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Abstract. In this paper, we analyze the potential of using weights for block-asynchronous re-
laxation methods on GPUs. For this purpose, we introduce different weighting techniques similar
to those applied in block-smoothers for multigrid methods. Having proven a sufficient convergence
condition for the weighted block-asynchronous iteration, we analyze the performance of the algo-
rithms implemented using CUDA and compare them with weighted synchronous relaxation schemes
like SOR. For test matrices taken from the University of Florida Matrix Collection we report the
convergence behavior and the total runtime for the different weighting techniques. Analyzing the
results, we observe that using weights may accelerate the convergence rate of block-asynchronous
iteration considerably. This shows the high potential of using weights in block-asynchronous iter-
ation for numerically solving linear systems of equations fulfilling certain convergence conditions.
While component-wise relaxation methods are seldom directly applied to linear equation systems,
using them as smoother in a multigrid framework they often provide an important contribution to
finite element solvers. Since the parallelization potential of the classical smoothers like SOR and
Gauss-Seidel is usually very limited, replacing them with block-asynchronous smoothers may have a
considerable impact on the overall multigrid performance. Due to the explosion of parallelism in to-
day’s architecture designs, the significance and the need for highly parallel asynchronous smoothers,
as the ones described in this work, is expected to grow.
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1. Introduction. Using weights in iterative relaxation schemes is a well known

and often applied technique to improve the convergence. An example is the classical
successive over-relaxation method (SOR, [26]), which improves the convergence rate
of the underlying Gauss-Seidel algorithm by using weights. Other examples include
block-smoothers in multigrid for finite element discretizations [9]. In this case, the
parallelized Block-Jacobi or Block-Gauss-Seidel smoothers are weighted according to
the block decomposition of the the linear equation system.
In [3] we explored the potential of replacing the classically applied smoothers in multi-
grid methods with asynchronous iterations. While a block parallelized smoother re-
quires synchronization between the iterations, asynchronous methods are very tolerant
to component update order and latencies concerning the communication of updated
component values. This lack of synchronization barriers makes them perfect can-
didates for modern hardware architectures, which are often accelerated by highly
parallel coprocessors. In [2] we have shown how to enhance asynchronous iteration
schemes to compensate for the inferior convergence rate of the plain asynchronous
iteration.
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In particular, this is achieved by adding local iterations that almost come for free,
and therefore should not be counted as global iterations. Furthermore, the higher
iteration number per time frame on the GPUs results in considerable performance
increase.

While Chazan and Miranker have introduced a weighted asynchronous iteration

similar to SOR, it becomes of interest as whether or not the block-asynchronous it-
eration benefits from weighting methods similar to those applied to block smoothers
[9]. The motivation is that the off-block matrix entries are neglected in the local it-
erations performed on the subdomains. To account for this issue it may be beneficial
to weight the local iterations. This can be achieved either by using ¢;-weights, by a
technique similar to w-weighting, or by a combination of both. The purpose of this
paper is to introduce the different methods, analyze the convergence properties, and
report experimental results.
Therefore, we split the paper into different parts. In the first section we provide
the concept of asynchronous iteration and state some established convergence results
on the weighted asynchronous iteration method [12]. We then introduce the idea of
block-asynchronous methods based on the linear system decomposition and the dif-
ferent weighting techniques. Having given the necessary mathematical background,
we will then prove the convergence of the block-asynchronous iteration using w or
{1 weights. In the experimental part we provide details about the hardware system,
the implementation we used for our tests and describe the linear equation systems
we target. We then report the convergence rate with respect to the iteration num-
ber for different parameters, and compare the time to solution with a SOR method
implemented on the CPU.

2. Mathematical Background.

2.1. Asynchronous Iteration. The Jacobi method is an iterative algorithm
for finding the approximate solution for a linear system of equations

Az =, (2.1)

that converges if A is strictly or irreducibly diagonally dominant [30, 6].

One can rewrite the system as (L + D + U)xz = ¢ where D denotes the diagonal
entries of A while L and U denote the lower and upper triangular part of A, respec-
tively. Using the form Dx = ¢— (L+U)z, the Jacobi method is derived as an iterative
scheme

™ =D Y e— (L+U)z™).

