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Abstract—Factorization of a dense symmetric indefinite ma-
trix is a key computational kernel in many scientific and
engineering simulations. However, there is no scalable factor-
ization algorithm that takes advantage of the symmetry and
guarantees numerical stability through pivoting at the same
time. This is because such an algorithm exhibits many of the
fundamental challenges in parallel programming like irregular
data accesses and irregular task dependencies. In this paper,
we address these challenges in a tiled implementation of a
blocked Aasen’s algorithm using a dynamic scheduler. To fully
exploit the limited parallelism in this left-looking algorithm, we
study several performance enhancing techniques; e.g., parallel
reduction to update a panel, tall-skinny LU factorization
algorithms to factorize the panel, and a parallel implementation
of symmetric pivoting. Our performance results on up to 48
AMD Opteron processors demonstrate that our implementa-
tion obtains speedups of up to 2.8 over MKL, while losing only
one or two digits in the computed residual norms.

I. INTRODUCTION

Many scientific and engineering simulations require the
solution of the dense symmetric indefinite linear systems of
equations of the form

Ax = b, (1)

where A is an n-by-n dense symmetric indefinite matrix,
b is a given right-hand-side, and x is the solution vector to
be computed. Nonetheless, there is no scalable factorization
algorithm which takes advantage of the symmetry and has
a provable numerical stability. The main reason for this is
that stable factorization requires pivoting which is difficult
to parallelize efficiently. To address this, in this paper, we
develop an efficient implementation of a so-called blocked
Aasen’s algorithm that is proposed very recently [1].
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To solve (1), Aasen’s algorithm [2] factorizes A into an
LTLT decomposition of the form

PAPT = LTLT , (2)

where P is a permutation matrix, L is a unit lower-
triangular matrix, and T is a symmetric tridiagonal matrix.
Aasen’s algorithm takes advantage of the symmetry in A
and performs 1

3n
3+O(n2) floating-point operations (flops),

which is a half of the flops needed for an LU factorization
of A. Furthermore, it is backward stable subject to a growth
factor. Once the factorization is computed, the solution x is
computed by successively solving the linear systems with
the matrices L, T , and LT .

To exploit the memory hierarchy on a modern computer,
a partitioned-version of Aasen’s algorithm was recently
proposed [3]. This algorithm first factorizes a panel in a
left-looking fashion, and then uses BLAS-3 operations to
update the trailing submatrix in a right-looking way. In
comparison with a standard column-wise algorithm, this
partitioned algorithm slightly increases the operation count,
performing 1

3 (1+
1
nb
)n3 +O(n2nb) flops with a block size

of nb. However, BLAS-3 can be used to perform most of
these flops; i.e., 1

3 (1+
1
nb
)n3 flops. Since the BLAS-3 oper-

ations have higher ratios of flop counts over communication
volumes than the BLAS-2 or BLAS-1 operations do, this
partitioned algorithm is shown to significantly shorten the
factorization time on modern computers, where data transfer
is much more expensive than floating-point operations [3].
However, the panel factorization is still based on BLAS-1
and BLAS-2 operations. As a result, this panel factorization
often obtains only a small fraction of the peak performance
on modern computers, and could become the bottleneck,
especially in a parallel implementation.

The blocked-version of Aasen’s algorithm, which we
study in this paper, was proposed to avoid this bottleneck at



the panel factorization. It computes an LTLT factorization
of A, where T is a banded matrix (instead of tridiagonal)
with its half-bandwidth being equal to the block size nb, and
then uses a banded matrix solver to compute the solution.
In this blocked algorithm, each panel can be factorized
using an existing LU factorization algorithm, such as re-
cursive LU [4], [5], [6], [7] and communication-avoiding
LU (CALU) [8], [9]. In comparison with the panel factor-
ization algorithm used in the partitioned Aasen’s algorithm,
these LU factorization algorithms reduce communication,
and hence are expected to speed up the whole factorization
process.

In this paper, we implement this blocked Aasen’s algo-
rithm on multicore architectures, and analyze its parallel
performance. Our implementation follows the framework of
PLASMA2 and uses a dynamic scheduler called QUARK3.
To efficiently utilize a large number of cores in parallel,
all the existing factorization routines in PLASMA update
the trailing submatrix in right-looking fashion. Hence, our
implementation in this paper is not only the first parallel
implementation of the blocked Aasen’s algorithm, but it is
also the first implementation of a left-looking algorithm in
PLASMA. In order to fully exploit the limited parallelism
in this left-looking algorithm, we study several performance
enhancing techniques; e.g., parallel reduction to update the
panel, recursive LU and CALU for panel factorization,
and parallel symmetric pivoting. Our performance results
on up to 48 AMD Opteron processors demonstrate that a
left-looking algorithm can be implemented efficiently on
a multicore architecture. In addition, our numerical results
show that in comparison with the widely-used stable al-
gorithm (the Bunch-Kaufman algorithm of LAPACK), our
implementation loses only one or two digits in the computed
residual norms when a recursive LU is used on a panel.
We also present numerical results to show the different
numerical behavior of the algorithm when a CALU is used
on the panel. In our concluding remarks, we briefly discuss a
potential root of this numerical difference, but more detailed
analysis will be in our future reports.

