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Abstract—Energy and power density concerns in modern
processors have led to significant computer architecture re-
search efforts in power-aware and temperature-aware comput-
ing. With power dissipation becoming an increasingly vexing
problem, power analysis of Graphical Processing Unit (GPU)
and its components has become crucial for hardware and
software system design. Here, we describe our technique for a
coordinated measurement approach that combines real total
power measurement and per-component power estimation.
To identify power consumption accurately, we introduce the
Activity-based Model for GPUs (AMG), from which we identify
activity factors and power for microarchitectures on GPUs that
will help in analyzing power tradeoffs of one component versus
another using microbenchmarks. The key challenge addressed
in this work is real-time power consumption, which can be
accurately estimated using NVIDIA’s Management Library
(NVML). We validated our model using Kill-A-Watt power
meter and the results are accurate within 10%. This work also
analyses energy consumption of MAGMA (Matrix Algebra on
GPU and Multicore Architectures) BLAS2, BLAS3 kernels,
and Hessenberg kernels.

Keywords-power-aware, temperature-aware, GPUs, AMG,
MAGMA power analysis, NVML, NVIDIA C2075

I. INTRODUCTION

With power consumption and heat dissipation issues
pushing multi-core CPUs to the limit the importance of
a Graphical Processing Unit (GPU) cannot be emphasized
enough.

GPU accelerated computing systems have drawn the atten-
tion of researchers because they have tremendous computa-
tional power and high memory bandwidth, and are inherently
well suited for massively data parallel computation. In the
November 2011 ranking, 39 of the Top 500 computer
systems utilized GPUs, up from 17 systems listed in the
June 2011 ranking [1].

Coming along with this exciting computational capability,
the power consumption of supercomputers has become a
serious issue. For example, the average power consumption
of the TOP 10 supercomputing centers was 1.32 MW in
2008, and climbed to 3.2 MW in 2010, translating to
multi-million-dollar electric bills. Designers must employ
aggressive techniques to keep the ballooning energy cost
under control. The consequences of growing energy con-
sumption are more complex cooling solutions and noisier
fans. Cooling modern video cards is becoming much more

difficult, especially when users are asking for quiet cooling
solutions.

The power consumption increases with performance, and
engineers are now paying more attention to power consump-
tion for new GPU designs. The cost to maintain such huge
machines is expensive too, e.g. 12MW at $0.10/kW-h is
$1200 an hour or about $10.5 million per year.

Though prior work has been done on power measurement
of GPUs, [2]–[4], the real-time measurement of individual
GPU components using a software approach, is new. In
this work, we develop our model to measure real-time
power usage of micro-architectures running representative
computational kernels through the use of NVML (Nvidia
Management Library) [5].

We refer to estimating at this granularity as per-
component power estimation. Per-component power estima-
tion is useful for selectively enabling and disabling micro-
architectural resources. As power-management becomes in-
creasingly important, coarse-granularity power estimation is
likely to become inadequate to manage and continuously
reallocate power budgets for individual micro-architectural
components. To address the challenges of estimating per-
component power in hardware, we propose a new analytical
model, called the Activity-based Model for GPUs (AMG),
to estimate activity factors and power for micro-architectural
components on GPUs. This model does not rely on real-
time current monitoring or simulating hundreds of utilization
statistics similar to [6].

We maintain that only a few input statistics are sufficient
to estimate per-component dynamic power of a GPU because
the myriad per-component events are related to a small set
of global parameters, such as load rate or the execution time
of that component. We use this key observation to drive the
development of AMG. Using minimal input data, AMG′s
linear-regression-based methodology can estimate activity
for tens or hundreds of micro-components. We monitor only
the representative metrics and use the monitored metrics
to extrapolate the metrics of interest. After we get all the
desired metrics about the component events, we apply a
per-event energy model derived from a circuit model, to
those components to calculate the power consumption of
each component. We also show power vs temperature of
several kernels.



A. Primary Contributions of this work

• The AMG model for real-time measurement of power
and energy consumption on GPUs;

• Per-component analysis of power consumption of dif-
ferent GPU components like floating point units, shared
memory, and global memory;

• Power and energy consumption analysis of BLAS2,
BLAS3 kernels and MAGMA Hessenberg kernel.

