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ABSTRACT
We present a parallel domain decomposition method based on a hybrid direct-iterative
solver for 3D frequency-domain modelling of visco-acoustic waves. The method is
developed as a modelling engine for frequency-domain full waveform inversion.
Frequency-domain seismic modelling reduces to the solution of a large and sparse
system of linear equations, resulting from the discretization of the heterogeneous
Helmholtz equation. Our approach to the high-performance, scalable solution of
large sparse linear systems is to combine direct and iterative methods. Such a hybrid
approach exploits the advantages of both direct and iterative methods. The iterative
component uses a small amount of memory and provides a natural way for paral-
lelization. The direct part has favourable numerical properties for multiple right-hand
side modelling. The domain decomposition is based upon the algebraic Schur comple-
ment method, which allows for the iterative solution of a reduced system, the solution
of which is the wavefield at the interfaces between the subdomains. Once the interface
unknowns have been computed, the wavefield at the interior of each subdomain is
efficiently computed by local substitutions. The reduced Schur complement system
is solved with the generalized minimum residual method and is preconditioned by
an algebraic additive Schwarz preconditioner. A direct solver is used to factorize lo-
cal impedance matrices defined on each subdomain. Theoretical analysis shows that
the time complexity of the hybrid solver is the same as that of iterative solver and
time-domain approaches for single frequency modelling. Simulations are performed
in the SEG/EAGE overthrust and the salt models for frequencies up to 12.5 Hz. The
number of iterations increases linearly with the number of subdomains for a given
computational domain but the elapsed time of the iterative resolution remains almost
constant. The number of iterations also increases linearly with frequencies, when the
grid interval is adapted to the frequencies and the size of the subdomains is kept
constant over frequency. These results make the cost of the hybrid solver of the same
order as that of finite-difference time-domain modeling for one-frequency modelling.
Although the hybrid approach allows one to tackle larger problems than the direct-
solver approach, further improvements are needed to mitigate the computational
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Full waveform modelling 835

burden of the iterative component in the context of multisource modelling. On the
numerical side, the use of block iterative solvers and of incremental two-level deflat-
ing preconditioners and on the parallel implementation side, the use of two levels of
parallelism in the domain decomposition method should mitigate this computational
burden.

Key words: Preconditioners, Overthrust.

INTRODUCTIO N

An efficient algorithm for 3D visco-acoustic full wave mod-
elling is a central ingredient for full waveform inversion meth-
ods. Full waveform inversion is a data matching procedure
that seeks to reconstruct one or several physical properties
of the subsurface, which govern the propagation of seismic
waves (see Virieux and Operto (2009) for a recent review).
Since the pionneering work on full waveform inversion in the
1980’s (Tarantola 1984; Lailly 1984), full waveform inver-
sion has been developed both in the time domain and in the
frequency domain. The frequency domain provides a natural
framework to design multiscale imaging through successive
inversion of increasing frequencies, which is useful to mitigate
the non-linearity of the inverse problem (Pratt and Worthing-
ton 1990; Pratt 1999). Moreover, computationally-efficient
frequency-domain full waveform inversion algorithms can be
designed by limiting the inversion to a few discrete frequen-
cies when wide-aperture acquisition geometries are consid-
ered (Sirgue and Pratt 2004). The relevance of the efficient
frequency-domain full-waveform inversion was demonstrated
on 3D real data case studies by Plessix (2009), Plessix and
Perkins (2010) and Sirgue et al. (2010).

In the frequency domain, wave modelling reduces to the
solution of a large and sparse system of linear equations per
frequency, its right-hand side is the monochromatic source
and its solution is the monochromatic wavefield (Marfurt
1984). The complex-valued matrix, which results from the
discretization of the time-harmonic wave equation (i.e., the
heterogeneous Helmholtz equation), is generally referred to
as the impedance matrix. In the context of full waveform
inversion, this system must be solved efficiently for a large
number of sources. This prompts many authors to solve the
system with sparse direct solvers for 2D problems (Pratt and
Worthington 1990). A direct solver first performs one lower-
upper triangular decomposition of the sparse impedance ma-
trix followed by the forward-backward substitution step for
each right-hand side (Duff, Erisman and Reid 1986). The

drawbacks of the direct approach are the computational and
the memory cost of the lower-upper decomposition, which re-
sults from the fill-in of the impedance matrix and the limited
scalability of sparse direct solvers on large-scale distributed-
memory computational platforms (by scalability we mean the
ability of the algorithm to efficiently use an increased number
of processors for a problem of a given size; nowadays re-
ferred to as strong scalability). Accurate finite-difference sten-
cils with local spatial support spanning over two grid intervals
have been developed to minimize the numerical bandwidth of
the impedance matrix and, hence, its fill-in during the lower-
upper decomposition (Jo, Shin and Suh 1996; Stekl and Pratt
1998; Hustedt, Operto and Virieux 2004). The direct-solver
approach has been shown to be the most efficient one for 2D
acoustic full waveform inversion, when a few frequencies need
to be modelled for a large number of sources. For 3D prob-
lems, the time and memory complexities of the direct solvers
dramatically increase (O(N6) and O(N4), respectively, where
N denotes the size of a N3 cubic grid) and limit the size of the
applications that can be performed with such approaches (by
complexity we mean the increase of the computational cost
of the modelling with the size of the problem) (Operto et al.

2007). However, Brossier et al. (2010) recently showed that
visco-acoustic modelling can be efficiently performed with the
MUMPS direct solver (MUMPS-team 2009) in the SEG/EAGE
overthrust and salt models for frequencies of the order of 7 Hz
on a limited number of message passing interface processes
with a significant amount of shared memory per process (15
Gbytes). A new approach, which exploits the low-rank prop-
erty of the Helmholtz equation for compression, has also been
recently proposed to mitigate the memory and time complexi-
ties of the LU decomposition performed with the multifrontal
method (Wang, Xia and de Hoop 2010).

An alternative approach for 3D frequency-domain visco-
acoustic wave modelling relies on preconditioned iterative
methods (Saad 2003). Unlike direct solution methods that
seek to compute the exact solution of the system (assum-
ing no rounding errors) by a finite sequence of operations,
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iterative methods start from an initial guess of the solution to
find successive approximations of the solution through a pro-
jection process. Iterative methods for the Helmholtz equation
are generally based on preconditioned Krylov subspace meth-
ods such as the generalized minimal residual method (Saad and
Schultz 1986) and the biconjugate gradient stabilized method
(Van der Vost 1992). A central ingredient of iterative meth-
ods is the preconditioner, which is an operator that trans-
forms the original linear system into another one having the
same solution but better spectral properties (e.g., clustering of
the eigenvalues away from the origin). Designing an efficient
preconditioner for the Helmholtz equation is a difficult issue
because the impedance matrix is indefinite with positive and
negative eigenvalues along the real axis. Shifting and cluster-
ing eigenvalues of the impedance matrix in the positive part
of the real axis should result in faster convergence as shown
by Magolu monga Made, Beauwens and Warzée (2000).
This clustering has been achieved by Plessix 2007, Erlangga,
Oosterleeand and Vuik (2006), Riyanti et al. (2006) and
Riyanti et al. (2007) by using as a preconditioner the ap-
proximate solution of the damped wave equation computed
with one cycle of multigrid. Here, damping the wave equa-
tion is performed by adding an imaginary term to the Lapla-
cian of the time-harmonic wave equation. With such a pre-
conditioner, it was shown that the number of iterations in-
creases linearly with frequency when the grid interval of the
finite-difference grid increases linearly with frequency. The
linear increase of iterations with frequency makes the time
O(N4)(Plessix 2007). Alternatively, Pinel (2010) and Calan-
dra et al. (2008) proposed to use only two levels in the multi-
grid preconditioner without a complex shift. The solution on
the coarser grid can be computed with a sparse direct solver
for sufficiently small problems (Duff et al. 2007) or inex-
actly using an iterative solver with a coarse stopping criterion
of iterations (Pinel 2010). In this latter case, the method is
referred to as the perturbed two-level method. The precondi-
tioner based on a shifted Laplacian has been further improved
by Erlangga and Naggen (2008) who developed a multigrid-
multilevel Krylov method based on a deflated preconditioner.
With such an approach, the eigenvalues are efficiently clus-
tered away from zero almost independently of the frequency
(i.e., of the grid interval). In this case, the time complexity
of the iterative solver reduces to O(N3). Compared to di-
rect approaches, iterative solvers do not embed any source-
independent tasks. Therefore, the time complexity of itera-
tive methods generally increases linearly with the number of
sources. Of note, the use of a block iterative solver should al-
low for a more efficient solving of the linear systems with mul-

tiple right-hand sides (Simoncini and Gallopoulos 1996). Al-
ternatively, efficient parallelism for multi-source simulations
can be implemented by a distribution of sources over pro-
cessors because iterative solvers are not memory demanding
(Plessix 2009).

