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Abstract—The general purpose graphics processing
units (GPGPU) are increasingly deployed for scientific
computing due to their performance advantages over CPUs.
What followed is the fact that fault tolerance has become a
more serious concern compared to the period when GPGPUs
were used exclusively for graphics applications. Using GPUs
and CPUs together in a hybrid computing system increases
flexibility and performance but also increases the possibility of
the computations being affected by soft errors, for example,
in the form of bit flips. In this work, we propose a soft error
resilient algorithm for QR factorization on such hybrid systems.
Our contributions include (1) a checkpointing and recovery
mechanism for the left-factor Q whose performance is scalable
on hybrid systems; (2) optimized Givens rotation utilities on
GPGPUs to efficiently reduce an upper Hessenberg matrix
to an upper triangular form for the protection of the right
factor R, and (3) a recovery algorithm based on QR update on
GPGPUs. Experimental results show that our fault tolerant QR
factorization can successfully detect and recover from soft errors
in the entire matrix with little overhead on hybrid systems with
GPGPUs.

I. INTRODUCTION

Since the introduction of general-purpose computing on
graphics processing units (GPGPU), GPUs have quickly be-
come the backbone of the modern high performance com-
puting systems. For instance, China’s Tianhe-1A that ranked
number one on the November 2010 TOP500 list [27] uses
7,168 NVIDIA Tesla M2050 GPGPUs to achieve 2.57 Pflop/s
in the High-Performance LINPACK (HPL) benchmark. While
GPUs provide extremely high floating-point processing power,
once combined with conventional multi-core CPUs into hybrid
systems, performance is further increased for scientific appli-
cations [3] by executing the tasks with less parallelism on
CPUs, concurrently with tasks that have high parallelism on
the GPUs.

As the deployment of the GPGPUs grows rapidly, fault
tolerance that has traditionally been relegated to only CPU-
based computing systems [32], [16] started to emerge on
GPU-based platforms. Traditionally, fault tolerance has been
ignored in systems utilizing GPUs because they were origi-
nally developed mainly for graphics applications, such as 3D
games which favor performance over reliability with bit-wise
accuracy. As a result, transient errors, such as soft errors in
the form of bit flips caused by cosmic radiation [19], may

be tolerated in a vast majority of rendering situations. As
technology brings the GPUs into the scientific computing
arena, soft errors during computing are no longer tolerable
since bit flips affect the result of floating point operation,
and, to worsen the situation, in hybrid systems soft errors
could propagate between the CPUs and the GPUs corrupting
large matrix areas with errors in the factorizations result.
Unlike fail-stop failure which brings down the whole system
and halts the application execution, soft errors occur silently
and cause a “silent data corruption”. These errors leave no
trace in system logs, and the consequences include incorrect
application results, unpredictable code paths taken as a result
of errors, and propagation of the initial failure which, all
together, waste valuable computing time and resources and
make the error detection and recovery a very daunting task.

Since the introduction of NVIDIA’s Fermi architecture [28],
Error Correcting Code (ECC) has been integrated to protect
from soft errors in the global memory of GPUs. While ECC
adds overhead to communication I/O and reduces overall
computing performance especially for the memory-bound op-
erations, soft errors could still affect other parts of the system
such as the caches and arithmetic logic circuits on GPUs. In
addition, the CPU host remains as target of soft error as well.

In this work, we set out to provide fault tolerance through
soft error resilience to the algorithms featured in our Matrix
Algebra on the GPU and Multicore Architect (MAGMA)
project [36]. As a demonstration, a single-GPU hybrid QR
factorization is chosen to evaluate the capability and perfor-
mance of the soft error detection and recovery algorithm.
Future work will extend the algorithm presented here to
multiple-GPU platforms. The rest of this paper is organized
as follows: Section II gives a list of the related work items in
the field of soft error protection on the GPGPU platforms.
Section III introduces the target QR factorization and its
implementation in MAGMA. Section IV models soft error
in the QR factorization, and Section V details the recovery
algorithm including the optimization of primitives for Givens
rotations on the GPU. Section VI proposes a scalable double-
error protection algorithm for the left factor Q by tracing the
MAGMA QR. Section VII shows experimental results that
evaluate various aspects of our fault tolerant algorithm and,
finally, Section VIII concludes the work and outlines possible



future directions.