The remainder of the paper is organized as follows: after
surveying the related work in Section II, we describe the
blocked Aasen’s algorithm in Section III. Then, in Sec-
tions IV and V, we present our parallel implementation and
performance results, respectively. Finally, in Section VI, we
conclude with final remarks. Table I summarizes the notation
used in this paper. Some notation is reused in column-
wise and block-wise algorithms (e.g., n denotes either the
number of columns or the number of block-columns in the
column-wise or block-wise algorithm, respectively), but the
meaning of the notation should be clear from the context.
Our discussion here assumes the lower-triangular part of the

2http://icl.utk.edu/plasma/
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n dimension of A (number of diagonal blocks in A)
nb block size
aij (i, j)-th element of A
Aij (i, j)-th block of A
a:,j j-th column of A
ai,: i-th row of A
A:,j j-th block-column of A
Ai,: i-th block-row of A
Ai:m,j:n i-th to m-th (block) rows and j-th to n-th (block) columns
I identity matrix
ej j-th column of I

Table I
NOTATION USED IN THIS PAPER.

symmetric matrix A is stored, but it can easily be extended
to the case where the upper-triangular part of A is stored.

II. RELATED WORK

In Section V, we compare the performance and stability
of the blocked Aasen’s algorithm with those of the following
two state-of-the-art factorization algorithms.

A. LAPACK – Bunch-Kaufman algorithm

LAPACK4 is a set of dense linear algebra routines that
is extensively used in many scientific and engineering sim-
ulations. For solving a symmetric indefinite system (1),
LAPACK implements a partitioned LDLT factorization with
the Bunch-Kaufman algorithm [10], [11] that computes

PAPT = LDLT , (3)

where D is a block diagonal matrix with either 1-by-
1 or 2-by-2 diagonal blocks. This algorithm is backward
stable subject to growth factors [12], and performs the same
number of flops as the column-wise Aasen’s algorithm,
i.e. 1

3n
3 + O(n2) flops. A serial implementation of the

partitioned Aasen’s algorithm is shown to be as efficient
as the Bunch-Kaufman algorithm of LAPACK on a single
core [3].

To select a pivot at each step of the Bunch-Kaufman
algorithm, up to two columns of the trailing submatrix must
be scanned, where the index of the second column corre-
sponds to the row index of the element with the maximum
modulus in the first column. Since only the lower-triangular
part of the submatrix is stored, this leads to irregular data
accesses and irregular task dependencies. As a result, it is
difficult to develop an efficient parallel implementation of
this algorithm. For instance, on multicores, LAPACK obtains
its parallelism using threaded BLAS, which leads to an
expensive fork-join programming paradigm.

B. PLASMA – Random Butterfly Transformation

PLASMA provides a set of dense linear algebra routines
based on tiled algorithms that break a given algorithm
into fine-grained computational tasks that operate on small

4http://www.netlib.org/lapack/
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square submatrices called tiles. Since each tile is stored
contiguously in memory and fits in a local cache mem-
ory, this algorithm can take advantage of the hierarchical
memory architecture on the modern computer. Furthermore,
by dynamically scheduling the tasks as soon as all of their
dependencies are resolved, PLASMA can exploit a fine-
grained parallelism and utilize a large number of cores.

Randomized algorithms are gaining popularity in linear
algebra algorithms since they can often exploit more paral-
lelism than corresponding deterministic algorithms can [13].
To solve (1), PLASMA extends a randomization technique
developed for the LU factorization [14] to symmetric in-
definite systems [15], [16]. Namely, it uses a multiplicative
preconditioner by means of random matrices called recursive
butterfly matrices Uk:(

UT
d U

T
d−1 . . . U

T
1

)
A (U1U2 . . . Ud) ,

where

Uk =

 B1

. . .
B2k−1

 , Bk =
1√
2

(
Rk Sk

Rk −Sk

)
,

and Rk and Sk are random diagonal matrices. As a result,
the original matrix A is transformed into a matrix that is
sufficiently random so that, with a probability close to one,
pivoting is not needed.

This random butterfly transformation (RBT) requires only
2dn2 + O(n) flops in comparison with the 1

3n
3 + O(n2)

flops required for the factorization. In practice, d = 2
achieves satisfying accuracy, and this is the default setup
used in PLASMA. Since A is factorized without pivoting
after RBT, it allows a scalable factorization of a dense
symmetric indefinite matrix.

The main drawback of this method is reliability. There is
no theory demonstrating its deterministic stability. Though
it may fail in certain cases, numerical tests showed that
with iterative refinement, it is reliable for many test cases,
including pathological ones [15]. Furthermore, since itera-
tive refinement is required, the failure of the method can be
signaled without extra computation.

Besides the dense factorization on multicores, a parallel
factorization of a dense symmetric indefinite matrix with
pivoting has been studied on distributed-memory systems
in [17]. Furthermore, many implementations of the sparse
LDLT factorization have been proposed on distributed and
shared memory architectures (see [18] and the references
therein).

III. VARIATIONS OF AASEN’S ALGORITHM

In this section, we describe column-wise right- and left-
looking algorithms to compute the LTLT factorization (2)
(Sections III-A and III-B), and a blocked left-looking version
of the algorithm (Section III-C). To compute the LTLT

factorization, we use an intermediate Hessenberg matrix H
which is defined as H = TLT .

