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Abstract

A visit to the neighborhood PC retail store provides am-
ple proof that we are in the multi-core era. The key dif-
ferentiator among manufacturers today is the number of
cores that they pack onto a single chip. The clock fre-
quency of commodity processors has reached its limit,
however, and is likely to stay below 4 GHz for years to
come. As a result, adding cores is not synonymous with
increasing computational power. To take full advan-
tage of the performance enhancements offered by the
new multicore hardware, a corresponding shift must take
place in the software infrastructure — a shift to parallel
computing.

1 Introduction

MATLAB® and Parallel Computing Toolbox™ address
the challenge of getting code to work well in a multi-
core system by enabling you to select the programming
paradigm most appropriate to your application. Us-
ing a typical numerical computing problem as an exam-
ple, this article describes how to use the three most ba-
sic of these paradigms: threads, parallel for-loops and
SPMD (Single Program Multiple Data) blocks.

2 Use Case: a Numerical Problem

To explore MATLAB'’s parallel capabilities we will use a
computationally intensive numerical problem as a case
study. Numerical experiments that help in forming a
conjecture or developing a matrix algorithm are one of
many common uses of MATLAB.

To illustrate different parallel programming
paradigms, we will use MATLAB to test a hypothesis
regarding Girko’s circular law. Girko’s law states that the
eigenvalues of a random N-by- N matrix whose elements
are drawn from a normal distribution lie inside a circle
of radius v'N [6]. Our hypothesis is that Girko’s circular
law can be modified to apply not only to eigenvalues
but also to singular values. The hypothesis is justified
because singular values are eigenvalues of a modified
matrix. Applying our modified Girko’s law could save
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Figure 1: Eigenvalues of a random matrix of size 1000
scaled by 1/4/1000. The elements of the matrix are drawn
from the normal distribution.

computation time by enabling us to estimate the sin-
gular values for any normally random matrix without
performing singular value decomposition (SVD).

This theorem can be represented with the following
MATLAB code:

N = 1000;
plot(eig(randn(N)) / sqrt(N), ".");
The code produces the visualization shown in Figure([l}

Each dot represents an eigenvalue on a complex plane.
Notice that all the eigenvalues reside inside a circle of ra-
dius 1 and are centered at the origin of the axis —a com-
pelling indication that, in accordance with Girko’s circu-
lar law, the magnitude of an eigenvalue does not exceed
the square root of the matrix size.

To apply Girko’s law to singular values, we generate
random matrices in MATLAB and then examine their sin-
gular values to see if we can formulate a hypothesis based
on numerical experiments. In particular, we want to



y = zeros(1000,1); % pre-allocate storage for 'y’
for n = 1:1000
y(n) = max(svd(randn(n)));
end
plot(y):;

Figure 2: A for-loop that generates normally distributed
random matrices and finds their singular values

Threads Time Speed-up Efficiency
1 902.6 1.00 100%
2 867.2 1.04 52%
3 842.3 1.07 35%
4 862.3 1.05 26%

Table 1: Number of threads, time to run the for-loop from
Figure[2|and the corresponding speed-up and efficiency.

compute the value of max(svd(randn(N))) for arbitrary
values of variable N and then look for a pattern in the re-
sults. We can use our theoretical knowledge of SVD to
explain the pattern. The code for our numerical experi-
ment is shown in Figure[2}

Running the for-loop on a typical desktop computer
with only one core enabled would take more than 15
minutes. To reduce computing time, we will run the loop
on a four-core machine using threads and parallel for-
loops, and then compare the performance results.

3 Implicit Parallelism: Low-Level

Threading

Threads are a common software solution for parallel pro-
gramming, on multi-core systems, but it is important to
bear in mind that multithreading and multi-core proces-
sors are not synonymous. The best performance is often
obtained when the number of threads and the number
of cores correspond, but there are circumstances when
there should be fewer threads than cores. We will experi-
ment to determine the optimal number of threads for our
computation.