II. RELATED WORK

For parallel applications, checkpoint-restart (C/R) has been
the most commonly used method for fault tolerance [1], where
the running state of the application is dumped to reliable
storage at certain intervals, either by the message passing
middleware automatically or at an explicit request of the user
application. C/R requires the least user intervention, but suffers
from high checkpointing overhead when writing data to the
stable storage.

To reduce overhead, diskless checkpointing [30] is proposed
to replace disk storage with system memory for checksum
storage. Both C/R and diskless checkpointing need the error
information for recovery. Unfortunately, no such information
is available for soft errors. In order to detect errors with-
out frequent checks, algorithm based fault tolerance (ABFT)
was proposed to remove periodical checkpointing and only
perform error checks when the execution being protected is
finished [20], [2]. This eliminates checkpointing overhead, and
the checksums during computing could reflect the most current
status of the data which harbors clues for soft error detection
and recovery. ABFT was originally introduced to deal with
silent errors in systolic arrays. Matrix data was encoded once
before the computation began. Matrix algorithms are carried
out along with the encoded checksum in addition to the
original matrix data, and the correctness is checked after the
matrix operation completes.

ABFT for matrix factorization was explored in the 1980s
for a single soft error [22], [23]. It was later extended to
multiple errors [29], [15], [5] by adopting methodology from
error correcting codes. These methods for systolic arrays offer
promising direction, but require modification in both algorithm
and implementation, especially when dealing with hybrid sys-
tems and applications with GPGPUs, where soft errors could
occur on either the host (the CPU and the main memory) or on
the GPU. Soft errors on the GPU have been exploited [18], and
methods have been developed to detect [34], [37] and recover
from such errors [33], [25], [24]. Recently, soft errors in matrix
multiplication on a GPUs have also been studied [11].

In the realm of fault tolerant QR, Givens rotations based
QR factorization has been studied [26]. However, since House-
holder QR is widely used in most modern math libraries, in
our work we consider a right-looking Householder based QR
factorization for a hybrid CPU/GPU system. Our method is
based on the error model by Luk et al. [23]. We extended
this model by adding protection to the left factor Q. We also
provide an optimized recovery algorithm on the GPU.

III. HYBRID QR

In dense linear algebra, the QR factorization decomposes a
matrix A into a product A = QR, where Q is an orthogonal
matrix and R is an upper triangular matrix. QR factorization
is often used to solve the linear least squares problem, and is
also a central component of the QR iteration method for an
eigenvalue problem algorithm.

Several methods exist for computing the QR factorization,
such as the Gram-Schmidt process, Householder transforma-
tions, and Givens rotations. In today’s high performance math
libraries, for instance, LAPACK [4], ScaLAPACK [9], and
MAGMA, Householder transformations are used to achieve
high performance by optimizing the use of the memory
hierarchy in modern systems. Given an input matrix A, a
Householder matrix Q1 is used to multiply A:

Q1A =


r11 r12 · · ·r1n
0
... A′

0


This operation annihilates the elements below the diagonal in
the first column. The next step is carried out on the trailing
matrix A′ by a new Householder matrix:

Q2
′ =


1 0 · · · 0
0
... Q2
0


MAGMA uses a block version of the QR factorization by
accumulating a few steps of the Householder annihilations.
This method is rich in Level 3 BLAS operations and therefore
can achieve high performance. Q is stored below the lower
diagonal of the input matrix in the form of the WY represen-
tation of Householder transformation products [31], [8].