A. Right-looking Algorithm

By the 1-st column of the equation A = LTLT , we have

t1,1 = a1,1 and `2:n,2 t2,1 = v, (4)

where v = a2:n,1−`2:n,1 t1,1. Hence, given the first columns
of A and L, we can compute the 1-st column of T and the 2-
nd column of L (in our implementation, we let `1:n,1 = e1).
Moreover, from the trailing submatrix of the equation A =
LTLT , we have

A2:n,2:n = `2:n,2 t1,2 `T2:n,1 + `2:n,1t1,1`
T
2:n,1

+`2:n,1 t2,1 `T2:n,2 + L2:n,2:nT2:n,2:nL
T
2:n,2:n.

Hence, if we update the trailing submatrix as

A2:n,2:n − = `2:n,1 t2,1 `T2:n,2 + `2:n,1t1,1`
T
2:n,1

+ `2:n,2 t2,1 `T2:n,1, (5)

then the LTLT factorization of A can be computed by
recursively computing the LTLT factorization of A2:n,2:n:

A2:n,2:n = L2:n,2:nT2:n,2:nL
T
2:n,2:n.

It is possible to update the trailing submatrix using two
rank-one updates as in

A2:n,2:n − = `2:n,1h
T
2:n,1 + `2:n,2 t2,1 `T2:n,1, (6)

where h2:n,1 = `2:n,2t2,1 + `2:n,1t1,1. Alternatively, it can
be updated using a symmetric rank-two update as in

A2:n,2:n − = w2:n,1`
T
2:n,1 + `2:n,1w

T
2:n,1, (7)

where w2:n,1 = `2:n,2t2,1 +
1
2`2:n,1t1,1.

A numerical issue comes when v is scaled so that `2,2
is one in (4). An attractive feature of this algorithm is that
the numerical instability can be avoided by simply using
the element of v with the largest modulus as the pivot.
This right-looking algorithm is equivalent to the Parlett-Reid
algorithm [19].

The above algorithm performs a total of 2
3n

3 + O(n2)
flops, which is twice as many as the flops needed to compute
the LDLT factorization (3). This is because in (3), D is block
diagonal, and it requires only one rank-one update to update
the trailing submatrix using each column of L.

B. Left-looking Algorithm

Given the first j columns of L and the first j−1 columns
of T , the left-looking Aasen’s algorithm first computes
the j-th column of H; i.e., from the j-th column of the
equation H = TLT , we have, for k = 1, 2, . . . , j − 1,

hk,j = tk,k−1`
T
j,k−1 + tk,k`

T
j,k + tk,k+1`

T
j,k+1.



1: for j = 1 to n do
2: Compute H1:(j−1),j and update Tj,j (see Figure 2)
3: if j > 1 then
4: Tj−1,j = TT

j,j−1
5: end if
6: Tj,j = L−1j,j Tj,jL

−T
j,j

7: if j < n then
8: // Compute (j, j)-th block of H
9: Hj,j = Tj,jL

T
j,j

10: if j > 1 then
11: Hj,j = Hj,j + Tj,j−1L

T
j,j−1

12: end if
13: // Extract L:,j+1 of L
14: L(j+1):n,j+1 = A(j+1):n,j − L(j+1):n,1:jH1:j,j

15: [L(j+1):n,j+1, Hj+1,j , Pj ] = LU(L(j+1):n,j+1)
16: // Apply pivots to other part of matrices
17: L(j+1):n,1:j := PjL(j+1):n,1:j

18: A(j+1):n,(j+1):n := PjA(j+1):n,(j+1):nP
T
j

19: // Extract TJ+1,J

20: Tj+1,j = Hj+1,jL
−T
j,j

21: end if
22: end for

Figure 1. Blocked left-looking Aasen’s algorithm.

Then, the (j, j)-th element of H is computed from the (j, j)-
th element of equation A = LH ,

hj,j = `−1j,j

(
aj,j −

j∑
k=1

`j,khk,j

)
.

Next, we obtain tj,j from the (j, j)-th element of the
equation H = TLT , i.e.,

tj,j =
(
hj,j − tj,j−1 `Tj,j−1

)
`−Tj,j .

In addition, from the j-th column of the equation A = LH ,
if we let

v = a(j+1):n,j −
j∑

k=1

`(j+1):n,khk,j ,

then we can extract the (j + 1, j)-th element of H and the
(j + 1)-th column of L by

hj+1,j = v1 and `(j+1):n,j+1 =
v

v1
. (8)

Finally, from the (j +1, j)-th element of the equation H =
TLT , we get

tj+1,j = hj+1,j`
−T
j,j .

A numerical issue comes when scaling v in the second equa-
tion of (8). Just like in the right-looking algorithm, numerical
stability is maintained by simply using the element of v
with the largest modulus as the pivot. This is the algorithm
described by Aasen in [2].

Approach 1:
1: // Compute H1:(j−1),j
2: for k = 1 to j − 1 do
3: Uk = Tk,kL

T
j,k

4: Vk = Tk,k+1L
T
j,k+1

5: Hk,j = Uk + Vk
6: if k > 1 then
7: Hk,j = Hk,j + Tk,k−1L

T
j,k−1

8: end if
9: end for

10: // Update Tj,j
11: W1:(j−1) =

1
2U1:(j−1) + V1:(j−1)

12: Tj,j = Aj,j − Lj,1:(j−1)W1:(j−1) −WT
1:(j−1)L

T
j,1:(j−1)

Approach 2:
1: // Compute H1:(j−1),j
2: for k = 1 to j − 1 do
3: Hk,j = Tk,kL

T
j,k

4: Hk,j = Hk,j + Tk,k+1L
T
j,k+1

5: if k > 1 then
6: Hk,j = Hk,j + Tk,k−1L

T
j,k−1

7: end if
8: end for
9: // Update Tj,j

10: Tj,j = Aj,j − Lj,1:(j−1)H1:(j−1),j
11: if j > 1 then
12: Tj,j = Tj,j − Lj,jTj,j−1L

T
j,j−1

13: end if
Figure 2. Compute H1:(j−1),j and update Tj,j .