We run the code, adjusting the number of threads us-
ing either the Preferences window on the MATLAB Desk-
top or the MATLAB function maxNumCompT hreads().

Table[llshows results for different thread counts: In ad-
dition to time, it also shows parallel speed-up and paral-
lel efficiency. The former is a ratio of execution time on
N cores to execution time on one core — ideally we'd like
to achieve a speedup of N on N cores. The latter is a ratio
of speed-up to the number of cores —ideally, it should be
100%.

Our computational experiment produced relatively
poor results. To explain this, we must again examine the

y = zeros(1000,1);
for n = 1:1000
z = randn(n);
y(n) = max(svd(z));
end
plot(y);

y = zeros(1000,1);
parfor n = 1:1000

z = randn(n);

y(n) = max(svd(z));
end
plot(y);

Figure 3: The for-loop on the left can be made parallel by
changing for into parfor as was done on the right.

most computationally intensive part of our for loop: the
call to the svd() function. The matrices passed to svd()
range from 1-by-1 to 1000-by-1000. On average the size
of the matrices is 500-by-500, Such small matrix sizes do
notyield sufficient performance gains on multi-core ma-
chines [17]. Clearly, a different parallelization approach
is required. The implicit parallelization scheme could be
used for larger matrices, say 5000-by-5000, which have
sufficiently large computational load to keep all the cores
busy.

Using threads did make the computation faster, but
bear in mind that in our example, only the call to the
svd() function was actually made to run in parallel. This
is because threading support in MATLAB is implicit: the
user doesn’'t determine which parts of the code should
run in parallel. Some statements are more amenable to
implicit parallelization than others — in our case, only the
call to the svd() function. None of the other statements
benefit from multi-threading because they do not have
enough computational load.

On one hand, we can speed up the calculations by us-
ing more cores and without changing the original code.
On the other, we quickly reach a point of diminishing
returns where adding cores does not appreciably reduce
execution time.

4 Explicit Parallelism: Parallel for-
loops with parfor Keyword

A parfor (parallel for) loop is useful in situations that re-
quire many loop iterations of a simple calculation, such
as a Monte Carlo simulation. To run parfor we use the
Parallel Computing Toolbox. We begin by adapting our
original code, as shown in Figure[3]

Just as maxNumCompThreads() controls the paral-
lelism of the multithreading approach, the matlabpool
command controls the parallel behavior of the parfor
syntax. matlabpool sets up a task-parallel execution en-
vironment in which parfor loops can be executed inter-
actively from the MATLAB command prompt.

The iterations of parfor loops are executed on labs. A
lab is an independent instance of MATLAB that runs in a
seperate operating system process. Commonly, labs exe-



Threads Time Speed-up Efficiency
1 870.1 1.00 100%
2 487.0 1.79 89%
3 346.2 2.51 83%
4 273.9 3.17 79%

Table 2: Number of threads, time to run the for-loop from
Figure [3| (right) and the corresponding speed-up and ef-
ficiency.

cute in headless mode, i.e., they do not have a GUI front-
end attached to them - any of their interaction with the
rest of the system happens through messages exchanged
through the operating system kernel and/or a network
interconnect. Like threads, labs are executed on proces-
sor cores, and the number of labs does not have to match
the number of cores. Unlike threads, labs do not share
memory with each other. As a result, they can run on
separate computers connected via a network. For our ex-
ample, however, we only need to know that Parallel Com-
puting Toolbox makes parfor work efficiently on a single
multi-core system. Each core, or a local worker, can host
one lab.

A question naturally arises: is changing the code
worthwhile? The most accurate answer is, "It depends.”
In our case, changing the code is worthwhile because the
results clearly indicate the benefits of using the parfor
syntax as indicated by the results in Table

Adding more cores would further reduce computation
time, since we have not reached the point of diminish-
ing returns with four cores. The technical term for this
behavior is scalability: for our SVD computation, parfor
scales better than multithreading. It also provides the
kind of performance that might be expected from four
cores. We see substantial speedup and acceptable ef-
ficiency, which was not the case when we used multi-
threading.

