symmetry. Two loop orderings
can be considered when implementing this kernel.

Row-oriented.
A row-oriented HEMM multiplies block-row Ai,: by B to

compute each block Xi, for i = 1 to nt, as illustrated in
Figure 6a. Elements of A right of the diagonal are obtained
by transposing block-column i below the diagonal (assuming
lower-triangular storage). The multi-GPU implementation
of this design is given in Algorithm 2 and diagrammed in
Figure 7. This implementation suffers from a lack of paral-
lelism due to the small size of its output (small square nb×nb
block) which is known as an inner product GEMM and can-
not perform efficiently on GPUs (compared to outer product
GEMM). Because the data is distributed over the GPUs,

each GPU computes a partial X(g). A sum-allreduce across
the GPUs is then required to accumulate X =

∑ngpu
g=1 X(g)

and distribute the final result back to all the GPUs.

1: X = 0
2: for i = 1 to nt do
3: Xi += Ai,myblkBmyblk,
4: if this GPU owns block-column j then
5: Xi += A∗

i:nt,iBi:nt,
6: end if
7: end for
8: sum–allreduce X

Algorithm 2: Row-oriented multi-GPU HEMM.
myblk denotes blocks owned by current GPU.

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

x =

(a) Xi += A∗
i:nt,iBi:nt

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

x =

(b) Xi += Ai,myblkBmyblk

Figure 7: Block-row i of row-oriented multi-GPU
HEMM writes small result with little parallelism.
Each color represents different GPU.

Column-oriented.
A column-oriented HEMM multiplies block-column A:,j

by block Bj to compute a partial sum X(j), for j = 1 to

nt, as illustrated in Figure 6b. Elements of A above the
diagonal are obtained by transposing block-row j left of the
diagonal. The multi-GPU implementation of this design is
given in Algorithm 3 and diagrammed in Figure 8. It has
a large amount of parallelism because each block-column
GEMM results in a large (n − j ∗ nb) × nb block. Again,

each GPU computes a partial X(g), which requires a sum-
allreduce across the GPUs to accumulate X and distribute
the final result back to all the GPUs. This HEMM algorithm
is used in our multi-GPU implementation (version 1 and 2),
as detailed in Section 5.2.4.

1: X = 0
2: for j = 1 to nt do
3: Xmyblk += A∗

j,myblkBj ,
4: if this GPU owns block-column j then
5: Xj:nt += Aj:nt,jBj

6: end if
7: end for
8: sum–allreduce X

Algorithm 3: Column-oriented multi-GPU HEMM.

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

x =

(a) Xj:nt += Aj:nt,jBj

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

x =

(b) Xmyblk += A∗
j,myblkBj

Figure 8: Block-column j of column-oriented multi-
GPU HEMM writes large result with significant par-
allelism.

5.2.4 Communication schema
Reducing communication or overlapping communication

with computation is critical in order to maximize the time
GPUs spend in compute-intensive kernels, especially for multi-
GPU implementations. In the context of our algorithm, the
assembly of X(g) of the HEMM described above becomes a
synchronization point because the HER2K depends on the
result of the HEMM, preventing overlap of communication
and computation. Our goal is therefore to minimize the
communication time. We investigate various implementa-
tions of the communication model that could be used for
the sum-allreduce and discuss the trade-offs in each.

Model 1.
In our first implementation, all the GPUs send their X(g)

to the CPU, which does the sum-allreduce and then broad-
casts the final result X back to all the GPUs. Figure 9
shows an execution trace of the HEMM and its communica-
tion with this approach on three GPUs.

To understand the communication behavior requires un-
derstanding the underlying hardware topology. Systems with
multiple GPUs often use PCIe switches or I/O hubs, with
several GPUs connected to each switch. This is the case,
for instance, with an NVIDIA S2070, which has four GPUs

228

connected, in pairs, to two PCIe switches. GPUs connected
to a PCIe switch share bandwidth to the host CPU. As a
result, sending data from multiple GPUs requires the same
total time, whether sent in parallel or sequentially.

