
An Improved MAGMA GEMM for Fermi GPUs

Rajib Nath1, Stanimire Tomov1, and Jack Dongarra1,2,3

1 University of Tennessee (USA)
2 Oak Ridge National Laboratory (USA)

3 University of Manchester (UK)

July 20, 2010

Abstract. We present an improved matrix-matrix multiplication rou-
tine (GEMM) in the MAGMA BLAS library that targets the Fermi
GPUs. We show how to modify the previous MAGMA GEMM kernels in
order to make a more efficient use of the Fermi’s new architectural fea-
tures, most notably their extended memory hierarchy and sizes. The im-
proved kernels run at up to 300 GFlop/s in double and up to 600 GFlop/s
in single precision arithmetic (on a C2050), which is 58% of the theoret-
ical peak. We compare the improved kernels with the currently available
in CUBLAS 3.1. Further, we show the effect of the new kernels on higher
level dense linear algebra (DLA) routines such as the one-sided matrix
factorizations, and compare their performances with corresponding, cur-
rently available routines running on homogeneous multicore systems. A
general conclusion is that DLA has become a better fit for the new GPU
architectures, to the point where DLA can run more efficiently on GPUs
than on current, high-end homogeneous multicore-based systems.

1 Introduction

GEMM is a fundamental linear algebra routine. Many numerical algorithms can
be expressed in terms of GEMM, or at least designed to partially use GEMM.
Numerous examples from the area of DLA can be seen in the LAPACK library
[3]. The technique to achieve that in DLA is based on delayed updates – the
application of basic linear transformations, e.g., expressed in terms of matrix-
vector multiplications, are delayed and accumulated so that they are applied
later at once, e.g., as a matrix-matrix multiplication.

The importance of having algorithms rich in GEMM is because the com-
putational intensity of GEMMs can be increased by increasing the sizes of the
matrices involved, which in turn is crucial for the performance on modern ar-
chitectures with memory hierarchy. Major hardware vendors such as Intel, IBM,
AMD, and NVIDIA maintain their own highly optimized GEMM routines, e.g.,
included into their BLAS implementation libraries – MKL [15], ESSL [14], ACML
[11], and CUBLAS [12] correspondingly. Non-vendor optimized implementations
for various architectures are also available, e.g., ATLAS [16] and GotoBLAS [13].

In the area of GPU computing, “high” performance GEMM implementa-
tions were not possible in the “early” GPUs [4]. The reason is that they did

2

not have memory hierarchy and therefore, the GEMM’s performance peak was
memory bound. With the introduction of memory hierarchy, e.g., the shared
memory in the NVIDIA CUDA GPU architectures [1], this has changed. Algo-
rithms that would reuse data brought into the shared memory were developed
to achieve high, compute bound performance [10]. The performance of these
algorithms relied on a number of very well selected parameters and optimiza-
tions [17]. Subsequent work in the area managed to “automate” the selection
of these parameters and optimizations used, to quickly find the best performing
implementations for particular cases of GEMM [5, 6].

The Fermi architecture introduced new features to CUDA [7]. Although old
code would run on the Fermi architecture and would often be somehow faster,
further optimizations, exploring the new features, could significantly accelerate
it. We show that this is the case with the previous state-of-the-art GEMM im-
plementations. Moreover, we have found that even the auto-tuning frameworks
can not find the new “optimal” implementations, simply because their search
space did not consider the newly introduced features.

Section 2 is an overview of the GEMM for the previous generation GPUs.
Section 3 gives the main contribution of this paper – an improved GEMM for the
Fermi architecture. Section 4 shows the effect of the improved kernels on higher
level dense linear algebra (DLA) routines such as the one-sided matrix factor-
izations from the MAGMA library [9], and compares their performances with
corresponding, currently available routines running on homogeneous multicore
systems. Finally, Section 5 is on conclusions and future work.

2 GEMM for GTX280

This section gives an overview of the GEMM targeting the old generation of
GPUs, e.g., the GTX280 GPU. We consider a GEMM algorithm [10], parametrized
to facilitate auto-tuning [5, 6] for the case C := αAB + βC. The computation is
done on a two-dimensional grid of thread blocks (TBs) of size NTBX ×NTBY .
Each TB is assigned to NT := NTX ×NTY threads.