Without delving too deeply into the implementation
details, it is necessary to explain the success that resulted
from using parfor. The most notable feature of our sam-
ple code is that each iteration of the loop is independent.
This feature alone makes the application of parfor so easy
yet so effective. The only tasks left for the runtime sys-
tem inside the parfor are distributing the loop iterations
to the cores and gathering results for use outside the par-
for loop.

A word of caution about the effect of parfor on random
number generation. Matrices generated inside a parfor
loop with functions such as randn() will not be identi-
cal to their for-loop counterparts because of the way the
parfor loop iterations are scheduled. In most cases, this
discrepancy is perfectly acceptable.

sum = 0;

A = zeros(101, 1);

parfor i = 1:100
% OK: this is a known reduction operation
sum = sum + i;

% error: loop iterations are dependent
A(i+1) = A() + 1,
end

Figure 4: A parfor loop with two statements inside that
depend on the iteration variable i.

While using parfor has its advantages, it also has lim-
itations. For example, if there is a dependence between
the loop iterations and the dependence can be detected
through code analysis, then executing the parfor loop will
cause an error. If the dependence cannot be detected,
then the only indication of the problem will be incorrect
results. The problem with dependent loop iterations is
illustreted by the code in Figure[d]

The expression that accumulates sum depends on the
iteration variable i, but this is not a problem. The parfor
runtime can easily work with such expressions by evalu-
ating partial sum on each available lab and then combin-
ing the results.

The second expression that operates on array A does,
however, pose a problem. The iteration with i=2 cannot
compute the value of A(3) until the value A(2) is com-
puted in iteration 1. By the same token, the iteration with
i=3 depends on the iteration with i=2, and so on.

Let’s try to fix this problem by taking a closer look at
what happens at each iteration:

Iteration1 i=1: A2)=A(1)+1=0+1=1
Iteration2 i=2: A3)=AQ@)+1=1+1=2
Iteration3 i=3:A4)=A3)+1=2+1=3

It soon becomes clear that we can achieve the same
effect as the loop in Figure[d] by rewriting it as follows:

parfor i = 1:100
sum = sum + i;
A(i+1) =i

end

Now the parfor loop executes and yields the result that
was initially intended.

5 Explicit Parallelism: spmd Key-
word

In the previous section we started to make changes to
the original loop from Figure 2[ in order to introduce



spmd

y = zeros(1000,1);

for n =

labindex:numlabs:1000

z = randn(n);

y(n) = max(svd(z));

end
end

Figure 5: Parallel loop for computing singular varlues in
parallel using the spmd keyword.

labindex numlabs labindex:numlabs:1000
1 4 [1,5 0 13,...]
2 4 [2,6, 10, 14, ...]
3 4 [3.7,11, 15, .. ]
4 4 [4,8, 12,16, .. ]

Table 3: Distribution of loop iteration that guarantees
load balance on four cores.

parallelism to the computation. We need to make
further changes to show yet another parallelization
method available in the Parallel Computing Toolbox.
The method in question uses an spmd keyword. The
modified loop is shown in Figure The name of the
keyword originates from the SPMD acronym often used
in parallel programming literature. It stands for Single
Program Multiple Data. It indicates that there is a single
code for execution by each parallel core but each core
has its own data to operate on. Unlike parfor loops, spmd
blocks (the code between spmd and its corresponding
end) require much larger mental leap from sequential
loops. The reason is that any code executed inside spmd
can behave differently on each core. To be more specific,
the loop in Figure 5| there is a call to two functions
not discussed before: labindindex and numlabs. The
former returns the core number: on the first core it
will return 1, on the second - 2 and so on. The latter
function returns the number of cores that execute the
code inside an spmd block. Using these functions it
is possible to customize the for-loop to spread the

labindex numlabs  (labindex-1)*1000/numlabs
:labindex*1000/numlabs
1 4 [1.2,3, 4 ]
2 4 [251, 252, 253, 254, ...]
3 4 [501, 502, 503, 504, ...]
4 4 [751, 752, 753, 754, ...]

