Preliminary Results of Autotuning GEMM Kernels
for the NVIDIA Kepler Architecture — GeForce GTX 680

— LAPACK Working Note 267

Jakub Kurzak'
Piotr Luszczek'
Stanimire Tomov!
Jack Dongarra'??

!Electrical Engineering and Computer Science, University of Tennessee
2Computer Science and Mathematics Division, Oak Ridge National Laboratory
3School of Mathematics & School of Computer Science, University of Manchester

Abstract

Kepler is the newest GPU architecture from NVIDIA, and the GTX 680 is the first
commercially available graphics card based on that architecture. Matrix multi-
plication is a canonical computational kernel, and often the main target of initial
optimization efforts for a new chip. This article presents preliminary results of au-

tomatically tuning matrix multiplication kernels for the Kepler architecture using
the GTX 680 card.

1 Introduction

Accelerators are gradually making their way into the world of High Performance
Computing (HPC). Before graphics cards entered the arena, the IBM Cell processor
made a brief appearance in HPC (from 2006 to 2009), culminating in the deploy-
ment of the Roadrunner supercomputer at the Los Alamos National Laboratory,
which secured the first place on the TOP500 list in June 2008, as the first machine
to cross the performance of one PetaFLOPS. However, development of the Cell ar-
chitecture was canceled by IBM in November 2009 and, in the meantime, graphics
cards have been gradually turning towards general programmability and steadily
gaining ground in HPC. The introduction of the Compute Unified Device Architec-
ture (CUDA) by NVIDIA in November 2006 was a significant milestone towards
adoption of GPUs for general purpose computing. Another one was the introduc-
tion of the GF100 (Fermi) architecture in April 2010, with an array of essential
numerical computing features. These developments culminated in the deployment
of the Tianhe-1A supercomputer at the National Supercomputer Center in Tianjin,

China, which secured the first place on the TOP500 list in November 2010, with the
performance of 2.5 PetaFLOPS. The next major development on the horizon is the
deployment of the Titan supercomputer at the Oak Ridge National Laboratory at
the end of this year (2012). Titan is expected to reach unprecedented performance
by leveraging the power of the new NVIDIA’s GK104 (Kepler) architecture.
Matrix multiplication is a classic computational workload, a common perfor-
mance benchmark and a usual target of early optimization efforts for every new
architecture. The kernel is also frequently referred to as GEMM, following the Ba-
sic Linear Algebra Subroutines (BLAS) standard [1]. Matrix multiplication can
be trivially defined with three nested loops, and most of the time, its performance
optimization relies on classic techniques, such as loop tiling and loop unrolling.
Despite that, optimizing matrix multiplication remains a challenge and a common
target of academic and commercial software efforts. Not without significance is the
fact that the GEMM routine is critical to the performance of the High Performance
LINPACK Benchmark (HPL) [2], the official benchmark of the TOP500 list. At
the same time, the value of fast matrix multiplication goes beyond benchmarking.
Performance of many indispensable software packages is closely tied to the perfor-
mance of GEMM, especially packages for solving problems in dense linear algebra,
such as LAPACK [3] and ScaLAPACK [4] and packages for solving problems in
sparse linear algebra using direct methods, such as MUMPS [5] and SuperLU [6].

2 Motivation

This article is a follow-up to a previous paper by the same authors, where the
autotuning framework was introduced called Automatic Stencil TuneR for Acceler-
ators (ASTRA) [7]. ASTRA’s prototype was developed on the Fermi architecture
and used to produce fast BLAS-compliant GEMM kernels, covering all precisions
(single, double / real, complex) and all cases of transposed inputs (A: Trans, No-
Trans, ConjTrans; B: Trans, NoTrans, ConjTrans). At the time of ASTRA’s con-
ception, the Fermi architecture has already been available for more than a year, and
GEMM kernels in CUBLAS and MAGMA were already delivering very good perfor-
mance. As aresult, ASTRA produced only marginal performance improvements in
most cases, with the most noticeable effect on the double-complex (ZGEMM) kernels,
where the performance was bumped from ~300 GigaFLOPS to ~340 GigaFLOPS
(ca. 13%). However, the true motivation for ASTRA was the capability to quickly
deploy fast GEMM kernels, as well as other BLAS kernels, when a new architecture
becomes available. Therefore, the availability of the Kepler architecture creates the
first true opportunity for validation of the ASTRA methodology.