A third approach to compute a monochromatic wavefield
consists of using an explicit time-marching algorithm and ex-
tracting the monochromatic wavefields by discrete Fourier
transform integrated within the loop over time steps (Sirgue,
Etgen and Albertin 2008) or by phase sensitivity detection
once the steady-state regime has been reached (Nihei and
Li 2007). With such an approach, the time complexity is
O(N4), assuming that the number of time steps scales with
N. One advantage of this approach is that several monochro-
matic wavefields can be extracted at a limited cost by dis-
crete Fourier transform. Like iterative methods, time-domain
modelling does not embed source-independent tasks and can
be parallelized by a distribution of shots over processors for
multi-source simulations. A drawback of time-domain meth-
ods is the more difficult and computationally expensive im-
plementation of attenuation effects.

In this study, we present an algebraic domain decomposi-
tion method for 3D visco-acoustic wave modelling based on
a hybrid direct-iterative solver. The hybrid domain decompo-
sition method will be referred to as hybrid solver modelling
in the following. The method can be viewed as an interme-
diate approach between the direct and iterative approaches.
The governing idea is to solve with an iterative solver a re-
duced system, the so-called Schur complement system, for the
unknowns located at the interfaces between the subdomains
(Saad 2003; Smith, Bjorstad and Gropp 1996). This reduced
system must be solved for each source. Once the interface un-
knowns are computed, the interior unknowns located in the
interior of each subdomain are computed efficiently by local
substitutions. A sparse direct solver is used to factorize the
local impedance matrices defined on each subdomain. The
preconditioner of the Schur complement system is an alge-
braic additive Schwarz preconditioner (Carvalho, Giraud and
Meurant 2001) built from the damped wave equation. The
method is purely algebraic in the sense that the preconditioner
does not rely on the physics underlying the wave equation.

In the remainder of this paper, we first briefly review the
theory and the computer implementation of the hybrid solver
modelling method. The reader is referred to Saad (2003),
Haidar (2008) and Smith et al. (1996) for more details. We
estimate a suitable stopping criterion of iterations with numer-
ical experiments and we review the theoretical time and mem-
ory complexities of the hybrid solver modelling method. We
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validate these theoretical results against numerical simulations
performed in the 3D SEG/EAGE overthrust and salt models
for frequencies up to 12.5 Hz. We first show that introducing
realistic physical attenuation in the model greatly improves the
convergence of the iterative solver when the Schwarz precon-
ditioner is built from the damped wave equation. By means of
a scalability analysis, we show that the number of generalized
minimum residual method iterations increases linearly with
the number of subdomains for a computational domain of a
given size. However, the computational cost of the source-
dependent task remains almost constant, while the cost of the
source-independent task decreases rapidly with the number
of subdomains. We also show that the number of generalized
minimum residual method iterations increases with frequency,
when the grid interval is adapted to the frequency and the size
of the subdomains is kept constant. We conclude the study by
a discussion on the advantages and drawbacks of the hybrid-
solver method with respect to alternative modelling methods
based on direct solvers, iterative solvers and time-marching
algorithms.

METHOD

We shall describe the method we use for solving the Helmholtz
equation and discuss the numerical implementation before
analysing the theoretical complexity.

Domain decomposition based on the Schur
complement approach

We consider the 3D visco-acoustic wave equation in the fre-
quency domain

ω2

κ (x)
p (x, ω) + ∇

(
1

ρ (x)
∇ p (x, ω)

)
= −s (x, ω) , (1)

where the density is denoted by ρ(x), the bulk modulus by κ(x)
and the angular frequency by ω. The monochromatic pressure
wavefield and the source are denoted by p(x, ω) and s(x, ω),
respectively. Intrinsic attenuation can be easily implemented
in the frequency domain by means of complex-valued wave
speeds in the expression of the bulk modulus.

Equation (1) can be recast in matrix form as

Ap = s, (2)

where the complex-valued impedance matrix A depends on
angular frequency ω and medium parameters κ and ρ. Dis-
cretization of the wave equation is performed with the com-
pact finite-difference stencil of Operto et al. (2007) originally

designed for direct methods, and suitable for substructuring
methods because its local support allows for minimization
of the size (width) of the interface between the neighboring
subdomains, unlike high-order finite-difference methods. A
discretization criterion of four-grid points per wavelength is
used in the following of this study. For 3D problems, the
stencil involves 27 coefficients spanning over two grid inter-
vals in the three Cartesian directions, which lead to a nu-
merical bandwith of A in O(N2). Absorbing boundary condi-
tions are implemented with perfectly matched layers (Berenger
1994). We applied a parallel algebraic domain decomposition
method based on the Schur complement approach to solve
the 3D heterogeneous Helmholtz equation. Here, the domain
decomposition method belongs to the class of substructur-
ing methods, where an overlap of order 1 between adjacent
subdomains is considered (Smith et al. 1996; Saad 2003).
The computational domain is decomposed into subdomains,
and one processor is assigned to each subdomain. Of note,
more sophisticated strategies involving several levels of paral-
lelism can be implemented in domain decomposition methods
(Giraud, Haidar and Pralet 2010): few preliminary results will
be presented in the final discussion section. The domain de-
composition is designed such that all the subdomains have
roughly the same size for efficient workload balancing. The
Schur complement method splits the unknowns (i.e., the value
of the pressure wavefield at each node of the finite-difference
grid) into two subsets associated with subdomain interiors
and with subdomain interfaces respectively (Fig. 1).

Using the above-mentioned reordering, the linear system,
equation (2), can be written in block form as
⎡
⎣AII AI�

A�I A��

⎤
⎦

⎡
⎣ pI

p�

⎤
⎦ =

⎡
⎣ sI

s�

⎤
⎦ , (3)

where pI and p� denote the interior and the interface un-
knowns, respectively. The matrix AII is a block matrix in-
volving only interior unknowns of subdomains while the ma-
trix A�� involves only interface unknowns. Matrices AI� and
A�I give influences of interfaces unknowns for solving interior
unknowns and the opposite for the other one.

Eliminating the interior unknowns pI from the second block
row of system (equation (3)) leads to the reduced system for
the interface unknowns p�

Sp� = (
A�� − A�IA−1

II AI�

)
p� = s� − A�IA−1

II sI , (4)

where S = A�� − A�IA−1
II AI� is the so-called Schur comple-

ment matrix. Once the Schur complement system has been
solved for the interface unknowns, the interior unknowns are

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 59, 834–856



838 F. Sourbier et al.

Figure 1 Sketch of the domain decomposition for a 2D finite-
difference grid with an overlap of order 1. Four subdomains delineated
by the red lines are considered. The nodes of the finite-difference grid
are plotted with circles. The black and the grey circles correspond to
interior and interface nodes, respectively.

recovered via

pI = −A−1
II AI� p� + A−1

II sI . (5)

Solving the system involving the block matrix AII

Solving for the interface and interior unknowns, equations
(4) and (5), requires solving several solutions of systems in-
volving the matrix AII that is consequently factorized once
using a sparse direct solver. This matrix has a block diagonal
structure, where each diagonal block corresponds to the local
impedance matrix built on one subdomain. Therefore, the so-
lution of any system involving AII translates into the solution
of NP independent systems involving the local impedance ma-
trices. We solve the systems involving AIi Ii on each processor
using the sparse direct solver MUMPS (MUMPS-team 2009).

Solving the Schur complement system with a parallel

iterative solver

The Schur complement system is solved with the generalized
minimum residual Krylov-subspace method (Saad and Schultz

1986). The algorithm of the generalized minimum residual
method is given in Saad (2003). The most demanding task
performed at each iteration of the generalized minimum resid-
ual method is the computation of the matrix vector product
Sp�. In the hybrid solver modelling method, any matrix-vector
product involving the Schur complement matrix can be effi-
ciently performed in parallel because the Schur complement
matrix is distributed over the processors and never assembled.
The Schur matrix can be viewed as the sum of the so-called
local Schur complement matrices (Haidar 2008; Giraud et al.

2010)

S =
NP∑
i=1

RT
�i

SiR�i . (6)

In equation (6), R�i : � → �i denotes the canonical point-
wise restriction that maps vectors defined on � into vectors
defined on �i, where �i are the interface nodes that belong to
subdomain i. The dense local Schur complement matrix Si is
built from the local impedance matrix Ai defined on the sub-
domain i with Neumann boundary conditions along the four
edges of the subdomain. Using the same reordering as for the
full matrix, equations (3) and (4), and Saad (2003) leads to:

Si = A�i �i − A�i Ii A
−1
Ii Ii

AIi �i . (7)

Of note, a slight modification of A�i �i in the expression of Si is
generally required to satisfy equation (6). In the framework of
finite-difference methods, this modification requires to weigh
the coefficients of the matrices A�i �i such that the sum of
the coefficients associated with the subdomains sharing the
same interface gives the same coefficient that of the full ma-
trix A��. Equation (6) shows that any matrix-vector product
involving the Schur complement matrix S translates into NP

independent matrix-vector products involving the local Schur
complement matrices Si and performed concurrently and in-
dependently on each processor, followed by a neighbour to
neighbour communication of the resulting vector.

Preconditioning of the Schur complement system

A right preconditioner is applied to the Schur complement
system to achieve an acceptable convergence rate (Saad 2003).