Table 4: Distribution of loop iteration that results in load
imbalance on four cores.

spmd
y = zeros(1000,1, codistributor);
for n = 1:1000

z = randn(n, codistributor);
y(n) = max(svd(z));
end

end

Figure 6: Using distributed arrays for computing singular
varlues in parallel inside the spmd keyword.

iteration space across all the available cores. Table
shows which loop iterations are executed on each core.
It is important to note that the choice of loop iterations
for each core was made with load balance in mind.
An alterntive, is to use the following iteration vector:
(labindex-1)*1000/numlabs:labindex*1000/numlabs.
Table [4| shows the mapping of iterations to the compu-
tational cores. Core number 4 gets the largest matrices
and which represents the most of the work and therefore
it will finish last. This will completely defeat the effort of
parallelization. No such considerations were necessary
when using the parfor-loops: load-balancing is done au-
tomatically behind the scenes by the runtime scheduler
inside the Parallel Computing Toolbox.

6 Explicit Parallelism: Distributed

Arrays

It is possible to further modify the original code from
Figure [2| to show yet another method of parallelization
that is available from the Parallel Computing Toolbox.
The method in question are distributed arrays and the
modified code is shown in Figure [l Distributed ar-
rays are a software abstraction that attempts to hide the
complexity of parallel programming behind MATLAB’s
object-oriented interface [13] and polymorphic func-
tions [I5]. A class called codistributor overloads MAT-
LAB’s matrix creation functions such as zeros() and re-
turns a distributed array object that, for the most part,
has the same functionality like the standard matrix in se-
quential MATLAB. In particular methods such as svd()
and max() are overloaded and return results that are
themselves distributed arrays. It is instructive to note
that this is similar to the parallelism based on threads.
The parallelism is hidden inside computational methods
and functions that are called from otherwise segential
code. As was the case with threading, it releaves the pro-
grammer from thinking about parallelism but it can eas-
ily suffer with poor use of resources as it was shown in
section 3} The advantage of using distributed arrays over
threading is the fact that they can be scaled beyond a sin-
gle multi-core computer. It means both more computa-



spmd
% Part 1: computing SVDs
y = zeros(1000,1);
for n = labindex:numlabs:1000
z = randn(n);
y(n) = max(svd(z));
end

% Part 2: synchronizing 'y’
if labindex ==1
labSend(y, 2)

y = labReceive(numlabs);

else
yReceived = labReceive(labindex-1);
for n = 1:1000
y(n) = max(y(n), yReceived(n));
end
labSend(y, labindex+1)
end
end

Figure 7: Parallel loop for computing singular varlues in
parallel using the spmd keyword.

tional power and larger matrices to work with.

7 Explicit Parallelism: Message Pass-
ing

Message passing is the most extreme parallel program-
ming paradigm out of the ones presented so far in a sense
that gives the most flexibility but at the same some re-
quires the most effort to get it right. Message passing
paradigm uses the spmd keyword and additional func-
tions available in the Parallel Computing Toolbox to al-
low writing scalable algorithms that take advantage of
both multi-core chips as well as clusters of multi-core
computers. The additional functions synchronize and
exchange data between the labs using an MPI (Message
Passing Interface) library [7, 8, [9]. MPI interacts directly
with either the memory controllers or the interconnect
hardware to provide low-latency and high bandwidth in-
terface that is portable accross a variety of network hard-
ware.