3 Target Hardware

The GF100 (Fermi) was the first graphics architecture with a complete set of essen-
tial features for scientific and engineering computing. The most important feature,
from the standpoint of numerical computing, is double precision performance on
a par with single precision performance. Double precision operations consume
twice the storage of single precision operations (two 32-bit registers per element)
and execute at half the throughput of single precision operations (16 operations
per multiprocessor per cycle), which is the desired behavior. The Fused Multiply-
Add (FMA) operation is available, and offers extra precision over the Multiply-
Add (MADD) operation. Also, the floating-point hardware supports denormalized
numbers and all four IEEE 754-2008 rounding modes (nearest, zero, positive in-
finity, negative infinity). Finally, the memory system provides Error Correction
Code (ECC) protection against bit flips by radiation, which makes it suitable for
large installations with thousands of cards, servicing long production runs. The
full-featured Fermi chips are available in the Tesla line of products (Tesla 2050,
2070, 2090). At the same time, Fermi chips stripped down from some of those
features are available in the GeForce 400 line of cards for video games (GTX 460,
480, 580). For the most part, the gaming cards offer a much lower double precision
performance.

The GK104 (Kepler) is the newest GPU architecture from NVIDIA. As a suc-
cessor of Fermi, Kepler is meant to preserve the array of essential HPC character-
istics. As usually, the first products to enter the market are the gaming cards of the
GeForce 600 series, specifically the GTX 680. Although the chip is not identical to
the one that will eventually target the HPC market, its availability creates an excit-
ing opportunity to evaluate the new architecture. It also provides a unique chance
to validate an autotuning system, where the adaptation to a new architecture is the
Holy Grale.

The list of most important changes from the Fermi architecture to the Kepler
architecture can be built by consulting the “NVIDIA GF100” whitepaper [8], the
“Fermi” whitepaper [9], the “NVIDIA GeForce GTX 680" whitepaper [10] and the
“NVIDIA CUDA C Programming Guide, Version 4.2 (Appendix F) [11]. Table 1
presents a rough comparison of selected features. Kepler is designed to run with
clock rates ~35% lower than the maximum clock rate of Fermi, but contains three
times the number of CUDA cores, which results in doubling of the peak single pre-
cision floating point performance. At the same time, Kepler consumes ~20% less
energy (judging by thermal design power), which means that Kepler is almost 2.5
times more energy efficient, in terms of peak performance per Watt. The number of
multiprocessors in Kepler is lower (8 instead of 16), but they are have much more
CUDA cores (192 instead of 32). They contain twice the number of registers and

the same amount of shared memory. L2 cache is slightly smaller (512 KB instead
of 768 KB) and slightly faster (512 bytes per clock instead of 384 bytes per clock).
The peak memory bandwidth is the same.

Table 1: Brief summary of architectural changes from Fermi to Kepler.

MULTIPROCESSORS 16 8

CUDA CORES PER MULTIPROCESSOR 32 192

CUDA CORES TOTAL 512 1536

CLOCK RATE 1544 MHz 1006 MHz
SINGLE PRECISION FLOATING POINT PEAK 1581 GFLOPS 3090 GFLOPS
REGISTERS PER MULTIPROCESSOR 32 K 64 K
SHARED MEMORY + L1 PER MULTIPROCESSOR 64 K 64 K

L2 CACHE SIZE 768 KB 512 KB

L2 CACHE BANDWIDTH 384 B per clock 512 B per clock
MEMORY BANDWIDTH PEAK 192.4 GBPS 192.4 GBPS
TRANSISTORS COUNT 3.0B 3.54 B
THERMAL DESIGN POWER 244 W 195 W

Interestingly, the number of transistors in Kepler (3.0 billion) is only slightly
larger than in Fermi (3.5 billion). Despite that, the total number of CUDA cores
tripled. Within the multiprocessor, the number of CUDA cores increased sixfold,
while the number of registers doubled and the combined size of shared memory and
L1 cache remained the same. Combined with the fact that the bandwidth of the de-
vice memory remained the same, this slightly shifts the balance of the architecture
towards computational intensity.