Implementation-wise, the algorithm used by MAGMA is
close to the LAPACK QR, except the MAGMA QR is designed
and optimized for heterogeneous architectures that consist of
a CPU and a GPU. The hybrid QR that we consider, has the
input matrix and the result in the GPU’s global memory. The
computational pattern is similar to the LAPACK’s QR – a
sequence of a panel factorization followed by a corresponding
trailing matrix update. The current panel to be factored is
sent to the CPU and factored using LAPACK. The result is
copied back to the GPU memory and used on the GPU for the
trailing matrix update. The update is split into two – first is
an update for the columns that will form the “next” panel,
followed by the update for the rest of the trailing matrix.
This splitting, known as the lookahead technique, is done
so that the factorization of the next panel can start before
finishing the entire update for which the next panel is part
of. This allows overlapping the large update of the trailing
matrix and sending the panel to the CPU, its factorization and
copy back to the GPU. As a result, for large enough matrices,
the overall performance of the algorithm is dictated by the
performance of the matrix-matrix multiplications on the GPU.
Note that communication is minimized (and overlapped with
computation) as on each step the algorithm communicates
a panel of size O(NB×N) and performs operations of size
O(NB×N2). For further detail on the implementation, one
can see the sources available through the MAGMA site.



IV. SOFT ERROR MODELING

MAGMA QR runs with both the GPU and CPU, therefore
soft errors on both platforms are considered as a source of
contamination. Also, since the result of panel factorization
and trailing panel of lookahead commute between the CPU
and GPU frequently, soft errors could propagate between the
GPU and CPU at any step of the factorization, making error
detection a challenging task. To simplify the error analysis
and avoid the issue of timing of errors, we adopt an error
modeling technique [23]. With this model, the soft error in
the right factor can be located by the column of its occurance,
and in later section, the correct result of Q and R is rebuilt
based on the column number.

A. Error Model

Luk et al. [23] derived a model for both LU and QR using
the “ZU” notation where Z represents the left factor and U
represents the upper triangular right factor. We return to the
“QR” notation for clarity.

Having the initial matrix, A0 = A, the Householder QR is
carried out by introducing Householder transforms from the
left to get the final triangular form. Let At = Qt−1At−1, where
Qt−1 is the Householder transform matrix at step t−1. At step
t−1, error occurs at random location (i, j) in matrix A as

Ãt = Qt−1At−1−λeieT
j (1)

= Qt−1(Qt−2 . . .Q0)A0−λeieT
j

ei,e j are column vectors with all 0 elements except 1 as the ith
and jth row, respectively. And λ is the magnitude of the soft
error. The factorization continues in spite of the occurrence of
a soft error from step t till the end. View the soft error at step
t as the result of perturbation to an erroneous initial matrix:

Ã = A−deT
j (2)

where d = λ (Qt−1 . . .Q0)
−1ei, then the erroneous process of

QR factorization equals to an error-free QR factorization from
an erroneous initial matrix Ã. This model is similar to the
round-off error analysis in perturbation theory [10].

B. Checksum for R

In MAGMA, the right-looking Householder QR follows
LAPACK QR storage, where the right factor R overwrites
the upper triangular part of the input matrix, including the
diagonals, while the lower triangular part is replaced by Q in
the form of vectors that defines elementary reflectors.

During QR factorization, once a panel of Q is produced,
its values do not change till the end. It has been shown that
Q cannot be protected by appending rows of checksum at the
bottom of the input matrix and having QR factorization along
with the checksum rows [13]. Since most of the run time of
QR factorization is spent in the trailing matrix update, we
assume no errors during the process of panel factorization.
And we propose to protect the result of panel factorization
with diskless checkpointing.

The part of the matrix other than Q is divided into two
regions, the already formed R and the trailing matrix A′,

A

R

Q

Fig. 1. Different regions of A during factorization

as shown in Figure 1. Each iteration of the trailing update
moves a few rows from A′ to R, and therefore both A′ and R
undergo constant changes during the factorization, and cannot
be protected by diskless checkpointing without causing large
overhead. For R, we adopt the ABFT technique from [2],
[21], which was also used in Luk’s work [22], [23] to fight
soft error in systolic arrays.