This left-looking algorithm performs a total of 1
3n

3 +
O(n2) flops, hence requiring only half of the flops needed
by the right-looking algorithm. This is because the left-
looking algorithm takes advantage of the fact that the j-
th symmetric pivoting can be applied any time before the
trailing submatrix is updated using the j-th column of L.
Specifically, the left-looking algorithm applies the pivoting
to the original matrix A and then extracts the next column
from it. If the symmetric pivoting and the submatrix update
must be alternately applied, then the left-looking algorithm
is not possible because the j-th update must be applied to the
trailing submatrix before applying the (j +1)-th symmetric
pivot. Furthermore, in order to keep the trailing submatrix
symmetric, two rank-one updates (6) or (7) are needed,
doubling the number of flops.5

5A right-looking algorithm could update A2:n,2:n by A2:n,2:n− =
`2:n,1hT

2:n,1 and compute A2:n,2:n = L2:n,2:nHT
2:n,2:n. However, the

symmetry is lost in the trailing submatrix, and the whole submatrix
including both its upper- and lower-triangular parts must be updated leading
to 2

3
n3 +O(n2) flops.
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Figure 3. Solution accuracy using two updating schemes in Figure 2.

C. Blocked Left-looking Algorithm

Either the right- or left-looking algorithm above can be
extended to a blocked algorithm. Even though the right-
looking algorithm exhibits more parallelism, it requires
twice as many flops as the left-looking algorithm does.
Hence, in this paper, we focus on the left-looking algorithm.

If we replace all the element-wise operations with
block-wise operations in the left-looking algorithm in Sec-
tion III-B, we then have a blocked version of the algorithm:
From the j-th block column of H = TLT and the (j, j)-th
block of A = LH , we have for k = 1, 2, . . . , j − 1,

Hk,j = Tk,k−1L
T
j,k−1 + Tk,kL

T
j,k + Tk,k+1L

T
j,k+1 (9)

and

Hj,j = L−1j,j

(
Aj,j −

j∑
k=1

Lj,kHk,j

)
. (10)

Then, we obtain Tj,j from the (j, j)-th block of H = TLT ,
i.e.,

Tj,j =
(
Hj,j − Tj,j−1LT

j,j−1
)
L−Tj,j . (11)

Next from the j-th block column of A = LH , we can extract
the (j + 1)-th block column of L,

PT
j L(j+1):n,j+1Hj+1,j = LU(V ),

where

V = A(j+1):n,j −
j∑

k=1

L(j+1):n,kHk,j ,

and L(j+1):n,j+1 and Hj+1,j are the L and U factors of V
with the partial pivoting Pj . This partial pivoting is then
applied to the corresponding part of the submatrices; i.e.,

Aj+1:n,j+1 := PjA(j+1):n,(j+1):nP
T
j

and
L(j+1):n,1:j := PjL(j+1):n,1:j .

Finally, from the (j + 1, j)-th block of H = TLT , we have

Tj+1,j = Hj+1,jL
−T
j,j .

Unfortunately, the above procedure is unstable because
the symmetric Tj,j is computed through a sequence of un-
symmetric expressions as in (11). To recover the symmetry,
we first substitute Hj,j of (10) into (11), and obtain

Lj,jTj,jL
T
j,j = Aj,j −

j−1∑
k=1

Lj,kHk,j

− Lj,jTj,j−1L
T
j,j−1. (12)

We then substitute Hk,j of (9) into (12), and compute Tj,j
as in

Lj,jTj,jL
T
j,j = Aj,j −

j−1∑
k=1

Lj,kWj,k

−
j−1∑
k=1

WT
j,kL

T
j,k, (13)

where Wj,k = 1
2Uj,k + Vj,k, Uj,k = Tk,kL

T
j,k and Vj,k =

Tk,k+1L
T
j,k+1. Finally, from the (j, j)-th block of H = TLT ,

we compute Hj,j by

Hj,j = Tj,jL
T
j,j + Tj,j−1L

T
j,j−1.

Figure 1 shows the pseudocode of this blocked algorithm,
which was proposed in [1]. We have investigated two
approaches to update the diagonal block Tj,j (see Figure 2).
The second approach does not consider the symmetry while
updating the diagonal block, and requires jn2

b less flops.
Figure 3 shows that these two approaches obtain similar
stability on random matrices.6 For the rest of the paper, we
focus on the second approach.

In Figure 3, the norm of the residual increases slightly
with the increase in the block size nb. This agrees with the
error bound in [1] that is proportional to both the block
size and the number of blocks. We provide more numerical
results in Section V.

IV. IMPLEMENTATION

We now describe our implementation of this blocked
Aasen’s algorithm on multicores. This is done within the
framework of PLASMA using the QUARK runtime system
to dynamically schedule our computational tasks.