II. RELATED WORK

Early work focussed on measurement of power dissipation
using external devices such as clamp probes [2]. The use of
markers is clearly explained and they have used previous
marker positions to estimate the next marker position using
the matching method by [2]. The performance and power
relationship they have derived is

w = 72 + 1.02 ∗ 10−10ρf (1)

ρ =

{
1 if θ ≡ even
1 + 0.71(16− (θmod16)/θ) if θ is odd (2)

The number of threads per block be θ, the flops performance
be f (flops), and the average wattage be w (W).

The root mean square error of their approximation is 0.29
W [2].
Using hardware devices might be problematic especially
since we need a separate power supply and devices like Kill-
A-Watt lack a method to log the data automatically [7]. [3]
used a LEAP-Server to monitor power of subcomponents
of a system such as GPU with micro-scale capability. Isci
et al. developed a hardware based counter model for power
estimation of sub-components of a CPU [8]. A combination
of P4 hardware performance events were used to estimate
the power. The counter based run time for power monitoring
is based on access rate heuristics, which can be used as
weights to analyze power from run-time power. Breakdown
of components was based on physical attributes rather than
conceptual grouping. Power of each sub-component was
derived using the formulae below:

Power(Ci) = AccessRate(Ci)×ArchitecturalScaling(Ci)

×MaxPower(Ci) +NonGatedClockPower(Ci)
(3)

TotalPower =

22∑
i=1

Power(Ci) + IdlePower (4)

Hong et al. estimated the number of cores needed for
optimal power and performance using GPGPUs [4]. The
theory behind this is that when a memory bound application
is executed, performance does not increase proportionally
with the number of cores. Their conclusions show us that

by not using all the cores we can save energy up to 22.09%.
They have also estimated the power consumption of sub
components using micro-benchmarks in such a way that the
floating point benchmark has a high number of floating point
operations.
Power consumption can be divided into two parts: dynamic
power and static power:

Power = Dynamicpower + Staticpower. (5)

Power consumption of sub-component of GPU can be mod-
elled:

Power(Ci) = AccessRate(Ci)×ArchitecturalScaling(Ci)

×MaxPower(Ci) +NonGatedClockPower(Ci)
(6)

Chen et al. showed us that in the previous generation
GPUs there was no support for sensors to measure power,
but with the evolution of the new Fermi architecture this
has changed [9]. The older Fermi GPUs, like the C2050,
have partially supported power measurement using power
states P0-P15 where P0 is the power state when the GPU
is running under full load and P15 is the idle state power
consumption, while newer generations such as the C2075
have sensors which measure power in watts. Chen et al.
developed a GPU power consumption model based on a
linear regression tree [10], and random forest methods [11].
A regression is a statistical analysis assessing the relation-
ship between two variables. Random forest uses various
models to obtain performance, which is better than any
individual method, and in this case consists of many decision
trees, and returns the class that is the mode of classes
output by individual trees. The most influential variables
and several performance-sensitive architecture metrics were
identified using the random forest model. Verification of
their model was done using leave-one-out cross validation
with an average percentage error of 7.77%.

III. POWER MEASUREMENT ON NVIDIA FERMI C2075
A. Power Measurement using NVML

Nvidia Management Library (NVML), a high level utility
called nvidia-smi not only provides a way to measure power
but also various other features like the ability to set ECC
(Error Correction Code) to zero if it is not needed, or to
monitor memory usage, among other things. For a full list
of features available via the nvidia-smi utility please refer
to the NVML manual [5]. NVML can be used to measure
power when running the kernel but since nvidia-smi is a
high level utility the rate of sampling power usage is very
low and unless the kernel is running for a very long time
we would not notice the change in power. NVML offers
a lot of useful utilities for not only GPUs such as C2075
but also the Nvidia Tesla C2050 GPU where one would see
power in power states rather than milliwatts. The nvmlDe-
viceGetPowerUsage function in the NVML library retrieves



the power usage reading for the device, in milliwatts. This
is the power draw for the entire board, including GPU,
memory, etc. The reading is accurate to within a range of
+/- 5 watts error with milliwatt precision. It is only available
if power management mode is supported.

We can also query for power management support using
nvmlDeviceGetPowerManagementMode. For a C2050 GPU
we would observe power states P0-P15 using the NVML
function call nvmlDeviceGetPowerState where P0 is the
power state when the GPU is running under full load and
P15 is the power state when the GPU is completely idle
for a long time. We can also retrieve temperature using the
NVML high level utility or using the Nvidia Management
Library’s function call nvmlDeviceGetTemperature.