To capture one error, for input matrix A ∈ R m×n, two
generator matrices are used, e = (1,1, . . . ,1)T and a random
column vector w. e,w ∈ R m×1.

Before factorization, two columns of checksum (Ae Aw)
are generated and appended on the right of the input matrix
as Ac = (A Ae Aw). Then QR factorization is applied to Ac:

(A Ae Aw) = Q(R c v) (3)

c,v ∈ R m×1 are checksum columns after factorization. Use
the error model in (2), the factorization of A with soft error is
treated as a soft-error-free QR factorization from Ã:

(Ã Ae Aw) = Q̃(R̃ c̃ ṽ) (4)

Therefore,

c̃ = Q̃−1Ae = Q̃−1(Ã+deT
j )e

= Q̃−1(Q̃R̃+deT
j )e

= R̃e+ Q̃−1deT
j e = R̃e+ Q̃−1d

By the same token,

ṽ = R̃w+w jQ̃−1d

Hence, {
r̃ = c̃− R̃e = Q̃−1d

s̃ = ṽ− R̃w = w jQ̃−1d
(5)

Here r,s ∈ R m×1 are residual vectors. Compare the equation
of r̃ and s̃, we have:

s̃ = w j r̃. (6)

w j is the jth element in the generator vector w, and j is the
column where the soft error firstly strikes. In practice, r̃ is
computed first to check for the occurrence of soft error. If
error is detected, (6) is then used to locate the error column.
This process applies to soft error in R and A′.



V. RECOVERY ALGORITHM

With the knowledge of error column j, Luk et al. [23]
suggested a few possible methods to recover the left and right
factors without details and implementation. In this section we
complete this work with an algorithm based on QR update to
accommodate the storage format of MAGMA QR.

A. Spike-Eliminating Technique

Using the QR notation, the spike reducing technique in [23]
starts with the difference of the true initial matrix A and the
erroneous initial matrix Ã, obtained in (2).

A− Ã = (a· j− Q̃R̃· j)eT
j

A = Q̃R̃+(a· j− Q̃R̃· j)eT
j = Q̃R̃+ Q̃(Q̃T a· j− R̃· j)eT

j

A = Q̃(R̃+ peT
j )

A = Q̃C̃, C = R̃+ peT
j , p = Q̃T a· j− R̃· j (7)

C in (7) is an upper triangular matrix with a spike in column
j. Since QR requires Q to be an orthogonal matrix, orthogonal
transformations are needed to remove non-zeros in the spike.

There are a few choices of algorithm such as House-
holder transformation and Givens rotation. Householder is
more computing intensive and has higher parallelism which
is more suitable for the GPU, but it also requires higher
amount of extra memory because, while the first Householder
transformation removes the spike in column j, the triangular
submatrix ( j+1 : end, j+1 : end) becomes a full matrix, and
if j is small, this requires an extra buffer almost as large as the
data matrix A and since in MAGMA QR the lower triangular
is used to store Q, data matrix space cannot be borrowed.
Given that the global memory on the GPU is normally used
to the limit for matrix data, Householder transformation does
not qualify for this high memory demand and therefore we
choose Givens rotation as the spike elimination algorithm.
Since Givens rotation is memory-bound, implementation on
the GPU requires careful design for the best performance. This
will be covered in section V-C.

B. QR Update as the Recovery Algorithm

In (2), obtaining the QR factorization of A from Ã clearly
marks it as a QR update problem. QR update is also widely
used in applications where repeated updating is required [35],
and at the time of this work the available Given rotations im-
plementation for GPU is still primitive and lacks optimization,
therefore we devised a general optimization method for the
QR update algorithm on GPU and applied to the soft error
recovery problem at hand.

