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DARPA’s AACE project aimed to develop Architecture Aware Compiler Environments. Such a
compiler automatically characterizes the targetted hardware and optimizes the application codes
accordingly. We present the BlackjackBench suite, a collection of portable micro-benchmarks
that automate system characterization, plus statistical analysis techniques for interpreting the
results. The BlackjackBench benchmarks discover the effective sizes and speeds of the hardware
environment rather than the often unattainable peak values. We aim at hardware characteristics
that can be observed by running executables generated by existing compilers from standard C
codes. We characterize the memory hierarchy, including cache sharing and NUMA characteristics
of the system, properties of the processing cores affecting instruction execution speed, and the length
of the OS scheduler time slot. We show how these features of modern multicores can be discovered
programmatically. We also show how the features could potentially interfere with each other
resulting in incorrect interpretation of the results, and how established classification and statistical
analysis techniques can reduce experimental noise and aid automatic interpretation of results. We
show how effective hardware metrics from our probes allow guided tuning of computational kernels
that outperform an autotuning library further tuned by the hardware vendor.
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1. INTRODUCTION

Compilers, autotuners, numerical libraries, and other
performance sensitive software need information about
the underlying hardware. If portable performance is
a goal, automatic detection of hardware characteristics
is necessary given the dramatic changes undergone by
computer hardware. Several system benchmarks exist
in the literature [1, 2, 3, 4, 5, 6, 7, 8]. However, as
hardware becomes more complex, new features need to
be characterized, and assumptions about hardware behavior
need to be revised, or completely redesigned.

In this paper, we present BlackjackBench, a system
characterization benchmark suite. The contribution of this
work is twofold:

1. A collection of portable micro-benchmarks that can
probe the hardware and record its behavior while
control variables, such as buffer size, are varied.

2. A statistical analysis methodology, implemented as
a collection of scripts for result parsing, examines
the output of the micro-benchmarks and produces
the desired system characterization information, e.g.
effective speeds and sizes.

BlackjackBench was specifically motivated by the effort
to develop architecture aware compiler environments [9] that
automatically adapt to hardware, which is unknown to the
compiler writer, and optimize application codes based on the
discovery of the runtime environment.

Often, important performance related decisions take into
account effective values of hardware features, rather than
their peak values. In this context, we consider an effective
value to be the value of a hardware feature that would be
experienced by a user level application written in C (or any
other portable, high level, standards-compliant language)
running on that hardware. This is in contrast with values
that can be found in vendor documents, or through assembler
benchmarks, or specialized instructions and system-calls.

BlackjackBench goes beyond the state of the art in
system benchmarking by characterizing features of modern
multicore systems, taking into account contemporary
— complex — hardware characteristics such as modern
sophisticated cache prefetchers, and the interaction between
the cache and TLB hierarchies, etc. Furthermore,
BlackjackBench combines established classification and
statistical analysis techniques with heuristics tailored to
specific benchmarks, to reduce experimental noise and aid
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automatic interpretation of the results. As a consequence,
BlackjackBench does not merely output large sets of data
that require human intervention and comprehension; it
shows information about the hardware characteristics of the
tested platform. Moreover, BlackjackBench does not rely
on assembler code, specialized kernel modules and libraries,
nor non-portable system calls. Therefore, it is a portable
system characterization tool.

2. RELATED WORK

Several low level system benchmarks exist, but most have
different target audiences, functionality, or assumptions.
Some benchmarks, such as those described by Molka
et. al [10], aim to analyze the micro-architecture of a
specific platform in great detail and thus sacrifice portability
and generality.  Others [11] sacrifice portability and
generality by depending upon specialized software such as
PAPI [12]. Autotuning libraries such as ATLAS [13] rely
on micro-benchmarking for accurate system characterization
for a very specific set of routines which need tuning.
These libraries also develop their own characterization
techniques [14], most of which we need to subsume in order
to target a much broader feature spectrum.

Other benchmarks, such as CacheBench [8], or
1mbench [6, 7] are higher level, portable, and use similar
techniques to those we use — such as pointer chasing — but
output large data sets or graphs that need human interpreta-
tion instead of “answers” about the values that characterize
the hardware platform.

X-Ray [1, 2] is a micro- and nano-benchmark suite that
is close to our work in terms of the scope of the system
characteristics. There are, however, a number of features
that we chose to discover with our tests that are not addressed
by X-Ray. There are also differences in methodology which
we mention, where appropriate, throughout this document.
One important distinguishing feature is X-Ray’s emphasis
on code generation as part of the benchmarking activity,
while we give more emphasis on analyzing the resulting
data.

P-Ray [3] is a micro-benchmark suite whose primary
aim is to complement X-Ray by characterizing multicore
hardware features such as cache sharing and processor
interconnect topology. We extend the P-Ray contribution
with new tests and measurement techniques as well as a
larger set of tested hardware architectures. In particular,
the authors express interest in testing IBM Power and Intel
Itanium architectures, which we did in our work.

Servet [5] is yet another suite of benchmarks that attempts
to subsume both X-Ray and P-Ray by measuring a similar
set of hardware parameters. It adds measurements of
interconnect parameters for communication that occurs in
a cluster of multicore processors with distributed memory.
The methodology and measurement techniques in Servet
complement, rather than imitate, those of X-Ray and P-Ray.
And they remain in sharp contrast with our work. Unlike
Servet, we do not focus on the actual hardware parameters
of the tested system. Rather, we seek the observable

parameters that often enough are below vendors’ advertised
specifications. Servet aims for maximum portability of its
constituent tests, as does our work, but we were unable
to compare this aspect of our efforts as the authors only
presented results from Intel Xeon and Itanium clusters.

In summary, our work differs from existing benchmarks
in the methodology used in several micro-benchmarks,
the breadth of hardware features it characterizes, the
automatic statistical analysis of the results, and the emphasis
on effective values and the ability to address modern,
sophisticated architectures.

We consider the use of BlackjackBench as a tool for
model-based tuning and performance engineering to be
related to autotuning based existing exhaustive search
approaches [15, 16], analytical search methodologies [17],
and techniques based on machine learning [18].

3. BENCHMARKS

In this section we describe the operation of our micro-
benchmarks and discuss the assumptions about compiler
and hardware behavior that make our benchmarks possible.
We also present experimental results, from diverse hardware
environments, as supporting evidence for the validity of our
assumptions.