The original Schur complement system Sp� = b is trans-
formed in a better suited system

SM−1t = b, (8)

with M p� = t. In equation (8), M is the preconditioner of S.
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For M−1, we used an algebraic additive Schwarz precondi-
tioner given by

M−1 =
NP∑
i=1

RT
�i

Ŝ−1
i R�i , (9)

where Ŝi are the so-called assembled local Schur complement
systems. The assembled local Schur complement systems Ŝi

are defined by the restriction of the Schur complement to the
interface �i

Ŝi = R�i SRT
�i

. (10)

Building the assembled local Schur complements Ŝi requires
that we assemble the diagonal blocks of the local Schur com-
plements thanks to a few neighbour to neighbour communi-
cations (Haidar 2008). Note that, if the full domain is subdi-
vided into two subdomains only, the additive Schwarz precon-
ditioner is exact and the iterative solver will converge in one
iteration. In the opposite reasoning, the accuracy of the pre-
conditioner is expected to deteriorate as the number of subdo-
mains and the number of interface unknowns increases. There-
fore, an increasing number of generalized minimum residual
iterations is expected. The increasing number of generalized
minimum residual iterations should however be balanced by
the fact that each processor performs a more limited num-
ber of operations per generalized minimum residual iteration
because of smaller subdomains. The antagonist effects of the
increasing number of generalized minimum residual iterations
and of the decreasing size of the subdomains on the compu-
tational time will be quantified extensively in the following
sections. Since the preconditioner is formulated as the sum of
local operators on each subdomain, the solution of the systems
My = t translates into NP concurrent and independent solu-
tions of local systems Ŝi yi = ti , i = 1, NP. These local dense
systems are solved on each processor using a lower-upper de-
composition of the matrix Ŝi with the subroutine CGETRF of
the LAPACK linear algebra package.

We computed the preconditioner from the damped
Helmholtz equation, following the original idea of Magolu
monga Made (2000) further investigated by Erlangga et al.

(2006) and Riyanti et al. (2006) in iterative-solver modelling.
The damped wave equation reads

(β1 + ιβ2)
ω2

κ (x)
p (x, ω) + ∇

(
1

ρ (x)
∇ p (x, ω)

)
= −s (x, ω) ,

(11)

where ι = √−1. Suitable values of β1 and β2 were heuristi-
cally estimated by numerical experiments, which show that
β1 = 1 and β2 ∈ [0.01; 0.05] were providing the best conver-

gence (Ben-Hadj-Ali, Operto and Virieux 2011). It is worth
mentioning that using β1 = 1 and β2 �= 0 is equivalent to in-
troducing physical attenuation to the medium with a complex
wave speed given by

c̄ = c
(

1 − ι
1
Q

)
, (12)

where the attenuation factor Q is given by Q ≈ 1/β2.
The impact of the complex shift of the Laplace operator

on the spectrum of the matrix SM−1 for the 1D Helmholtz
equation is shown in Fig. 2. When no complex shift and no
intrinsic attenuation are introduced in the medium, the eigen-
values of the preconditioned matrix are aligned along the neg-
ative part of the real axis (Fig. 2a). Applying the complex
shift without physical attenuation in the medium rotates the
eigenvalues along the imaginary axis of the spectrum (Fig.
2b). Considering physical attenuation in the medium without
complex shift contributes to clustering the eigenvalues (Fig.
2c). Finally, combining the complex shift of the Laplace op-
erator with intrinsic attenuation in the medium contributes
to improve the clustering of the eigenvalues (Fig. 2d). This
can be qualitatively justified by the fact that, when M is com-
puted with a complex shift, M−1 provides a better estimation
of S−1 when an intrinsic attenuation exists in the medium,
according to the relationship between the coefficient β2 and
the attenuation factor Q, equation (12). Note that the use of
the shifted preconditioner requires performing two series of
local LU factorizations: one to factorize the local impedance
matrices involved in the Schur complement matrix and one
to factorize the damped local impedance matrices involved in
the preconditioner.

Parallel algorithm

The hybrid solver modelling algorithm can be decomposed
into source-independent tasks and source-dependent tasks,
which are outlined in algorithm (1). In the framework of full
waveform inversion that require multi-source simulations, the
computational cost of the source-dependent tasks should be
kept as small as possible. The source-independent tasks consist
of the lower-upper factorization of local impedance matrices
on each processor and building of the local assembled Schur
complements for preconditioning. The matrix-vector products
involving the local Schur complement is computed without
explicitly storing the local Schur complement but using its im-
plicit form (equation (6)). It allows us to save memory and
time in 3D (Haidar 2008) compared to an explicit calculation
that would be based on a dense matrix-vector product. The
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Figure 2 Spectrum of the matrix SM−1 com-
puted for the 1D Helmholtz equation a)
without intrinsic attenuation and (β1, β2) =
(1., 0.); b) without intrinsic attenuation and
without complex shift (β1, β2) = (1., 0.05);
c) with intrinsic attenuation (Q = 2) and
without complex shift (β1, β2) = (1., 0.); d)
with intrinsic attenuation (Q = 2) and with
complex shift (β1, β2) = (1., 0.05). The 1D
medium was split into 15 subdomains.

two main source-dependent tasks consist of the iterative solu-
tion of the Schur complement system and the computation of
the interior unknowns.

Stopping criterion of generalized minimum residual iterations

As a stopping criterion for the generalized minimum resid-
ual iteration, we used a backward error criterion (Wilkinson
1963) defined by

ε =‖ Sp�k − b ‖ / ‖ b ‖ . (13)

One advantage of this criterion is that it does not require com-
puting ‖S‖. It is worth noting that the backward error given
in equation (11) is the same for the right-preconditioned and
unpreconditioned systems because ‖SM−1t − b‖ = ‖Sp� − b‖.
This is a clear advantage of right preconditioning compared
to left preconditioning.

The impact of the stopping criterion of the generalized
minimum residual iterations on the accuracy of the solu-
tion is illustrated with an acoustic wave simulation in a 2D
homogeneous medium subdivided into 2 × 2 = 4 subdo-
mains of equal size. We performed the modelling for each
frequency of the source bandwidth and transformed back the
frequency-domain solutions in the time domain by inverse
Fourier transform. Time-domain snapshots and time-domain
seismograms are shown in Fig. 3, for ε = 10−1, 10−2 and
10−3. Artificial reflections from the interfaces of the subdo-

mains and a diffraction from the corner at the intersection
of the subdomains in the middle of the medium are clearly
observed when ε = 10−1 in Fig. 3(a–d). Smaller amplitude
artifacts are still visible when ε = 10−2 (Fig. 3b–e). However,
Ben-Hadj-Ali et al. (2008) concluded that the amplitude of
these artefacts are sufficiently small for full waveform inver-
sion applications. When ε = 10−3, no artefacts are visible
(Fig. 3c–f).

The accuracy of the hybrid solver modelling algorithm is
quantitatively validated against an analytical solution in a 3D
homogeneous medium for a stopping criterion of ε = 10−3

(Fig. 4). The agreement between the hybrid solver modelling
and the analytical solutions is as good as that obtained with a
direct solver approach (Fig. 4c in Brossier et al. 2010). For an
attenuation factor of Q = 10000, 1869 generalized minimum
residual iterations are required using 8 × 8 × 4 = 256 cubic
subdomains of 303 grid points when the complex shift of the
Laplacian is used in the additive Schwarz preconditioner. This
number of generalized minimum residual iterations decreases
down to 116, when a realistic attenuation of Q = 200 is
used in the model. For 116 generalized minimum residual
iterations, the elapsed time of the full simulation is 142 s. The
elapsed times to build the preconditioner and to compute the
solution are of the same order (28 s), while the elapsed time to
perform sequential LU factorization on one processor is 13 s.
The simulation is performed on the IBM Power 6 with 3 Gb
of RAM memory per processor.
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Figure 3 Modelling in 2D homogeneous
medium (VP = 4 km/s, ρ = 2000 kg/m3).
The main frequency of the Ricker wavelet
is 5 Hz and the source coordinates are
8 km × 8 km. Grid interval is 40 m leading
to 4 grid points per minimum wavelength.
(a-c) Snapshots at traveltime 6 s. Four sub-
domains delineated by the dash lines are
used. Stopping criterion of iterations are: a)
ε = 10−1, b) ε = 10−2, c) ε = 10−3, d-f)
Corresponding seismograms for a receiver
line near the surface. d) ε = 10−1, e) ε =
10−2, f) ε = 10−3.

THEORETICAL COMPLEXITIES

Memory complexity

When a nested dissection algorithm is used for reordering,
the theoretical memory used to perform a lower-upper fac-
torization of a sparse matrix resulting from the discretiza-
tion of the Laplacian operator with a second-order accurate

finite-difference stencil is O(N4), where N is the dimension
of a 3D square computational grid (George and Liu 1981).
In the hybrid solver modelling approach, let us denote with
np the number of subdomains in one direction and let us
consider the same number of subdomains in the three direc-
tions, (n3

p = NP). The dimension of the cubic subdomains is
N/np, which leads to a memory complexity for the n3

p local
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Algorithm 1. Algorithm of the domain decomposition algorithm based on the hybrid solver modelling solver

1. On each processor i, assemble local impedance matrix AIi Ii .
2. On each processor i, perform the sequential lower-upper factorization of AIi Ii .
3. On each processor i, build the local Schur complement matrices Si and the assembled local Schur complement matrices Ŝi .
4. On each processor i, perform the lower-upper factorization of Ŝi (Lapack routine CGETRF)
5. for l = 1 to Nshot do
6. On each processor i, build source terms sIi and s�i .
7. On each processor i, build the right-hand side of the local Schur complement system s�i − A�i Ii A

−1
Ii Ii

sIi .
8. Solve the preconditioned Schur complement system with distributed generalized minimum residual method.
9. Build the right-hand side of the system for the remaining interior-point unknowns,
10. On each processor i, compute the solution of the interior unknowns by substitutions, pIi = −A−1

Ii Ii
AIi �i p�i + A−1

Ii Ii
sIi .