A. Tiled Implementation

As mentioned in Section II, PLASMA is based on tiled
algorithms that break a given algorithm into fine-grained
computational tasks that operate on small square tiles.
Figure 4 shows the pseudocode of our tiled Aasen’s algo-
rithm, where most of the computational tasks are performed

6The non-symmetric banded solver of LAPACK is used to solve the
banded system.



1: for j = 1 to n do
2: // Compute off-diagonal blocks of H:,j

3: for i = 1 to j − 1 do
4: GEMM(‘N ′, ‘T ′, 1.0, Ti,i, Lj,i, 0.0, Hi,j)
5: GEMM(‘T ′, ‘T ′, 1.0, Ti+1,i, Lj,i+1, 1.0, Hi,j)
6: if i > 1 then
7: GEMM(‘N ′, ‘T ′, 1.0, Ti,i−1, Lj,i−1, 1.0, Hi,j)
8: end if
9: end for

10: // Compute (j, j)-th block of T
11: LACPY(Aj,j , Tj,j)
12: for i = 1 to j − 1 do
13: GEMM(‘N ′, ‘N ′,−1.0, Lj,i, Hi,j , 1.0, Tj,j)
14: end for
15: if j > 1 then
16: GEMM(‘N ′, ‘N ′, 1.0, Lj,j , Tj,j−1, 0.0,Wj)
17: GEMM(‘N ′, ‘T ′,−1.0,Wj , Lj,j−1, 1.0, Tj,j)
18: end if
19: SYGST(Tj,j , Lj,j)
20: if j < n then
21: // Compute (j, j)-th block of H
22: GEMM(‘N ′, ‘T ′, 1.0, Tj,j , Lj,j , 0.0, Hj,j)
23: if i > 1 then
24: GEMM(‘N ′, ‘T ′, 1.0, Tj,j−1, Lj,j−1, 1.0, Hj,j)
25: end if
26: // Extract (j + 1)-th block column of L
27: for k = 1 to j do
28: for i = j + 1 to n do
29: GEMM(‘N ′, ‘N ′,−1.0, Li,k, Hk,j , 1.0, Ak,j)
30: end for
31: end for
32: [L(j+1):n,j+1, Hj+1,j , Pj ] = LU(A(j+1):n,j)
33: // Apply pivots to other part of matrices
34: L(j+1):n,1:j := PjL(j+1):n,1:j

35: A(j+1):n,(j+1):n := PjA(j+1):n,(j+1):nP
T
j

36: // Extract (j + 1, j)-th block of T
37: LACPY(Hj+1,j , Tj+1,j)
38: TRSM(‘R′, ‘T ′, Lj,j , Tj+1,j)
39: end if
40: end for

Figure 4. Tiled implementation of blocked left-looking Aasen’s algorithm.
Here, GEMM(TA, TB , α,A,B, β, C) computes C := α∗op(A)∗op(B) +
βC, where op(A) = A or AT with TA = ‘N ′ or ‘T ′, respectively,
and op(B) is similarly defined with TB , LACPY(A, B) copies A to B,
SYGST(A, L) computes A := L−1AL−T , and TRSM(‘R′, ‘T ′, L,A)
computes A := AL−T .

using BLAS-3 routines. The only exceptions are the LU
panel factorization (Line 32) and the application of the
pivots (Lines 33 through 35), which we will discuss in more
detail in Sections IV-C and IV-D, respectively.

In the above tiled algorithm, the dependencies among the
computational tasks can be represented as a Directed Acyclic
Graph (DAG), where each node represents a computational
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Figure 5. DAG of blocked Aasen’s algorithm (n = 750 and nb = 250).

task, and edges between the nodes represent the dependen-
cies among them. Figure 5 shows a DAG for our blocked
Aasen’s algorithm. At run time, the QUARK runtime system
uses this DAG to schedule the tasks as soon as all of their
dependencies are resolved. This not only allows us to exploit
the fine-grained parallelism of the algorithm, but in many
cases, this also results in out-of-order execution of tasks,
scheduling the independent tasks from the different stages
of factorization at the same time (e.g., computation of Tj,j
and L(j+1):n,j+1). As a result, the idle time of cores can be
reduced, allowing us to utilize a large number of cores.

B. Parallel Reduction

At the j-th step of the left-looking algorithm, the j-
th block column Aj:n,j is updated with the previously-
factorized block columns (Lines 11 through 18 and Lines 21
through 31 of Figure 4). There is a limited parallelism
because multiple updates cannot be accumulated onto the
same block at the same time (e.g., Tj,j = Aj,j −
Lj,1:(j−1)H1:(j−1),j). Furthermore, as j increases, each
block must be updated with more previous block columns,
while the number of blocks in the current block column
decreases. Hence, it is critical that we exploit as much
parallelism as possible when updating each block.

Updating a single block with multiple blocks can be
considered as a reduction operation, and to exploit the
parallelism, we can apply a parallel reduction scheme.
Specifically, we first use a separate workspace to accumulate
sets of independent updates to a block, and then use binary
reduction to accumulate them into the first block of the
workspace. Finally, the accumulated update is added to
the corresponding destination block. Figure 6 shows the



1: mj = min(j, m
n−j ) // number of workspaces per block

2: for k = 1 to j do
3: for i = j + 1 to n do
4: c = mod(k,mj) + 1
5: if k < mj then
6: β = 0.0
7: else
8: β = 1.0
9: end if

10: GEMM(‘N ′, ‘N ′,−1.0, Li,k, Hk,j , β,Wi,c)
11: end for
12: end for
13: // Binary reduction of workspace into A(j+1):n,j

Figure 6. Left-looking update with a binary-tree reduction, where m is
the number of nb-by-nb workspaces.

pseudocode of our left-looking update algorithm. This not
only exploits the parallelism to accumulate the independent
updates onto a single block, but it also allows us to start
computing the updates before the destination block is ready.
Specifically, while applying the pivots to Aj:n,j , idle cores
can accumulate the updates in the workspace.