A key thesis of this work is that only hardware
characteristics with a significant impact on application
performance are important. Therefore, our benchmarks
vary controlled variables, such as buffer size, access
pattern, number of threads, variable count, etc., in order to
observe variations in performance. Our benchmarks rely
on assumptions about the behavior of the hardware under
different circumstances and try to trigger different behaviors
by varying the circumstances.

Our benchmarks regulate control variables, such as buffer
size, access pattern, number of threads, etc., in order to
observe variations in performance. We assert that, by
observing variations in the performance of benchmarks,
all hardware characteristics that can significantly affect the
performance of applications can be discovered. Conversely,
if a hardware characteristic cannot be discovered through
performance measurements, it is probably not very
important to optimization tools such as compilers, auto-
tuners, etc. Our benchmarks rely on assumptions about
the behavior of the hardware under different circumstances,
and try to trigger different behaviors by varying the
circumstances.

The memory hierarchy in modern architectures is rather
complex, with sophisticated hardware prefetchers, victim
caches, etc. As a result, several details must be addressed
to attain clean results from the benchmarks. Unlike
benchmarks [5, 4] that use constant strides when accessing
their buffers, we use a technique known as pointer chasing
(or pointer chaining) [3, 1, 6]. To achieve this, we use a
buffer that holds pointers (uintptr_t) instead of integers, or
characters. We initialize the buffer so that each element
points to the element that should be accessed next, and
then we traverse the buffer in a loop that reads an element
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and dereferences the value read to access the next element:
ptr=(uintptr_t *)*ptr. The benefits of pointer chasing are
threefold.

1. The initialization of the buffer is not part of the
timed code. Therefore, it does not cause noise in the
performance measurement loop, unlike calculations of
offsets or random addresses done on the critical path.
Furthermore, since we can afford for the initialization
to be slow, we can use sophisticated pseudo-random
number generators, when random access patterns are
desirable.

2. It eliminates the possibility that a compiler could alter
the loop that traverses the buffer, since the addresses
used in the loop depend on program data (the pointers
stored in the buffer itself).

3. It eliminates the possibility that the hardware
prefetcher(s) can guess the address of the next el-
ement, when the access pattern is random, regardless
of the sophistication level of the prefetcher.

To minimize the loop overhead, the pointer chasing loop is
unrolled over 100 times. Finally, to minimize random noise
in our measurements, we repeat each measurement several
times (= 30).

3.1. Cache Hierarchy

Improved cache utilization is one of the most performance
critical optimizations in modern computer hardware. Pro-
cessor speed has been increasing faster than memory speed
for several decades, making it increasingly harder for main
memory to feed all processing elements with data quickly
enough. To bridge the gap, fast, albeit small, cache memory
has become necessary for fast program execution. In recent
years, the pressure on main memory has increased further,
as the number of processing elements per socket has been
going up [19]. As a result, most modern processor designs
incorporate complex, multi-level cache hierarchies that in-
clude both shared and non-shared cache levels between the
processing elements. In this section we describe the oper-
ation of the micro-benchmarks that detect the cache hierar-
chy characteristics, as well as any eventual asymmetries in
the memory hierarchy.

3.1.1. Cache Line Size
The assumption that enables this benchmark is that upon
a cache miss the cache fetches a whole line® (Al). As a
result, two consecutive accesses to memory addresses that
are mapped to the same cache line will result in, at most, one
cache miss. In contrast, two accesses to memory addresses
that are farther apart than the size of a cache line can result
in, at most, two cache misses.

To utilize this observation, our benchmark allocates a
buffer large enough to be much larger than the cache, and
performs memory accesses in pairs. The buffer is aligned

30n some architectures the cache fetches two consecutive lines upon a
miss. Since we are interested in effective sizes, for such architectures we
report the cache line to be twice the size of the vendor documented value.

to 512 bytes, which is a size assumed to be safely larger
than the cache line size. Each access is to an element of
size equal to the size of a pointer (uintptr_t). Each pair of
accesses, in a sense, touches the first and the last elements
of a memory segment with extent D of a random buffer
location. To achieve this, the pairs are chosen such that
every odd access, starting with the first one, is at a random
memory address within the buffer and every even access
is D — sizeo f (uint ptrt) bytes away from the previous one.
The random nature of the access pattern and the large size
of the buffer guarantees, statistically, that the vast majority
of the odd accesses will result in cache misses. However,
the even accesses can result in either cache hits or misses
depending on the extent D. If D is smaller than the cache
line size, each even access will be in the same line as the
previous odd access, and this will result in a cache hit. If D
is larger than the cache line size, the two addresses will map
to different cache lines and both accesses will result in cache
misses.

Clearly, an access that results in a cache hit is served at
the latency of the cache, while a cache miss is served at the
latency of further away caches, or the RAM, which leads
to significantly higher latency. Our benchmark forces this
behavior by varying the value of D, expecting a significant
increase in average access latency when D becomes larger
than the cache line size. A sample run of this benchmark, on
a Core 2 Duo processor, can be seen in Figure 1.

Intel Core 2 Duo 2.8 GHz ——
l'-\-»\,_/-

. /
/
5 /

Average Access Latency

8 16 32 64 128 256 512
Access Pair Extent: D

FIGURE 1. Cache Line Size Characterization on Core 2 Duo

3.1.2.  Cache Size and Latency

Using the cache line size information we can detect the
number of cache levels, as well as their sizes and access
latencies. The enabling assumption is that performing
multiple accesses to a buffer that resides in the cache is
faster than performing the same number of accesses to a
buffer that does not reside in the cache (or only partially
resides in the cache) (A2).

The benchmark starts by allocating a buffer that is
expected to fit in the smallest cache of the system; for
example, a buffer only a few cache lines large. Then
we access the whole buffer with stride equal to the cache

THE COMPUTER JOURNAL,

Vol. 77, No. 7?7, 777?




P OO~NOUILAWNPE

Page 4 of 13

4 A. DANALIS, P. LUSZCZEK, G. MARIN, J.S. VETTER, J. DONGARRA

line size. By making the access pattern random to avoid
prefetching effects, and by continuously accessing the buffer
until every element has been accessed multiple times to
amortize start-up and cold misses overhead, we can estimate
the average latency per access.