4 Kernel Stencil

The kernel of interest here is the GEMM operation, as defined by the BLAS standard,
expressed by the general formula C = alpha C + beta A X B, where A, B and C are
matrices of sizes m X k, k X n, and m x n respectively, in one of the four BLAS preci-
sions (S, C, D, Z), and either of the matrices A and B can be transposed. The CUDA
stencil for the kernel solidified on the Fermi architecture. Figure 1 shows the gen-
eral structure of the kernel’s pipelined loop. The loop’s prologue and epilogue
is marked with faded boxes, and the loop’s steady state is marked with colored
boxes. In this kernel, the data always passes through shared memory, what relieves

the stress on the device memory and allows for efficient handling of transpositions.
In the past, solutions were presented, where only one input passed through shared
memory. This strategy worked well for older generation of NVIDIA cards [12],
as well as recent generation of AMD cards [13]. Nothing indicates, tough, that
bypassing shared memory can deliver good performance on the Kepler card. At
the same time, it severely complicates the handling of transposed inputs, therefore
passing both inputs through shared memory remains the solution of choice here.

Figure 1: The structure of the GEMM kernel pipelined loop.

even

| MEM | L {@ i
N /
| REG | L¥FEG . é

e \

MEM | SHM |
N
]/ REG | REG
@ | CMP |

odd

The principles of operation are as follows. First, the prologue loads the first
tile of A and B to shared memory. The data is loaded to registers and deposited
in shared memory. Then the code enters the steady-state loop. The loop has two
stages, separated by __syncthreads () calls (barriers). In the first one, the data in
shared memory is loaded to registers and used for calculations. At the same time,
new tiles of A and B are being fetched. In the second step, the newly fetched tiles
are dropped to shared memory, which is than consumed as processing transitions
back to step one. The code follows the classic scheme of double-buffering, where
computation can be overlaid with data fetches. Here, two sets of registers are
used to concurrently issue data reads from memory to one set of registers, while
computing the solution using another set of registers. On the other hand, only one

piece of shared memory is used, forcing __syncthreads () between step one and
two. This is because shared memory is a scarce resource and increasing shared
memory usage decreases occupancy deteriorating the performance.

The kernel is expressed as a single, heavily parametrized, source file in CUDA.
Specifically, all blocking sizes are parametrized. This includes tiling for shared
memory and shape of the thread block. Also parametrized is the precision (single
/ double, real / complex), and so are transpositions of the input matrices (Trans,
NoTrans, ConjTrans). Altogether, the code can be compiled to 78 cases of different
precisions and transpositions, and an endless number of cases with different tilings.

S Prunning Settings

The objective of pruning is to make the number of tested kernels manageable.
Specifically, the process is not supposed to identify the kernels that will run well,
but rather discard the kernels that are certain to not run well. The pruning engine
applies straightforward heuristics to eliminate kernels, which are very unlikely to
produce high performance. First of all, the kernel cannot exceed hardware capa-
bilities, such as the number of available threads, the number of available registers,
and the size of the shared memory. Kernels which do, are immediately discarded.
Second, it is checked if tiling matches the shaped of the thread block, i.e., if the
thread block can be shaped such that tile dimensions are divisible by thread block
dimensions. It is also checked if the number of threads in a block is divisible by
the warp size. Finally, three heuristic constraints are applied to further narrow the
focus of the search:

e minimum occupancy: minimum number of threads per multiprocessor,
e minimum register reuse: number of FMAs per load in the innermost loop,

e minimum number of thread blocks per multiprocessor.

Currently, the choice of values for the heuristic parameters is arbitrary and more of
an art than a science. For the most part, they are set according to the developer’s
intuition and in such a way that the number of kernels passing through the selec-
tion is manageable. Thousands of kernels can be benchmarked on a single card
within a few hours. In the future, this arbitrary selection can be replaced by a more
systematic process using, e.g. machine learning techniques. Another solution is
to relax all constraints to the maximum and perform the search in parallel, using
potentially hundreds of cards.