For simplicity, take NT := NTBX . Then, each thread is coded to compute a
row of the sub-matrix of C. To do that, it accesses the corresponding row of A (as
indicated by an arrow in Figure 1), and uses the K×NTBY sub-matrix of B for
computing the final result. The TB computation is blocked, which is crucial for
obtaining high performance. In particular, sub-matrices of B of size nb×NTBY

are loaded into shared memory and multiplied nb times by the corresponding
NTBX × 1 sub-matrices of A. The NTBX × 1 elements are loaded and kept in
registers while multiplying them with the nb × NTBY part of B. The result is
accumulated to the resulting NTBX ×NTBY sub-matrix of C, which is kept in
registers throughout the TB computation. All memory accesses are coalesced.

Kernels for various NTBX , NTBY , NTX , NTY , and nb are automatically gen-
erated in MAGMA BLAS to select the best performing for a particular archi-
tecture and for particular GEMM parameters [6]. The theoretical peak of the

3

Fig. 1. The GPU GEMM (C := αAB + βC) of a single TB for GTX280.

GTX280 is 936 GFlop/s in single precision (240 cores × 1.30 GHz × 3 instruc-
tions per cycle). The kernel described achieves up to 40% of that peak.

3 GEMM for Fermi

Many of the architectural changes in Fermi are related to scaling up the com-
pute capabilities of the 1.x generation of GPUs [8], e.g., increased shared mem-
ory, number of registers, number of CUDA cores in a multiprocessor, etc. The
algorithm from Section 2, designed for GPUs of compute capability 1.x, can
be automatically adjusted to account for those changes in the Fermi GPUs.
In addition, there are other changes that must be exploited (for performance)
which unfortunately, is impossible to accomplish by simply auto-tuning the old
algorithm. For example, these are the changes that are related to added cache
memories, and most importantly, that the latency to access register and shared
memory were comparable in 1.x GPUs, but not in the Fermi (where accessing
data from registers is much faster). This motivates to add one more level of
blocking in the algorithm, namely register blocking, to account for the added
memory hierarchy. A way to do it is to have blocks of both matrices A and B
first loaded into shared memory, and second, additionally block the computa-
tion with the matrices in shared memory by loading parts of them in registers to
get reuse of the data in registers (vs to reuse only data in the shared memory).
Details on this new algorithm are given as follows.

The algorithmic view of the improved GEMM for Fermi is shown in Figure 2.
Similarly to the old GEMM, the computation is divided into two-dimensional
grid of TBs of size NTBX ×NTBY . Each TB is assigned to NT = NTX ×NTY

threads. As mentioned above, sub-matrices of both A and B are loaded in shared
memory. We take NTBX = NTBY = 64 and NTX = NTY = 16. With

4

Fig. 2. The GPU GEMM (C := αAB + βC) of a single TB for Fermi.

these parameter values, 16 × 16 threads will be computing 64× 64 elements of
matrix C. Hence each thread will be computing 16 elements. The 64 × 64 block
of matrix C is divided into 16 sub-blocks of dimension 16 × 16 as illustrated in
Figure 2. Each of the 16 × 16 sub-blocks is computed by 16 × 16 threads, i.e.,
one element is computed by one thread. More precisely, element (x, y) which is
represented by a green diamond is computed by thread (x, y), represented by
a black diamond, where 0 ≤ x, y ≤ 15. All of the 16 elements computed by
thread (0, 0) are shown by blue diamonds in the figure. In summary, each thread
will be computing a 4 × 4 matrix with stride 16. This distribution allows us to
do coalesced writes of the final results from registers to the matrix C in global
memory. Other distributions may not facilitate coalescent writes.

At each iteration of the shared memory blocking, all threads inside a TB load
64×16 elements of A and 16×64 elements of B to shared memory in a coalesced
way. Depending upon Op(A) and Op(B), the 256 threads in the TB take one of
the following shapes: 16 × 16 or 64 × 4. This reshaping helps coalesced memory
access from global memory. The elements from matrices A and B, needed by
thread (0, 0), are shown by arrows. First, four elements from A (taken from
the shared memory, shown by gray triangle) and four elements from B (again
from the shared memory, shown by black rectangle) are loaded into registers.
Then these 8 elements are used in 16 FMAD operations. To get a further small
performance increase, all the accesses for matrices A and B are done through

5

0

50

100

150

200

250

300

350

0 1024 2048 3072 4096 5120

(
%
)