The benchmark varies the buffer size and performs the
same random access traversal for each new buffer size,
recording the average access latency at each step. Due to
assumption A2, we expect that the average access latency
will be constant for all buffers that fit in a particular cache of
the hierarchy, but there will be a significant access latency
difference for buffers that reside in different levels of cache.
Therefore, by varying the buffer size, we expect to generate
a set of Access Latency vs. Buffer Size data that looks
like a step function with multiple steps. A step in the data
set should occur when the buffer size exceeds the size of a
cache. The number of steps will equal the number of caches
plus one, the extra step corresponds to the main memory, and
the Y value at the apex of each step will correspond to the
access latency of each cache.

In order to eliminate false steps, the cache benchmarks
need to minimize the effects of the TLB. To achieve that
goal, the accesses to the buffer are not uniformly random.
Instead, the buffer is logically split into segments equal to
a TLB page size. The benchmark accesses the elements of
each segment in random order, but exhausts all the addresses
in a segment before proceeding to the next segment. This
approach guarantees that, in a system with a cache line size
St and a page size Sp, there are at least Sp/S;, cache misses
for each TLB miss. In a typical modern architecture the
value of Sp/S;. is around 64. While this approach does not
completely eliminate the cost of a TLB miss, it significantly
amortizes it. Indeed, the data sets we have gathered from
real hardware are easy to correlate with the characteristics
of the cache hierarchy and exhibit little interference due to
the TLB. Figure 2 shows the output of the benchmark on an
Atom processor.

85 | ATOM Cache ESisco{/ery —— S

[o2]
o
——

Access Latency (ns)
B
[6)]

5 /

1 2 4 8 16 32 64 128 256 5121024204840968192 63882768
Buffer Size (KiB)

FIGURE 2. Cache Count, Size and Latency Characterization on
Atom

3.1.3. Cache Associativity

This benchmark is based on the assumption that in a system
with a cache of size S., two memory addresses A, and A,,
where A1%S. == Ar%S., will map to the same set of an
N-way set associative cache (A3). The benchmark assumes
knowledge of the cache size, potentially extracted from the
execution of the benchmark mentioned above.

Assuming that the cache size is S., we allocate a buffer
many times larger than the cache size, M * S.. Next, the
benchmark starts accessing a part of the buffer that is K * S,
large (with K < M), repeating the experiment for different,
integral values of K. For every value of K the access pattern
consists of randomly accessing addresses that are S, bytes
apart; this process is repeated a sufficient number of times.
Since all such addresses will map into the same cache set,
as soon as K becomes larger than N, the cache will start
evicting elements to store the new ones, and therefore some
of the accesses will result in cache misses. Consequently,
the average access time should be significantly lower for
K < N than for K > N. The output from a sample run of this
benchmark on an Itanium processor is shown in Figure 3.

ltanium —e—
4
@
£
> 3
o
c
Q
: /
-
1]
& 2
(5]
|5
<
1
0
1t 2 8 4 5 6 7 8 9 10 11 12 13 14 15 16

Buffer Size ( x Cache-Size )
FIGURE 3. Cache Associativity Characterization on Itanium II

We note that a victim cache may cause the benchmark
to detect an associativity value higher than the real one.
To prevent this, our benchmark implementation accesses
elements in multiple sets, instead of just one.

3.1.4. Asymmetries in the Memory Hierarchy

With the move to multi-core processors, we witnessed the
quasi-general introduction of shared cache levels to the
memory hierarchy. Multicore processors introduced sharing
of caches at some levels to the memory hierarchy. A shared
cache design provides larger cache capacity by eliminating
data replication for multi-threaded applications. The entire
cache may be used by the single active core for single-
threaded workloads. More importantly, a shared cache
design eliminates on-chip cache coherence at that cache
level. In addition, it resolves coherence of the private lower
level caches internally within the chip and thus reduces
external coherence traffic. One downside of shared caches
is a larger hit latency which may cause increased cache
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contention and unpredictable conflicts. Shared caches are
not an entirely new design feature. Before level two caches
were integrated onto the chip, some SMP architectures were
using external shared L2 caches to increase capacity for
single threaded workloads, and to reduce communication
costs between processors.

Over the last decade, we also witnessed the integration
of the memory controller into the processor chip even for
desktop grade processors. On the positive side, the on-
chip memory controller increases memory performance by
reducing the number of chip boundary crossings for a
memory access, and by removing the memory bus as a
shared resource. Memory bandwidth can be increased by
adding additional memory controllers. Multi-socket systems
now feature multiple memory controllers. It is expected
that as the number of cores packed onto a single chip
continues to increase, multiple on-chip memory controllers
will be needed to keep up with the memory bandwidth
demand. This higher memory bandwidth availability comes
at the expense of increased hardware complexity in the form
of Non-Uniform Memory Access (NUMA) costs. Cores
experience lower latency when accessing memory attached
to their own memory controller.

Both of these hardware features can potentially create
asymmetries in the memory system. They may cause
subsets of cores to have an affinity to each other — cores
communicate faster with other cores from the same subset
than with cores that are not part of the subset. For example, a
cache level may be shared by only a subset of cores on a chip
as is the case with the L2 cache on the Intel Yorkfield family
of quad core processors. Thus, cores that share some level
of cache may exchange data faster among themselves than
with cores that do not share that same level of cache. For
NUMA architectures, data allocated on one NUMA node is
accessed faster by cores located on the same NUMA node
than by cores from different NUMA nodes.

To understand such memory asymmetries, we use a multi-
threaded micro-benchmark based on a producer-consumer
pattern. Two threads access a shared memory block.
First, one thread allocates and then initializes the memory
block with zeros. The benchmarks assume that a NUMA
system implements the first-touch page allocation policy.
By allocating a new memory block and then touching it,
the memory block will be allocated in the local memory
of the first thread. Page allocation policy can be also set
using OS specific controls, e.g., the numactl command on
NUMA-aware Linux kernels. Next, the two threads take
turns incrementing all the locations in the memory block.
One thread reads, and then modifies the entire memory block
before the other thread takes its turn. The two threads
synchronize using busy waiting on a volatile variable. We
use padding to ensure that the locking variable is allocated
in a separate cache line, to avoid false sharing with other
data. This approach causes the two threads to act both
as producers and as consumers, switching roles after each
complete update of the memory block. We repeat this
process many times to minimize secondary effects and we
compute the achieved bandwidth for different memory block

sizes. We use a range of block sizes, from a block size
smaller than the L1 cache size to a block size larger than
the size of the last level of cache.