The rank-1 update to QR factorization has been described
in [17]. We show the algorithm in the context of QR recovery.

Given the erroneous initial matrix and its QR factorization
Ã = Q̃R̃, the objective is to find the QR factorization of the
true initial matrix A = QR. Let u = a· j− Q̃R̃· j, and v = e j,

A = Ã+uvT

= Q̃R̃+uvT = Q̃(R̃+ Q̃T uvT )

∴ A = Q̃(R̃+wvT ), w = Q̃T u = Q̃T a· j− R̃· j

First, a series of Givens rotations JT = JT
1 · · ·JT

n−1 is used
such that JT × w = ±‖w‖2 e1. The sequence 1, · · · ,n − 1
applied from left to w means the elimination is from bottom
up. Since H = JT × R̃ is an upper Hessenberg matrix,

JT × (R̃+wvT ) = H±‖w‖2 e1vT = Ĥ

is also upper Hessenberg.
To get R from Ĥ, another series of Givens rotations GT =

GT
n−1 · · ·GT

1 is used such that GT × Ĥ = R. The sequence n−
1, · · · ,1 means the elimination is from top down.

Combining J and G,

Q = Q̃JG = Q̃(Jn−1 · · ·J1)(G1 · · ·Gn−1)

Algorithm 1 describes the above recovery procedure.

Algorithm 1 QR Recovery Algorithm based on QR-update

Require: Ã, Q̃, and R̃
Obtain a· j and R̃· j
Calculate w = Q̃T u = Q̃T a· j− R̃· j
Zero out w using Givens Rotations as k1 = JT × w =
±‖w‖2 e1
Apply JT to R̃ as k2 = JT R̃, and store the subdiagonals of
k2 into extra storage Y
Perform Ĥ = k2 + k1eT

j
Zero out subdiagonals of Ĥ by Givens rotations GT ×Ĥ =R

Along with Algorithm 1, there are some implementation
details worth noticing. First, the column j of the original
matrix A is required for recovery. For scientific applications
that expect soft error with high probability, a mechanism to
recover some part of the original matrix is required. Some
applications can generate any column of A easily, others need
to store the whole matrix A. In our implementation, at the
beginning of QR factorization, matrix A on the GPU memory
is asynchronously copied to the CPU memory during the first
panel factorization for this purpose.

Second, recovery can be performed using the GPU in-situ or
on the CPU host with two data transfers, one to load data from
the GPU to the CPU and one to store result back. This solution
is easier in implementation since LAPACK is equipped with
Givens rotation utilities like DLARTG and DLASR, but it
suffers from performance impact of data transfer and much
lower parallelism of the CPU compared to the GPU. Therefore,
we choose to perform the QR recovery on the GPU in place
with the matrix data. Since R can only overwrite the upper
triangular of A, subdiagonals of k2 and Ĥ are kept in a separate
1D buffer Y .

C. Givens Rotation Utilities for the GPU

Givens rotation is at the center of the recovery procedure.
Two operations involved are DROTG and DLASR in the
LAPACK term. While these operations are readily available
for the CPU, on the GPU they pose a significant challenge to
be implemented with good performance. We first discuss the
two major challenges and then provide our solution.
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Fig. 2. Reduction from upper Hessenberg to upper triangular

1) Memory Access Pattern: DROTG generates a plane
rotation such that [

c s
−s c

][
f
g

]
=

[
r
0

]
In this work we use an improved version of DROTG called
DLARTG, which is more numerically reliable [7].

DLASR applies a set of plane rotations to a matrix in a
certain order, for example one set of plane rotation is applied
to a 2×N matrix,[

c s
−s c

][
x11 · · · x1N
x21 · · · x2N

]
=

[
y11 · · · y1N
y21 · · · y2N

]
(8)

The FLOP count is 12N and the memory operation is 4N+4,
making it a memory-bound operation. While each column
of the right hand side

[
y1 j, y2 j

]T can be fully parallelized,
without data reuse, on the GPU the performance of DLASR
is still limited by the memory bandwidth between the GPU
global memory and the registers. To worsen the situation,
since MAGMA QR uses column-major storage, if each thread
calculated one column of the right hand side, the fetching of
[xi1, · · · ,xiN ] and [yi1, · · · ,yiN ], i = 1,2 by each thread does not
fit the condition of global memory coalescing on the GPU,
and each column has to be accessed one at a time.