Figure 2 shows the selection of the heuristic pruning parameters and the num-
ber of kernels passing through the selection. For the most part, setting the oc-
cupancy to 1024 (half of the hardware maximum) and the register reuse to 2.0,

produced the desired number of kernels for single precision real and complex arith-
metic. The register reuse had to be relaxed to 1.0 for double-real kernels and the
occupancy had to be relaxed to 768 for double-complex kernels. The number of
thread blocks per multiprocessor did not play a role here.

Figure 2: Numbers of tested kernels.

SGEMM A x B 1024 2.0 1 3864 4500
SGEMM A x BT 1024 2.0 1 3571 4000
SGEMM AT x BT 1024 2.0 1 3929
SGEMM ATx B 1024 2.0 1 4178 3500
CGEMM A xB 1024 2.0 1 1115
3000
CGEMM A x BT 1024 2.0 1 1068
CGEMM ATx BT 1024 2.0 1 1145 é 2500
CGEMM ATx B 1024 2.0 1 1191 e
. 2000
DGEMM A xB 1024 1.0 1 713 g
DGEMM A x BT 1024 1.0 1 676 1500
DGEMM AT x BT 1024 1.0 1 735
T 1000
DGEMM AT x B 1024 1.0 1 771
ZGEMM A xB 768 1.0 1 267 500
ZGEMMA xBT | 768 10 1 246 |
Ty RT 0 >
ZGEMM A" x B 768 1.0 1 273
ZGEMM A" x B 768 1.0 1 279 SGEMM CGEMM DGEMM ZGEMM

The much smaller number of kernels produced for double precision comes
from the fact that, as the size of the data element becomes larger, the possibili-
ties for arranging the data and the threads become much more constrained. On
the other hand, the incentives for tuning double precision are much smaller, as the
double precision runs much slower, and therefore it is much easier to achieve its
peak. Plus, tuning double precision for the GTX 680 card is not the true objective
here, since this is not the card which will eventually target the HPC market.

6 Results

All experiments were done on a EVGA GTX 680 card with 1 GHz clock and 2 GB
of memory. CUBLAS library form SDK 4.2.6 (release candidate) was used, as
it was producing the fastest performance numbers (faster than SDK 4.1). On the
other hand, NVCC compiler from SDK 4.1.28 (~arch sm_20) was used to compile
ASTRA kernels, as it was producing faster kernels than the NVCC compiler from
SDK 4.2.6 (~arch sm_30). The autotuning sweep was done for matrices A, B and
C of size 4096 x 4096, and all presented performance numbers are for that size.
Figures 3 and 4 show the performance for single precision, in real and complex
arithmetic respectively. Execution rates are shown along with the best tiling sizes
for ASTRA. ASTRA delivers performance comparable to CUBLAS for SGEMM

Figure 3: SGEMM performance (bright: CUBLAS, dark: ASTRA).

1400

1200

CUBLAS ASTRA

SGEMM perf. perf.

ASTRA tiling* 1000

A xB 1101 1125 | 128x224x32 32x32 64x16 32x32

A xBT 1254 1151 64x64%6 16x8 64x2 64x2

GFLOPS

T 600
ATxBT 896 1097 | 224x128x32 32x32 32x32 64x16
ATxB 1230 1146 | 192x160x32 32x32 32x32 32x32 400

* shared memory tiling (the first triplet), followed by the shape 200

of the thread block for: computing C, reading A and reading B.
AxB axBT ATxBT ATxB

Figure 4: CGEMM performance (bright: CUBLAS, dark: ASTRA).

1800

1600

CUBLAS ASTRA 1400

caemm Ul Cpert.