We measure the communication bandwidth between all
pairs of cores. To be OS independent, the benchmark must
assume that a thread is executed on the same core for its
entire life. For best results, we control the placement of
the threads using an OS specific API for pinning threads
to cores. The hwloc [20] library provides a portable API
for setting thread affinity, and we plan to integrate it into
the benchmark suite. Next, the communication profiles are
analyzed in decreasing order of the memory block size, to
detect any potential cliques of cores that have an affinity to
each other. The algorithm starts with a large clique that
includes all the cores in the system. At each step, the
data for the next smaller memory block is processed. The
communication data between all cores of a clique, identified
at a previous step, is analyzed to identify any sub-cliques of
cores that communicate faster with each other at this smaller
memory block level. In the end, the algorithm will produce
a locality tree that captures all detectable asymmetries in the
memory hierarchy.

L1 L2 L3
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T 5000 e \h
B B ..’ e ‘ny
3 4000 M
§ T e e SR B Ko e Tl SO SN
§ 3000 %"
(0]
=
S 2000

1000

Inter-node -->¢--
J Intra—pode ool
16 64 256 1024 4096 16384

Block size (KB)

FIGURE 4. One-way, inter-core communication bandwidth for
different memory block sizes and core placements on a dual-socket
Intel Gainestown system.

Figure 4 shows aggregated results for an Intel Gainestown
system with two sockets and Hyper-Threading disabled. The
x axis represents the memory block size, and the y axis
represents the bandwidth observed by one of the threads.
The bandwidth is computed as number_updated lines *
cache_line_size | time, where number_updated lines is the
number of cache lines updated by the first thread. Since
the two threads update an equal number of lines, the values
shown in the figure represent only half of the actual two-way
bandwidth. As expected for such a system, the benchmark
captures two distinct communication patterns:

1. when the two cores reside on different NUMA nodes,
curve labeled inter-node;

2. when the two cores are on the same NUMA node, curve
labeled intra-node.

For this system, when the data for the largest memory
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block size is analyzed, the algorithm divides the initial
set of eight cores into two cliques of size four cores,
corresponding to the two NUMA nodes in the system. The
cores in each of these two cliques communicate among
themselves at the speed shown by the intra-node point,
while the communication speed between cores in distinct
cliques corresponds to the inter-node point. The algorithm
continues by processing the data for the smaller memory
block sizes, but no additional asymmetries are uncovered in
the following steps. The locality tree for this system has just
two levels, with the root node corresponding to the entire
system at the top, and two nodes of size four cores at the next
level corresponding to the two NUMA nodes in the system.

3.2. TLB Hierarchy

ARM OMAP3 —e—
28 Intel ltanium 2 1
26 Intel Nehalem EP ----e--

/
{
12{
2
!
{
{

Access Latency per Each Access (micro-seconds)

/

0 5000 10000 15000 20000 25000 30000
Stride for memory accesses

FIGURE 5. Graph of timing results that reveal the TLB page size.

TLB hierarchy is an important part of the memory
system that bears some resemblance to the cache hierarchy.
However, TLB is sufficiently different to warrant its own
characterization methodology. Accordingly, we will focus
on the description of our TLB benchmarking techniques
rather than present differences and similarities with the
cache benchmarks.

The crucial feature that any TLB benchmark should
posses is the ability to alleviate cache effects on the
measurements. Both conflict and capacity misses coming
from data caches should either be avoided at runtime or
filtered out during the analysis of the results. We chose
the latter, as it has the added benefit of capturing the rare
events when the TLB and the data cache are inherently
interconnected, such as when TLB fits the same number of
pages as there are data cache lines.

To determine the page size, our benchmark maximizes the
penalty coming from the TLB misses. We do it by traversing
a large array multiple times with a given stride. The array
is large enough to exceed the span of any TLB level — this
guarantees a high miss rate if the stride is larger or equal to
the page size. If the stride is less than the page size, some of
the accesses to the array will be contained in the same page,
and thus, will decrease the number of misses and the overall
benchmark execution time. The false positives stemming

from interference of data cache misses are eliminated by the
high cost of a TLB miss in the last level of TLB. Handling
these misses requires the traversal of the OS page table
stored in the main memory — the combined latency exceeds
the cost of a miss for any level of cache. Typical timing
curves for this benchmark are shown in Figure 5. The Figure
shows results from three very different processors: ARM
OMAP3, Intel Itanium 2, and Intel Nehalem EP. The graph
line for each system has the same shape; for strides smaller
than the page size, the line raises as the number of misses
increases because fewer memory accesses hit the same page.
And for strides that exceed the page size, the graph line is
flat because each array access touches a different page so
the per-access overhead remains the same. The page size is
determined as the inflection point in the graph line. For our
example, the page size is 4KB on both ARM and Nehalem,
and 16KB on Itanium.

There are programmatic means of obtaining the TLB page
size, such as the legacy POSIX call getpagesize() or
the more modern sysconf (_SC_PAGE_SIZE). One obvious
caveat of using any of these functions is portability. A
more important caveat is the fact that these functions return
the system page size rather than the hardware TLB page
size. For most practical purposes they are the same, but
modern processors support multiple page sizes and large
page sizes are often used to increase performance. Under
such circumstances, our test delivers the observable size of a
TLB page, which is the preferred value from a performance
stand point.

A similar argument can be made about counting the actual
page faults rather than measuring the execution time and
inferring the number of faults from the timing variations.
There are system interfaces such as getrusage () on Unix.
The pitfall here is that these interfaces assume the faults will
either be the result of the first touch of the page or that the
fault occurred because the page was swapped out to disk.
Again, our technique sidesteps these issues all together.