Denoting the error at iteration m + 1 by e,,;1 = 2™ — 2, this scheme can also be
rewritten as €,,11 = (I — D~ 1A)e,,. The matrix M = I — D! A is often referred to as
iteration matriz. The Jacobi method provides a sequence of solution approximations
with increasing accuracy when the spectral radius of the iteration matrix M is less
than one (i.e., p(M) < 1) [6].

The Jacobi method can also be rewritten in the following component-wise form:

1
"t = poodl Zaijz;" (2.2)
" i

J#i
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wherebij:—Z—Z for i # j, b = 0 and d; = ;- for all 1 <i,j < n.

For computing the next iteration, one requires the latest values of all components.
This requires a strict order of the component updates, limiting the parallelization po-
tential to a stage, where no component can be updated several times before all the
other components are updated.

If this order is not adhered to, i.e the individual components are updated inde-
pendently and without consideration of the current state of the other components,
the resulting algorithm is called chaotic or asynchronous iteration method. Back in
the 70’s Chazan and Miranker analyzed some basic properties of these methods, and
established convergence theory [12] (also see [4, 10, 11]). For the last 30 years, these
algorithms came out of focus of high-performance computing due to the superior
convergence properties of synchronized iteration methods. More interest was put on
the convergence properties and deriving models for the computational cost, e.g. in
[5, 7, 13, 14, 15, 16, 17, 18, 19, 21, 22, 28]. Today, due to the complexity of heteroge-
neous hardware platforms and the high number of computing units in parallel devices
like GPUs, these schemes may become interesting again for applications like multi-
grid methods, where highly parallel smoothers are required on the distinct grid levels.
While traditional smoothers, like the sequential Gauss-Seidel, obtain their efficiency
from their fast convergence, it may be true that the asynchronous iteration scheme
overcompensates for the inferior convergence behavior with superior scalability.

The chaotic-, or asynchronous-relaxation scheme defined by Chazan and Miranker
[12] can be characterized by two functions, an update function u(-) and a shift function
s(+, ). For each non-negative integer v, the component of the solution approximation
r that is updated at step v is given by u(v). For the update at step v, the mt"
component used in this step is s(v, m) steps back. All the other components are kept.
This can be expressed as:

n v—s(v,m) . _
l,lv-Fl _ Zl:/mzl bl:mxm + dl li ﬁ - u(l/) (24)
x if 1 # u(v).

Furthermore, the following conditions can be defined to guarantee the well-posedness
of the algorithm [27]:

DEFINITION 2.1 (Conditions for well-posedness of asynchronous iteration).

1. The update function u(-) takes each of the values 1 for 1 < 1 < n infinitely
often.

2. The shift function s(-,-) is bounded by some 5 such that 0 < s(v,m) < sV v €
{1,2,...},Vm € {1,2,...n}. For the initial step, we additionally require
s(v,m) <w.

For the general asynchronous iteration defined by these properties, Chazan and
Miranker have proved the following sufficient convergence condition (See also Bert-
sekas and Tsitsiklis for the proof [11]).

THEOREM 2.2. Suppose we have an asynchronous iteration where condition (1)
and (2) are satisfied for all update and shift functions.

(a) The sequence of iterates x' converges if there exists a positive vector v and a
number a, o < 1 such that |Blv < av (componentwise).
(b) This happens if the spectral radius of |B|, p(|B]) < 1.

Without showing the details of the proof, we want to mention a lemma that is

used, [12, 27]:
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LEMMA 2.3. The condition p(|B]) < 1 implies that there is a value o with 0 <
a < 1 and a vector v with positive components such that |Blv < av (componentwise).

Chazan and Miranker extended their results to a weighted asynchronous iteration
by replacing the original iteration matrix B = I —D~'A of (2.4) by B, = [ —wD™1A.
They were also able to prove the convergence of the obtained weighted asynchronous
iteration [12].

THEOREM 2.4. Suppose the asynchronous iteration fulfilling condition (1) and
(2) is modified by using weights such that B =1 — D™'A and d = D¢ of (2.4) is
replaced by B, = (I —wD~'A) and d, = wD™c.
If the spectral radius p(|B|) = a < 1, then the weighted asynchronous iteration con-
verges for all w with 0 < w < o%rl

We outline the proof here, since we will utilize parts in the convergence theory of
weighted block-asynchronous iteration.