In the context of our HEMM, we choose to send the data
sequentially, so that once the CPU receives data from the
first two GPUs, it can start performing the sum-allreduce
while receiving the next data. However, the communication
time increases linearly with the number of GPUs, creating a
severe bottleneck that limits the scalability of this approach.
While adding GPUs decreases the HEMM compute time,
this is not sufficient to offset the increased communication
time. This serialization of communication is easily observed
in Figure 9, and from this understanding of the communi-
cation behavior, we expect poor performance as the number
of GPUs increases. We refer to our implementation of the
column-oriented HEMM using this communication model as
version 1.

sending to CPU

 ZHEMM ZHER2K

receive from CPU

comm

Figure 9: Trace of the execution of ZHEMM using
communication model 1 when the CPU is responsi-
ble for the communication.

Model 2: Hierarchical Communication Model.
To address this increase in communication time, we devel-

oped a second, hierarchical, communication schema. Each
PCIe switch is viewed as a node in a distributed system,
with one GPU in each node assigned to be the master.
Within each node, GPUs communicate locally in a “free
GPU-GPU mode” with each other or with the master; be-
tween two nodes, the master GPUs communicate directly
together. This hierarchical communication model is easily
adaptable to a distributed environment where the commu-
nication between masters of different nodes should be done
via the CPU using MPI. This communication model is de-
picted in Figure 10. Thus, in the context of our HEMM,
the sum-allreduce is first done independently by the master
GPU within each node, where all the GPUs send their X(g)

to the master GPU, which does the addition. After receiv-
ing contributions from GPUs within each node, the master
GPUs exchange data and each, redundantly, makes the final
addition. Then, each master independently broadcasts the
final result X to all GPUs within its node.

We refer to our implementation of the column-oriented
HEMM using this communication model as version 2. Sim-
ilarly to version 1, we depict in Figure 11 the execution
trace of the HEMM with this communication schema. Here,
GPU 0 belongs to node 0, while GPU 1 and GPU 2 belong
to node 1. Hence, within each node the communication is

GPU0 GPU1

GPU2 GPU3

CPU

GPU4 GPU5

GPU6 GPU7

Send & Recv

Current master

Figure 10: Mapping communication to hardware.

 ZHEMM ZHER2K

receive from
other master

sending to GPU
locally sending to other

master

master GPU
local addition

receive from
GPU locally

comm

Figure 11: Trace of the execution of ZHEMM using
the Hierarchical Communication Model.

done independently and the exchange of data between nodes
is reduced to master communication, significantly reducing
the communication time.

In Table 1, we report the time in seconds needed by the
reduction from dense to band form using these two com-
munication models when varying the number of GPUs. As
expected, the second model of communication has good per-
formance and good scalability compared to the first one. We
note here that the size of the matrix is too small to achieve
linear scaling up to five GPUs.

1 GPU 2 GPUs 3 GPUs 4 GPUs 5 GPUs
version 1 60.1 43.2 36.7 34.0 33.2
version 2 60.0 29.1 21.8 21.2 20.4
version 3 67.3 30.2 21.7 19.4 16.3

Table 1: Comparison of three versions of reduction
to band algorithm, showing time in seconds while
varying number of GPUs for matrix of size n = 15000
in double complex precision.