0.005
0.0045 [/
&  0.004
©
c
8 0.0035 E
& H
g 0008 [:
E
= 0.0025
[$]
g
1 0.002
-
8 00015 ki
Q
o
< 0.001
Intel Penryn (Core 2 Duo)
0.0005 AMD Opteron K10 (Istanbul)
IBM POWERY sssssssssssssnn

50 100 150 200 250 300 350 400 450 500
Working set size (number of visited TLB pages)

FIGURE 6. Graph of results that reveal the number of levels of
TLB and the number of entries in each level.

Once the actual TLB page is known, it is possible to
proceed with discovering the sizes of the levels of the TLB
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hierarchy. Probably the most important task is to minimize
the impact of the data cache. The common and portable
technique is to perform repeated accesses to a large memory
buffer at strides equal to the TLB page size. This technique
is prone to creating as many false positives as there are data
cache levels and a slight modification to this technique is
required [4]. On each visited TLB page, our benchmark
chooses a different cache line to access, thus, maximizing
the use of any level of data cache. As a side note, choosing
a random cache line within a page utilizes only half of the
data cache on average. Figure 6 shows the timing graphs on
a variety of platforms. Both Level 1 and Level 2 TLBs are
identified accurately. As we mentioned before, we aim at the
observable parameters: even if the TLB size is 512 entries,
some of these entries will not contain user data. In a running
process, there is a need for the function stack and the code
segment which will use one TLB page each, thus reducing
the observable TLB size by two.

3.3. Arithmetic Operations

Information about the processing units, such as the
latency and throughput of various arithmetic operations,
are important to compilers and performance analysis tools.
Such information is needed to produce efficient execution
schedules that attempt to balance the type of operations in
loops with the number and type of resources available on the
target architecture.

3.3.1. Instruction latencies

The latency Z(0,T) of an operation O, with operands
of type T, is calculated as the number of cycles it takes
from the time one such operation is issued until its result
becomes available to subsequent dependent operations.
BlackjackBench reports all operation latencies relative to the
latency of a 32-bit integer addition, since the CPU frequency
is not directly detected. For each combination of operation
type O and operand type T, our code generator outputs a
micro-benchmark that executes in a loop a large number of
chained operations of the given type. The cost per operation
is computed by dividing the wall clock time of the loop
by the total number of operations executed. The loop is
executed twice, using the same number of iterations but
with different unroll factors, and the difference of the two
execution times is divided by the difference in operation
counts between the two loops. This approach eliminates
the effects of the loop overhead, without increasing the
unroll factor to a very large value, which would significantly
increase the time spent in compiling the micro-benchmarks
and could create instruction cache issues. To account for
run-time variability, each benchmark is executed six times,
and the second lowest computed value is selected.

3.3.2. Instruction throughputs

The throughput .7 (0, T) of an operation O, with operands
of type T, represents the rate at which one thread of control
can issue and retire independent operations of a given type.
Throughput is reported as the number of operations that can

be issued in the time it takes to execute a 32-bit integer
addition.

Instruction throughputs are measured using an approach
similar to the one used for measuring instruction latencies.
However, to determine the maximum rate at which
operations are issued, micro-benchmarks must include many
independent operations as opposed to chained ones. At the
same time, using too many independent operations increases
register pressure, potentially causing unnecessary delays due
to register spills/unspills. Therefore, for each operation
type O and operand type 7, multiple micro-benchmarks
are generated each with different number of independent
streams of operations. The number of parallel operations
is varied between 1 and 20, and the minimum time per
operation across all versions, Ly, is recorded. Throughput
is computed as the ratio between the latency of a 32-bit
integer addition and L.

3.3.3.  Operations in flight

The number of operations in flight .% (0O, T') for an operation
O, with operands of type 7, is a measure of how many such
operations can be outstanding at any given time in a single
thread of control. This measure is a function of both the
issue rate and the pipeline depth of the target processor, and
is a unitless quantity.

Operations in flight are measured using an approach
similar to the ones used for operation latencies and operation
throughputs.  For each operation type O and operand
type T, multiple micro-benchmarks, with different numbers
of independent streams of operations, are generated and
benchmarked. However, unlike the operation throughput
benchmarks where we are interested in the minimum cost
per operation, to understand the number of operations in
flight we are looking at the cost per iteration loop. Each
independent stream contains the same number of chained
operations, and thus, the total number of operations in
one loop iteration grows proportionally with the number
of streams. When we increase the number of independent
streams in the loop, as long as the processor can pipeline
all the independent operations, the cost per iteration should
remain constant. Thus, the inflection point where the
cost per iteration starts to increase yields the number of
operations in flight supported by one thread of control.

3.4. Execution Contexts

Modern systems commonly have multiple cores per socket
and multiple sockets per node. To avoid confusion due to the
overloading of the terms core, CPU, node, etc, by hardware
vendors, we use the term “Execution Context” to refer to the
minimum hardware necessary to effect the execution of a
compute thread. Several modern architectures implementing
virtual hardware threads exhibit selective preference over
different resources. For example, a processor could have
private integer units for each virtual hardware thread, but
only a shared floating point unit for all hardware threads
residing on a physical core. The Blackjack benchmarks
attempt to discover the maximum number of:
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1. Floating Point Execution Contexts,
2. Integer Execution Contexts, and
3. Memory Intensive Execution Contexts.

Intuitively, we are interested in the maximum number
of compute threads that could perform floating point
computations, integer computations, or intense memory
accesses, without having to compete with one another, or
wait for the completion of one another. As a result, in
a system with N floating point contexts (or integer, or
memory), we should be able to execute up to N parallel
threads that perform intense floating point computations (or
integer, or memory) and observe no interference between
the threads. Thus the assumption is that in a system with N
execution contexts, there should be no delay in the execution
of each thread for M < N threads, but for M > N threads at
least one thread should be delayed (A4).

To utilize this assumption, our benchmark instantiates M
threads that do identical work (Floating point, Integer, or
Memory intensive, depending on what we are measuring)
and records the total execution time, normalized to the time
of the case where M = 1. The experiment is repeated for
different (integral) values of M until the normalized time
exceeds some small predetermined threshold, typically 2 or
3. Due to assumption A4, the normalized total execution
time will be constant and equal to 1 (with some possible
noise) for M < N and greater than one for M > N.