Proof. We want to show that p(|By|) < 1 or alternatively that there exists v > 0
so that | B, |v < Bv, 8 < 1. For the case w = 1 we obtain from Theorem 2.2 that there
exists v > 0 so that |B;|v < av. But then

|Bylv < (I(1 —w) +w|Bi1])v < (1 —w)|v + wav = (|1 — w| + wa)v.

Let 8 = (|1 — w| + wa). It remains to show that § < 1. If 1 < w < %ﬂ, then
B=0aw+ (w—-1) = (14 a)w—1< 1. On the other hand, if 0 < w < 1 we have
f=aw+(l-w)=(—(1—-0a)w+1) <1since a < 1.0

2.2. Block-Asynchronous Iteration. The motivation for the block-asynchro-
nous iteration comes from the hardware architecture. The idea is to split the linear
system into blocks of rows, and then to assign the computations for each block to one
thread block on the GPU. For these thread blocks, an asynchronous iteration method
is used, while on each thread block, instead of one, multiple Jacobi-like iterations are
performed. During these local iterations the x values used from outside the block are
kept constant (equal to their values at the beginning of the global iteration). After
the local iterations, the updated values are communicated. This approach is inspired
by the well known hybrid relaxation schemes [8, 9], and was analyzed with respect to
convergence properties in [20]. In other words, using domain-decomposition terminol-
ogy, our blocks would correspond to subdomains and thus we iterate locally on every
subdomain. We denote this scheme by async-(i), where the index ¢ indicates that we
use ¢ Jacobi-like updates on the subdomain. As the subdomains are relatively small
and the data needed largely fits into the multiprocessor’s cache, these additional iter-
ations on the subdomains almost come for free. The obtained algorithm, visualized in
Figure 2.1, can be written as component-wise update of the solution approximation:

1 Tg T n
1 - 1,5 - 1,5
24 e =S gz S g m) S g mv(ret1.9)
akk X J A J . 7
Jj=1 i=Ts J=TE
global part local part global part

where Ts and T denote the starting and the ending indexes of the matrix/vector part
in the thread block. Furthermore, for the local components, the most recent values are
used, while for the global part, the values from the beginning of the iteration are used.
The shift function v(m—+1, j) denotes the iteration shift for the component j - this can
be positive or negative, depending on whether the respective other thread block has
already conducted more or less iterations. Note that this gives a block Gauss-Seidel
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Fig. 2.1: Visualizing the asynchronous iteration in block description used for the GPU
implementation.

flavor to the updates. It should also be mentioned that the shift function may not be
the same in different thread blocks.

Despite the fact that classical relaxation methods are nowadays rarely applied to
solve a linear equation system (there exist more efficient methods like Krylov subspace
solvers) they are still of interest for high performance computing since they often pro-
vide an important contribution as a smoother in the multigrid framework. While
experiment results reveal that block-asynchronous iteration may, especially when tar-
geting large systems and highly parallel implementations, have similar smoothing
potential like Gauss-Seidel [3], it is an open question of whether or not the perfor-
mance of block-asynchronous iteration can be increased by using weighting techniques
similar to those applied to hybrid Gauss-Seidel-based smoothers [9, 23].

To examine the topic of weights in the hybrid asynchronous iteration, we introduce
the following notations to simplify the analysis [9].

Splitting the matrix A into blocks, we use Ay for the matrix block located in the
k-th block row and the k-th block column. We now define the sets

QD ={jeQ:ie),
Q) = {j ¢ Qi el

Hence, for' block Ay, Q%) contains all column indices in the diagonal block of row
i while Q((f) contains the remaining columns that have no entries in the block. This
way, we can decompose the sum of the elements of the i-th row:

Ts Tr n
dag = > oay o+ Y ay + Y ag
J Jj=1 j=Ts J=TE
off-block columns  block columns  off-block columns
> ay + Y ay
JjeQ® jenl?
———

block columns

off-block columns
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Similar to [9] we may now define an indicator 6 such that for all rows i

ai; >0 Y ai]

jeal?

indicates a certain quality of the parallel partitioning of the matrix A. Large values
for 6 imply that most of the relatively significant entries in every row are within the
respective diagonal blocks. For the hybrid asynchronous iteration using the matrix
block decomposition this means that the off-thread entries that are neglected in the
local iterations are relatively small.