2) Data Caching: In Algorithm 1, DLARTG and DROTG
are used together to firstly create the upper Hessenberg matrix
H, and then reduce it to upper triangular. Common in the fused
operation are the following Two operation steps:

1) Generate a plane rotation
[

c s
−s c

]
using DLARTG for

a vector
[

x1
y1

]
2) Apply

[
c s
−s c

]
to a 2×N matrix as in (8), as in DLASR

Both of these steps are carried out on the GPU. These two
steps are consecutive. Figure 2 is an example in the last step
of Algorithm 1. The plus signs on the subdiagonal are those
elements to be zeroed out, and the red plus signs are the values
being eliminated in the current step. Green and red are the
elements that participate in the current step. This operation
sweeps from top to bottom until an upper triangular matrix is
produced.

Take the first two steps for example, the second row of the
matrix is updated by the DLASR in the first step and then

+
+

+
+

+

DLARTG+DLASR DLASR

Fig. 3. Reduction from upper Hessenberg to upper triangular (block
algorithm)

used as input for the second step. To reduce global memory
access that is far more expensive than that of registers and
shared memory on the GPU, this row should be cached for
the next step rather than read from global memory after being
just written there. We use one thread to handle each column
of H, and given the size of H, more than one thread blocks is
needed for each step. In addition, one thread blocks (one thread
per se) performs the DLRTG before all the DLARTG thread
blocks could start, hence a synchronization is needed to hold
DLASR threads while waiting for the one thread that does
DLARTG to finish. To achieve the aforementioned caching
using registers, both DLARTG and DLASR functionalities
need to reside in one GPU kernel, otherwise the DLASR kernel
calls are separated from each other by DLARTG kernel calls,
and caching can only be done through shared memory, which
is less efficient. The dilemma here is that CUDA offers no
lightweight mechanism to synchronize all thread blocks from
within threads. Available synchronization mechanisms include
global synchronization initiated by host, and synchronization
of all threads within a thread block. The atomic operation
provides some possibilities but threads that participate in an
atomic operation through a variable in global memory are
serialized, and therefore suffers a large performance penalty.

3) Algorithm for fused DLARTG and DLASR operation:
For dense linear algebra, blocked algorithms have been widely
used to achieve high performance on modern computer sys-
tems with complex cache hierarchy [12]. To bridge the require-
ment of caching intermediate rows to reduce global memory
access and the difficulty of no lightweight synchronization
from within threads, we devised the following algorithm for
the fused DLARTG and DLASR operation by having each
step work with a block of data rather than only two rows.

Two types of kernels are designed. The first kernel generates
a set of plane rotations and use these rotations to reduce an
NB×NB upper Hessenberg submatrix on the diagonal to upper
triangular. NB is selected as the maximum number of threads
per thread block allowed by the GPU except for edge cases.
In our experiment, with a Tesla T20 (’Fermi’), NB = 1024.

The second kernel applies this set of plane rotations to
all the data on the right of the diagonal NB×NB. Global
synchronization on the host is used between these two kernels.
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This algorithm moves down along the diagonal with a step size
of NB until an upper triangular matrix is produced. Figure 3
is an example of this algorithm with NB = 5. During each
iteration, only one thread block is spawned for the first type
of kernel and as many thread blocks as needed are spawned
for the second kernel.