While this behavior is true for every machine we have
tested, the behavior for X > N depends on the scheduler of
the Operating System. Namely, since we do not explicitly
bind the threads to cores, the operating system is free to
move them around in an effort to distribute the “extra”
load caused by the X — N threads (for X > N) among all
computing resources. If the operating system does so, then
the total execution time for X > N will increase almost
linearly with the number of threads. If the operating system
chooses to leave the threads on the same core for their whole
life time, the result will look like a step function with steps at
X =N,X=2%N,X =3x%N, etc, and corresponding apexes
atY =1,Y =2,Y =3 and so on. The latter tends to be a
rare case, but we observed it in our private Cray XT5 system,
Jaguar.

For the case of the Memory Intensive Contexts it is
important to distinguish between the ability of the execution
contexts to perform memory operations and the ability of
the memory subsystem to serve multiple parallel memory
requests. To avoid erroneous results due to memory
limitations, our benchmark limits memory accesses of each
thread to a small memory block that fits in the Level 1 cache
and uses pointer chasing to traverse it. For the case of
the Integer and Floating Point Contexts, the corresponding
benchmarks execute a tight compute loop with divisions,
which are among the most demanding arithmetic operations
on variables initialized to 1 (so the values do not diverge)
in a non-decidable way so that the compiler cannot simplify
the loop. A sample output of this benchmark on a Power7
processor can be seen in Figure 7.
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FIGURE 7. Execution Contexts Characterization on Power7

3.5. Live Ranges

An important hardware characteristic for optimization is the
maximum number of registers available to an application.
Although the number of registers on an architecture is
usually known, not all the registers can be used for
application variables. For example, either the stack pointer
or the frame pointer should be held in a register as at least
one of them is essential for retrieving data from the stack
(both cannot be stored on the stack). Other constraints
or conventions require allocation of hardware registers for
special purposes thus reducing the actual number of registers
available for applications. We use the term “Live Ranges”
to describe the maximum number of concurrently usable
registers by a user code.

When the number of concurrently live variables in a
program exceeds the number of available registers, the
compiler has to introduce a piece of code that “spills”
the extraneous variables to memory. This incurs a delay
because: 1) memory (even the L1 cache) is slower than
the register file and 2) the extra instructions needed to
transfer the variable and calculate the appropriate memory
location consume CPU resources that are otherwise used
by the original computation performed by the application.
Thus, the enabling assumption of this benchmark is that in
a machine with N Live Ranges, a program using K > N
registers will experience higher latency per operation than
a program using K < N registers (A5). To measure this
effect, our benchmark runs a large number of small tests
(130), each executing a loop with K live variables (involved
in K additions) with K ranging from 3 to 132. By executing
all these tests and measuring the average time per operation,
we detect the maximum number of usable registers R by
detecting the step in the resulting data.

The structure of the loop is similar to the one used by X-
Ray [1], but is modified in two ways.

1. The switch statement, used in the loop by X-Ray,
is unnecessary and detrimental to the benchmark.
It is unnecessary as the chained dependences of
the operations are sufficient to prohibit the compiler
from aggressive code optimizion (by simplifying, or
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reducing the number of operations in the loop). It
is detrimental because some compilers, on some
architectures, choose to implement the switch with
a jump determined by a register. As a result, the
benchmark could report one less register than the
number that is available for application variables.

2. The simple dependence chain suggested in X-Ray:
PN = Pign + Pigzn-1)%N can lead to inconclusive
results in architectures with deep pipelines and
sophisticated ALUs with spare resources. We observed
this effect when the compiler generated instruction
schedules tried to hide the spill/unspill overhead by
using the extra resources of the CPU. To reduce the
impact of this effect we used the pattern: Pigy =
Pogn + P(l. N )N for the loop body. This pattern

enables |N/2| operations to be pipelined provided
sufficient pipeline depth. As a result, the execution
of the operations in the loop puts much more pressure
on the CPU and makes it harder to hide the memory
overheads.

In a similar manner to other benchmarks, where sensitive
timing is performed, special attention was paid to details
that can affect the performance, or the decisions of the
compiler. As an example, the K operations that we time
have to be performed thousands of times in a loop due to
the coarse granularity of widely available timers. However,
use of loops introduces latency and poses a dilemma for the
compiler as to whether the loop induction variable should be
kept in a register. Manually unrolling the body of the loop
multiple times amortizes the loop overhead and reduces the
importance of the induction variable when register allocation
is performed. An example run of this benchmark, on a
Power7 processor, can be seen in Figure 8.
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FIGURE 8. Live Ranges Characterization on Power7

The actual output data of this benchmark shows that for
very small number of variables the average operation latency
is higher than the minimum operation latency achieved. This
is the case since the pipeline is not fully utilized when
the data dependencies do not allow several operations to
execute in parallel. However, this benchmark is only aiming
to identify the latency associated with spilling registers

to memory, which results in increased latency. For this
reason, the curves shown in the Figure, and used to extract
the Live Ranges information, were obtained after applying
monotonicity enforcement to the data. This technique is
discussed in Section 4.1.

3.6. OS Scheduler time slot

Multithreaded applications can tune synchronization,
scheduling, and work distribution decisions by using in-
formation about the typical duration of time a thread will
run on the CPU uninterrupted after the OS schedules it for
execution. We refer to this time duration as the OS Sched-
uler time slot. The assumption that enables this benchmark
is that when a program is being executed on a CPU with
frequency F, the latency between instructions should be
on the order of 1/F, where two instructions that execute
in different time slots (because the program execution was
preempted by the OS between these instructions) will be
separated by a time interval on the order of the OS Sched-
uler time slot, T;, which is several orders of magnitude
larger than 1/F (A6).

Our benchmark consists of several threads. Each thread
executes the following pseudocode:

te = ts = t0 = timestamp()

while(te —t0 < TOTAL_.RUNNING_TIME)

OPy---OPy

te = timestamp()

if(te—ts > THRESHOLD) record(te —ts)
ts=te

In other words, if 7; was larger than a predefined threshold
then a loop that executes a minimal number of operations
takes a timestamp and records the length of time 7; since the
previous timestamp, The threshold must be chosen such that
it is much longer than the time the few operations and the
timestamp function take to execute, but much shorter than
the expected value of the scheduler time slot, 7. In a typical
modern system, a handful of arithmetic operations and a call
to a timestamp function, such as gettimeofday, take less than
a microsecond. On the other hand, the scheduler time slot
is typically in the order of, or larger than, a millisecond.
Therefore, a THRESHOLD of 20usec safely satisfies all
our criteria. Since we do not record the duration, 7;, of
any loop iteration with 7; < THRESHOLD, and we have
chosen THRESHOLD to be significantly larger than the pure
execution time of each iteration, the only values recorded
will be from iterations whose execution was interrupted by
the OS and spanned more than one scheduler time slot.