11. end for

lower-upper factorizations of O(n3
p(N/np)4) = O(N4/np).

The dimension of the dense local Schur complement ma-
trices and of the preconditioners is (N/np)2. Therefore,
the memory complexity associated with the storage of the
dense n3

p local Schur complements and preconditioners is
O(n3

p(N/np)4) = O(N4/np) and equals to that of the LU fac-
torizations. We conclude that the memory complexity of the
hybrid solver modelling approach is O(N4/np) and that the
memory request decreases with the number of subdomains
for standard parallel implementation where each subdomain is
assigned to one computing core. This is a clear advantage com-
pared to the parallel direct solver methods where the memory
cost increases with the number of processors because of the
memory overheads associated with the parallel lower-upper
factorizations.

Floating point operation complexity

The operation count complexity of a lower-upper factoriza-
tion of a sparse matrix for a 3D finite-difference problem is
O(N6). Therefore, the complexity of the local lower-upper
factorizations on each processor is O((N/np)6) and becomes
negligible as the number of subdomains increases. The com-
plexity of the lower-upper factorization of the dense precondi-
tioner is O((N/np)4) and is also negligible when np increases.
To assess the operation count complexity of the iterative com-
ponent of the hybrid solver modelling method, we shall first
consider that the grid interval is linearly adapted to the fre-
quency following a discretization criterion of four grid points
per minimum wavelength. Second, we shall keep constant the
workload of each processor over frequencies by adapting the
number of subdomains to the frequencies such that the phys-
ical dimensions of the subdomains remain the same, what-
ever the frequency. The two criteria lead to the relationship:
O(np) = O(N).

The operation count complexity of the iterative component
of the hybrid solver for one shot is O(NP Nit(N/np)4) and
corresponds to the computational cost of the matrix-vector
product of dense matrices of dimension (N/np)2 performed
Nit times on each of the NP processors. Given that we con-
sider O(np) = O(N), the operation count complexity of the
generalized minimum residual solver is O(N3 Nit). This theo-
retical time complexity is basically the same as that of iter-
ative solvers, which requires O(N3) operations per iteration
and shot. If the number of iterations increases linearly with N

(or, the frequency) as observed by Plessix (2007) for iterative
solver modelling, then the theoretical time complexity of the
hybrid solver will be O(N4). We expect, however, the number
of generalized minimum residual iterations to be smaller with
the hybrid approach than with a purely iterative one, because
a smaller linear system more amenable to solution is solved
by the hybrid approach.

THREE-DIMENSIONAL NUMERICAL
S IMULATIONS

We present 3D simulations performed in the SEG/EAGE salt
and overthrust models. We used two different distributed-
memory computational platforms of the IDRIS computer cen-
tre (http://www.idris.fr). The first one is an IBM Blue Gene
(Babel computer) composed of 1024 nodes with four 32-
bit PowerPC450 cores. The clock frequency is 850 MHz,
the shared memory per node is 2 Gbytes. The computa-
tional power per node is 3.4 Gflops per core. The intercon-
nect is composed of different networks allowing for high-
performance message passing interface communications. The
second one is an IBM Power 6 (Vargas computer) composed
of SMP p575 IH nodes. The clock frequency is 4.7 GHz. The
maximum memory that can be allocated by the message pass-
ing interface process is 3 Gb and the maximum number of the
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Figure 4 Modelling in 3D homogeneous medium (VP = 4 km/s, ρ =
2000 kg/m3). Frequency is 8 Hz. Grid interval is 125 m. Source coor-
dinates are (x = 2.5 km, y = 2.5 km, z = 1.25 km). a) 3D monochro-
matic wavefield computed with the hybrid solver modelling (HSM)
method. b) Difference with the analytical solution plotted with the
same amplitude scale as in a). c) Comparison between profiles ex-
tracted from the HSM (black line) and the analytical (grey line) wave-
fields. The difference is the thin black line. The top profile in the cross
direction runs across the source position. Amplitudes were corrected
for geometrical spreading. The bottom profile is at a distance of 25
km in the dip direction and at a depth of 10 km.

message passing interface process is 512. The interconnect of
the Vargas computer is Infiniband x4 DDR.

We validate the monochromatic wavefield solutions com-
puted with the hybrid solver modelling method against the
solution computed with an acoustic finite-difference time-
domain method, referred to as the time-domain approach

in the following. The finite-difference time-domain code is
based on a classic velocity-stress formulation of the acous-
tic wave equation discretized with O(	t2,	x4) staggered-
grid stencils (Levander 1988). Absorbing boundary condi-
tions are convolutional perfectly matched layers (Komatitsch
and Martin 2007). The memory variables associated with
the convolutional perfectly matched layers are implemented
in the full computational physical domain to mimic intrin-
sic attenuation. Therefore, the computational time of the
time-domain simulation provided hereafter is representative
of visco-acoustic modelling. The perfectly matched layers are
set along the six faces of the model for both hybrid solver mod-
elling and time-domain approaches. Therefore, no free surface
is considered. The finite-difference time-domain code is par-
allelized by domain decomposition using Cartesian topology
suitable for finite-difference grids. Monochromatic wavefields
are extracted from the time-domain solutions using a discrete
Fourier transform computed within the time loop (Sirgue et al.

2008). In the following, we shall use the same grid interval
for HSM and time-domain simulations.

We assess the parallelism efficiency by the quantity E given
by:

E = Tref Nref
P

TNP NP
, (14)

where Tref and TNP are the elapsed times obtained on the
smallest number of processors, Nref

P and on NP processors,
respectively. This efficiency should remain close to 1 as NP

increases.

3D EAGE/SEG salt model

We perform simulation in the SEG/EAGE salt model of di-
mensions 13.5 × 13.5 × 4.18 km3 (Fig. 5a) (Aminzadeh, Brac
and Kunz 1997). The minimum and maximum velocities are
1.5 and 4.482 km/s respectively.

Validation against finite-difference time-domain solutions

The salt model was resampled with a grid interval of 30 m
to perform simulation at a frequency of 12.5 Hz correspond-
ing to four grid points per minimum propagated wavelengths
(Table 1 and Fig. 5). The number of grid points in the perfectly
matched layers are 6 × 6 × 5 for the hybrid solver modelling
and 20 × 20 × 20 for the time-domain simulation (a larger
number of grid points in the perfectly matched layer is used
in the time-domain simulation because all the frequencies, in-
cluding the small frequencies, are simultaneously modelled in
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Figure 5 Modelling in the acoustic salt model. a) Salt model (h = 30
m). b-c) Monochromatic wavefields computed with the hybrid solver
modelling (b) and the time-domain (c) methods. Frequency is 12.5 Hz.
Source coordinates are (x = 1.05 km, y = 1.05 km, z = 0.3 km). d)
Comparison between profiles of wavefields computed with the hybrid
solver modelling (black line) and the time-domain method (grey line).
The top profile in the dip direction runs across the source position.
Amplitudes were corrected for geometrical spreading. The bottom
profile is at a distance of 10 km in the cross direction and at a depth
of 3 km. See also Table 1.

the time domain, unlike in the frequency domain where the
width of the perfectly matched layers can be matched to the
mean propagated wavelength). The number of unknowns for
the hybrid solver modelling simulation is 32 million (Table 1).
The hybrid solver modelling and the time-domain simulations
are performed on the IBM Blue Gene at the IDRIS computer
centre. The hybrid solver modelling simulation is performed
on 14 × 14 × 5 = 980 processors using subdomains of 33 ×
33 × 30 grid points (Table 1). Two gigabytes of RAM mem-
ory were allocated per message passing interface process. The
time-domain simulation is performed on 64 processors for a
simulation length of 10 s corresponding to 3300 time steps
and a time interval of 3 ms.

A first simulation is performed for an attenuation Q =
10000 to compare the hybrid solver modelling solution with
the acoustic solution of the time-domain approach. The hy-
brid solver modelling simulation is done with the weights of
the mixed grid stencil corresponding to Gm = 4, 6, 8, 10
(Brossier et al. 2010). A qualitative comparison between the
monochromatic wavefields computed with the hybrid solver
modelling and the time-domain approaches shows a reason-
able agreement given the coarse parameterization used for
both approaches (4 grid points per minimum wavelength)
and the different numerical stencils used for the two mod-
ellings (Fig. 5). When Q = 10000, the number of generalized
minimum residual iterations for ε = 10−3 and ε = 10−2 are
1375 and 954, respectively. When an heterogeneous attenu-
ation model is used with Q = 50 in the salt body (Fig. 6a),
the number of iterations decreases to 111 and 57, respec-
tively. The footprint of the attenuation on the wavefield am-
plitudes is shown in Fig. 6(b-c). For the heterogeneous atten-
uation model, the elapsed time to build the preconditioner is
203 s, the elapsed time to perform the generalized minimum
residual iterations is 75 s (for ε = 10−3), the elapsed time to
compute the solution (i.e., the full source-dependent task) is
109 s and the elapsed time for one sequential lower-upper
factorization is 103 s. The total elapsed time is 797 s. The
total allocated memory is roughly 2 Tb. The elapsed time
for the time-domain simulation was 2115 s on 64 processors
(Table 1).