The accumulation of two updates using GEADD requires
only O(n2b) flops in comparison with O(n3b) flops needed
for computing the update with GEMM. Since scheduling these
relatively small accumulation tasks can add significant over-
head to the runtime system, we group a set of accumulation
tasks into a single task. Also, this parallel reduction is
invoked only when the number of tiles in the block column
is less than the number of available cores. Hence, round-off
errors lead to slightly different factors on different numbers
of cores.

C. Parallel Panel Factorization

When a recursive LU is used for the panel factorization,
we must complete all the updates on all the blocks in the
panel before starting the panel factorization. Furthermore,
even with the parallel reduction described in Section IV-B,
the updates on the next panel cannot start until the symmetric
pivoting from the current panel factorization is applied to the
previous columns of L. Hence, there are no other tasks that
can be scheduled during the panel factorization. The trace in
Figure 7(a) shows that there is synchronization before and
after the panel factorization, and that when the number of
tiles in the panel is less than the number of cores, some
cores are left idle.

This synchronization can be avoided if we use a CALU
on the panel. In this algorithm, as soon as all the updates are
applied to a pair of tiles, we can start the LU factorization of
the pair. Unfortunately, updating Aj:n,j with Lj:n,j requires
Hj,j (see Line 14 of Figure 1), whose computation is often
on the critical path of the algorithm. This can be seen in
the trace in Figure 7(b), where the panel factorization can

Figure 8. Illustration of symmetric pivoting.

start only after the yellow blocks (updating Aj:n,j with
Lj:n,j) finish, which in turn can start only after the red
block (symmetrically solving L−1j,j Tj,jL

−T
j,j ) finishes. Hence,

in this left-looking algorithm, we often cannot completely
overlap the panel factorization with the tasks to update the
panel.7 As a result, though we used the priority and locality
features of QUARK to improve its performance, the total
factorization time is often slower using CALU than that
using the recursive LU (see Section V). We are examining
if we can improve the performance of CALU in this left-
looking algorithm by reducing more than two tiles at each
step of tournament, or by using a static scheduling scheme.

D. Parallel Symmetric Pivoting

To maintain the symmetry of the trailing submatrix, pivot-
ing must be applied symmetrically to both rows and columns
of the submatrix. Since only the lower triangular part of
the submatrix is stored, this symmetric pivoting leads to
irregular memory accesses and irregular task dependencies
(see Figure 8). In comparison, an LU factorization with
partial pivoting only swaps the rows, leading to both a
fewer applications of a pivot and more regular dependencies.
Finally, as described in Section IV-C, in our left-looking
algorithm, the pivots must be applied before the updates can
be accumulated onto the next panel. Hence, the application
of the pivots can lie on the critical path, and must be
implemented as efficiently as possible.

As illustrated in Figure 9, we apply symmetric pivoting
in two steps. The first step copies all the columns of the
trailing submatrix, which need to be swapped, into an n-by-
2nb workspace. At the j-th step, this is done by generating

7These traces use a relatively small n for illustration. With a larger
n, GEMM becomes more dominant. As a result, the idle time during
the updates disappears, but that for the panel factorization tends to stay.
For instance, with CALU, many of the panel factorization tasks can be
overlapped with updates, but not all. We assign four tiles on each core
during the recursive LU.



(a) recursive LU

(b) CALU

Figure 7. Traces of our block-Aasen’s algorithm with n = 2000 and nb = 200 on four cores. The x-axis represents the run time which is broken down
into subroutines: recursive LU (green,) CALU (blue), pivoting of L (orange), pivoting of A (magenta), SYGST (red), GEMM (yellow), TRSM (white),
and idle time (black).

1. copy to workspace with pivots

2. copy back to submatrix

Figure 9. Implementation of parallel symmetric pivoting.

n
nb
−j tasks, each of which independently copies the columns

in one of the n
nb
−j block columns of the trailing submatrix.

Here, due to the symmetry, the k-th block column consists of
the blocks in the k-th block row and those in the k-th block
column (i.e., Ak,j:k and A(k+1):n,k). Then, in the second
step, we generate another set of n

nb
− j tasks, each of which

copies the columns of the workspace back to a block column
of the submatrix after the column pivoting is applied. While
the columns are copied into the workspace, we use a global
permutation array to apply the row pivoting to each column.
This leads to irregular accesses to the workspace. As a result,
the first step of copying the columns into the workspace is

often slower than the second step of copying them back to
the submatrix.

In our implementation of the symmetric pivoting above,
each of the tiles in the trailing submatrix is read by two
tasks (e.g., at the j-th step, Ai,k is read by the (i − j)-th
and (k−j)-th tasks). To reduce the number of accesses to the
tiles at the j-th step, the k-th task could access only the k-th
block row Ak,j:k, and copy to the workspace all the required
columns from both Ak,j:k and Aj:k,k. In this way, each tile
is only read by one task. However, this approach often does
not improve the memory access because only the rows and
columns to be swapped are accessed, and the accesses to
these columns and rows of the tile are irregular and may not
exploit any cache reuse. Furthermore, the k-th task processes
k−j tiles, leading to a workload imbalance among the tasks.
This imbalance can be reduced by generating finer-grained
tasks, where each task processes only a fixed number of
tiles in the block row. However, this often adds a significant
overhead to the runtime system.