B. Measuring Power Consumption using external device

We used Kill A Watt to validate our power model [7].
The Nvidia C2075 GPU is connected via PCI-Express to
the main processor, but the power delivered through PCI-
Express to the C2075 is not sufficient since PCI-Express
can deliver only small amounts of power. We connected the
C2075 to an external N110EF-00 power supply so we can
attach a power meter and validate our results. Figure 1 shows
us the power management connections and gives a clear idea
of how we validate our model.

Figure 1. Validation using external power supply

IV. ACTIVITY-BASED MODEL FOR GPUS (AMG)

A key challenge to effective runtime power management
is to know the real-time power consumption. Although the
power estimation for processors, memories, disks, and fans
has been introduced, the power estimation technique of
GPUs is relatively less addressed. However, runtime power

estimation for individual micro-architectural components on
GPUs, such as caches and ALUs, would be useful for
fine-grain management of package temperature and power
requirements. We refer to estimating at this level as per-
component power estimation. Per-component power estima-
tion is useful for selectively enabling and disabling of micro-
architectural resources.

To address the challenges of estimating per-component
power in hardware, we propose a new analytical model,
called Activity-based Model for GPUs (AMG), to estimate
activity factors and power for micro-architectural compo-
nents on GPUs. This model does not rely on real-time
current monitoring or simulating hundreds of utilization
statistics. We expect only a few input statistics are sufficient
to estimate per-component dynamic power of a GPU because
the myriad per-component events are related to a small
set of global parameters, such as execution time and load
rate. We use this key observation to drive the development
of AMG. In spite of limited input data, AMG′s linear-
regression-based methodology can estimate activity for tens
or hundreds of micro components. We first analyze the
correlation of a variety of performance metrics. Then we
monitor only the least correlated metrics and use monitored
metrics to extrapolate the concerned metrics. After we get all
the concerned metrics about the component events, we apply
a per-event energy model to those components to calculate
the power of each component. We believe that AMG makes
a further step towards understanding and reducing the power
of GPU systems through the usage of architecture level
performance counters.

A. Frequency of measurement of NVML Sensor

Frequency of measurement is an important part of our
analysis because if we measure power readings at a higher
frequency than proposed, we observe the power reading
repeating in a regular fashion. For example, if one calls
NVML at 200 Hz frequency, one would observe 21 power
measurement values repeating three times for our bench-
mark. To validate this, we have conducted a series of
experiments where we measured Taylor series benchmark
power at 200 Hz and at 625 Hz and each value repeats 3 and
6 times, respectively. So the maximum power measurement
frequency is 62.5 Hz (Figure 2). These experiments show
that over sampling the sensor will provide us with no
additional information.

V. PTX ANALYSIS

PTX stands for Parallel Thread eXecution, which is a
pseudo-assembly code for GPUs [12]. PTX provides us with
insight about how our code gets mapped into the CUDA
architecture. It provides a machine independent ISA for
C/C++.

We look at the PTX code to analyze the number of
registers used, number of branches, global memory access,



and floating point operations which is the key for our micro-
benchmarks. This analysis is of particular interest to us
because, if we wrote a micro-benchmark to test floating
point operations, we would like to minimize data transfer
and stress the floating point operations using registers.
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Figure 2. Frequency of measurment 62.5 Hz

A. Idle Power

Idle power is the power consumed by the GPU when the
GPU is turned on but no kernel is running. We measured the
short idle power of a C2075 when the GPU is just turned
on and does not do any work at 80W, which is also known
as startup power for any kernel to be launched. When the
GPU is in a long idle state, i.e., when the GPU is doing
nothing for a long period of time, we measured the power
consumed at 35W. The TDP (Thermal Design Power), as
reported by NVIDIA, for the C2075 is 225W [13].

B. Run-time Power Consumption

We measure the run-time power of a kernel with the
NVML library by running the kernel on a thread and
NVML on another thread using Pthreads. We have chosen
Pthreads because we would like to reduce overhead, and
the only communication we would like to have with the
main thread is a flag variable and variable to store power
readings that are set to be volatile. The thread that is
running NVML stops when the flag is reset, which is when
the GPU kernel stops executing. For our run-time power
consumption measurements of different micro-architectures,
such as floating point, shared memory, and global memory,
we have designed micro-benchmarks such as memory copy
with coalesced memory and with noncoalesced memory.
For the floating point benchmark derived from a Taylor
series, we run 1 million operations with measure power
of 14 blocks and each block running 1024 threads. We
used enough threads to cover the arithmetic latency of the
SMs (Streaming Multiprocessors), which means that on a
Compute Capability 2.0 GPU, we need about 10 warps
(groups of 32 threads) per SM. So that means, for example,
on a Fermi C2075 GPU with 14 SMs, we would need at
least 4480 threads, divided into at least 14 blocks.