Matrix size

magma-0.3
cublas-3.1

(a) C := αAB + βC

0

50

100

150

200

250

300

350

0 1024 2048 3072 4096 5120

(
%
)

Matrix size

magma-0.3
cublas-3.1

(b) C := αABT + βC

0

50

100

150

200

250

300

350

0 1024 2048 3072 4096 5120

(
%
)

Matrix size

magma-0.3
cublas-3.1

(c) C := αATB + βC

0

50

100

150

200

250

300

350

0 1024 2048 3072 4096 5120

(
%
)

Matrix size

magma-0.3
cublas-3.1

(d) C := αATBT + βC

Fig. 3. MAGMA BLAS DGEMM performance on Fermi (C2050).

texture memory. The performance of DGEMM in Fermi using this algorithm is
shown in Figure 3, along with the DGEMM performance from CUBLAS 3.1.
Note that the theoretical peak of the Fermi, in this case a C2050, is 515 GFlop/s
in double precision (448 cores × 1.15 GHz × 1 instruction per cycle). The kernel
described achieves up to 58% of that peak.

4 One-sided factorizations on Fermi

In this section we show the performance of the one-sided matrix factorizations us-
ing the new kernels. Figure 4 gives the performance of the LU, QR, and Cholesky
factorizations from the MAGMA library in double precision. The computation
is on a Fermi GPU (C2050) and uses the new DGEMM. The performance of
these algorithms is derived from the performance of DGEMM and asymptot-
ically should go to 300 GFlop/s. To put these results in the context of other
efforts, we compare our LU with that of some commercial libraries, running
correspondingly on GPUs and on x86 multicore systems.

The CULA library provides similar functionality to MAGMA. Asymptoti-
cally, e.g., for matrices of size ≈ 8, 000, the LU factorization performance, as

6

1024 2048 3072 4032 5184 6016 7040 8064
0

20

40

60

80

100

120

140

160

180

200

220

240

QR
Cholesky
LU

Matrix Size

G
F

lo
p/

s

Fig. 4. Performance of the one-sided factorizations from the MAGMA library in double
precision arithmetic on Fermi (C2050).

advertised on the CULA web-page 4, is about 137 GFlop/s in double preci-
sion. Note that MAGMA significantly outperforms CULA – on the same GPU
(C2050) and matrix size MAGMA’s performance is 224 GFlop/s. In other words,
for this case MAGMA’s LU is 65% faster on the Fermi architecture.

Figure 5 compares the performance of LU factorization in double precision
arithmetic from MAGMA on Fermi (C2050) with that of MKL 11.0, PLASMA
[2], and LAPACK on a 48 core system. The exact specifications are given in
the figure. Note that the Fermi and the multicore system have the same theo-
retical peaks. The implementations of the LU factorizations in MAGMA, MKL
and LAPACK use the same data layout and algorithm – LU with partial pivot-
ing. The algorithm in PLASMA is different – LU with pairwise-pivoting on tile
data-layout. It is interesting to note that MAGMA achieves significantly higher
percentage of the GPU’s peak than the percentage of the peak that the other
libraries achieve on the multicore system. That is, we showed a case where LU
runs more efficiently on GPUs than on current, high-end homogeneous x86-based
multicore systems. Moreover, GPUs have better power efficiency and better sys-
tem cost. As an example, the cost of the 48-core system is approximately $30, 000
and the cost of the Fermi GPU and its host is about $3, 000. These facts fur-
ther motivate the need for developing fundamental linear algebra algorithms for
GPUs.

5 Conclusions and future directions

The development of fast BLAS, and in particular GEMM, is crucial for the per-
formance of many algorithms, and therefore is of extreme interest. We presented

4 http://www.culatools.com/features/performance/

7

1024 2048 3072 4032 5184 6016 7040 8064 9088 10112
0

20

40

60

80

100

120

140

160

180

200

220

240 FERMI MAGMA
ISTANBUL:
 PLASMA
 MKL 11.0
 LAPACK

Matrix Size

G
F

lo
p

/s

FERMI:
 Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

ISTANBUL:
 AMD 8 socket 6 core (48 cores) @2.8GHz
 SP/DP peak is 1075 / 538 GFlop/s

Fig. 5. Performance of LU factorization in double precision – compared is MAGMA
on Fermi (C2050) vs MKL 11.0, PLASMA, and LAPACK on a 48 core system, having
the same peak as a single Fermi GPU (C2050).

an improved GEMM algorithm for the Fermi GPUs, that significantly outper-
forms the currently available. Moreover, this new kernel opens the possibility for
further improvements, e.g., based on auto-tuning. Also, this GEMM can be used
directly or auto-tuned for developing other GEMM-based Level 3 BLAS.