For many cases # > 1, which we will also assume for further analysis, since it is a
necessary condition for the convergence theory.

3. Weights in block-asynchronous iteration.

3.1. w-weighting for block-asynchronous iteration. Similar to the w-weight-
ed asynchronous iteration, it is possible to use w-weighting for the block structure in
the hybrid approach. In this case, the solution approximation of the local iterations
is weighted when updating the global iteration values. The parallel algorithm for the
component updates in one matrix block is outlined in Algorithm 1.

1: Update component i:

2 §:= Zjeﬂg“ b;jx; (off-diagonal part)

3 xlocal =7

4: for all £k =0; k < local_iters; k+ + do

5. alecal =54 > jeal bijxé.ocal (using the local updates in the block)
6: end for

7z = wrkeed + (1 —w)ay

Algorithm 1: Basic principle of using w-weights in block-asynchronous iteration.

For this algorithm it is difficult to derive one general iteration matrix, since for the
local iterations B = I — D~ ! A is applied, and for the global updates B, = I —wD™ 1A
is used. Hence we obtain for one global iteration entailing v local iterations

' = (B,B")z".

THEOREM 3.1. Suppose the block-asynchronous iteration fulfilling condition (1)
and (2) for all update and shift functions is modified by using weights in the block
approach such that B = I — D™'A and d = D¢ of (2.4) is replaced by B, =
(I—wD IM)(I-D='*M)" and dy.,, = wD~1D~"c, respectively, where v is the number
of local iterations on every subdomain.

If the spectral radius of p(|B|) = a < 1, then the weighted block-asynchronous iteration
converges for all w with 0 < w < o%i-l

Proof. Due to the general Theorem 2.2, it is sufficient to show that there exists
v > 0 so that |Bp,|v < dv, 8 < 1.

Since we have that p(|B|) = a < 1, we know according to Lemma 2.3 that there exists
an @ < 1, and a v > 0 such that |B|v < aw. We utilize this & and v and the 8 from
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the proof of Theorem 2.4 fulfilling | B, |v < Bv. We then conclude for | By, |v:

|Bpw|v = |By,BY|v < |B,||B”|v
< |B,||B|"v < |B,||Bl" tav
< |Bylafv < farv

Let 6 = Ba”, then § < 1 and we have the existence of v > 0 such that |Bp|v < dv,
completing the proof. O

3.2. /;-weighting for block-asynchronous iteration. Using the notation for
the local and the global parts of the matrix, we can introduce a weighting technique,
that is usually referred to as ¢; weighting. Classically applied to Block-Jacobi and
Gauss-Seidel relaxation methods, ¢; weighting adds a diagonal component to the
iteration matrix. This way, B = I — D71A of (2.4) is replaced by B = I — (D +
D*)~1 A, where D% is the diagonal matrix with entries

14
dit = Y ).

G
]EQU

In other words, the iteration matrix M of B = I — M~ A is perturbed by adding
the off-block elements in each row to the diagonal.

A question in this context is whether the obtained weighted asynchronous itera-
tion is still convergent.

THEOREM 3.2. Suppose

n
vl 0, v—s(v,m) 1 .
! _E bijxj +d;, 1=12...n
i=1

is an {1 weighted asynchronous iteration scheme where condition (1) and (2) are
fulfilled for all update and shift functions. If furthermore

p(IBl) <1

where p (|B|) is the spectral radius of the component-wise positive matric B = I —
D~1A, then the sequence of solution approzimations x! is convergent to Z;, the unique
solution of 2.1.

The proof to this is very similar to the general theorem in [12] with the difference,
that the iteration matrix B of (2.4) is replaced by

ail _ a2 _ ais _ ain
ai1+di1 ai1+di1 a11+di1 ai1+dii
___az 1 — a2 : :
a22+da22 az2+da22
By, = _as _ __as3 : . (3.1)
ass a3z+dss
___ Qn1 1— _ Qnn

Anntdnn T Anntdnn
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Let R take the form

a1y

e 0 ... 0

a2
0 az2+d22 0
R = ass t. : . (32)
0 0 a3z +dss ’ ’
Ann

0 T T Gnn+dnn

Then, By, = R+ B + (I — R). Furthermore, R has the following property:
LEMMA 3.3. If R takes the form (3.2) for a convergent Jacobi iteration process,
and the matriz block decomposition fulfills 6 > 1 where a; > szeg(i) lai;| for all
0

1 < i< n, then for each element r;; in R we have

0<ry; <1.