Table I
POWER CONSUMPTION OF VARIOUS COMPONENTS

Pu,i Values for different components Value (W)
Floating Point 2.2

Shared Memory 1
Global Memory 3.0

Table II
BASE POWER FOR VARIOUS COMPONENTS

Bu,i Values for different components Value(W)
Floating Point 6

Shared Memory 3.85
Global Memory 10

The way to manage the number of active SMs is changing
the number of active blocks [4]. We use 14 blocks to run
each benchmark since the C2075 has 14 SMs that run
simultaneously. If more than 14 blocks are assigned, the
next blocks waits for one of the blocks to finish working
and then starts working. Energy consumption varies with
the number of SMs because of the low activity factors, as
idle SMs do not consume as much energy as active SMs.

We construct our model as

Total power consumption = Idle Power + Runtime Power
(7)

Runtime Power =
e∑

i=1

(NSM × Pu,i × Uu,i) +Bu,i × Uu,i

(8)
NSM Number of components
Pu,i Power consumption of active component
e number of architectural component types
Bu,i Base power of component
Uu,i Utilization

C. Floating Point Operations

The intent of this benchmark is to create kernels that
use the floating point components, but with little or no
other parts of SPs used. The benchmark scales from 1 to
14 SMs, with each of their floating point ALUs heavily
used. The power contribution of floating point components
is to fit a line parameterized by the number of SMs that
are busy. There are 14 SMs in the GPU, so average power
consumption decreases after 14 blocks because idle SMs
donot consume as much power as active SMs.

We designed our floating point benchmark based on a Tay-
lor series in such a way that each thread computes the Taylor
series of an element. We iterate each calculation 16000 times
to make the kernel run long enough so that we can get stable
power readings. During this process of measuring floating
point instructions, we only use registers for storage. The
memory usage reported by cudaMemGetInfo is found to
be 80 MB mainly because that is the memory that is set
apart by the compiler for the GPU usage. We expect the
memory usage to be much lower than that since most of the



variables are reused in an iterative way by each thread. We
use cublasSasum to add the thread’s results together so that
the compiler will not be able to optimize.
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Figure 3. Average Power consumption of Floating point operations

D. Shared Memory

We use shared to allocate shared memory as ex-
plained in the CUDA manual [14]. We wrote micro-
benchmarks for shared memory with and without bank
conflicts. We use the cudaFuncSetCacheConfig function to
increase the shared memory size from 16K to 48K. This
allows us to estimate average power consumed by the kernel
when we use the shared memory completely. The default is
48 KB for shared cache and 16 KB for L1. Shared memory
is divided into 32 banks and each bank holds a 32-bit value
(integer or float), so we write micro-benchmarks to exhibit
the energy difference between shared memory with bank
conflicts and without bank conflicts.

Table III
SHARED MEMORY

Case1 No bank conflicts
Case2 two bank conflicts
Case3 four bank conflicts
Case4 eight bank conflicts
Case5 sixteen bank conflicts

Shared memory without bank conflicts is designed to
have regular access patterns. A set of micro-benchmarks is
designed to analyze shared memory.

The advantages of using shared memory over global
memory are many:

1) Cooperation between threads.
2) Much faster than global memory.
3) If one thread loads data it can be used all the threads.
4) The amount of shared memory is configurable via the

cudaFuncSetCacheConfig function.

E. Global Memory

Global memory space is the largest memory available
on a GPU. For example, on NVIDIA C2075 there are 6

Figure 4. Power consumed by shared memory without bank conflicts

GB of GDDR5, which is global memory implemented with
Dynamic Random Access Memory (DRAM). The latency of
global memory is on the order of hundreds of cycles, and
the bandwidth is also very limited. By looking at the PTX
code we can actually identify the global memory access.