5.2.5 Alternative implementation
An alternative third implementation that minimizes the

communication can be of interest. Assume that the Hermi-
tian matrix is available in both its lower and upper part.
Thus a row-oriented large HEMM can be applied as a sin-
gle GEMM operation on each GPU. Because the matrix is
assumed to be full, then the result of this HEMM is large,
of size n × n/ngpu, and thus the resulting parallelism is

229

enough to get good performance. The resulting Xmyblk is
the final result of X for the blocks belonging to each GPU,
and thus there is no need for a sum-allreduce. Each GPU
needs to broadcast only its computed blocks of X to the
other GPUs. The amount of communication is divided by
the number of GPUs, resulting in significantly less commu-
nication than the two approaches described above. Each
GPU must broadcast n/(nb× ngpu) blocks instead of n/nb
blocks. We use the same hierarchical communication model
described above in Figure 10 to organize this communica-
tions in an optimized fashion. The assembly inside each
node is done by local GPU-GPU communication indepen-
dently from other nodes, while assembly between nodes is
done via the master GPU of each node. In Figure 12, we
depict a representation of this implementation of HEMM.
Note that the number of operations remains the same; the
only requirement is that the symmetric part of the matrix
needs to be available.

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

x =

Xmyblk = A∗
:,myblkB

Figure 12: A fast multi-GPU implementation of an
HEMM minimizing communication and increasing
parallelism.

The main difficulty here is to have the symmetric part
of the matrix. To do this we have two choices. First is to
symmetrize the matrix just before starting the HEMM ker-
nel. However, this requires significant communication and
we would lose any gains we achieved, so we disregard this
choice. Second is to symmetrize the matrix once, and modify
the HER2K so that it maintains the symmetry by updating
both the lower and upper parts of the matrix. This incurs
no extra communication but does twice the number of op-
erations. We trade off extra computation in the HER2K
for a large reduction in communication cost in the HEMM,
particularly for a large number of GPUs. This is further
justified because the HER2K is overlapped with the panel
factorization on the CPUs; with enough GPUs, the HER2K
becomes faster than the panel, so the GPUs must wait for
the panel instead of the HER2K. Thus, adding extra work
to the HER2K will not impact the overall execution time so
long as it is faster than the panel.

In Figure 13, we depict the execution trace of this ap-
proach, showing that the communication time becomes mar-
ginal. We also report in Table 1 the time in seconds for the
reduction to band form, and compare it to the previous two
versions defined above. We see that for more than three
GPUs, the extra work needed by this approach is hidden,
and it is able to reach better performance than the two pre-
vious versions. For one GPU, it is normal that version 3 is
slower, as no communication is needed while the HER2K has
twice as many operations, but it is a good example to show

 ZHEMM ZHER2K
comm

Figure 13: Trace of the execution of ZHEMM using
the Hierarchical Communication Model.

that the extra cost is not prohibitive. It is 12% of the time
on one GPU, and so becomes less than 6% on two GPUs
and so on. Thus we consider version 3 also as interesting as
version 2.

6. EXPERIMENTAL RESULTS
This section presents the performance comparisons of our

hybrid multi CPU-GPU two-stage TRD against the multi-
GPU standard TRD approach, and against the state-of-the-
art multicore numerical linear algebra libraries.

6.1 Experimental Environment
Our experiments were performed on the largest shared-

memory system we could access at the time of writing this
paper. It is representative of a vast class of servers and
workstations commonly used for computationally intensive
workloads. We benchmark all implementations on an Intel
multicore system with dual-socket, 8 core Intel Xeon E5-
2670 (Sandy Bridge) processors, each running at 2.6 GHz.
Each socket has a 24 MB shared L3 cache, and each core
has a private 256 KB L2 and 64 KB L1. The system is
equipped with 52 Gbytes of memory. The theoretical peak
for this architecture in double precision is 20.8 Gflop/s per
core. The system is also equipped with eight NVIDIA M2090
cards with 6 Gbytes per card running at 1.3 GHz, connected
to the host via PCIe I/O hubs at 8 Gbytes/s bandwidth.