Scalability

To assess the scalability of the hybrid solver modelling
method, we perform a series of simulations in the salt model
for an increasing number of processors. The scalability anal-
ysis is performed on the IBM Blue Gene and the IBM Power
6 (Table 2). On the IBM Blue Gene, the modelled frequency
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Table 1 Simulation in the salt and overthrust models. FDTD: finite-difference time-domain modelling. F(Hz):
modelled frequency in Hz. h(m): grid interval. npmlx,y,z : number of grid points in the perfectly matched layers
along x, y and z. Nu(106): number of unknowns in millions. NHSM

P : number of processors (or subdomains)
for the hybrid solver modelling approach. kx × ky × kz: number of subdomains along the three Cartesian
directions for the hybrid solver modelling approach. nx × ny × nz: dimensions of the subdomains in HSM.
THSM

t (s): total elapsed time in seconds for the hybrid solver modelling approach. THSM
r (s): elapsed time in

seconds of the source-dependent task in the hybrid solver modelling approach. NTDM
P : number of processors for

the time-domain approach. TFDTD
r (s): elapsed time in seconds for the finite-difference time-domain approach.

The stopping criterion of iterations was ε = 10−3

F npmlx,y,z Nu NHSM
P kx × ky × kz nx × ny × nz THSM

t THSM
r NFDTD

P TFDTD
r

Salt model - Grid interval h: 30 m - Grid dimensions: 450 × 450 × 140

12.5 6 × 6 × 5 32 980 14 × 14 × 5 33 × 33 × 30 797 109 64 2115

Overthrust model - Grid interval h = 50 m - Grid dimensions: 400 × 400 × 94

10.8 8 × 8 × 9 19.4 1024 16 × 16 × 4 26 × 26 × 28 425 175 64 1700

is 7.5 Hz and the grid interval h is 50 m, which leads to a
Cartesian grid of dimensions 270 × 270 × 84. On the IBM
Power 6, the modelled frequency is 5 Hz and the grid interval
is 75 m, which leads to a finite-difference grid of dimensions
180 × 180 × 56. The domain decompositions are designed
such that the subdomains geometry is as close as possible to
that of a square to minimize the number of interface points.
The number of subdomains increases from 300 to 1944 on
the IBM Blue Gene and from 50 to 432 on the IBM Power 6
(Table 2). The total elapsed time and the elapsed time of the
source-dependent tasks, the number of generalized minimum
residual iterations and the efficiency of the full computation
and of the source-dependent tasks are plotted in Fig. 7. A first
conclusion is that the number of GMRES iterations roughly
increases linearly with the number of subdomains (Fig.7c,d),
which illustrates the degradation of the preconditioner ac-
curacy with the number of subdomains. Second, the elapsed
time of the source-dependent tasks remains almost constant
when the number of subdomain increases, in particular, on
the IBM Power 6 where faster processors are used (Fig. 7c,d).
This suggests that, when the number of subdomains increases,
the computational burden resulting from the increasing num-
ber of generalized minimum residual iterations is balanced by
the computational saving on each processor provided by the
decreasing of the size of the subdomains. Third, the computa-
tional cost of the source-independent tasks, measured by the
difference between the total time and the source-dependent
time, rapidly decreases with the number of subdomains (Fig.
7a,b), which is consistent with the theoretical time complex-
ity of the lower-upper factorization and of the preconditioner
building. The efficiency of the full run always remains greater

than 1 and increases with the number of processors when fast
processors are used (Fig. 7e,f). By contrast, the efficiency of the
source-dependent tasks decreases with the number of proces-
sors since the elapsed time of the source-dependent phase re-
mains almost constant regardless of the number of processors
used. The behavior of the hybrid solver modelling algorithm
is slightly better on the IBM Power 6 than on the IBM Blue
Gene, as shown by the efficiency curves (Fig. 7), because of
the faster processors of the Power 6 and the limited amount
of communications in the hybrid solver modelling method.
When simulations must be performed for a large number of
sources, the best strategy is clearly to use a number of sub-
domains as small as possible to maintain the efficiency of the
source-dependent phase close to 1. Groups of sources can be
distributed over groups of NP processors where NP denotes
the number of processors required to perform one domain de-
composition such that each group of NP processors processes
a limited number of shots (if Ntot

P is the total number of proces-
sors, the number of source per groups of NP processors will be
NshotNP/Ntot

P ). By contrast, if a simulation must be performed
for one source as it can be the case when source encoding is
used (Krebs et al. 2009; Ben-Hadj-Ali et al. 2011), the best
strategy is to use a significant number of processors to make
negligible the computational cost of the source-independent
tasks.

Complexity

We assess numerically the time complexity of the hybrid solver
modelling method on the IBM Blue Gene computer. Simula-
tions are performed for frequencies 5, 7.5, 10 and 12.5 Hz.
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Figure 6 Modelling in the visco-acoustic salt model. a) Attenuation
model. b) Monochromatic wavefield computed with the hybrid solver
modelling approach. Frequency is 12.5 Hz. Wavefield amplitudes
can be compared with that shown in Fig. 5(b). c) Comparison be-
tween profiles extracted from the hybrid solver modelling wavefields
computed in the attenuating (black line) and in the non attenuat-
ing (grey line) models. The profiles are at the same positions as in
Fig. 5.

The grid interval is adapted to each frequency to satisfy a dis-
cretization criterion of four grid points per minimum wave-
length (h = 75 m, 50 m, 37.5 m and 30 m for the above-
mentioned frequencies). The corresponding grid dimensions
are provided in Table 3. The problem sizes increases from
2.4–32 millions of unknowns. The number of processors for
each frequency modelling was chosen such that the size of
the subdomains (i.e., the processor workload) is kept roughly
constant, whatever the frequency. The size of the subdomain

is, an average, 31 × 31 × 31, which is close to the maximum
size that can be tackled with 2 Gb of memory per message
passing interface process. The number of processors increases
with frequencies, from 72 to 980. All the simulation parame-
ters are outlined in Table 4. The total elapsed time, the elapsed
time for the source-dependent tasks and the number of gen-
eralized minimum residual iterations are shown in Fig. 8 and
are outlined in Table 4. The number of generalized minimum
residual iterations increases linearly with frequency, which is
consistent with the linear increase of iterations with the num-
ber of subdomains shown during the scalability analysis. The
total elapsed time and the source-dependent elapsed time also
increase roughly linearly with frequency. To estimate the ob-
served time complexity, we plot the quantity NPT/Nc as a
function of the frequency in Fig. 8(c). NP is the number of
processors, T is the elapsed time, N is the number of grid
points in the model along the horizontal direction and c is an
exponent such that the plotted curve remains centred around
the value of 1. The expression Nc gives the observed complex-
ity of the hybrid solver modelling algorithm. We found an
observed complexity of O(N3.4) and O(N3.8) for the total run
and the source-dependent tasks, respectively. The observed
complexity of the full algorithm O(N3.4) is slightly smaller
than the theoretical one O(N4), assuming a linear increase
of the number of iterations with N (see section Theoretical
complexity analysis).

3D EAGE/SEG overthrust model

We followed the same procedure for the SEG/EAGE onshore
overthrust model. The dimension of the overthrust model is
20 km × 20 km × 4.65 km (Fig. 9a). The minimum and max-
imum velocities are 2.178 km/s and 6 km/s, respectively. The
overthrust model represents a thrusted area above a decolle-
ment level with a weathered layer in the near-surface and,
therefore, provides a more structurally-complex geological
environment than the salt model. Then, it provides a com-
plementary case study to assess the robustness of the hybrid
solver modelling approach for modelling in a heterogeneous
medium.