Proof. First, since we assume the Jacobi process to be convergent, a;; # 0 Vi.
Hence, r;; # 0. Assuming r; < 0 we get from the definition of r;; and d;; > 0 by
definition that a;; < 0 and d;; > |ay;|, a contradiction to 6 > 1. Hence, r;; > 0 and
di; < |ay;] for @ > 1. We then also have

@i
@i + di;

|an‘| <1

T = < .
Il  ag + di] T

Furthermore we have r;; =1 < d;; = 0. Hence, 0 <r;; < 1.0

Proof. To prove Theorem 3.2 we analyze the difference between z = 0, the unique
solution to (2.1) and the iterates x*. For convenience, we assume for the right-hand
side ¢ = 0in (2.1), and hence d* = 0. Let ¢! =  — ! be the error in the t-th iteration.
We consider the first 5 iterates in the process. Due to Theorem 2.2 there exists a
positive v and « < 1 such that |B|v < av. Since all components of v are positive,
there exists a positive value M such that |et\ < Mwv for 0 <t < 5. We now consider
any component ¢ updated using any of these § vectors forming the first § iterates.
Then, since we assumed b = 0 in (2.1) and hence By, 2! = By, e!, the update satisfies

n
t+1 0y t—s(t,5)
le;" | Z bij €,
j=1

n
= Z T“bije;is(t’j)‘ + ‘(1 - Tn')ezis(t)])’
- | |
< |74 Z bijez_s(t’]) + (1 —ry)| ez—s(m)
j=1
= alrii|Mu; + (1 — i) [Mo;
\:,/ Mvi (aTii + (1 — ’I"”))

0<r;;<1 (Lemma 3.3)

Let 8 = l—ri,-(l—oz). Then 0 < 8 <1 and
|e§+1\ < Mu; (ary; + 1 — 1) = fMo;.
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| Matrix name [ #n | #nnz [ cond(A) [ cond(D~A) [ p(M) |
CHEMI97ZTZ 2,541 7,361 | 1.3e4+03 7.2e+03 | 0.7889
Fvl 9,604 | 85,264 | 9.3e+04 12.76 | 0.8541
FV3 9,801 | 87,025 | 3.6e+07 4.4e+03 | 0.9993
TREFETHEN_2000 || 2,000 | 41,906 | 5.1e4-04 6.1579 | 0.8601

Table 4.1: Dimension and characteristics of the SPD test matrices and the corre-
sponding iteration matrices.

(a) CHEMITZTZ (b) FV1, FV3 (¢) TREFETHEN_2000

Fig. 4.1: Sparsity plots of test matrices.

If now t; is the first instance after § for which all components have been updated,
then |e''| < SMwv. Moreover, |e!| < SMuv for all t > ¢;. Similarly, if ¢, is the next
instance after ¢; for which all components have been updated a second time, then
les] < B2Mw for all t > to. This way we obtain that the error |e!| = |z — z!| converges
to zero. Hence, the solution approximation is convergent to Z, the unique solution. O

4. Experiment Setup.

4.1. Linear Equation Systems. In our experiments, we search for the approx-
imate solutions of linear systems of equations, where the respective matrices are taken
from the University of Florida Matrix Collection (UFMC; see http://www.cise.ufl.
edu/research/sparse/matrices/).

Due to the convergence properties of the iterative methods we analyze, the ex-
periment matrices have to be chosen properly, fulfilling the sufficient convergence
condition stated in section 2.1.

The matrix properties and sparsity plots can be found in Table 4.1 and Figure
4.1.