ASTRA tiling

1200
A xB 1383 1693 48x72x12 16x18 48x6 4x72
1000

A xBT 1419 1687 48x72x12 12x24 24x12 72x4 800

GFLOPS

ATxBT | 1332 1725 48x72x12 16x18 12x24 72x4 600

ATxB 1090 1663 64x96x16 16x32 16x32 16x32 400

200

AxB AaxBT ATxBT ATxB

and substantially higher than CUBLAS for CGEMM. At the same time, ASTRA’s
performance is oblivious to the different transposition cases, while CUBLAS per-
formance is more affected by input transpositions. CUBLAS performance prob-
lems come most likely from a suboptimal choice of tiling, which can be quickly
fixed by adopting ASTRA’s tiling sizes. On the other hand, ASTRA’s performance
problems may reside in the compiler back-end and not be easily fixable at the PTX
level. The fact that ASTRA’s performance changes substantially depending on the
version of the NVCC compiler seem to suggest that this is the case.

Double precision is penalized on the Kepler card for video games, so it is not
very insightful to tune double precision, but since there is no extra effort in autotu-
nig double precision kernels, they are presented here for completeness. Figures 5

Figure 5: DGEMM performance (bright: CUBLAS, dark: ASTRA).

CUBLAS ASTRA

DGEMM perf. perf. ASTRA tiling
A xB 123 131 32x64x8 8x32 32x8 4x64 "
| | | ®
A xBT 120 137 32x64x16 16x32 32x16 64x8 3
=
I I I o
ATxBT 124 128 16x32x8 8x16 8x16 32x4
ATxB 121 131 32x64x8 8x32 8x32 8x32
AxB axBT ATxBT ATxB
Figure 6: ZGEMM performance (bright: CUBLAS, dark: ASTRA).
140
CUBLAS ASTRA
ZGEMM perf. perf. ASTRA tiling
A xB 124 137 16x32x16 8x32 16x16 8x32 -
| | | 5
A xBT 123 127 16x32x16 8x32 16x16 32x8 é
I I I)
ATxBT 122 127 16x32x16 8x32 16x16 32x8

ATxB 124 128 16x16x8 8x16 8x16 8x16

AxB axBT ATxBT ATxB

and 6 show the performance for double precision, in real and complex arithmetic
respectively. Here, achieving the floating point peak is relatively easy, since the
much slower floating point units come nowhere near saturation of the memory
bandwidth. Here ASTRA is only marginally faster than CUBLAS, but neverthe-
less never slower. One can observe that this miserable performance for a GPU
would be a very respectable performance for a standard multicore CPU (x86 and
alike).

7 Summary

The authors would like to believe that ASTRA could play a similar role for GPUs
as ATLAS plays for CPUs, i.e., allow for relatively fast deployment of BLAS
(and hopefully other types of routines) for new GPU architectures. Similarly to
ATLAS, it is not ASTRA’s goal to seek optimizations at the lowest hardware level,
but instead provide good baseline performance, upon which vendor libraries can
improve, by applying low-level optimizations (instruction scheduling, etc.) The
Kepler experiments prove ASTRA’s capability to play such role.

A Hardware Trends

Figure 7: Transistors trend (left) and GLOPS trend (right).

4000 3500

GTX 680 o GTX 680 ¢

3500 3000

GTX 480
3000 &
2500

2500
2000
2000

GTX 480 4

GTX 280 1500

1500
<

transistors (millions)

GTX 280
1000 &

GFLOPS (FMA 32 peak)

1000
8800 GTX
<& 8800 GTX
<

500 500

0 0
2005 2006 2007 2008 2009 2010 2011 2012 2013 2005 2006 2007 2008 2009 2010 2011 2012 2013

In the age of dramatic shifts in the
hardware world, it is very popular to Figure 8: Memory bandwidth trend.
plot changes from one generation of
chips to another. Since we have not 225 _
come across trends that would include 0 [—
the Kepler chip, we take the liberty of e
presenting such trends here (Figures 7
and 8).

The Kepler GPU made a phenome-
nal jump in the “raw” floating point ca-
pabilities by doubling the peak floating
point performance of the Fermi GPU.
This changes the previous linear trend
to an exponential trend. At the same,

GTX 280 ¢
150

125

100

GBPS (peak)

8800 GTX <
75

50

25

0
2005 2006 2007 2008 2009 2010 2011 2012 2013

10

time the Kepler GPU discontinued the exponential growth in the number of tran-
sistors, and gave the trend the shape of an § curve. And finally, the bandwidth trend
shows that the memory bandwidth completely reached its plateau.