Validation against finite-difference time-domain solutions

A comparison with the time-domain approach is performed
for the 10.8 Hz frequency. The model is resampled with a
grid interval of 50 m to satisfy the discretization criterion
of four grid points per wavelength used for both the hybrid
solver modelling and the time-domain simulations. All the
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Table 2 Scalability analysis of the hybrid solver modelling performed on the IBM Blue Gene and the IBM Power
6. The same nomenclature as in Table 1 is used. Etot: parallel efficiency for the full hybrid solver modelling. Erhs:
parallel efficiency for the source-depedent tasks. Nit: number of generalized minimum residual iterations

NP kx × ky × kz nx × ny × nz npmlx,y,z Nu Tt(s) Tr(s) Nit Etot Erhs

IBM Blue Gene - Salt model - Frequency: 7.5 Hz - h = 50 m - Grid dimensions: 270 × 270 × 84

300 10 × 10 × 3 29 × 29 × 32 10 × 10 × 6 8.1 520 77 83 1 1
484 11 × 11 × 4 26 × 26 × 26 8 × 8 × 10 8.5 255 48 114 1.26 1.00
980 14 × 14 × 5 21 × 21 × 20 12 × 12 × 8 8.6 97 30 202 1.64 0.79
1620 18 × 18 × 5 16 × 16 × 20 9 × 9 × 8 8.3 88 58 472 1.09 0.25
1944 18 × 18 × 6 16 × 16 × 16 9 × 9 × 6 8.0 56 30 612 1.42 0.39

IBM Blue Gene - Overthrust model - Frequency: 7.5 Hz - h = 75 m - Grid dimensions: 266 × 266 × 62

243 9 × 9 × 3 32 × 32 × 28 11 × 11 × 11 7.0 599 106 119 1 1
576 12 × 12 × 4 23 × 23 × 21 5 × 5 × 11 6.4 132 43 229 1.92 1.00
980 14 × 14 × 5 20 × 20 × 16 7 × 7 × 9 6.3 96 59 534 1.54 0.45
1536 16 × 16 × 6 18 × 18 × 12 11 × 11 × 5 6.0 110 89 842 0.86 0.19
1944 18 × 18 × 6 16 × 16 × 12 11 × 11 × 5 6.0 101 85 1124 0.74 0.16

IBM Power 6 - Salt model - Frequency: 5 Hz - h = 75 m - Grid dimensions: 180 × 180 × 56

50 5 × 5 × 2 38 × 38 × 33 5 × 5 × 5 2.4 224 23 30 1 1
72 6 × 6 × 2 32 × 32 × 33 6 × 6 × 5 2.4 129 14 36 1.21 1.18
192 8 × 8 × 3 24 × 24 × 22 6 × 6 × 5 2.4 38 7 68 1.53 0.88
400 10 × 10 × 4 19 × 19 × 17 5 × 5 × 6 2.5 13 4.6 102 2.15 0.64
432 12 × 12 × 3 16 × 16 × 22 6 × 6 × 5 2.4 12 5 129 2.18 0.54

IBM Power 6 - Overthrust model - Frequency: 5.4 Hz - h = 100 m - Grid dimensions: 200 × 200 × 46

72 6 × 6 × 2 35 × 35 × 28 5 × 5 × 5 2.5 125 15.1 49 1 1
98 7 × 7 × 2 30 × 30 × 28 5 × 5 × 5 2.5 90 11.2 60 1. 0.99
243 9 × 9 × 3 24 × 24 × 20 8 × 8 × 7 2.8 33 9.8 135 1.13 0.46
363 11 × 11 × 3 20 × 20 × 20 10 × 10 × 7 2.9 24 10.5 220 1.05 0.29
432 12 × 12 × 3 18 × 18 × 20 8 × 8 × 7 2.8 19 10.1 285 1.10 0.25

simulation parameters are outlined in Table 1 using the same
nomenclature as for the salt model. For comparison with the
acoustic finite-difference time-domain solution, an attenua-
tion factor of Q = 10000 is first used. In the time-domain
simulation, the simulation length is 14.8 s leading to 3700
time steps for a time interval of 4 ms. The monochromatic
wavefields computed with the hybrid solver modelling and
the time-domain approaches are compared in Fig. 9(b-d) and
show an acceptable agreement. When Q = 10000, the number
of generalized minimum residual method iterations is 1767
and 1158 for ε = 10−3 and ε = 10−2, respectively. For a ho-
mogeneous attenuation model with Q = 200, the number of
iterations decreases to 371 and 163 for ε = 10−3 and ε = 10−2,
respectively (Fig. 10). For the hybrid solver modelling simula-
tion, the total elapsed time and the source-dependent elapsed
time are 425 s and 175 s, respectively. The elapsed time
on 64 processors for the time-domain simulation is 1700 s
(Table 1).

Scalability

The scalability analysis is performed on the IBM Blue Gene
and the IBM Power 6 for a frequency of 7.5 Hz (h = 75 m)
and 5.4 Hz (h = 100 m), respectively (Table 2). All the simu-
lation parameters and the results are outlined in Table 3 and
Fig. 11 using the same nomenclature as for the salt model.
As for the salt model, the number of generalized minimum
residual method iterations increases linearly with the num-
ber of subdomains and the resulting computational burden
is balanced by the decrease of the subdomain dimensions.
The higher structural complexity of the overthrust model
compared to the salt model is, however, illustrated by the
fact that the elapsed times increase more significantly after a
critical number of processors in the overthrust model com-
pared to the salt-model case. This is more obvious on the
IBM Blue Gene where the processors have a slower clock
frequency.
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Figure 7 Hybrid solver modelling scalabil-
ity (salt model). a-b) Total elapsed time
(grey line) and elapsed time for the source-
dependent tasks (black line) versus the num-
ber of processors. The square gives the num-
ber of processors for which simulations were
performed. c-d) Number of generalized min-
imum residual iterations versus the num-
ber of processors. e-f) Efficiency of the full
algorithm (grey line) and of the source-
dependent tasks (black line). On the left pan-
els (a, c, e), the simulations were performed
on the IBM Blue Gene, while on the right
panels (b, d, f), the simulations were per-
formed on IBM Power 6. See also Table 2.

Table 3 Complexity analysis of the hybrid solver modelling (HSM) approach. The same nomenclature as for Table 1
is used. Nx × Ny × Nz: dimensions of the finite-difference grid

F Nx × Ny × Nz Nu NP kx × ky × kz nx × ny × nz npmlx,y,z Tt Tr Nit

Salt model (From top to bottom, h = 75, 50, 37.5, 30 m).

5 180 × 180 × 56 2.4 72 6 × 6 × 2 32 × 32 × 33 6 × 6 × 5 588 61 40
7.5 269 × 269 × 84 8.3 243 9 × 9 × 3 31 × 31 × 32 5 × 5 × 6 672 91 74
10 360 × 360 × 112 17.2 576 12 × 12 × 4 31 × 31 × 31 6 × 6 × 6 689 114 96
12.5 450 × 450 × 140 32.0 980 14 × 14 × 5 33 × 33 × 30 6 × 6 × 5 797 109 111

Overthrust model (From top to bottom, h = 150, 100, 75, 60, 50 m).

3.6 134 × 134 × 32 1.1 50 5 × 5 × 2 30 × 30 × 24 8 × 8 × 8 222 24 32
5.4 200 × 200 × 46 3.1 128 8 × 8 × 2 28 × 28 × 31 12 × 12 × 8 313 35 66
7.5 266 × 266 × 62 7.0 243 9 × 9 × 3 32 × 32 × 28 11 × 11 × 11 599 106 119
9 334 × 334 × 78 12.4 432 12 × 12 × 3 30 × 30 × 32 13 × 13 × 9 699 174 234
10 400 × 400 × 94 19.4 1024 16 × 16 × 4 26 × 26 × 28 8 × 8 × 9 425 175 487

Complexity

Simulations in the overthrust model at frequencies 3.6, 5.4,
7.2, 9 and 10.8 Hz are performed on the IBM Blue Gene to
perform the complexity analysis. All the simulation parame-
ters and the results are outlined in Table 3 and Fig. 12 using
the same nomenclature as for the salt model. We find a time
complexity of O(N3.5) and O(N4.2) for the full run and for
the source-dependent tasks. The time complexities of the full
algorithm are slightly higher than the theoretical one, unlike

those inferred from the salt model. Indeed, the time complexity
of the source-dependent tasks is significantly degraded com-
pared to that obtained with the salt model, which highlights
the sensitivity of the iterative component of the hybrid solver
to the structural complexity of the subsurface model.

D I S C U S S I O N

We have provided an analysis of the accuracy, scalability and
complexity of the hybrid solver modelling approach, which
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Table 4 Comparison between iterative and hybrid solvers. The results of R. E Plessix
and X. Pinel are taken from Plessix (2007) and Pinel (2010), respectively. Nx × Ny ×
Nz: Dimensions of the finite-difference grid. NP: Number of processors used for the
simulation. T(mn): Parallel elapsed time. Tseq(mn) = T × NP

Author F(Hz) Nx × Ny × Nz NP T (mn) Tseq(mn)

Salt model

Plessix 5 295 × 295 × 140 1 154 154
Pinel 5 571 × 571 × 199 256 2 507
Sourbier 5 190 × 190 × 66 50 0.4 19
Plessix 10 520 × 520 × 210 1 1111 1111
Pinel 10 1112 × 1112 × 367 2048 4.5 9216
Sourbier 12.5 460 × 460 × 150 980 1.8 1780

Overthrust model

Plessix 5 306 × 306 × 126 1 126 126
Sourbier 5 210 × 210 × 56 125 0.25 19
Plessix 10 541 × 541 × 181 1 1380 1380
Sourbier 10 418 × 418 × 110 1024 2.9 2986
Pinel 7.5 863 × 863 × 231 256 7 1800
Sourbier 7.5 276 × 276 × 72 106 4 429

is developed as a modelling engine for 3D frequency-domain
full waveform inversion. Full waveform inversion generally
requires performing modelling for a large number of sources.
Alternatively, full waveform inversion can be performed for
a limited number of sources or even for one single source
if source encoding techniques are used (Krebs et al. 2009;
Ben-Hadj-Ali et al. 2011). The advantages and drawbacks of
the hybrid solver modelling method compared to alternative
approaches are discussed in the following in light of the nu-
merical experiments presented in this study. A complementary
review of modelling approaches for full waveform inversion
is provided in Plessix (2007) and Virieux et al. (2009).