The benchmark assumes knowledge of the number
of execution contexts on the machine (i.e., cores), and
oversubscribes them by a factor of two by generating twice
as many threads as there are execution contexts. Since all
threads are compute-bound, perform identical computation,
and share an execution context with some other thread, we
expect that, statistically, each thread will run for one time
slot and wait during another. Regardless of scheduling
fairness decisions and other esoteric OS details, the mode
of the output data distribution (i.e., the most common
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measurement taken) will be the duration of the scheduler
time slot, 7;. Indeed, experiments on several hardware
platforms and OSes have produced expected results.

4. STATISTICAL ANALYSIS

The output of the micro-benchmarks discussed in section 3
is typically a performance curve, or rather, a large number of
points representing the performance of the code for different
values of the control variable. Since our motivation for
developing BlackjackBench was to inform compilers and
auto-tuners about the characteristics of a given hardware
platform, we have developed analyses that can process the
performance curves and output values that correspond to
actual hardware characteristics.

4.1. Monotonicity enforcement

In all our benchmarks, except for the micro-benchmark that
detects asymmetries in the memory hierarchy, the output
curve is expected to be monotonically increasing. If any data
points violate this expectation, it is due to random noise, or
esoteric — second order — hardware details that are beyond
the scope of this benchmark suite. Therefore, as a first post-
processing step we enforce monotonic increase using the
formula: Vi: X; = min;>; X;

4.2. Gradient Analysis

Most of our benchmarks result in data that resemble step
functions. Therefore the challenge is to detect the location
of the step, or steps, that contain the useful information.

4.2.1. First Step

The Execution Contexts benchmark produces curves that
start flat (when the number of threads is less than the
available resources), then exhibit a large jump (when the
demand exceeds the resources), and then continue with noisy
behavior and potentially additional steps as can be seen in
Figure 7.

To extract the number of Execution Contexts from this
data, we are interested in that first jump from the straight
line to the noisy data. However, due to noise, there can
be small jumps in the part of the data that is expected
to be flat. The challenge is to systematically define what
constitutes a small jump versus a large jump for the data
sets that can be generated by this benchmark. To address
this, we first calculate the relative value increase in every
step dY, = Y"%;Y” and then compute the average relative
increase (dY"). We argue that the data point that corresponds
to the jump we want (and thus the number of execution
contexts) is the first data point i for which dY;]" > (dY"). The
rationale is that the average of a large number of very small
values (noise) and a few much larger values (actual steps)
will be a value higher than the noise, but smaller than the
steps. Thus the average relative increase (dY") gives us a
threshold to differentiate between small and large values for
every data set of this type.

4.2.2. Biggest Step

The Live Ranges benchmark produces curves that start flat
(when all variables fit in registers) then potentially grow
slightly (if some registers are unavalable for some reason),
then exhibit a large step when the first spill to memory
occurs, and then continue growing in a non-regular way as
can be seen in Figure 8. Due to the increase in latency before
the first spill, the previous approach for detecting the first
step is not appropriate for this type of data. However, we
can utilize the fact that the steps caused by the additional
spills will be no larger than the step caused by the first spill.
Furthermore, since the additional steps have higher starting
values than the first step, the relative increase M for
every n higher than the first spill will be lower than the
relative increase of the first spill. To demonstrate this point,
Figure 9 shows the data curves for the integer live ranges
along with the relative dY" values.
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FIGURE 9. Live Ranges and Relative dY

The biggest relative step technique can also be used for
processing the results of the cache line size benchmark and
the cache associativity benchmark. For the TLB page size,
where the desired information is in the last large step, the
analysis seeks the biggest scaled step dY* = dY x Y (instead
of the biggest relative step).

4.2.3.  Quality Threshold Clustering

Unlike the previous cases, where the analysis aimed to
extract a single value from each data set, the benchmark
for detecting the cache size, count, and latency has multiple
steps that carry useful information. Due to the regular
nature of the steps this benchmark tends to generate, we
can group the data points into clusters based on their Y
value (access latency) such that each cluster includes the data
points that belong to one cache level. For the clustering, we
use a modified version of the quality threshold clustering
algorithm [21]. The modification pertains to the cluster
diameter threshold used by the algorithm to determine if a
candidate point belongs to a cluster or not. In particular,
unlike regular QT-Clustering, where the diameter is a
constant value predetermined by the user of the algorithm,
our version uses a variable diameter equal to 25% of the
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average value of each cluster. The algorithm we use is
represented in pseudocode in Figure 10.

1| QT _clustering(G)
2| if |G|< 1 then

3]  outputG
4| else
5 forieGdo
6| flag=true
7| Aj < {i} # A, is the cluster started by i
8| while flag=trueand A; #G do
9| find j € (G—A;) such that diameter(A;U{,}) is minimum
10| if diameter(A;U{;}) > 0.25-average(4;) then
11] flag=false
12| else
13| Ai  A;U{j} # Add j to cluster A;
14| end if
15| end while
16| identify set C € {A1,A2,...,A|/} with maximum cardinality
17| print C
18| QT _clustering(G—C)
19  end for
20| end if

FIGURE 10. Quality Threshold Clustering Pseudocode

Using QT-Clustering, we can obtain the clusters of points
that correspond to each cache level. Thus, we can extract
for each cache level the size information from the maximum
X value of each cluster, the latency information from the
minimum Y value of each cluster and the number of levels
of the cache hierarchy from the number of clusters. An
example use of this analysis, on the data from a Power7
processor, can be seen in Figure 11. QT-Clustering is also
used for the levels of TLB.
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FIGURE 11. QT-Clustering applied to Power7 Cache Data