References

[1]

[4]

[5]

[7]

Basic Linear Algebra Technical Forum. Basic Linear Algebra Techni-
cal Forum Standard, August 2001. http://www.netlib.org/blas/
blast-forum/blas-report.pdf.

J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark: Past,
present and future. Concurrency Computat.: Pract. Exper., 15(9):803-820,
2003. DOI: 10.1002/cpe.728.

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, PA, 1992.
http://www.netlib.org/lapack/lug/.

L. S. Blackford, J. Choi, A. Cleary, E. D’ Azevedo, J. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. Scal APACK Users’ Guide. SIAM, Philadelphia, PA, 1997.
http://www.netlib.org/scalapack/slug/.

P. R. Amestoy, 1. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers. Comput. Methods in Appl.
Mech. Eng., 184(2-4):501-520, 2000. DOI: 10.1016/S0045-7825(99)00242-
X.

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu.
A supernodal approach to sparse partial pivoting. SIAM. J. Matrix Anal. &
Appl., 20(3):720-755, 1999. DOI: 10.1137/S0895479895291765.

J. Kurzak, S. Tomov, and J. Dongarra. LAPACK working note 245: Au-
totuning GEMMs for Fermi. Technical Report UT-CS-11-671, Electrical
Engineering and Computer Science Department, University of Tennessee,
2011. http://www.netlib.org/lapack/lawnspdf/lawn245.pdf (ac-
cepted to IEEE TPDS).

NVIDIA Corporation. NVIDIA GF100: Worlds Fastest GPU Delivering
Great Gaming Performance with True Geometric Realism, Version 1.5, 2010.
http://www.nvidia.com/object/I0_89569.html.

11

http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://dx.doi.org/10.1002/cpe.728
http://www.netlib.org/lapack/lug/
http://www.netlib.org/scalapack/slug/
http://dx.doi.org/10.1016/S0045-7825(99)00242-X
http://dx.doi.org/10.1016/S0045-7825(99)00242-X
http://dx.doi.org/10.1137/S0895479895291765
http://www.netlib.org/lapack/lawnspdf/lawn245.pdf
http://www.nvidia.com/object/IO_89569.html

[9]

[10]

[11]

[12]

[13]

NVIDIA Corporation. NVIDIAs Next Generation CUDA Compute Architec-
ture: Fermi, Version 1.1, 2009. http://www.nvidia.com/object/I0_
89570 .html.

NVIDIA Corporation. NVIDIA GeForce GTX 680: The fastest, most efficient
GPU ever built, Version 1.0, 2012. http://www.geforce.com/Active/
en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.

NVIDIA Corporation. NVIDIA CUDA C Programming Guide, Version 4.2,
2012. http://developer.download.nvidia.com/compute/DevZone/
docs/html/C/doc/CUDA_C_Programming_Guide.pdf.

V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense lin-
ear algebra. In Proceedings of the 2008 ACM/IEEE conference on Su-
percomputing, SC’08, Austin, TX, November 15-21 2008. IEEE Press.
DOI: 10.1145/1413370.1413402.

N. Nakasato. A fast GEMM implementation on a Cypress GPU.
In Ist International Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Computing Systems,
PMBS’10 (held as part of SC’10), New Orleans, LA, November 13-
19 2010. http://www.dcs.warwick.ac.uk/~sdh/pmbs10/pmbs10/
Workshop_Programme_files/fastgemm.pdf.

12

http://www.nvidia.com/object/IO_89570.html
http://www.nvidia.com/object/IO_89570.html
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://dx.doi.org/10.1145/1413370.1413402
http://www.dcs.warwick.ac.uk/~sdh/pmbs10/pmbs10/Workshop_Programme_files/fastgemm.pdf
http://www.dcs.warwick.ac.uk/~sdh/pmbs10/pmbs10/Workshop_Programme_files/fastgemm.pdf

	Introduction
	Motivation
	Target Hardware
	Kernel Stencil
	Prunning Settings
	Results
	Summary
	Hardware Trends