1) Coalesced Memory: Since access to global memory is
via 32, 64, or 128 byte accesss, we design our benchmark
in such a way each thread can access memory in a regular
pattern of 128 bytes. Coalesced memory access is very
important for instruction throughput. The local and global
variables use global memory. If we declare an array of
large size without using shared memory, it resides in global
memory and access of strides of 128 is actually better than
an irregular pattern. Figure 5 shows power consumption of
coalesced memory.
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Figure 5. Power consumed by global memory memory access

2) Noncoalesced Memory: Memory access to global
memory which are not regular patterns to global memory
are called noncoalesced access. Our results show that the
noncoalesced memory consumes at least twice the energy
consumed for 16k writes and 16k reads compared to coa-
lesced memory access. Figure 5 shows power consumption
of noncoalesced memory access. The noncoalesced memory



access is at least 4 times slower than coalesced memory
access which results in huge energy consumption.

VI. POWER PREDICTION

To predict power using our model we use naive matrix
matrix multiply from the CUDA SDK, i.e. one which does
not use shared memory and in the later section we show
average power prediction for MAGMA kernels. For matrix
multiply which does not use shared memory the number
of global memory reads is N2 and writes for the kernel is
N since we consider two matrices of N * N. The average
power consumed by this kernel of size 14K is 130 W. We
choose matrix of size 14K because C2075 GPU has 14 SM
and each SM has 1024 threads so for a matrix of size 14K
all the threads in each SM are working. The average power
consumed by the kernel that uses shared memory is 120
W since the number of reads and writes to global memory
decrease by a large factor.

Predicting power using AMG is an important step since
previous generation GPUs such as Nvidia C2050 do not fully
support NVML. To predict power we need the execution
time of each component

We split the matrix matrix multiply so that we can tease
out computation and memory. We write a CUDA kernel
which performs the same number of floating point operations
as the matrix multiply and measure the time taken and
average power consumed by the kernel and we follow the
same rule for memory operations.

Table IV
MATRIX MATRIX MULTIPLY EXAMPLE

Kernel Run time Power(W) Processing Time (sec)
Matrix Matrix Multiply 50 111

Floating point 37 45
Memory 45 47

Time taken by floating point component = 45 seconds
Number of SMs used M = 14
Power consumed/SM by active component = 2.2 W
Time taken by global memory = 47 seconds
Number of SMs used M = 14
Power consumed/SM by active component = 3 W

Run time power = (((14× 2.2× 0.405) + 6× 0.405)+
(9)

((14× 3× 0.423) + 10× 0.423))
(10)

Runtime Power = 36.9 W Idle Power = 80 W
Total Power for Matrix Multiply = 116.9 W

%Error =
|ActualV alue− PredictedV alue|

ActualV alue
∗100 (11)

%Error =
13.91

130
∗ 100 (12)

%Error = 10.7%

Table V
MATRIX MATRIX MULTIPLY EVALUATED USING AMG

Parameter FPU Global
M 14 14

Pu,i W 2.2 3
Bu,i W 6 10
Uu,i W 0.405 0.423

Using matrix matrix multiply we have shown that our
model predicts power consumption if we know the execution
rates. The execution time of each individual components
does not add to the total execution time, so that is the
primary reason for the error. If we could obtain more precise
execution rates of each individual component we might be
able to obtain higher accuracy.

A. Power and Temperature relationship

The power consumption is a very critical parameter of
contemporary integrated circuits. It is obvious that a circuit
should consume as little power as possible and ought to
work with maximum speed and efficiency. However, power
parameters are dependent on temperature, which can change
with power dissipated in the circuit. In a GPU there are
several SMs working simultaneously which further increases
power. With rising temperature, power consumption be-
comes higher, too. The principal reason for that behavior
is the increased amount of leakage current with higher
temperatures, and the negative temperature coefficient of the
transistors [15].
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Figure 6. Increase in power consumption with temperature

Figure 6 shows the increase in power consumption when
Taylor series and memory copy benchmarks are executed at
various startup temperatures. To figure out the temperature
influence on power, a kernel is executed that applies a
workload to the GPU in order to raise the temperature of the
GPU to a certain value. The power consumption of FLOPs
benchmark increases by 4 W when startup temperature
increase from 50 C to 80 C. Because the NVML power
measurements are only accurate to within 5 W, we don’t



consider temperature hereafter. The temperature influence
on power consumption is only 3-4% for the current gener-
ation GPU. Thermal slowdown occurs at 90 C and thermal
shutdown at 100 C.