In these two implementations of the symmetric pivoting,
we must wait for all the columns to be copied into the
workspace before copying back to the submatrix because we
do not know which tasks are writing to which columns of the
workspace. However, this synchronization turned out to be
not a significant drawback because as we will describe in the
next paragraph, the runtime system can use idle cores during
the symmetric pivoting to accumulate some updates for the
next block column. At the end, the first implementation gave
better performances in many cases, and we used that for our
performance studies.



Since the previous block columns of L are needed for
the parallel reduction described in Section IV-B, the rows of
these block columns should be swapped as soon as possible.
Hence, we apply the pivoting to these block columns sepa-
rately from the application of the symmetric pivoting to the
trailing submatrix. This is done by letting each task swap the
rows in a previous block column of L. The pivoting of these
block columns is scheduled before the symmetric pivoting
of the trailing submatrix such that the parallel reduction can
start as soon as possible, and is executed on the idle cores
while the symmetric pivoting is being applied. In addition,
since only the next block column of A is needed at the next
step, we prioritize the symmetric pivoting of this next block
column over the other block columns that are not needed
until the proceeding steps.

E. Storage Requirement

Since the first block column of L is the first nb columns
of the identity matrix, they do not have to be stored. Hence,
we store the (j+1)-th block column of L in the j-th block
column of A. Recall that at the j-th step, we compute the
(j + 1)-th block column of L from the j-th block column
of A. Hence, A:,j+1 is needed at the (j + 1)-th step, and
it cannot be overwritten with L:,j+1 at the end of the j-th
step. Then, the banded matrix T can be stored in the main
diagonal blocks of A and in the first diagonal blocks below
them (i.e., Tj,j and Tj+1,j can be stored in Aj,j and Aj+1,j ,
respectively).

Since only the j-th block column of H is needed at the
j-th step, we reuse an n-by-nb workspace to store Hj:n,j

at each step. In addition, we require 2nb-by-n workspace
for the symmetric pivoting, and cnb-by-n workspace for
the parallel reduction operation, where c is a user-specified
constant (in our experiments, we used c = 2). It is possible
to use the same workspace for the symmetric pivoting and
for the parallel reduction. Since only a small number of
tasks from these two different stages of the algorithm can
overlap, the performance gain obtained using two different
workspaces for these two stages is often small. At the end,
the algorithm requires the total workspace of size O(nnb).

F. Banded Solver

Once the matrix is reduced to a banded form, we use the
non-symmetric banded solver of threaded MKL to solved
this banded system. This routine performs O(nn2b) flops,
which is much less than O(n3) flops needed for the factor-
ization. To improve the parallel performance of the solver
and maintain symmetry of the complete factorization, we
will explore other options (e.g., [20]) to solve this banded
system. By maintaining symmetry, the factorization will
compute the inertia of the original matrix (i.e., the number
of positive, negative, and zero eigenvalues).

Name for j ≤ i,

Random ai,j = 2× rand(n, n)
Sparse(t) ai,j = 2× rand(n, n), nnz

n2 = t
Fiedler ai,j = |i− j|
RIS ai,j =

1
2(n−i−j+1.5)

Figure 13. Test matrices.

V. PERFORMANCE STUDIES

We now analyze the performance of our blocked Aasen’s
algorithm on up to eight 6-core 2.8MHz AMD Opteron
processors. Our code was compiled with the gcc 4.1.2
compiler and -O2 optimization flag, and was linked with
the MKL 2011.1.107 library. We have experimented using
test matrices from various applications, but in this paper,
we present results of the test matrices in Table 13, which
demonstrate different numerical behaviors of the algorithms.
All of the experiments are in real double precision.

A. Numerical Stability

Figures 10(a), 11(a), and 12 compare the relative resid-
ual norms, ‖Ax̂ − b‖∞/(nε(‖A‖∞‖x̂‖∞ + ‖b‖∞)), of our
blocked Aasen’s algorithm using the recursive LU with those
of the LDLT factorization of LAPACK using the Bunch-
Kaufman algorithm and with those of PLASMA using RBT.
For RBT, we used the default transformation depth of two.
The figures show that the residual norm of Aasen’s algorithm
increases slightly as the block size nb increases. However,
the residual norm of Aasen’s algorithm with nb = 200 was
competitive with or significantly smaller than that of RBT.
Furthermore, the factorization with RBT failed for RIS and
Sparse matrix with t = 0.2. For the Sparse matrix, RBT
will succeed if the transformation depth is increased to make
the transformed matrix sufficiently dense, or if the diagonal
elements are set to be nonzeros. For RIS, RBT failed even
with a greater transformation depth. The oscillation of the
residual norm with RBT is expected, but a few iterations of
iterative refinement can smooth out the residual norm. After
a few iterative refinements, the residual norms of Aasen’s
algorithm should be as small as that computed by LAPACK.

Figures 10(b) and 11(b) show the residual norms when
the CALU is used in our blocked Aasen’s algorithm. We
found that the factorization can become unstable using a
large block size (e.g., RIS and Fiedler). We are examining
if this instability can be avoided using an LU factorization
with more stable panel rank revealing pivoting [21]. In
Section VI, we briefly discuss our current work to recover
from this numerical difficulties, but more detailed analysis
will be in our future reports.