Direct-solver versus hybrid-solver

Overcoming limitations of frequency-domain modelling based
on the direct solver resulting from the memory cost and the
limited scalability of lower-upper factorization of large ma-
trices (Operto et al. 2007; Brossier et al. 2010) has been the
guide line of this investigation on the hybrid solver modelling
method. Recent applications of the direct solver approach are
presented in Brossier et al. (2010), where modelling in the
overthrust and salt models is performed on a SGI ALTIX ICE
supercomputer at the 7-Hz frequency using 32–48 message
passing interface processes with 15 Gb of memory per process.
On the SGI platform, the computation of one monochromatic
wavefield by forward/backward substitutions takes between

0.97 s and 1.4 s, while the lower-upper factorization of the
impedance matrix took between 1822–2863 s. These results
can be qualitatively compared with those obtained during the
scalability analysis performed on the IBM Blue Gene at 7.5
Hz (Table 2). For the salt model, the elapsed time to com-
pute one monochromatic wavefield varies between 77 s and
30 s, depending on the number of processors used, while the
elapsed time to compute one monochromatic wavefield varies
between 106 s and 85 s for the overthrust model. Although the
total time of the simulation for one shot is less with the hybrid
solver modelling, the efficiency of the substitution step in the
direct-solver approach will make this approach definitively
superior for problems involving a few million of unknowns
and a large number of sources (a few thousands). This prob-
lem size is representative of the inversion of low frequencies
(<7 Hz) for imaging targets spanned by wide-azimuth surveys
performed with node-instruments and ocean-bottom-cables
technologies (Plessix 2009; Sirgue et al. 2010).

We have shown that the memory requirement in the hy-
brid solver modelling approach decreases with the number of
processors, unlike parallel direct solver approaches where the
parallel lower-upper factorization introduces some memory
overheads. We have also illustrated the good scalability of the
hybrid solver modelling approach, which allows us to perform
the hybrid solver modelling on a large number of processors
with a limited amount of shared memory. These two factors
allow us to tackle larger problems than with the direct-solver
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Figure 8 Hybrid solver modelling complexity (salt model). a) Total
elapsed time (black line) and elapsed time for the source-dependent
task versus frequency (see text for details). b) Number of generalized
minimum residual iterations versus frequency. c) Estimation of the
time complexity summed over all the processors (i.e., as if the code
was run in sequential) for the full algorithm (black line) and the
source-dependent task (red line) when O(k) = O(N). c = 3.4 and c =
3.8 were found for the full algorithm and the source-dependent task,
respectively. See also Table 2.

approach. It is worth mentioning also that the direct solver
approach is more adapted to fixed-spread acquisition such as
node or ocean bottom cable acquisitions in marine environ-
ment or land acquisitions, because all the sources of the exper-
iment can be processed from one lower-upper decomposition
performed for the full computational domain. In contrast, the
hybrid solver modelling can deal in a more flexible way with
other acquisitions such as streamer acquisition. Indeed, the hy-
brid solver modelling domain decomposition can be applied
to subdomains of the subsurface spanned by a few number of
shots. Since the number of shots in the subsurface subdomain
can be small, the number of subdomains in the hybrid solver
modelling domain decomposition can be optimally designed
to minimize the cost of the source-independent tasks.

Figure 9 Modelling in the acoustic overthrust model. a) Overthrust
model (h = 50 m). (b-c) Monochromatic wavefields computed with
the hybrid solver modelling, (b) and the time-domain (c) methods.
Frequency is 8 Hz. Source coordinates are (x = 2.0 km, y = 2.0 km,
z = 0.2 km). d) Comparison between profiles of wavefields computed
with the HSM (black line) and the time-domain method (grey line).
The top profile in the dip direction runs across the source position.
Amplitudes were corrected for geometrical spreading. The bottom
profile is at a distance of 10 km in the cross direction and at a depth
of 2 km. See also Table 1.
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Figure 10 Modelling in the visco-acoustic overthrust model. a) Monochromatic wavefield computed with the hybrid solver modelling approach.
Frequency is 10.8 Hz. The attenuation model is homogeneous with Q = 200. The visco-acoustic wavefield amplitudes can be compared with that
of the acoustic wavefield shown in Fig. 9(b). b) Comparison between profiles extracted from the HSM wavefields computed in the attenuating
(black line) and in the non attenuating (grey line) models. The profiles are at the same positions as in Fig. 9.

Time-domain explicit solver versus hybrid-solver

The hybrid solver modelling approach is validated against
finite-difference time-domain modelling in Figs 5–9. For the
12.5-Hz modelling in the salt model, the elapsed time of the
source-dependent phase in the hybrid solver modelling is 109
s on 980 processors (Table 1). The elapsed time of the time-
domain simulation for one source is 2115 s on 64 processors.
Taking the product of the elapsed time by the number of used
processors allows us to assess which of the two approaches
is the most efficient one for multi-source modelling. We ob-
tained 29.67 hours for the hybrid solver modelling against
37.6 hours for the time-domain simulation. For the 10.8-Hz
modelling in the overthrust model, the elapsed time of the
source-dependent phase is 175 s on 1024 processors. The
elapsed time of the time-domain simulation for one source

is 1700 s on 64 processors. The product of the elapsed time
by the number of processors gives 49.78 hours and 30.22
hours for the hybrid solver modelling and the time-domain
approaches, respectively. These results suggest that the per-
formance of the hybrid solver modelling and time-domain
approaches are of the same order and that the iterative solver
used in the hybrid solver modelling can be sensitive to the
structural complexity of the subsurface model as already men-
tioned. Of note, the time-domain approach and the hybrid
solver modelling are compared here for the modelling of one
frequency. One advantage of the time-domain approach is
to allow for the extraction of several frequencies by discrete
Fourier transform at a reasonable computational cost. Al-
though the hybrid solver modelling allows for several levels
of parallelism (Haidar 2008; Giraud et al. 2010), two levels
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Figure 11 Hybrid solver modelling scalabil-
ity (overthrust model). The same represen-
tation is used as in Fig. 7. See also Table 3.

of parallelism by domain decomposition and by distribution
of shots over processors can be easily implemented in the
time domain and tuned according to the number of shots to
be modelled. Another issue concerns data preconditioning by
time windowing, which can be performed in a more flexible
way in time-domain modelling. The main drawback of the
time-domains approach compared to frequency-domain ap-
proaches remains the implementation of attenuation effects
by means of memory variables.

Iterative solver versus hybrid solver

Three-dimensional visco-acoustic frequency-domain wave
modelling based on iterative solvers has been developed for
full waveform inversion applications (Plessix 2007; Calan-
dra et al. 2008; Plessix 2009; Pinel 2010). Plessix (2007) and
Pinel (2010) presented results of simulations performed in the
salt and overthrust models. Plessix (2007) used an eight-order
accurate finite-difference stencil allowing for a discretization
of five grid points per wavelength. Sponge-like absorbing
boundary conditions require up to 35 points in the sponge
layers. Pinel (2010) used a seven-point finite-difference stencil,
which requires 12 grid points per minimum wavelength and
16 grid points in the perfectly matched layers. The differences
in the finite-difference stencils, in the discretization, and in the
absorbing boundary conditions used in Plessix (2007), Pinel
(2010) and in this study make the size of the finite-difference
grids different for a given frequency and a given physical

Figure 12 Hybrid solver modelling complexity (overthrust model).
The same representation is used as in Fig. 8. See also Table 4.
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domain. Moreover, the solution accuracies controlled by the
stopping criterion of iterations can also be different in the
three studies just mentioned. Therefore, the conclusions that
can be inferred from the comparison between the three stud-
ies are highly speculative. The results of Plessix (2007), Pinel
(2010) and this study are outlined in Table 4 for simulations
in the salt and overthrust models.

One tentative conclusion is that the iterative solver has a
better complexity that the hybrid solver approach, since the
iterative solver shows improved relative performance with re-
spect to the hybrid solver as the size of the computational
domain increases (for example, compare the results of Plessix
(2007) and our results in the salt and in the overthrust models
at 5 and 10 Hz). Another advantage of the iterative solver
is clearly the low-memory requirement since the geometric
multigrid solver can be implemented in a matrix-free fashion;
this allows for an efficient parallelism over shots. We notice
however that using unstructured meshes will strongly affect
these solvers while it will not change much the hybrid solver.
A second level of parallelism can be viewed by means of the
parallelization of the matrix-vector products performed by the
iterative solver (Riyanti et al. 2007). A drawback of the iter-
ative solver is that the impedance matrix should be less well
conditioned than the Schur complement system. If the num-
ber of sources can be reduced by source encoding such that
the number of blended sources is significantly smaller than the
number of available processors, one can take advantage of the
high scalability and flexibility of the hybrid solver to design a
domain decomposition, which will provide the best trade-off
between the computational costs of the source-independant
tasks and of the source-dependent tasks. This might be an ad-
vantage compared to conventional iterative methods, where
the full computational cost is controlled by the iterative
resolution.