5. DISCUSSION

Comparing Figures 2 and 11 against vendor documents,
one can notice that there are discrepancies in some of the
reported values. For example, IBM advertises the L3 cache
of the 8 core Power7 processor as 32MiB. Also, according to
the vendor, there is no L4 cache. However, our benchmark
detects an L3 of size just under 4MiB and a fourth level of
cache with a size just under 32 MiB. The reason behind this

behavior is that our benchmarks aim at the effective values
of the hardware features, as those are viewed using changes
in performance as the only criterion. In the case of the
Power7, the L3 cache is organized in 4MiB chunks “local”
to each core, but shared between all cores. As a result,
each core can access the first 4MiB of the L3 faster than it
accesses the rest. It then appears as if there were two discreet
cache levels. The size being detected is slightly smaller
than vendor’s claims. This phenomenon occurs in virtually
every architecture we have tested, for the largest cache in
the hierarchy. The cause differs between architectures, and
it is a combination of imperfect cache replacement policies,
misses due to associativity, and pollution due to caching
of data such as page table entries, or program instructions.
As a result, if a user application has a working set equal
to the vendor advertised value for the largest cache, it is
practically impossible for that application to execute without
a performance penalty due to cache misses. Therefore, we
consider the size of the largest working set that can be used
without a significant performance penalty to be the effective
cache size, which is the value we are interested in.

A few of our measurements may be affected by a variety
of system settings. For example, BIOS on some servers
include an option for pair-wise prefetching in Intel Xeon
server chips. The Itanium architecture has its peculiarities
such as lack of Level 1 caching support for floating-point
values and two different TLB page sizes at each level of
TLB. In fact, TLB support can be quite peculiar and this
includes a separate TLB space for huge page entries on
AMD’s Opteron chips. Similarly, there are lock-down
TLB entries that could potentially be utilized differently by
various implementations of the the ARM processor designs.
And there is the issue of read-only Level 1 TLB on the
Intel Core 2 architecture. Occasionally, the concurrency of
in-memory TLB table walkers may limit the performance
if multiple cores happen to suffer heavy TLB miss rates
and require constant TLB reloading from the main memory.
Finally, some OSes (HP-UX and AIX in particular) allow the
user’s binary executables to include the information on what
page size should be used during process execution rather
than have a system-wide default value. Such uncommon
conditions can be challenging for our benchmarks, in that the
produced results could differ from the user’s expectations.

6. GUIDED TUNING

Aside from benefiting AACE, we consider BlackjackBench
as an indispensable tool for model-based tuning and
performance engineering of computational kernels for
scientific codes. One such kernel called DSSSM [22],
is absolutely essential for good performance of tile linear
algebra codes [23]. For the sake of brevity and simplicity
of exposition, we will show how BlackjackBench helps
us guide a model-based tuning of one of the components
of the kernel: a Schur’s complement update based on
matrix-matrix multiplication [24]. We believe that our
approach is a viable alternative to existing exhaustive search
approaches [15, 16], analytical search [17], or approaches
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based on machine learning [18].

We proceed first by constructing a cache reuse model to
maximize the issue rate of floating-point operations. In fact,
it is desirable to retire as many such operations in every cycle
as is feasible given the number of FPU units. The Schur’s
complement kernel has a high memory reuse factor that
grows linearly with the input matrix sizes. Our model is a
constrained optimization problem with discrete parameters:

2mnk
max
m+n+k<R 2mnk + (mn+ mk + nk)

where m, n, and k are input matrix dimensions and R
is the number of registers or the cache size. When the
above fraction is maximized, the code performs the most
amount of floating point operations per each load operation
for the kernel under consideration. BlackjackBench was
used to supply the values of R for the register file (Live
Ranges) and Level 1 cache size. Optimizations that take into
account additional levels of cache are not as important for
tile algorithms [23].

We put our methodology to the test on a dual-core Intel
Core 17 machine with 2.66 GHz clock. This determines
the size of register file (16) and Level 1 cache (32 KiB)
as supplied by BlackjackBench and confirmed with the
hardware specification.  Our model points to register
blocking with m = 3, n = 3, and k = 1; cache blocking with
m = 63, n =63, and k = 1. These parameters however are
not practical because the kernel would most likely always be
called with even matrix sizes and so the cleanup code [15]
would have to be utilized in the majority of cases which may
drastically diminish the performance. Thus, a more feasible
register blocking is m =4, n =2, and k = 1. Level 1 cache
blocking has to be adjusted to match the register blocking.
Further adjustment comes from the fact that one of the input
matrices in our kernel may have non-unit stride, and loading
its entries into the L1 cache brings in one cache line worth of
floating-point data, and we need room to accommodate for
these extra items. Using BlackjackBench we discover the
cache line size and thus, the corresponding change in cache
blocking parameters is: m,n = 56, and k = 1. Since m and n
are the same, we refer to them collectively as matrix size.

Figure 12 shows performance results for our kernel and
the vendor implementation. According to our model and the
consideration presented above, optimal performance should
occur at matrix size 56 and the figure confirms this finding:
the Blackjack line drops for matrix sizes larger than this
value. An additional benefit of our guided tuning is the fact
that we are able to achieve significantly higher performance
for the range of matrix sizes that are the most important in
our application.

7. CONCLUSION

We have presented the BlackjackBench system characteriza-
tion suite. This suite of micro-benchmarks goes beyond the
state of the art in benchmarking by:

1. Offering micro-benchmarks that can exercise a wider
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FIGURE 12. Performance of the Schur’s complement kernel
routines. VecLib is based on ATLAS. Blackjack is a routine
optimized for Level 1 cache.

set of hardware features than most existing benchmark
suites do.

2. Emphasizing portability by avoiding low level primi-
tives, specialized software tools and libraries, or non-
portable OS calls.

3. Providing comprehensive statistical analyses as part
of the characterization suite, capable of distilling the
results of micro-benchmarks into useful values that
describe the hardware.

4. Emphasizing the detection of hardware features
through variations in performance. As a result, Black-
jackBench detects the effective values of hardware char-
acteristics, which is what a user level application expe-
riences when running on the hardware, instead of often
unattainable peak values.

We describe how the micro-benchmarks operate, and
their fundamental assumptions. We explain the analysis
techniques for extracting useful information from the
results and demonstrate, through several examples drawn
from a variety of hardware platforms and OSes, that our
assumptions are valid and our benchmarks are portable.
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