There are a number of software packages that implement
the tridiagonal reduction. For comparison, we used the MKL
(Math Kernel Library) [19] which is a commercial software
from Intel that is a highly optimized programming library.
It includes a comprehensive set of mathematical routines im-
plemented to run well on multicore processors. In particular,
MKL includes the LAPACK-equivalent routine performing
the tridiagonal reduction DSYTRD. The MAGMA [1] li-
brary is used for the multi-GPU standard approach. We
recall that the algorithmic complexity of the standard full
tridiagonal reduction is 4

3
N3 and this is used as a reference

to draw the performance of all the graphs we show.

6.2 Effect of block size or bandwidth
Both stages in the two-stage reduction to tridiagonal form

algorithm depend strongly on the bandwidth size. The re-
duction to band form can be achieved with efficient Level
3 BLAS operations for large bandwidth size, e.g., kb > 40,
while the bulge chasing is a memory-bound algorithm, mean-
ing that it performs better for small kb rather than for large
kb. The bulge chasing stage has been implemented [17] with

230

cache-friendly kernels and smart scheduling to allow good
performance for large kb > 40, but it is recommended to
keep kb as small as possible. Thus, the choice of bandwidth
is a compromise between these two competing factors. Over-
all, a bandwidth of 64 was found to be a good compromise.

6.3 Performance results
We compare the performance of our hybrid multi-GPU

two-stage TRD algorithm against the one-stage approach
from optimized state-of-the-art numerical linear algebra li-
braries. In particular, Figure 14 shows the comparison with
(1) the DSYTRD routine from the Intel MKL, and (2) the
hybrid multi-GPU DSYTRD from MAGMA. Our imple-
mentation asymptotically achieves more than a 7× speedup
on one GPU and more than a 20× speed up on six GPUs
against MKL. It also achieved a significant performance com-
pared to its multi-GPU counterpart using the standard one-
stage approach. It is around 4 times faster than the multi-
GPU standard approach. The fact that the first stage is a
compute intensive stage, and the fact that the implementa-
tion design maps both the algorithm and the communica-
tion to the hardware, allows this algorithm to achieve good
scalability. We believe that this attractive behavior makes
our algorithm a good candidate for the next generation of
distributed multi-GPU machines.

2k3k4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 34k 36k 40k
0

100

200

300

400

500

600

700

800

900

1000

1100

Matrix size

G
flo

p/
s

DSYTRD_2stages_8GPUs
DSYTRD_2stages_6GPUs
DSYTRD_2stages_4GPUs
DSYTRD_2stages_2GPUs
DSYTRD_2stages_1GPU
DSYTRD_standard_8GPUs
DSYTRD_standard_4GPUs
DSYTRD_standard_1GPU
DSYTRD_standard_MKL

4X

4X

Figure 14: Performance comparison of our two-stage
multi-GPU implementation to standard one-stage
MKL and MAGMA implementations, in double pre-
cision.

6.4 Scalability
Figure 15 shows the performance scalability of the reduc-

tion from dense to band. The curves show performance in
terms of Gflop/s. We note that this also reflects the elapsed
time, e.g., a performance that is two times higher, corre-
sponds to an elapsed time that is two times less. The multi-
GPU implementation shows very good scalability. We men-
tion here that Figure 15 shows the performance for only the
reduction to band form. We show this graph here only to
highlight the scalability of the multi-GPU implementation
of the reduction to band. The performance shown in Fig-
ure 14 (the full reduction to tridiagonal form) drops slightly
compared to Figure 15, because it consists of the time to
reduce the matrix to band added to the time to reduce the
band to tridiagonal, which, as pointed out earlier, is a multi-
core only implementation, and so, although it is an efficient

CPU code, its elapsed time does not change when the num-
ber of GPUs increases. However, the overall performance of
our implementation scales very well. We also mention that
when integrated into the full eigensystem solver, the second
stage will be less than 5% of the time, and so its effect on
performance will further decrease.

2k3k4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 34k 36k 40k
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600

Matrix size

G
flo

p/
s

reduction_toband_8GPUs
reduction_toband_6GPUs
reduction_toband_4GPUs
reduction_toband_2GPUs
reduction_toband_1GPUs

Figure 15: Scalability of our multi-GPU implemen-
tation of the reduction to band (first stage) when
the number of GPUs increases from one to eight, in
double precision.