Within the first kernel, steps proceed as in the unblocked
version of fused DLARTG and DLASR. Intermediate rows
that are produced by step i− 1 and will be used in step i
are cached in registers to avoid loading from global mem-
ory. Thread-block level synchronization is used to separate
DLARTG and DLASR. Within the second kernel, steps pro-
ceed from the top down, one row each step. Similarly, inter-
mediate rows are cached in registers. The plane rotations are
stored in two vectors, respectively, in global memory to pass
between the two kernels. In the second kernel, the fetching of
current plane rotation pair c and s that is on the critical path
of execution is moved to the beginning of kernel execution
where NB threads are used to fetch NB plane rotation pairs in
a coalesced fashion.

4) Improvement Experiment: Figure 4 is an experiment
result of the run time for the reduction of H from upper
Hessenberg to upper triangular. The matrix size derives from
actual recovery experiment in section VII where the impact
of the new reduction algorithm on recovery performance is
shown in Figure 6. By using a more efficient memory access
pattern and the blocked algorithm, 5x speedup is achieved in
the fused DLARTG and DLASR operation.

VI. PROTECTION FOR Q

This section describes the protection to the left factor Q.
Other than the importance of obtaining the correct factor-
ization result, recall that the spike-eliminating algorithm in
Algorithm 1 also functions under the assumption that no soft
error strikes Q̃, which is the erroneous Q caused ONLY by
soft error in R or A′. In MAGMA QR, since Q occupies half
of the matrix, it is as susceptible to soft error as other section
of the matrix and therefore need to be protected.

A. Checkpointing for Q

In order to provide soft error resilience to Q, we propose to
use diskless checkpointing because once a panel is factorized
on the CPU, the result is not subject to any further change.

For any column of the factorized panel v, the objective of
the checkpointing scheme is to allow recovery from errors that
occur to random items in the column. It has been shown in [14]
that one soft error in a column of L in LU can be protected
with trivial overhead. Here we implement a double soft error
correction checkpointing for Q.

Suppose v= [v1,v2, · · · ,vk]
T , the vertical checkpointing pro-

duces the following three checksums: v1 + v2 + · · ·+ vk = c1
w1v1 +w2v2 + · · ·+wkvk = c2
u1v1 +u2v2 + · · ·+ukvk = c3

(9)

Let ui = w2
i , i = 1 · · ·k, (9) yields the check equation:

(c̃3− c3)− (wi +w j)(c̃2− c2)+wiw j(c̃1− c1) = 0 (10)

wi, w j can be determined by iterating through all possible
combinations. The complexity is O(n2) because, assuming i <
j, for each i, up to n− i pairs of wi w j are tested in (10) until
a pair is found that fits the check equation. With wi and w j,
the errors at row i and j of v can be corrected.

B. Timing of Checkpointing

In order to protect Q at the earliest time, checkpointing
for Q is performed right after every panel factorization. Since
panel factorization is on the critical path of execution, it is
important to place the checkpointing at a time which does not
cause serious performance degradation.

As described in section III, MAGMA QR produces Q using
the CPU implementation DGEQRF and during step i, an
Ni×NB block of the trailing matrix is sent from the GPU
to the CPU memory to be factorized by DGEQRF. Then the
triangular factor T of a real block reflector H is constructed
by DLARFT on the CPU and both the panel factorization and
T are sent to the GPU to update the trailing matrix using
a GPU version DLARFB. This process is illustrated by the
trace of an actual MAGMA QR run on a 48-core CPU +
NVIDIA T20 GPU machine shown in Figure 5 generated by
TAU (Tuning and Analysis Utilities) [6]. The size of this run
is 17408×17408, and only the first few iterations are shown.