In addition, we showed the effect of using the improved kernel on the per-
formance of higher level algorithms, e.g., the one-sided factorizations. The old
algorithms directly benefited from it, as evident from the performance results.
For example, we showed MAGMA’s LU running 63% faster than the CULA im-
plementation. Compared to vendor libraries for multicore x86-based systems, the
results are similar – MAGMA’s LU on single Fermi can significantly outperform
vendors’ LU on high-end systems, such as the 48 core system in Figure 5. Further
optimizations are possible, with one directions being tuning. For example, it is
interesting to show that the performance can get up to 300 GFlop/s for smaller
matrices.

A general conclusion is that DLA has become a better fit for the evolving
GPU architectures, to the point where DLA can run more efficiently on GPUs
than on current, high-end homogeneous multicore-based systems. This progress
has been partially enabled by the added memory hierarchy in the GPUs, which
in effect enabled the development of fast GEMM. The current implementation
gets to achieve higher fraction of the peak, namely 58%, compared to the 40%
on the previous generation of GPUs.

Acknowledgments. This work was supported by NVIDIA, Microsoft, the
U.S. National Science Foundation, and the U.S. Department of Energy. We thank
Everett Phillips and Massimiliano Fatica from NVIDIA for the useful discussions
and optimization suggestions regarding the Fermi architecture.

8

References

1. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide,
http://developer.download.nvidia.com, 2007.

2. E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Lan-
gou, H. Ltaief, P. Luszczek, and A. YarKhan, PLASMA users’ guide,
http://icl.cs.utk.edu/plasma/, 11/2009.

3. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK user’s
guide, SIAM, 1999, Third edition.

4. K. Fatahalian, J. Sugerman, and P. Hanrahan, Understanding the efficiency of
GPU algorithms for matrix-matrix multiplication, HWWS ’04: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (New
York, NY, USA), ACM, 2004, pp. 133–137.

5. Y. Li, J. Dongarra, and S. Tomov, A Note on Auto-tuning GEMM for GPUs, ICCS
’09 (Berlin, Heidelberg), Springer-Verlag, 2009, pp. 884–892.

6. R. Nath, S. Tomov, and J. Dongarra, Accelerating GPU kernels for dense linear
algebra, Proc. of VECPAR’10, Berkeley, CA, June 22-25, 2010.

7. NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,
http://www.nvidia.com/object/fermi architecture.html, 2009.

8. , NVIDIA CUDA C Programming Guide, version 3.1.1,
http://developer.nvidia.com/object/cuda 3 1 downloads.html, 7/21/2010.

9. S. Tomov, R. Nath, P. Du, and J. Dongarra, MAGMA version 0.2 Users’ Guide,
http://icl.cs.utk.edu/magma, 11/2009.

10. Vasily Volkov and James Demmel, Benchmarking GPUs to tune dense linear alge-
bra, SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing
(Piscataway, NJ, USA), IEEE Press, 2008, pp. 1–11.

11. AMD Core Math Library (ACML), www.amd.com/acml, ACML.
12. CUDA CUBLAS Library, http://developer.download.nvidia.com.
13. GoToBLAS, Texas Advanced Computing Center, http://www.tacc.utexas.edu/,

GotoBLAS.
14. IBM, Engineering and Scientific Subroutine Library (ESSL) and parallel ESSL.,

http://www-03.ibm.com/systems/p/software/essl/, ESSL.
15. Math Kernel Library (MKL), Intel(R),

http://www.intel.com/cd/software/products/asmo-na/eng.347757.htm, MKL.
16. R. Clinton Whaley, Antoine Petitet, and Jack Dongarra, Automated Empirical

Optimizations of Software and the ATLAS Project., Parallel Computing 27 (2001),
no. 1-2, 3–35.

17. M. Wolfe, Special-purpose hardware and algorithms for accelerating dense linear
algebra, http://www.hpcwire.com/features/33607434.html, HPC Wire, 10/2008.