7. CONCLUSIONS
We demonstrated that it is possible to transform a clas-

sical, memory-bound algorithm into a compute-bound algo-
rithm, even on systems with an enormous gap between their
computing power and interconnection bandwidth. More-
over, we developed and presented the techniques that make
this possible for a highly demanded algorithm that natu-
rally features communication and complex data dependen-
cies. A key technique is to map the algorithm to best take
advantage of heterogeneous hardware. In the context of the
tridiagonal reduction, we chose a two-stage algorithm due to
its richness in compute-intensive kernels, which are sched-
uled on the GPU, while the memory-bound bulge-chasing
stage is scheduled on the CPU using cache-friendly kernels.
We also developed a hierarchical communication model for
multi-GPUs, based on the underlying communication topol-
ogy of the host PCIe system.

We believe that these techniques will increase in relevance
for upcoming architectures. Indeed, our experience over the
last few years, and the results here, show that although
GPUs were used to accelerate some standard memory-bound
algorithms more than 10×, the improvements stagnated from
one generation of GPUs to the next, following the marginal
improvements in GPU bandwidth. Thus techniques such
as trading-off between communication and extra computa-
tion will increase in relevance as computation continues to
become exponentially cheaper than communication.

We plan to further study the implementation of multi-
GPU algorithms in a distributed computing environment.
We believe that the techniques presented will become more
popular and will be integrated into dynamic runtime sys-
tem technologies. The ultimate goal is that this integration
will help to tremendously decrease development time while
retaining high-performance.

231

Acknowledgments
The authors would like to thank the National Science Foun-
dation, the Department of Energy, NVIDIA, and Math-
Works for supporting this research effort.

8. REFERENCES
[1] MAGMA 1.3. http://icl.cs.utk.edu/magma/, 2012.

[2] J. O. Aasen. On the reduction of a symmetric matrix
to tridiagonal form. BIT, 11:233–242, 1971.

[3] E. Agullo, J. Demmel, J. Dongarra, B. Hadri,
J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and
S. Tomov. Numerical linear algebra on emerging
architectures: The PLASMA and MAGMA projects.
J. Phys.: Conf. Ser., 180(1), 2009.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford,
J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1999.

[5] T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle,
R. Johanni, L. Krämer, B. Lang, H. Lederer, and
P. R. Willems. Parallel solution of partial symmetric
eigenvalue problems from electronic structure
calculations. Parallel Comput., 37(12):783–794, 2011.

[6] G. Ballard, J. Demmel, and I. Dumitriu.
Communication-optimal parallel and sequential
eigenvalue and singular value algorithms. Technical
Report EECS-2011-14, EECS University of California,
Berkeley, CA, USA, February 2011. LAPACK
Working Note 237.

[7] P. Bientinesi, F. D. Igual, D. Kressner, and E. S.
Quintana-Ort́ı. Reduction to condensed forms for
symmetric eigenvalue problems on multi-core
architectures. PPAM’09, pages 387–395, Berlin,
Heidelberg, 2010. Springer-Verlag.

[8] C. H. Bischof, B. Lang, and X. Sun. Algorithm 807:
The SBR Toolbox—software for successive band
reduction. ACM Transactions on Mathematical
Software, 26(4):602–616, 2000.

[9] C. H. Bischof and C. V. Loan. The WY representation
for products of Householder matrices. SIAM J. Sci.
Statist. Comput., 8:s2–s13, 1987.

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, PA, 1997.

[11] J. Demmel, J. Dongarra, A. Ruhe, and H. van der
Vorst. Templates for the solution of algebraic
eigenvalue problems: a practical guide. Society for
Industrial and Applied Mathematics, PA, 2000.