The first matrix, CHEM97ZTZ, comes from statistics *. Matrices FV1 and FV3 are
finite element discretizations of the Laplace equation on a 2D mesh. Therefore they
share a common sparsity structure, but differ in dimension and condition number
due to the different finite element choice. The matrix TREFETHEN_2000 [29] is a
2000 x 2000 matrix where all entries are zero except for the ones at the positions (4, j)
where |i —j| = 2,4,8,16.... Furthermore, the main diagonal is filled with the primes
2,3,5,7,11...17389. Hence, this matrix has a lot off-diagonal entries, distributed
over the diagonals that are by a power of 2 distant to the main diagonal.

IFor more details see http://www.cise.ufl.edu/research/sparse/mat/Bates/README.txt
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We furthermore take the number of right-hand sides to be one for all linear sys-
tems.

4.2. Hardware and Software Issues. The experiments were conducted on
a heterogeneous GPU-accelerated multicore system located at the University of Ten-
nessee, Knoxville. The system’s CPU is one socket Intel Core Quad Q9300 @ 2.50GHz
and the GPU is a Fermi C2050 (14 Multiprocessors x 32 CUDA cores @1.15GHz, 3
GB memory). The GPU is connected to the CPU host through a PCI-ex16.

On the CPU, the synchronous Jacobi implementation runs on 4 cores. Intel
compiler 11.1.069 [1] is used with optimization flag “-O3”. The GPU implementation
is based on CUDA [24], while the respective libraries used are from CUDA 4.0.17
[25]. The component updates were coded in CUDA, using thread blocks of size 512.
The kernels are then launched through different streams. The thread block size, the
number of streams, along with other parameters, were determined through empirically
based tuning.

5. Numerical Experiments. In a first experiment, we analyze the influence
of w on the convergence rate with respect to global iteration numbers. Therefore we
plot the relative residual depending on the iteration number. Note that all values are
average due to the non-deterministic properties of block-asynchronous iteration. To
have a reference, we additionally provide the convergence behavior of the sequential
Gauss-Seidel algorithm.

The results reveal, that the convergence rate of the block-asynchronous iteration
is very dependent on the matrix characteristics. While for matrices with most relevant
matrix entries gathered on or near the diagonal (small #), the local iterations provide
sufficient update improvement to overcompensate for the inferior convergence rate of
the plain asynchronous iteration conducted globally. For these systems, e.g. Fv1, and
FV3 we achieve a higher convergence rate than the sequential Gauss-Seidel algorithm.
Similar to the SOR algorithm, choosing w > 1 may improve the convergence further
(Figure 5.1b and 5.1c). Considering the convergence rate of Fv1 and Fv3, we note
that the condition number of the system has almost no influence.

For systems with considerable off-diagonal entries, the convergence of the block-
asynchronous iteration decreases considerably (Figure 5.1a, 5.1d). The reason is that
the off-diagonal entries are not taken into account for the local iterations. The pur-
pose of the /1-weights introduced in section 3.2 is to account for these off-diagonal
entries i.e. apply different weights in different rows. We now want to analyze whether
applying them triggers convergence improvement. For these tests it is reasonable to
choose a system with a high number of off-diagonal elements. Therefore, we will focus
our analysis on the matrix TREFETHEN_2000 where, due to the design, the ratio be-
tween the diagonal entry and the offdiagonal parts differs considerably for the distinct
rows. We now compare, using different block sizes, the convergence rate of the block-
asynchronous iteration with the ¢;-weighted variant. Note at this point that using
{1-weights triggers some overhead to the computation time due to the computation
of the weights. This may be daunting for some systems where the convergence im-
provement is smaller than the overhead, but in most cases, the improved convergence
rate directly correlates to a performance increase.

We can observe that, independent of the block size, using ¢; weights improves the
convergence rate. We also note that the influence of the block-size on the convergence
rate for the unweighted algorithm is negligible. Using ¢; weights is especially beneficial
when targeting large block sizes, where the ¢; weights for the distinct rows in one block
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Fig. 5.1: Convergence rate of w-weighted block-asynchronous iteration.

differ considerably. For this case, the convergence of the block-asynchronous iteration
is improved by a factor of almost 2.