B. Parallel Scalability

In the top plot of Figure 14, we compare the parallel
performance of blocked Aasen’s algorithm with that of RBT.
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Figure 10. Residual norms of blocked Aasen’s algorithm on Random matrix.
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Figure 11. Residual norms of blocked Aasen’s algorithm on RIS matrix (RBT failed).
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Figure 12. Residual norms of blocked Aasen’s algorithm using recursive LU on Fiedler and Sparse matrices (default RBT failed on Sparse t = 0.2).
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Figure 14. Parallel performance on Random matrix with nb = 250.

For all the experiments in this subsection, we used the
block size of 250 (i.e., b = 250).8 In the bottom figure,
we also compare the performance with that of the LDLT

factorization of threaded MKL, and with that of recursive
LU of PLASMA [6] to compute an LU factorization of A.
We computed Gflop/s as the number of flops required by the
LDLT factorization of LAPACK (i.e., 1

3n
3+ 3

2n
2 flops) over

the factorization time in second. As discussed in Section II,
RBT obtains a Gflop/s that is close to that of Cholesky
factorization, and provides our practical upper-bound on the
achievable Gflop/s. We see that on a medium number of
cores, Aasen’s algorithm stays close to RBT, but due to
the combination of its left-looking updates and use of the
recursive LU on the panel, it does not scale as well as the
right-looking algorithms. On 6 and 48 cores, respectively, the
Gflop/s of Aasen’s algorithm with recursive LU were about
83% and 73% of those of RBT, while it obtained speedups
of about 1.6 and 1.4 over the recursive LU. Notice that RBT

8Aasen, RBT, and LU algorithms of PLASMA obtain near-optimal
performance using the block size of nb = 250.
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Figure 16. Performance of solver on Random matrix with nb = 250.

obtained the speedups of about 1.9 over the recursive LU,
which is our practical upper bound.

Figure 15 shows the Gflop/s of the various factorization
algorithms with different matrix dimensions on 24 and 48
cores. Again, due to the limited parallelism in the left-
looking algorithm, our implementation cannot obtain the
parallel efficiency of the other right-looking algorithms.
However, as the matrix dimension increases, our implemen-
tation could exploit an increasing amount of parallelism. By
comparing against the Gflop/s of MKL, we clearly see that
both RBT and recursive LU of PLASMA obtain excellent
parallel performance. For all the cases, the blocked Aasen’s
algorithm was significantly faster than MKL, obtaining
speedups of 2.1 and 2.8 on 24 and 48 cores, respectively.

Finally, Figure 16 shows the ratio of the total solution
time over the factorization time of our blocked Aassen’s
algorithm using the recursive LU on the panels. Here, the
solution time includes both the time needed for the forward
and backward substitutions with the triangular matrices L
and LT , respectively, and the time needed to solve the
banded system with T using the threaded MKL. Even though
the ratio is relatively small, it increases with the increase in
the number of threads, indicating that the solver does not
scale as well as the factorization routine does. For example,
in our experiments, the banded solver of the sequential
MKL obtained about the same performance as that of the
threaded MKL. Using either 48 or 12 threads, though the
percentage decreases as the matrix dimension increases,
about 60%−90% of the solution time is spent in the banded
solver. Even when CALU is used for the panel factorization
instead of the recursive LU, the same solver routine can be
used, requiring about the same amount of the solution time.
With RBT, the solver requires about 2%− 8% or 1%− 3%
of the factorization time using 48 or 12 threads, respectively.
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Figure 15. Performance comparisons on Random matrix with nb = 250.

VI. CONCLUSION

We analyzed the parallel performance of a blocked
Aasen’s algorithm on multicore architectures. The numerical
results have shown that in comparison with the Bunch-
Kaufman algorithm of LAPACK, our implementation loses
only one or two digits in the computed residual norms. Fur-
thermore, it is more robust than a randomization approach,
being able to solve a wider range of problems. On 48 AMD
Opteron processors, it obtained a speedup of 1.4 over a
state-of-the-art recursive LU algorithm, while it obtained a
speedup of 2.8 over the LDLT factorization of MKL. These
results demonstrate that this algorithm has the potential of
becoming the first scalable algorithm that can take advantage
of the symmetry and has a provable stability for solving
symmetric indefinite problems.

We are currently studying the cause of the increasing
numerical instability with respect to the increase in the
block size, and also examining the numerical behavior of the
blocked Aasen’s algorithm combined with communication-
avoiding algorithms. During our numerical experiments, we
have encountered test matrices, where the numerical stability
of the blocked Aasen’s algorithm using CALU was not as
good as that using recursive LU. This might be related
to the fact that these test matrices lead to small pivots
during the LU factorization of off-diagonal blocks. We
will investigate whether we can recover or take advantage
of these detected numerical low-rank properties by more
stable rank revealing pivoting [21] or by means similar to
hierarchically semiseparable factorization (e.g., [22]). We
are also interested in extending theoretical communication
cost analysis to the block-Aasen factorization by establishing
communication lower bounds and proving that sequential
and parallel versions of the algorithm attain the lower
bounds. Finally, we will explore more scalable banded

solvers to improve the parallel performance of the solver and
an implementation of the algorithm on a distributed memory
architecture.
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