Two-level parallelism in the hybrid solver

As usually observed, increasing the number of subdomains
leads to increasing the number of iterations to converge. For a
large number of subdomains/processors the convergence rate
might be significantly deteriorated and the solution process be-
comes ineffective. In order to alleviate the numerical growth
of the iterations, when the number of subdomains is increased
to feed each processor, we might keep the number of sub-
domains small while handling each subdomain by more than
one processor introducing 2-levels of parallelism in the hy-
brid solver modelling method (Haidar 2008; Giraud et al.

2010). Such an implementation enables us to express paral-

lelism between the subdomains but also within the treatment
of each subdomain. Concerning the source-independent tasks,
the lower-upper factorizations of the local impedance matri-
ces as well as the dense factorizations of the assembled local
Schur complement matrices involved in the preconditioner
can be performed in parallel by each group of processors.
The local matrix-vector product performed by a generalized
minimum residual solver during the source-dependent tasks
can also be parallelized with linear algebra subroutines de-
veloped for high-performance computers (SCALAPACK and
PBLAS libraries). In Table 5 we display preliminary results
using a two-level parallel implementation. In these experi-
ments with 192 processors, it can be observed that the source-
independent tasks are slightly more time consuming using
the two-level parallel approach. This is due to the fact that
having fewer subdomains leads to larger local impedance
matrices and larger subdomain interfaces; even though the
source-independent tasks are performed using parallel kernels,
the non-linear complexity of these kernels is not completely
overcome by the parallel treatment. However, a significant
saving can be observed for the source-dependent kernels. The
gains are twofold. First we have fewer subdomains, conse-
quently the convergence is faster (less generalized minimum
residual iterations). Furthermore, the source-dependent ker-
nels have a computational complexity mainly linear with the
problem size, they are naturally parallel and their parallel im-
plementations are efficient. For this example, the two-level
parallel implementation is more effective than the one-level as
soon as more than two sources have to be considered.

Future work

The HSM method can be improved within several ways in the
framework of full waveform inversion applications. A first im-
provement of the hybrid solver modelling method concerns the
efficiency of the multisource and multifrequency modellings.
In addition to the two-level implementation, the multisource
modelling can be improved by using the block generalized
minimum residual method where multiple sources are effi-
ciently processed thanks to the BLAS3 library, on the one hand
and block Krylov subspace on the other (Saad 2003). Multi-
frequency modelling can be required in frequency-domain full
waveform inversion when the simultaneous inversion of multi-
ple close frequencies improves the reconstruction (see Brossier,
Operto and Virieux 2009 and Ben-Hadj-Ali et al. 2011 for
two illustrations). Various numerical techniques based on re-
cycling Krylov subspace information between various solution
exist, either through subspace augmentation (Chapman and
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Table 5 Comparison between the one-level and two-level parallel implementation of the
hybrid solver. Ni: number of interface points. Tp: elapsed time for the source-independent
tasks. Tr: elapsed time for the source-dependent tasks

subdomain
proc. per

Implementation # subdomains subdomain nx × ny × nz Ni Tp(s) Tr(s)

1-level 192 1 33 × 33 × 21 5578 168 86
2-levels 96 2 45 × 33 × 31 7405 254 45

Sadd 1997; Parks et al. 2006) or through incremental de-
flating preconditioners (Giraud, Gratton and Martin 2007).
Investigating those techniques in a full waveform inversion
framework would deserve to be undertaken in the future. It is
still unclear whether the computed solution in a given subsur-
face model can be exploited to speedup the modelling in an
updated model of the subsurface after one inversion iteration.

A last issue concerns the choice of the preconditioner. The
algebraic preconditioner does not exploit the modelled phys-
ical phenomena. An alternative could be provided by using
non-reflecting boundary conditions such as perfectly matched
layers at interfaces between subdomains to design a genuine
domain decomposition approach (Heikkola et al. 1998).

CONCLUSION

We have presented a massively parallel algebraic domain
decomposition method based on a hybrid direct-iterative
solver for 3D frequency-domain visco-acoustic wave mod-
elling. Compared to modelling approaches based on sparse
direct solvers, the hybrid-solver approach scales well on large-
scale distributed memory platforms and has a lower memory
requirement, which decreases with the number of processors.
Therefore, the hybrid approach allows one to tackle problems
of larger dimensions in terms of model size or modelled fre-
quencies than the direct-solver approach. However, the direct
solver method remains faster, when the lower-upper factor-
ization remains tractable on a limited number of computer
nodes, that is, for problems involving a few million of un-
knowns. Both theoretical complexity analysis and numerical
experiments suggest that the computational cost of the hybrid
approach is of the same order as iterative methods or time-
marching methods for single-frequency multi-source mod-
elling on distributed-memory platforms. The memory cost of
the hybrid approach for one source modelling is significantly
higher than that of iterative solvers and time-marching algo-
rithms. This limits the ability of the hybrid-solver method

to distribute sources over processors in the framework of
multi-source modelling. However, the hybrid-solver method
allows for the iterative resolution of a reduced (i.e., better
preconditioned) system than conventional iterative methods
and, therefore, should show improved convergence in com-
plex media. The hybrid approach should be quite efficient
for full waveform inversion applications, where the number
of sources can be reduced with source encoding techniques.
In this framework, one can take advantage of the high scal-
ability and the flexibility of the hybrid solver to design the
most suitable domain decomposition for the number of avail-
able processors, the number of blended sources and the model
dimension. The domain decomposition can be chosen such
that the computational time is minimized, which is equivalent
to finding the best trade-off between the computational costs
of the source-independent tasks (local lower-upper factoriza-
tions, preconditioner building) and of the source-dependant
tasks (multisource resolution of the Schur complement sys-
tem) in the hybrid solver. At least two improvements of the
method can be identified and they concern the implementa-
tion of a two-level parallelism and the efficient processing of
multiple sources with block iterative solvers.
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Sophia-Antipolis.

Ben-Hadj-Ali H., Operto S. and Virieux J. 2011. An efficient
frequency-domain full-waveform inversion method using simulta-
neous encoded sources. Geophysics 76. doi:10.1190/1.3581357

Ben-Hadj-Ali H., Operto S., Virieux J. and Sourbier F. 2008. 3D
frequency-domain full-waveform tomography based on a domain
decomposition forward problem. 78th SEG meeting, Las Vegas,
Nevada, USA, Expanded Abstracts.

Berenger J.-P. 1994. A perfectly matched layer for absorption of
electromagnetic waves. Journal of Computational Physics 114,
185–200.

Brossier R., Etienne V., Operto S. and Virieux J. 2010. Frequency-
domain numerical modelling of visco-acoustic waves based on
finite-difference and finite-element discontinuous Galerkin meth-
ods. In: Acoustic Waves (ed. D. W., Dissanayake), pp. 125–158.
SCIYO.

Brossier R., Operto S. and Virieux J. 2009. Seismic imaging of
complex onshore structures by 2D elastic frequency-domain full-
waveform inversion. Geophysics 74, WCC63–WCC76.

Calandra H., Duff I., Gratton S., Pinel X. and Vasseur X. 2008. Mas-
sively parallel computations for the solution of the 3D-Helmholtz
equation in the frequency domain. 62nd EAGE meeting, Glasgow,
UK, Expanded Abstracts.

Carvalho L.M., Giraud L. and Meurant G. 2001. Local precondition-
ers for two-level non-overlapping domain decomposition methods.
Numerical Linear Algebra with Applications 8, 207–227.

Chapman A. and Saad Y. 1997. Deflated and augmented krylov sub-
space techniques. Numerical Linear Algebra with Applications 4,
43–66.

Duff I.S., Erisman A.M. and Reid J.K. 1986. Direct Methods for
Sparse Matrices. Clarendon Press.

Duff I.S., Gratton S., Pinel X. and Vasseur X. 2007. Multigrid based
preconditioners for the numerical solution of two-dimensional het-
erogeneous problems in geophysics. International Journal of Com-
puter Mathematics 84–88, 1167–1181.

Erlangga Y.A. and Nabben R. 2008. On a multilevel Krylov method
for the Helmholtz equation preconditioned by shifted Laplacian.
Electronic Transactions on Numerical Analysis 31, 403–424.

Erlangga Y.A., Oosterleeand C. and Vuik C. 2006. A novel multi-
grid based preconditioner for heterogeneous Helmholtz problems.
SIAM – Journal of Scientific Computing 27, 1471–1492.

George A. and Liu J.W. 1981. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall.

Giraud L., Gratton S. and Martin E. 2007. Incremental spectral pre-
conditioners for sequences of linear systems. Applied Numerical
Mathematics 57, 1164–1180.

Giraud L., Haidar A. and Pralet S. 2010. Using multilevel of par-
allelism to enhance the performance of domain decomposition
solvers. Parallel Computing 36, 285–296.

Haidar A. 2008. On the parallel scalability of hybrid linear solvers
for large 3D problems. PhD thesis, Institut National Polytechnique
de Toulouse.

Heikkola E., Kuznetsov Y.A., Neittaanmäki P. and Toivanen J. 1998.
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