While the convergence rate, with respect to iteration number, is interesting from
the theoretical point of view, the more relevant factor is the performance. This de-
pends not only on the convergence rate, but also on the efficiency of the respective
algorithm on the available hardware resources. Whereas the Gauss-Seidel algorithm
and the derived SOR algorithms require strict update order and therefore only allow
sequential implementations, block-asynchronous iteration is very tolerant to update
order and synchronization latencies, and therefore adequate for GPU implementa-
tions. In the next experiment, we analyze the time to solution for the the w-weighted
block-asynchronous iteration, and compare it with the SOR algorithm. Note at this
point, that despite the similar notation, w-weighting has, due to the algorithm design,
a very different meaning in the SOR and the block-asynchronous iteration, respec-
tively. For reasonable test cases, i.e. for the matrices with considerable off-diagonal
entries (large 6), we provide the additional data for different w-weights applied to the
block-asynchronous algorithm enhanced by the ¢;-weighting technique.

The results show that for matrices where most entries are clustered on or near
the main diagonal, the w-weighted block asynchronous iteration outperforms the SOR
method by more than an order of magnitude, see Figure 5.3b and 5.3c. Furthermore,
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Fig. 5.2: Convergence improvement using ¢; weights for different block sizes. Solid
lines are block-asynchronous iteration, dashed lines are block-asynchronous iteration
using ¢1 weights.

we observe, that w-weights for the block-asynchronous algorithm have to be applied
more carefully: already choosing w > 1.4 leads to divergence of all test cases. For
matrices with considerable off-diagonal parts, using the block-asynchronous iteration
may not pay off. Considering the runtime analysis for the matrix CHEM97ZTZ (Figure
5.3a), we note that, although block-asynchronous iteration generates the solution
faster than Gauss Seidel, the performance of the SOR algorithm cannot be achieved.
Already, choosing w = 1.1 results in the loss of convergence. In fact, choosing w €
[1,1.1) may have positive effects, but due to the small problem size, the fast solution
process and the overhead of the GPU kernel calls, no considerable performance gain
can be expected.

For this case, the algorithm also does not benefit from enhancing it by ¢;-weights,
since the overhead computing the ¢; weights is large compared to the small off-diagonal
part.

For the test matrix TREFETHEN_2000, the performance of SOR and block-asyn-
chronous iteration is comparable for small w. But enhancing the latter one with ¢4
weights triggers considerable performance increase. We then outperform the SOR
algorithm by a factor of nearly 5. This reveals not only that using ¢;-weights pays
off, but also the potential of applying a combination of both weighting techniques.

6. Conclusion. We introduced two weighting techniques for block-asynchronous
iteration methods improving the performance and the convergence properties of the
algorithm. Furthermore, we proved, that the sufficient convergence condition for the
asynchronous iteration implies also the convergence of the weighted block-asynchronous
iteration for adequate parameters. In numerical experiments with linear equation sys-
tems taken from the University of Florida Matrix collection, we were able to show
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Fig. 5.3: Time-to-solution comparison between SOR and weighted block-asynchronous
iteration.

how the different techniques improve the convergence rate and the time-to-solution
performance. The further research in this field will focus on how these improvements
of weighted block-asynchronous methods impact multigrid methods. Especially for
algebraic multigrid methods, where considerable off-diagonal entries are expected on
the different grid levels, using weights for a block-asynchronous iteration smoother
may be beneficial.

Acknowledgments. Implementation and computations were done at the Inno-
vative Computing Laboratory at the University of Tennessee and the Engineering.
The authors would like to thank the National Science Foundation, the Department of
Energy, NVIDIA, and Microsoft Research for supporting this research effort.

REFERENCES

[1] Intel C4++ Compiler Options. Intel Corporation. Document Number: 307776-002US.

[2] Hartwig Anzt, Stanimire Tomov, Jack Dongarra, and Vincent Heuveline. A block-asynchronous
relaxation method for graphics processing units. Technical report, Innovative Computing
Laboratory, University of Tennessee, UT-CS-11-687, 2011.

[3] Hartwig Anzt, Stanimire Tomov, Mark Gates, Jack Dongarra, and Vincent Heuveline. Block-



14

20]
(21]

[22]

Hartwig Anzt, Stanimire Tomov, Jack Dongarra and Vincent Heuveline

asynchronous Multigrid Smoothers for GPU-accelerated Systems. Technical report, Inno-
vative Computing Laboratory, University of Tennessee, UT-CS-11-689, 2011.