To give a sample of a message passing paradigm we
first note that the code from Figure |5| has a feature that
probably is not apparent at the first look: the array y is
not the same on all labs. Each lab has its own copy of
the array and does not see the values that are produced
on other labs. The code in Figure[7|synchronizes array y
across labs by sending a local copy of y from lab 1 to lab
2, then to lab 3, and so on. The last lab sends y back to
lab 1. Prior to forwarding its local y, each lab computes

the maximum of each element of the received array yRe-
ceived and its local copy. In this way, the initial zeros in y
are replaced with singular values which, by linear algebra
theory, are greater than zero. The MATLAB implemen-
tation in Figure [7| uses functions labSend() and labRe-
ceive() to exchange messages between the labs. The mes-
sages contain partial results from each lab.

There are many details left out of this exposition be-
cause the message passing paradigm requires a great at-
tention to detail is mostly intentended for seasoned par-
allel programmers. On a positive note it is worth noting
that some parallel idioms have been captured in func-
tions available in the Parallel Computing Toolbox. In par-
ticular, synchronization of array y that is done in the sec-
ond part of Figure[7jmay be replaced with single line:

y = gop(@max, y);

that uses global high-order function [I] gop() that takes
another MATLAB function as an argument and applies
it globally across all the labs. There is an added bonus
of using gop(): not just one but all labs receive updated
array y and the synchronization is scalable in a sense
that the number of message passing phases is not pro-
portionate to the number of labs but to the base two lo-
girthm of the number of labs.

8 Parallel Language Evolution

Parallel Computing Toolbox has been in the making for
many years now. Consequently, its API (Application Pro-
gramming Interface) and syntax have evolved. Parallel
for-loops’ syntax changed only slightly — the old syntax
was parfor(i = 1:100). Changes to the API distributed
arrays were more pronounced. Initially, in 2005, dis-
tributed arrays were constructed using distributed con-
structor but with slightly different syntax and limited
functionality. As more functionality was added the name
of the contructor changed to darray in 2006. After a year
the name of the constructor returned to distributed but
it was changed again in 2008 to codistributed. Despite
the evolution of the AP], it is quite easy to accomodate
the changes in MATLAB scripts because the functional-
ity remained stable and much of it came from overloaded
functions and methods which bear the same name as
their sequential counterparts.

9 Alternative Solutions

Parallel functionality offered by the Parallel Computing
Toolbox is supported by the makers of MATLAB: the
MathWorks. This is in contrast with their earlier posi-
tion [16] dating back over a decade ago which might ex-
plain a large number of parallel MATLAB extensions [4]
that were created over the years.

One of the still actively developed parallel exten-



sions is pMatlab [12] which offers the abstraction of dis-
tributed arrays very similar to the one described in sec-
tion[6] A very important feature of pMatlab is its portabil-
ity because it only relies on MatlabMPI [11] for message
passing capabilities — a low-level implementation layer.
Portability in MatlabMPI is achieved via exclusive use of
MATLAB code rather than MEX extensions in C/C++ or
FORTRAN. The messages between labs are exchanged
via a distributed file system. Portability comes at a price
of performance but the latter may be increased by use of
beMPIY (Blue Collar MPT) which provides a native bind-
ing to MPIL.

Aspiring for commercial viability is the StarP project
that was intially called Matlab*P [5} 3} 2} 10]. The project
now has commercial support offered by Interactive Su-
percomputing and can be used not just from MATLAB
but also from Python. The available functionality in-
cludes the abstraction of distributed arrays both dense
and sparse and extensive plotting capabilities for these
arrays.

10 Extending Parallel Computing

Multi-core processors are here to stay, and so is parallel
programming. MATLAB already supports several paral-
lelization methods. Support for additional methods will
be provided in future versions of the product.

Consumers and engineers alike believe that we'll see
more cores inside future computers. The trend so far
has been to double the number of cores every few years.
This translates into a doubling of computational power.
Harnessing that power will require the right software,
and writing that software will require the right software
tools. MATLAB is well positioned to fulfill that require-
ment [14].
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