[12] T. Dong, J. Dongarra, T. Schulthess, R. Solca,
S. Tomov, and I. Yamazaki. Matrix-vector
multiplication and tridiagonalization of a dense
symmetric matrix on multiple GPUs and its
application to symmetric eigenvalue problems. Parallel
Comput., July 2012. (submitted).

[13] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling.
Block reduction of matrices to condensed forms for
eigenvalue computations. Journal of Computational
and Applied Mathematics, 27(1-2):215 – 227, 1989.

[14] W. Gansterer, D. Kvasnicka, and C. Ueberhuber.
Multi-sweep algorithms for the symmetric
eigenproblem. In Vector and Parallel Processing -
VECPAR’98, volume 1573 of Lecture Notes in
Computer Science, pages 20–28. Springer, 1999.

[15] G. H. Golub and C. F. V. Loan. Matrix Computations.
The Johns Hopkins University Press, Baltimore, MD,
USA, second edition, 1989.

[16] R. G. Grimes and H. D. Simon. Solution of large,
dense symmetric generalized eigenvalue problems
using secondary storage. ACM Transactions on
Mathematical Software, 14:241–256, September 1988.

[17] A. Haidar, H. Ltaief, and J. Dongarra. Parallel
reduction to condensed forms for symmetric
eigenvalue problems using aggregated fine-grained and
memory-aware kernels. In Proceedings of SC ’11, pages
8:1–8:11, New York, NY, USA, 2011. ACM.

[18] A. Haidar, S. Tomov, J. Dongarra, R. Solca, and
T. Schulthess. A novel hybrid CPU-GPU generalized
eigensolver for electronic structure calculations based
on fine grained memory aware tasks. International
Journal of High Performance Computing Applications,
September 2012. (accepted).

[19] Intel. Math Kernel Library. Available at http:

//software.intel.com/en-us/articles/intel-mkl/.

[20] B. K̊agström, D. Kressner, E. Quintana-Orti, and
G. Quintana-Orti. Blocked Algorithms for the
Reduction to Hessenberg-Triangular Form Revisited.
BIT Numerical Mathematics, 48:563–584, 2008.

[21] L. Karlsson and B. K̊agström. Parallel two-stage
reduction to Hessenberg form using dynamic
scheduling on shared-memory architectures. Parallel
Computing, 2011. DOI:10.1016/j.parco.2011.05.001.

[22] B. Lang. Efficient eigenvalue and singular value
computations on shared memory machines. Parallel
Computing, 25(7):845–860, 1999.

[23] H. Ltaief, P. Luszczek, and J. Dongarra. High
Performance Bidiagonal Reduction using Tile
Algorithms on Homogeneous Multicore Architectures.
ACM TOMS, 2011. Accepted.

[24] P. Luszczek, H. Ltaief, and J. Dongarra. Two-stage
tridiagonal reduction for dense symmetric matrices
using tile algorithms on multicore architectures. In
IPDPS 2011: IEEE International Parallel and
Distributed Processing Symposium, Anchorage, Alaska,
USA, May 16-20 2011.

[25] B. N. Parlett. The Symmetric Eigenvalue Problem.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1980.

[26] S. Tomov, R. Nath, and J. Dongarra. Accelerating the
reduction to upper Hessenberg, tridiagonal, and
bidiagonal forms through hybrid GPU-based
computing. Parallel Comput., 36(12):645–654, 2010.

[27] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense
linear algebra solvers for multicore with GPU
accelerators. In Proc. of the IEEE IPDPS’10, pages
1–8, Atlanta, GA, April 19-23 2010. IEEE Computer
Society. DOI: 10.1109/IPDPSW.2010.5470941.

[28] C. Vomel, S. Tomov, and J. Dongarra. Divide and
conquer on hybrid GPU-accelerated multicore
systems. SIAM Journal on Scientific Computing,
34(2):C70–C82, 2012.

232