The best way to avoid excessive performance penalty is
to hide the checkpointing into a time slot when one of CPU
and GPU waits for another to finish and therefore exposes a
block of idle time. Even though the DLARFB on the GPU
takes a long time to finish, by using lookahead it keeps the
CPU busy most of the time, leaving very little room for extra
operation. Closely examining the tracing, we notice that the
yellow section that represents cublasSetMatrix(), which sends
panel factorization result from the CPU to the GPU, actually
takes longer than the actual communication, and the reason is
that cublasSetMatrix() is a blocking call on the GPU and it
does not start the data transfer until all activities on the GPU
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Fig. 5. MAGMA QR tracing

started previously are finished. From Figure 5, clearly cublas-
SetMatrix() is always called on the CPU during the trailing
matrix update (DLARFB) on the GPU and this accordingly
not only blocks both the data transferring to the GPU, but
also puts the CPU in a busy wait and therefore cannot perform
other tasks. This does not affect the performance of MAGMA
QR since MAGMA QR uses 1-depth lookahead and the next
trailing matrix update cannot start anyway without the previous
one finished.

To release the CPU from the busy wait, cublasSetMatrix()
is replaced with an asynchronous data transferring function
cudaMemcpy2DAsync(). This function initiates the data trans-
ferring and returns control immediately to the CPU. The time
gap between this initiation time and when the GPU DLARFB
is finished is large enough to hide the checkpointing Q from
the critical path. As the trailing matrix becomes smaller,
there is a certain threshold of time when the GPU DLARFB
finishes before the initiation of cublasSetMatrix(), and this
could expose the checkpointing and cause performance impact,
but this only accounts for a small portion of the execution.
Such a situation can be further improved by moving the
checkpointing to the GPU between the time GPU DLARFB
finishes and the initiation of cublasSetMatrix on the CPU.

VII. PERFORMANCE EVALUATION

In this section we evaluate the performance of the fault
tolerant QR algorithm on two hybrid systems. CUDA 4.0 is
used in both experiments with MAGMA 1.0.

The first system is equipped with NVIDIA C2050 with a
48-core AMD Opteron CPU (48 threads for MKL). Figure 6 is
the performance of recovery from error initially in R or A′. For
all matrix sizes, error is injected to a randomly picked data
at (7681,7682) in A′ on the GPU right before the 31st step
of panel factorization. The purple line is the performance of
FT-QR with checkpointing Q and no error. Two recovery per-
formances are shown. The green line is the plain (unoptimized)
implementation of Givens rotation utilities on the GPU. This
implementation is limited by the GPU global memory access
speed without the help of coalescing and shared memory.
The red line is the optimized recovery performance where a
blocked and fused DLARTG and DLASR with better memory
access mechanism is in place. At the largest problem size

available to this GPU, the optimization improves 5% of the
recovery performance. The recovery from one soft error in
A′, using the optimized algorithm, reduces 15% of the overall
performance of the MAGMA QR.

The NVIDIA C2050 has relative small on-chip global
memory which limits the size of matrix in the first experiment.
The second testing platform is the Keeneland Initial Delivery
system which features a cluster of NVIDIA M2070 with 6GB
memory, and each host runs two Intel Westmere hex-core
CPUs. Figure 7 is the performance of both the original and soft
error resilient MAGMA QR on a single node of Keeneland.
Error recovery experiments use the same setup as in the test
on C2050, and as a comparison, MKL QR performance is
also shown running with 12 threads on a single node. The
extended matrix size range shows consistent overhead to the
result on C2050, verifying that with the small overhead of
fault resilience functionalities, the hybrid QR still outperforms
multi-threaded QR on the multicore CPUs by almost 100%,
and errors can be recovered with little performance impact.

VIII. CONCLUSION

In this work we developed a soft error resilient QR algo-
rithm for hybrid architecture equipped with CPU and GPU.
Based on the MAGMA’s QR implementation, our FT-QR
algorithm can recover Q and R from soft errors that occur
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during any step of the QR factorization in the whole matrix.
In order to increase the performance of recovery, an optimized
Givens rotation for GPU is designed. Experimental result
shows that our fault tolerance functionalities impose small
performance impact to the MAGMA QR. As future work, the
proposed algorithm will be extended in general to dense linear
factorizations like Cholesky, LU and QR on more complicated
heterogeneous architectures such as multiple-GPU cluster.
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