VII. POWER ANALYSIS OF MAGMA KERNELS

The energy consumption of linear algebra kernels is of
vital importance, as these kernels are widely used, so we
measured BLAS2 and BLAS3 MAGMA kernels. Results
show that the MAGMA implementations of these algorithms
achieve astounding energy efficiency.

Figure 7. GPU GEMMs on Fermi architecture
[17]

The real-time power consumption for GEMM and GEMV
kernels is measured, and power consumed by the MAGMA
DGEMM is 180 W and for DGEMV power consumption is
135 W.

VIII. BLAS 2 AND BLAS 3 KERNELS

The MAGMA kernels utilize CPU and GPU for the
computations. The measuring frequency is 125 kHz which
is twice the NVML update frequency. The impact on CPU
computations while spawning Pthreads to measure power
using NVML is small as frequency is not very high. The
DGEMM performance for a matrix of size 9K is 296.11
GFLOPS, which is 58% of the theoretical peak, and the
performance of SGEMM for a size 9K matrix is 632
GFLOPS.

The performance of SGEMV and DGEMV is consider-
ably less compared to SGEMM and DGEMM because the
BLAS 2 kernels do not utilize the GPU as efficiently as
BLAS 3 kernels. SGEMV and DGEMV deliver 60 GFLOPS
and 30.47 GFLOPS for a 9K matrix.

The GFLOPS per Watt for a matrix of size 10112 is 1.49;
this illustrates that the GPU not only has better performance
compared to CPU, but also saves on energy. Figure 8
shows the power consumed by double precision MAGMA
GEMM and MAGMA GEMV. The same amount of power
is consumed by DGEMM and SGEMM kernels because an
SP can issue two single precision instructions or one double

Figure 8. Average Power consumption of double precision MAGMA
BLAS3 and BLAS2 Kernels
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Figure 9. Energy consumption of double precision MAGMA BLAS2
Kernels
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Figure 10. Energy consumption of double precision MAGMA BLAS3
Kernels

precision every two clocks, but energy varies since single
precision MAGMA GEMMs and GEMVs are twice as fast
as double precision.

A. Measuring time taken in MAGMA Kernels

The function get current time() calls gettimeofday(), so
the resolution is a microsecond. Before calling the get-
timeofday() there is a call to cudaThreadSynchronize() to
make sure previous GPU tasks have completed. Thus one
can measure the time of a particular GPU kernel by sur-
rounding it by calls to get current time(). If between two
get current time() calls there are functions transferring data,
the time measure will include the time for the transfer. We



measure the time for DGEMM on the GPU, i.e., we assume
the data and the result will be in the GPU memory.

B. Predictions for MAGMA kernels for matrix of size 10K
based on AMG

From our AMG model

Total power = Idle Power + Runtime Power (13)

Runtime Power =
e∑

i=1

(NSM × Pu,i × Uu,i) +Bu,i × Uu,i

(14)

C. MAGMA Hessenberg
The Hessenberg reduction algorithm is of the form

QTAQ = H . In contrast to the LU factorization, the other
algorithm that we have studied, namely the Hessenberg
Reduction, cannot be entirely expressed in terms of GEMMs.
Proper task splitting on hybrid architectures using the Hes-
senberg principle, has been to known to give enormous
performance benefits [18]. According to [18] the operation
count to reduce an N by N matrix is (10/3)n3 and this makes
Hessenberg reduction a suitable candidate for acceleration.
But 20% of the total flops of the algorithm, which take 70%
of time, are in level 2 BLAS. This makes the algorithm
memory bound and we observe it for an energy consumption
that is close to the power consumption for matrix-vector
operations. Figure 11 shows us the power consumption for
MAGMA DGEHRD which is signal averaged over 24 data
samples.
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Figure 11. MAGMA Dgehrd power consumption for a 10k matrix

According to the MAGMA DGETRF algorithm

∀panel =
{

64 small DGEMV
6 large DGEMM

.
Table VI shows the number of DGEMM and DGEMV

calls in MAGMA Hessenberg. There is a large difference be-
tween the number of DGEMM and DGEMV calls measured
and observed because the frequency of the NVML sensor is
on the order of 62.5 Hz whereas the clock frequency of the
GPU is of the order of 1.15 GHz.