Ueresin Aydin and Michel Dubois. Generalized asynchronous iterations. pages 272-278, 1986.

Ueresin Aydin and Michel Dubois. Sufficient conditions for the convergence of asynchronous
iterations. Parallel Computing, 10(1):83-92, 1989.

Roberto Bagnara. A unified proof for the convergence of jacobi and gauss-seidel methods.
SIAM Rewv., 37:93-97, March 1995.

Zhong-Zhi Bai, Violeta Migallén, José Penadés, and Daniel B. Szyld. Block and asynchronous
two-stage methods for mildly nonlinear systems. Numerische Mathematik, 82:1-20, 1999.

Allison H. Baker, Robert D. Falgout, Todd Gamblin, Tzanio V. Kolev, Schulz Martin, and
Ulrike Meier Yang. Scaling algebraic multigrid solvers: On the road to exascale. Proceedings
of Competence in High Performance Computing CiHPC 2010.

Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, and Ulrike Meier Yang. Multigrid
smoothers for ultra-parallel computing, 2011. LLNL-JRNL-435315.

Gerard M. Baudet. Asynchronous iterative methods for multiprocessors. J Assoc Comput
Mach, 25(2):226-244, 1978. cited By (since 1996) 86.

Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and distributed computation. Prentice
Hall, 1989.

D. Chazan and W. Miranker. Chaotic Relaxation. Linear Algebra and Its Applications,
2(7):199-222, 1969.

Michel Dubois and Faye A. Briggs. The run-time efficiency of parallel asynchronous algorithms.
IEEE Trans. Computers, 40(11):1260-1266, 1991.

Didier El Baz, Andreas Frommer, and Pierre Spiteri. Asynchronous iterations with flexible
communication: contracting operators. J. Comput. Appl. Math., 176(1):91-103, April
2005.

M.N. El Tarazi. Some convergence results for asynchronous algorithms. Numerische Mathe-
matik, 39(3):325-340, 1982.

L. Elsner, I. Koltracht, and M. Neumann. On the convergence of asynchronous paracontractions
with application to tomographic reconstruction from incomplete data. Linear Algebra and
its Applications, 130(0):65 — 82, 1990.

L. Elsner, I. Koltracht, and M. Neumann. Convergence of sequential and asynchronous nonlin-
ear paracontractions. Numerische Mathematik, 62:305-319, 1992. 10.1007/BF01396232.

Andreas Frommer. Generalized nonlinear diagonal dominance and applications to asynchronous
iterative methods. Journal of Computational and Applied Mathematics, 38(1-3):105-124,
1991. cited By (since 1996) 8.

Andreas Frommer and Hartmut Schwandt. Asynchronous parallel methods for enclosing solu-
tions of nonlinear equations. Journal of Computational and Applied Mathematics, 60:47 —
62, 1995.

Andreas Frommer and Daniel B. Szyld. Asynchronous two-stage iterative methods. Numer.
Math., 69(2):141-153, December 1994.

Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal of Computational
and Applied Mathematics, 123:201-216, 2000.

Boris Lubachevsky and Debasis Mitra. A chaotic asynchronous algorithm for computing the
fixed point of a nonnegative matrix of unit spectral radius. J. ACM, 33:130-150, January
1986.

Ulrike Meier Yang. On the use of relaxation parameters in hybrid smoothers. Numerical Linear
Algebra with Applications, 11:155-172, 2011.

NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, 2.3.1 edition, August 2009.

NVIDIA Corporation. CUDA TOOLKIT 4.0 READINESS FOR CUDA APPLICATIONS,
4.0 edition, March 2011.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2003.

John C. Strikwerda. A convergence theorem for chaotic asynchronous relaxation. Linear Algebra
and its Applications, 253(1-3):15-24, March 1997.

Daniel B. Szyld. Different models of parallel asynchronous iterations with overlapping blocks.
COMPUTATIONAL AND APPLIED MATHEMATICS, 17:101-115, 1998.

Nick Trefethen. Hundred-dollar, hundred-digit challenge problems. SIAM News, 35(1), January
2, 2002. Problem no. 7.

R.S. Varga. Matriz Iterative Analysis. Springer Series in Computational Mathematics. Springer
Verlag, 2010.