Table VI
DGEMM AND DGEMV CALLS IN MAGMA HESSENBERG FOR A

MATRIX OF SIZE 10 K

Source Number of DGEMM calls Number of DGEMV calls
Algorithm 936 9984
NVML 367 1457

Table VII
AVERAGE POWER CONSUMPTION FOR A MATRIX SIZE 10 K

MAGMA Kernel Name Average power consumed (W) of matrix size 8K
DGETRF 165
DGEHRD 150

1) Power prediction for MAGMA DGEMM: MAGMA
Double precision General Matrix Matrix multiply uses the
GPU completely. Power is predicted using our AMG model.
Even though MAGMA kernels do a very good job of hiding
data latencies with computations utilization rates for shared
memory and global memory are 100%.
Power consumed by floating point component = 14 ∗ 2.2×
0.58 + 6× 0.58 = 17.864 W
Power consumed by shared memory = 14× 1× 1+ 3× 1 =
17 W
Power consumed by global memory = 14× 3× 1 + 10× 1
= 52 W
runtime power = 86.864 W Idle power= 80W
Total power Predicted = 166.864 W
Total power measured = 180 W
error = 7.3%
MAGMA DGEMM achieves 58% of the theoretical peak
that is the reason utilization for floating point is .58.

2) Power prediction for MAGMA DGEMV: MAGMA
Double precision General Matrix Vector does not utilize
the GPU fully as the matrix-vector operations get stalled
by memory since the memory reads and writes to global
memory are not as fast as floating point operations on shared
memory or registers.
Power consumed by floating point component 14 × 2.2 ×
0.4 + 6× 0.4 = 14.72
Power consumed by shared memory 1× 14× 0.2+ 3× 0.2
= 3.4 W
Power consumed by Global memory 3×14×0.8+10×0.8
= 41.6W
Total runtime power = 63.4 W
Idle power = 80 W Total power Predicted = 143.4 W
Total power measured = 135 W
error = 6.2%

The total power predicted is close to the measured power
consumption. One of the difficulties was finding the execu-
tion time of each component. Floating point components are
busy only half of the time as memory needs to be fetched.
Shared memory is used for 1/5th of the time and global



memory is used the rest of the time, that is the reason
performance of the DGEMV is only 30 GFLOPS; it is a
memory bound kernel.

Table VIII
POWER CONSUMPTION OF MAGMA BLAS2 AND BLAS3 KERNELS

MAGMA Kernel Average power consumed (W) of matrix size 8K
DGEMM 180
SGEMM 180
DGEMV 135

IX. CONCLUSION

To address the challenges of estimating per-component
power in hardware, we proposed a new analytical model,
called Activity-based Model for GPUs (AMG), to estimate
activity factors and power for micro-architectural compo-
nents on GPUs. The power model using AMG predicts the
power consumption and the execution time with a maximum
error of 10% for the evaluated GPGPU kernels. Live mea-
surements using Nvidia Management Library (NVML) are
of particular interest to users, so we have measured power
on Nvidia C2075 GPU using NVML. We have also analyzed
power consumption of various MAGMA kernels, level 2
and level 3 BLAS kernels. We have also analyzed power
consumption of arithmetic intensive MAGMA BLAS2 and
BLAS3 kernels.

There are several key contributions of this work. The
measurement technique itself is portable, and can offer a
viable alternative to many of the power simulations currently
guiding research evaluations. The component breakdowns
offer sufficient detail to be useful on their own, and their
properties as a power signature for the power aware phase
analysis seem to be even more promising. In conclusion,
this work offers both a measurement technique, as well as
a characterization of a GPU’s various components. We feel
it offers a promising alternative to purely estimation-based
power research.

X. FUTURE WORK

Our model can also be used by compilers or programmers
to optimize program configurations as we have demonstrated
in the work. In our future work, we will build a multi
CPU GPU model, that will give us a complete picture of
power consumption for a system like Keeneland [19], which
has 120 nodes with 240 CPUs and 750 GPUs.

Power consumption for GPUs that do not support power
management mode is reported in Power states (P0-P15),
where P0 is the power state under maximum load, and
P15 is idle power consumption. We would like to deduce
power numbers in Watts for those states so that users can
understand the meaning of power states. With ARM-based
CPU/GPU hybrid systems being deployed to reduce energy
consumption, issues for modelling such hybrid systems will
be of special interest to us. The Barcelona Supercomputing

Center is developing a new ARM based machine to achieve 4
to 10 times the energy efficiency of today’s supercomputers
[20].
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